Postepy nauk rolniczych - Instytucja Naukowa - Polska Akademia ...

Postepy nauk rolniczych - Instytucja Naukowa - Polska Akademia ... Postepy nauk rolniczych - Instytucja Naukowa - Polska Akademia ...

instytucja.pan.pl
from instytucja.pan.pl More from this publisher
13.07.2015 Views

30 K. Rybka, G. ¯urek[31] Kim T.-H., Bohmer M., Hu H., Nishimura N., Schroeder J.I. 2010. Guard cell signal transduction network:Advances in understiing Abscisic Acid, CO 2 , and Ca 2+ signaling. Annu. Rev. Plant Biol. 61: 561–591.[32] Kondou Y., Higuchi M., Matsui M. 2010. High-throughput characterization of plant gene functions by usinggain-of-function technology. Annu. Rev. Plant Biol. 61: 373–393.[33] Krishnan A., Guiderdoni E., An G., Hsing Y., Han C., Lee M.C., Yu S.-M., Upadhyaya N., Ramachiran S.,Zhang Q., Sundaresan V., Hirochika H., Leung H., Pereira A. 2009. Mutant resources in rice for functionalgenomics of the grasses. Plant Physiol. 149: 165–170.[34] Langridge P., Paltridge N., Fincher G. 2006. Functional genomics of abiotic stress tolerance in cereals. BriefFunct Genomic Proteomic 4: 343–354.[35] Logan B.A., Kornyeyev D., Hardison J., Holaday A.S. 2006. The role of antioxidant enzymes inphotoprotection. Photosynt. Res. 88: 119–132.[36] Lorenz H. 2005. Atlas Klimatu Polski. Instytut Meteorologii i Gospodarki Wodnej, Warszawa: 116 ss.[37] Maseda P.H., Ferniez R.J. 2006. Stay wet or else: three ways in which plants can adjust hydraulically to theirenvironment. J. Exp. Bot. 57: 3963–3977.[38] Miazek A., Zagdañska B. 2008. Involvement of exopeptidases in dehydration tolerance of spring wheatseedlings. Biol. Plantarum 52: 687–694.[39] Miyazono K., Miyakawa T., Sawano Y., Kubota K., Kang H., Asano A., Miyauchi Y., Takahashi M., Zhi Y.,Fujita Y., Yoshida T., Kodaira K., Yamaguchi-Shinozaki K., Tanokura M. 2009. Structural basis of abscisicacid signalling. Nature 462: 609–614.[40] Moradi F., Ismail A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence i ROS-scavengingsystems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161–1173.[41] Morgan J.M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.[42] Mostowska A., GwóŸdŸ E.A. 1998. Reakcje aparatu fotosyntetycznego na stres oksydacyjny. Post. Biol. Kom.22: 43–63.[43] Murkowski A. 2002. Oddzia³ywanie czynników stresowych na luminescencjê chlorofilu w aparacie fotosyntetycznymroœlin uprawnych. Acta Agroph. 61: 1–158.[44] Noctor G., Paepe R.D., Foyer C. 2007. Mitochondrial redox biology and homeostasis in plants. Trends PlantSci. 12: 125–134.[45] Reynolds M., Tuberosa R. 2008. Translational research impacting on crop productivity in drought-proneenvironments. Curr. Opin. Plant Biol. 11: 171–179.[46] Richards R.A., Rebetzke G.J., Watt M., Condon A.G., Spielmeyer W., Dolferus R. 2010. Breeding for improvedwater productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selectionenvironment. Funct. Plant Biol. 37: 85–97.[47] Rybka K. 2009. TILLING i FOX-hunting: nowe metody analizy funkcjonalnej genów. Post. Biol. Kom. 36:539–554.[48] Rybka K., Or³owska R. 2010. Metody oceny odpornosci roslin na suszê. Monografia. Radzików InstytutHodowli i Aklimatyzacji Roœlin: w przygotowaniu.[49] Salekdeh G.H., Reynolds M., Bennett J., Boyer J. 2009. Conceptual framework for drought phenotyping duringmolecular breeding. Trends Plant Sci. 14: 488–496.[50] Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux .F., Park S.-Y., Márquez J.A., Cutler S.R.,Rodriguez P.L. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition ofclade: A PP2Cs. Plant J. 60: 575–588.[51] Schachtman D.P, Goodger J.Q.D. 2008. Chemical root to shoot signaling under drought. Trends Plant Sci. 13:281–287.[52] Shao H.-B., Chu L.-Y., Jaleel C.A., Manivannan P., Panneerselvam R., Shao M.-A. 2009. Understanding waterdeficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainablyimproving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29: 131–151.[53] Shao H.-B., Chu L.-Y., Jaleel C.A., Zhao C.-X. 2008. Water-deficit stress-induced anatomical changes inhigher plants. CR Biol. 331: 215–225.[54] Shinozaki K., Doi M., Assmann S.M., Kinoshita T. 2007. Light regulation of stomatal movement. Annu. Rev.Plant Biol. 58: 219–47[55] Sirichira C., Wasilewska A., Vlad F., Valon C., Leung J. 2009. The guard cell as a single-cell model towardsunderstiing drought tolerance and abscisic acid action. J. Exp. Bot. 60: 1439–63

Oszczêdne gospodarowanie wod¹ … 31[56] Skirycz A., De Bodt S., Obata T., De Clercq I., Claeys H., De Rycke R., Iriankaja M., Van Aken O., VanBreusegem F., Fernie A. R., Inze D. 2010. Developmental stage specificity and the role of mitochondrialmetabolism in the response of arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol. 152: 226–244.[57] Skoœkiewicz K. 1973. Stomatal movements in summer rape Bronowski IHAR (Brassica napus L. ssp. oleifera(METZG) sinsk. F. Annu a Thel.) in dependence on the age of the leaf, water deficit, light intensity and CO 2concentration. Hod. Roœl. Aklim. Nas. (obecnie Plant Breed. Seed Sci.) 17: 359–385.[58] Somvanshi V. S. 2009. Patenting drought tolerance in organisms. Recent Patents on DNA & Gene Sequences 3:16–25.[59] Sreenivasulu N., Sopory S.K., Kavi Kishor P.B. 2007. Deciphering the regulatory mechanisms of abiotic stresstolerance in plants by genomic approaches. Gene 388: 1–13.[60] Starck Z. 2002. Fizjologiczne podstawy produktywnoœci roœlin. W: Kopcewicz J., Lewak S. (red.) Fizjologiaroœlin. Warszawa: wyd. PWN: 679–706.[61] Starck Z. 2009. Dystrybucja asymilatów kluczowym procesem determinuj¹cym plon. Post. Nauk Roln. 2:51–69.[62] Strebeyko P. 1966. Zmiany zawartoœci wody w tkankach roœlinnych jako miara wahañ bilansu wodnegow badaniach ekologicznych i rolniczych. Roczn. Nauk Roln. 91-A-3: 545–562.[63] Strebeyko P. 1973. Theoretical principles of gas exchange in plants. Hod. Roœl. Aklim. Nas. (obecnie PlantBreed. Seed Sci.) 17: 287–295.[64] Strebeyko P. 1976. Procesy biofizyczne w roœlinie. Warszawa: PWN: 257–258.[65] TPI, Turfgrass Producers International, 2010. Water Right – Conserving Our Water, Preserving Our Environment,The Lawn Institute, 2 East Main Street, East Dundee, IL 60118 USA,«http://www.turfgrasssod.org/publish/posts/71/water-right-publication».[66] Urano K., Maruyama K., Ogata Y., Morishita Y., Takeda M., Sakurai N., Suzuki H., Saito K., Shibata D.,Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. 2009. Characterization of the ABA-regulated globalresponses to dehydration in Arabidopsis by metabolomics. Plant J. 57: 1065–1078.[67] US Patent Database: «http://patft1.uspto.gov/».[68] Wang P., Song C.-P. 2008. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol. 178:703–718.[69] Wilson P.B., Estavillo G.M., Field K.J., Pornsiriwong W., Carroll A.J., Howell K.A., Woo N.S., Lake J.A.,Smith S.M., Millar A.H., von Caemmerer S., Pogson B.J. 2009. The nucleotidase/phosphatase SAL1 isa negative regulator of drought tolerance in Arabidopsis. Plant J. 58: 299–317.[70] Wiœniewski K., Zagdañska B. 2001. Genotype-dependent proteolytic response of spring wheat to waterdeficiency. J. Exp. Bot. 52: 1455–1463.[71] World Resources Institute (2008), World Resources 2008: Roots of Resilience -Growing the Wealth of the Poor.World Resources Institute (WRI) we wspó³pracy z United Nations Development Programme, United NationsEnvironment Programme i World Bank. 2008. Washington, DC: 277 ss.[72] Xu Z., Zhou G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesisin a grass. J. Exp. Bot. 59: 3317–3325.[73] Zagdañska B., Pacanowska A. 1979. Dehyderatation tolerance in spring wheat seeds. Biol. Plantarum 21:462–467.[74] Zagdañska B. 1997. Mechanizmy odpornoœci zbó¿ na suszê glebow¹: metabolizm energetyczny pszenicy jarejw nabywaniu odpornoœci. Biuletyn IHAR 203: 41–55.[75] Zagdañska B., Kozdój J. 1994. Water stress-induced changes in morphology and anatomy of flag leaf of springwheat. Acta Soc. Bot. Pol. 63: 61–66[76] Zhang J., Dell B., Conocono E., Waters I., Setter T., Appels R. 2009. Water deficits in wheat: fructanexohydrolase (1-FEH) mRNA expression i relationship to soluble carbohydrate concentrations in two varieties.New Phytol. 181: 843–850.[77] ¯urek G. 2006. Reakcja traw na niedobory wody – metody oceny i ich zastosowanie dla gatunków trawnikowych.Monografia. Radzików: Instytut Hodowli i Aklimatyzacji Roœlin: 1–106.

30 K. Rybka, G. ¯urek[31] Kim T.-H., Bohmer M., Hu H., Nishimura N., Schroeder J.I. 2010. Guard cell signal transduction network:Advances in understiing Abscisic Acid, CO 2 , and Ca 2+ signaling. Annu. Rev. Plant Biol. 61: 561–591.[32] Kondou Y., Higuchi M., Matsui M. 2010. High-throughput characterization of plant gene functions by usinggain-of-function technology. Annu. Rev. Plant Biol. 61: 373–393.[33] Krishnan A., Guiderdoni E., An G., Hsing Y., Han C., Lee M.C., Yu S.-M., Upadhyaya N., Ramachiran S.,Zhang Q., Sundaresan V., Hirochika H., Leung H., Pereira A. 2009. Mutant resources in rice for functionalgenomics of the grasses. Plant Physiol. 149: 165–170.[34] Langridge P., Paltridge N., Fincher G. 2006. Functional genomics of abiotic stress tolerance in cereals. BriefFunct Genomic Proteomic 4: 343–354.[35] Logan B.A., Kornyeyev D., Hardison J., Holaday A.S. 2006. The role of antioxidant enzymes inphotoprotection. Photosynt. Res. 88: 119–132.[36] Lorenz H. 2005. Atlas Klimatu Polski. Instytut Meteorologii i Gospodarki Wodnej, Warszawa: 116 ss.[37] Maseda P.H., Ferniez R.J. 2006. Stay wet or else: three ways in which plants can adjust hydraulically to theirenvironment. J. Exp. Bot. 57: 3963–3977.[38] Miazek A., Zagdañska B. 2008. Involvement of exopeptidases in dehydration tolerance of spring wheatseedlings. Biol. Plantarum 52: 687–694.[39] Miyazono K., Miyakawa T., Sawano Y., Kubota K., Kang H., Asano A., Miyauchi Y., Takahashi M., Zhi Y.,Fujita Y., Yoshida T., Kodaira K., Yamaguchi-Shinozaki K., Tanokura M. 2009. Structural basis of abscisicacid signalling. Nature 462: 609–614.[40] Moradi F., Ismail A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence i ROS-scavengingsystems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99: 1161–1173.[41] Morgan J.M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.[42] Mostowska A., GwóŸdŸ E.A. 1998. Reakcje aparatu fotosyntetycznego na stres oksydacyjny. Post. Biol. Kom.22: 43–63.[43] Murkowski A. 2002. Oddzia³ywanie czynników stresowych na luminescencjê chlorofilu w aparacie fotosyntetycznymroœlin uprawnych. Acta Agroph. 61: 1–158.[44] Noctor G., Paepe R.D., Foyer C. 2007. Mitochondrial redox biology and homeostasis in plants. Trends PlantSci. 12: 125–134.[45] Reynolds M., Tuberosa R. 2008. Translational research impacting on crop productivity in drought-proneenvironments. Curr. Opin. Plant Biol. 11: 171–179.[46] Richards R.A., Rebetzke G.J., Watt M., Condon A.G., Spielmeyer W., Dolferus R. 2010. Breeding for improvedwater productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selectionenvironment. Funct. Plant Biol. 37: 85–97.[47] Rybka K. 2009. TILLING i FOX-hunting: nowe metody analizy funkcjonalnej genów. Post. Biol. Kom. 36:539–554.[48] Rybka K., Or³owska R. 2010. Metody oceny odpornosci roslin na suszê. Monografia. Radzików InstytutHodowli i Aklimatyzacji Roœlin: w przygotowaniu.[49] Salekdeh G.H., Reynolds M., Bennett J., Boyer J. 2009. Conceptual framework for drought phenotyping duringmolecular breeding. Trends Plant Sci. 14: 488–496.[50] Santiago J., Rodrigues A., Saez A., Rubio S., Antoni R., Dupeux .F., Park S.-Y., Márquez J.A., Cutler S.R.,Rodriguez P.L. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition ofclade: A PP2Cs. Plant J. 60: 575–588.[51] Schachtman D.P, Goodger J.Q.D. 2008. Chemical root to shoot signaling under drought. Trends Plant Sci. 13:281–287.[52] Shao H.-B., Chu L.-Y., Jaleel C.A., Manivannan P., Panneerselvam R., Shao M.-A. 2009. Understanding waterdeficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainablyimproving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29: 131–151.[53] Shao H.-B., Chu L.-Y., Jaleel C.A., Zhao C.-X. 2008. Water-deficit stress-induced anatomical changes inhigher plants. CR Biol. 331: 215–225.[54] Shinozaki K., Doi M., Assmann S.M., Kinoshita T. 2007. Light regulation of stomatal movement. Annu. Rev.Plant Biol. 58: 219–47[55] Sirichira C., Wasilewska A., Vlad F., Valon C., Leung J. 2009. The guard cell as a single-cell model towardsunderstiing drought tolerance and abscisic acid action. J. Exp. Bot. 60: 1439–63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!