CamSep 7 1

31.03.2017 Views

84 Takie warunki powinny mieć wówczas miejsce, gdy powierzchnia sorpcyjna wypełnienia kolumny, charakteryzująca się określonym rozkładem wielkości porów dostosowanym do wielkości rozdzielanych cząsteczek. Jednocześnie jest nieco polarna, a eluent nie jest na tyle polarny, by zapewniał całkowitą eliminację adsorpcji. Gdy w takich warunkach rozdzielaniu grupowemu mają podlegać np. tri -, di- oraz monoacyloglicerole – TAG/DAG/MAG, wówczas oczywista wydaje się być kolejność elucji: 1 – TAG, 2 – DAG, 3 – MAG, ponieważ w tej kolejności wzrasta polarność w/w grup składników rozdzielanej mieszaniny. Jednakże, jak wykazały badania TLC, gdy mieszanina zawiera także wolne kwasy tłuszczowe (WKT), to kolejność elucji już nie jest oczywista, gdyż WKT są co prawda względnie mniejszymi cząsteczkami od TAG/DAG/MAG i w warunkach „klasycznej” GPC/SEC powinny być eluowane jako ostatnie, jednak są znacznie mniej polarne niż monoacyloglicerole (MAG'i). Kolejność elucji w warunkach GPC -NP może wówczas zależeć od polarności eluentu oraz od polarności fazy stacjonarnej. Istnieje możliwość doboru w ten sposób rodzaju fazy stacjonarnej oraz rodzaju eluentu, by mimo niezbyt wysokiej sprawności kolumny, tzn. ograniczonej liczbie półek teoretycznych, nie tylko miało miejsce rozdzielanie grupowe, ale by odwrócona została kolejność elucji dwóch ostatnich grup MAG/WKT. Badania wykonane techniką HPLC, których rezultaty będą przedmiotem kolejnej publikacji wykazały, że jest też możliwe, by miało miejsce częściowe rozdzielanie pod względem polarności w ramach poszczególnych grup, szczególnie w ramach grupy WKT i MAG'ów. Jednakże, kolumna HPLC, typu GPC/SEC -NP powinna wówczas charakteryzować się bardzo wysoką sprawnością (bardzo wysoka liczba półek teoretycznych (N)). Stąd, warunki GPC/SEC - NP są przydatne do wstępnego rozdzielania grupowego. Natomiast, "szczegółowe" rozdzielanie pod względem zróżnicowania polarności jest celowe w typowych warunkach NP -HPLC, z elucją gradientową. W przypadku rozdzielania bardzo skomplikowanych mieszanin, można, a czasem należy, najpierw dokonać rozdzielania "wstępnego" w warunkach HPLC - GPC-SEC-NP, a następnie poszczególne frakcje rozdzielać w warunkach NP-HPLC z elucją gradientową [A. Stołyhwo, wyniki niepublikowanych badań]. Jest to szczególnie celowe gdy celem rozdzielania jest preparatywne wydzielanie czystych związków chemicznych, albo określonych grup związków chemicznych. Odwrotna sytuacja będzie miała miejsce, gdy wraz ze spadkiem wielkości cząsteczek (spadkiem masy molekularnej) będzie miał miejsce wzrost hydrofobowości i spadek polarności składników, lub grup składników rozdzielanej mieszaniny. Taka sytuacja jest dość rzadka, jednak nie jest wykluczona. Wówczas korzystne może być powiązanie warunków chromatografii wykluczania z warunkami słabych oddziaływań hydrofobowych GPC/SEC-RP. Na zakończenie należy zwrócić uwagę, że badania ostatnich lat wykazują [18-21], że rozdzielanie poszczególnych izomerów acylogliceroli jest możliwe z wykorzystaniem HPLC i faz stacjonarnych typu C18 lub podobnych, o wysokim stopniu hydrofobowości powierzchni sorpcyjnej oraz z wykorzystaniem elucji gradientowej i z takimi bezwodnymi składnikami eluentu, jak, dichloroetan, dichlorometan, chloroform, acetonitryl itp. Jednocześnie kolumny "typu RP" powinny charakteryzujących się bardzo wysoką sprawnością oraz wysoką selektywnością. Badania nad zastosowaniem wysokosprawnej wielowymiarowej (nD) i wielokolumnowej (NC) chromatografii cieczowej do rozdzielania w skali semi-preparatywnej mieszanin tłuszczów i produktów ich konwersji, w celu otrzymywania czystych grup związków chemicznych / określonych indywiduów chemicznych są przedmiotem kolejnej przygotowywanej publikacji. Conclusions TLC technique allows to obtain approximate information about resolution and retention of the examined compounds. Partial conclusions summarizing interactions, which most probably take place in various chromatographic systems is presented in tab.12. In cases where the nature of the separation mechanism is denoted as GPC/SEC, only steric exclusion of separated chemical compounds takes place. When the chromatographic system has the characteristics of the GPC/SEC-NP, the separation of chemicals is based on occurrence of dispersion, dipole, polar and hydrogen interactions, next to steric exclusion. When the chromatographic system has the characteristics of the GPC/SEC-RP – next to steric exclusion, there also occur van der Waals forces, as well as a π-π, π-electron pair and quadrupole ones. Our research shows that certain modifications of size-exclusion chromatography may lead to changes in resolution and selectivity of chromatographic systems. Good cognition and knowledge of interactions that take place between molecules of fats (and products of their conversion) and the surface of the stationary phase, as well as, finding an optimal mobile phase composition and elution program, can and should be done by means of thin layer chromatography (TLC), as TLC technique crucially accelerates and facilitates the selection of optimal conditions for separation. In next step, it is justifiable to transfer, first to model scale and than to preparative scale, the most important conclusions form TLC to high performance liquid chromatography (HPLC) conditions. In such a way, it is possible to significantly accelerate the process of optimal conditions selection for group and “detailed” separation of complex mixtures of chemical compounds, including fats and products of their conversion. In future, conducted studies should led to construction of an automated multi-column (NC) and multi-dimensional (nD) separation system which could be used for Vol. 7, No 1/2015 Camera Separatoria

85 preparative separation of fats and products of their conversion. Ultimately, such automated chromatographic system should have potential to be used in fats’ standards production. When transferring separation conditions used in the thin layer chromatography (TLC) to high performance liquid chromatography (HPLC), it should be noted that in the case of liquid chromatography, including exclusion chromatography (GPC/SEC), the solvent of the sample should be the same as mobile phase used. In case of a gradient elution – the solvent should have identical composition as the initial mobile phase used in elution program. During “classical” size exclusion chromatography, the mobile phase has to ensure minimization, or preferably, absence of sorption interactions between all components of the sample being separated and the surface of the pores of the stationary phase. Then the elution of substances form the column takes place in the order from the largest to the smallest particles. The biggest ones have, as the “diffusion path”, only a small space of the largest pores of stationary phase at their disposal. Th e smallest ones have the biggest space – the space of all pores (the largest, medium and smallest). The same applies to the "classical" size exclusion chromatography, when the sorption interactions between components of separated sample and the surface of the micro-pores of the column packing are absent. However, in the case where the mobile phase composition and the stationary phase of the column have been selected in such a way that, in addition to exclusion effects, weak adsorption interactions take plac e – preferably, the stronger the lower the molecular weight of the separated sample is – an increase of resolution in such 'designed' separation system should be obtained, as it was observed during the studies carried out by means of TLC and described in this paper. Such conditions should take place when the sorption area of stationary phase has a defined pore size, which is properly and adequately selected for the size of separated particles. At the same time, the stationary phase should be slightly polar, while the mobile phase is not sufficiently polar to provide complete elimination of adsorption. When tri -, di- and monoalyloglycerols are subjected to separation in described conditions, the order of elution seems to be obvious: 1 – TAG, 2 – DAG, 3 – MAG, according to increasing polarity. However, as it was proved by TLC studies, when the examined sample contained also free fatty acids (FFA) the elution order was not so clear and obvious. However, FFA are relatively smaller particles than TAG/DAG/MAG and in case of „classical” GPC/SEC they should be eluted as the last ones, they are significantly less polar than monoacylglycerols (MAG). The elution order in GPC -NP conditions may depend on the polarity of the mobile phase and the polarity of the stationary phase. Despite of quite low efficiency of the column, i.e. a limited number of theoretical plates, there is a possibility to select a stationary phase type and a type of mobile phase in such a way to obtain good group separation and reversed elution order o f the last two groups, i.e. MAG/FFA. Studies carried out by HPLC technique, the results of which will be the subject of another paper, revealed that it is also possible to obtain group separation in relation to polarity, especially within the FFA and MAG groups. However, the GPC/SEC-NP HPLC columns should than have a very high efficiency (a very high number of theoretical plates (N)). Therefore, the GPC/SEC-NP conditions are useful for the initial group separation. In contrast, “detailed” separation, in rel ation to polarity differences, is advisable during classical NP-HPLC conditions with gradient elution. In the case of highly complex mixtures separation, it is possible or sometimes indispensable, to firstly perform “initial” separation by HPLC - GPC/SEC-NP, and then separate respective fractions by means of NP -HPLC with gradient elution [A. Stołyhwo, unpublished results of studies]. It is particularly advisable when the aim of the separation is to obtain pure chemical compounds or groups of compounds in preparative scale. Opposite situation will take place when during the particle size decrease (and the molecular mass decrease) the hydrophobicity of separated compounds (or group of compounds) will increase and their polarity will decrease. Such situation occurs infrequently, however is possible. Then, it may be profitable to link up the GPC/SEC conditions with the conditions of weak hydrophobic interactions GPC/SEC-RP. Finally, it should be noticed that recent studies [18 -21] showed that the separation of individual acyloglycerol isomers is possible by means of HPLC and C18 (or similar) stationary phases, with gradient elution, and with anhydrous mobile phases such as dichloroethane, dichloromethane, chloroform, acetonitrile, etc. Simultaneously, the columns of “RP-type” should be characterized by a very high efficiency and high selectivity. Studies concerning usage of high performance multi -diemnsional (nD) and multicolumn (NC) liquid chromatography for separation of fats and products of their conversion in semi-preparative scale, in order to obtain pure chemical compounds or groups of compounds, are the subject of the next research paper. Podziękowania (Acknowledgements) Prace były finansowane przez Narodowe Centrum Nauki numer rejestracyjny projektu badawczego: N N312 417237, numer umowy: 4172/B/P01/2009/37, pt. "Wykorzystanie chromatografii wykluczania i adsorpcji do rozdzielania i oznaczania grupowego lipidów i produktów konwersji w tłuszczach jadalnych" Vol. 7, No 1/2015 Camera Separatoria

85<br />

preparative separation of fats and products of their conversion. Ultimately, such automated chromatographic<br />

system should have potential to be used in fats’ standards production.<br />

When transferring separation conditions used in the thin layer chromatography (TLC) to high<br />

performance liquid chromatography (HPLC), it should be noted that in the case of liquid chromatography,<br />

including exclusion chromatography (GPC/SEC), the solvent of the sample should be the same as mobile<br />

phase used. In case of a gradient elution – the solvent should have identical composition as the initial mobile<br />

phase used in elution program. During “classical” size exclusion chromatography, the mobile phase has to<br />

ensure minimization, or preferably, absence of sorption interactions between all components of the sample<br />

being separated and the surface of the pores of the stationary phase. Then the elution of substances form<br />

the column takes place in the order from the largest to the smallest particles. The biggest ones have, as the<br />

“diffusion path”, only a small space of the largest pores of stationary phase at their disposal. Th e smallest<br />

ones have the biggest space – the space of all pores (the largest, medium and smallest). The same applies<br />

to the "classical" size exclusion chromatography, when the sorption interactions between components of<br />

separated sample and the surface of the micro-pores of the column packing are absent. However, in the<br />

case where the mobile phase composition and the stationary phase of the column have been selected in<br />

such a way that, in addition to exclusion effects, weak adsorption interactions take plac e – preferably, the<br />

stronger the lower the molecular weight of the separated sample is – an increase of resolution in such<br />

'designed' separation system should be obtained, as it was observed during the studies carried out by means<br />

of TLC and described in this paper.<br />

Such conditions should take place when the sorption area of stationary phase has a defined pore size,<br />

which is properly and adequately selected for the size of separated particles. At the same time, the<br />

stationary phase should be slightly polar, while the mobile phase is not sufficiently polar to provide complete<br />

elimination of adsorption. When tri -, di- and monoalyloglycerols are subjected to separation in described<br />

conditions, the order of elution seems to be obvious: 1 – TAG, 2 – DAG, 3 – MAG, according to increasing<br />

polarity. However, as it was proved by TLC studies, when the examined sample contained also free fatty<br />

acids (FFA) the elution order was not so clear and obvious. However, FFA are relatively smaller particles<br />

than TAG/DAG/MAG and in case of „classical” GPC/SEC they should be eluted as the last ones, they are<br />

significantly less polar than monoacylglycerols (MAG). The elution order in GPC -NP conditions may depend<br />

on the polarity of the mobile phase and the polarity of the stationary phase. Despite of quite low efficiency of<br />

the column, i.e. a limited number of theoretical plates, there is a possibility to select a stationary phase type<br />

and a type of mobile phase in such a way to obtain good group separation and reversed elution order o f the<br />

last two groups, i.e. MAG/FFA. Studies carried out by HPLC technique, the results of which will be the<br />

subject of another paper, revealed that it is also possible to obtain group separation in relation to polarity,<br />

especially within the FFA and MAG groups. However, the GPC/SEC-NP HPLC columns should than have a<br />

very high efficiency (a very high number of theoretical plates (N)). Therefore, the GPC/SEC-NP conditions<br />

are useful for the initial group separation. In contrast, “detailed” separation, in rel ation to polarity differences,<br />

is advisable during classical NP-HPLC conditions with gradient elution. In the case of highly complex<br />

mixtures separation, it is possible or sometimes indispensable, to firstly perform “initial” separation by HPLC -<br />

GPC/SEC-NP, and then separate respective fractions by means of NP -HPLC with gradient elution<br />

[A. Stołyhwo, unpublished results of studies]. It is particularly advisable when the aim of the separation is to<br />

obtain pure chemical compounds or groups of compounds in preparative scale.<br />

Opposite situation will take place when during the particle size decrease (and the molecular mass<br />

decrease) the hydrophobicity of separated compounds (or group of compounds) will increase and their<br />

polarity will decrease. Such situation occurs infrequently, however is possible. Then, it may be profitable to<br />

link up the GPC/SEC conditions with the conditions of weak hydrophobic interactions GPC/SEC-RP.<br />

Finally, it should be noticed that recent studies [18 -21] showed that the separation of individual<br />

acyloglycerol isomers is possible by means of HPLC and C18 (or similar) stationary phases, with gradient<br />

elution, and with anhydrous mobile phases such as dichloroethane, dichloromethane, chloroform,<br />

acetonitrile, etc. Simultaneously, the columns of “RP-type” should be characterized by a very high efficiency<br />

and high selectivity.<br />

Studies concerning usage of high performance multi -diemnsional (nD) and multicolumn (NC) liquid<br />

chromatography for separation of fats and products of their conversion in semi-preparative scale, in order to<br />

obtain pure chemical compounds or groups of compounds, are the subject of the next research paper.<br />

Podziękowania<br />

(Acknowledgements)<br />

Prace były finansowane przez Narodowe Centrum Nauki numer rejestracyjny projektu badawczego:<br />

N N312 417237, numer umowy: 4172/B/P01/2009/37, pt. "Wykorzystanie chromatografii wykluczania<br />

i adsorpcji do rozdzielania i oznaczania grupowego lipidów i produktów konwersji w tłuszczach jadalnych"<br />

Vol. 7, No 1/2015<br />

Camera Separatoria

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!