Řešené úlohy na trojný integrál ve válcových a sférických souřadnicích

Řešené úlohy na trojný integrál ve válcových a sférických souřadnicích Řešené úlohy na trojný integrál ve válcových a sférických souřadnicích

math.feld.cvut.cz
from math.feld.cvut.cz More from this publisher
20.07.2013 Views

Trojné integrály - substituce do válcových a sférických souřadnic Válcové souřadnice (ρ, ϕ, z) bodu (x, y, z) jsou definovány vztahy (1) x = ρ cos ϕ, y = ρ, sin ϕ, z = z, kde ρ > 0, α ≤ ϕ ≤ α + 2π a −∞ < z < ∞. Transformace objemu provedeme dosazením dxdydz = ρdρdϕdz. Poznamenejme, že je x 2 + y 2 = ρ 2 . Sférické souřadnice (r, θ, ϕ) bodu (x, y, z) jsou definovány vztahy (2) x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, kde r > 0, 0 ≤ θ ≤ π, α ≤ ϕ ≤ α + 2π. Transformaci objemu provedeme dosazením dxdydz = r2 sin θdrdθdϕ. Poznamenejme, že je x2 + y2 + z2 = r2 . 58. yz dxdydz; A = {(x, y, z); x A 2 + y 2 + z 2 ≤ 1, z ≥ 0, y ≥ 0}; [ 2 15 ] (2) r2 ≤ 1, r sin θ sin ϕ ≥ 0, r cos θ ≥ 0 ⇒ 0 < r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π; 2 60. A π yz dxdydz = = r 5 5 0 1 . 0 π 2 0 1 sin 3 θ 3 0 π 2 0 r 4 sin 2 θ cos θ sin ϕ dr dθ dϕ = . [− cos ϕ] π 0 = 2 15 . (x A 2 + y 2 ) dxdydz; A = {(x, y, z); x 2 + y 2 − z ≤ 1, z ≤ 0}; [ π (1) ρ 2 ≤ 1 + z, z ≤ 0 ⇒ ρ 2 − 1 ≤ z ≤ 0, 0 < ρ ≤ 1, 0 ≤ ϕ ≤ 2π; (x A 2 + y 2 2π 1 0 ) dxdydz = 0 0 ρ2−1 61. A = 2π 1 0 ρ 3 dz dρ dϕ = 2π ρ 3 − ρ 5 dρ = π 6 . 1 0 ρ 3 z 0 ρ 2 −1 x dxdydz; A = {(x, y, z); x 2 + y 2 ≤ 2x, 0 ≤ z ≤ xy} [ 4 5 ] (1) ρ 2 ≤ 2ρ cos ϕ, 0 ≤ z ≤ ρ 2 cos ϕ sin ϕ ⇒ 0 ≤ z ≤ ρ 2 cos ϕ sin ϕ, 0 < ρ ≤ 2 cos ϕ, 0 ≤ ϕ ≤ π/2; = A π 2 0 x dxdydz = π 2 2 cos ϕ ρ2 cos ϕ sin ϕ 0 0 0 2 cos ϕ ρ 0 4 cos 2 ϕ sin ϕ dρ 20 dϕ = 32 5 π 2 0 ρ 2 cos ϕ dz dρ dϕ = cos 7 ϕ sin ϕ dϕ = 4 5 . 6 ] dρ =

Trojné <strong>integrál</strong>y - substituce do <strong>válcových</strong> a <strong>sférických</strong> souřadnic<br />

Válcové souřadnice (ρ, ϕ, z) bodu (x, y, z) jsou definovány vztahy<br />

(1) x = ρ cos ϕ, y = ρ, sin ϕ, z = z,<br />

kde ρ > 0, α ≤ ϕ ≤ α + 2π a −∞ < z < ∞. Transformace objemu pro<strong>ve</strong>deme dosazením<br />

dxdydz = ρdρdϕdz. Poz<strong>na</strong>menejme, že je x 2 + y 2 = ρ 2 .<br />

Sférické souřadnice (r, θ, ϕ) bodu (x, y, z) jsou definovány vztahy<br />

(2) x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,<br />

kde r > 0, 0 ≤ θ ≤ π, α ≤ ϕ ≤ α + 2π. Transformaci objemu pro<strong>ve</strong>deme dosazením<br />

dxdydz = r2 sin θdrdθdϕ. Poz<strong>na</strong>menejme, že je x2 + y2 + z2 = r2 .<br />

<br />

58. yz dxdydz; A = {(x, y, z); x<br />

A<br />

2 + y 2 + z 2 ≤ 1, z ≥ 0, y ≥ 0}; [ 2<br />

15 ]<br />

(2) r2 ≤ 1, r sin θ sin ϕ ≥ 0, r cos θ ≥ 0 ⇒ 0 < r ≤ 1, 0 ≤ θ ≤ π,<br />

0 ≤ ϕ ≤ π;<br />

2<br />

<br />

60.<br />

<br />

A<br />

π<br />

yz dxdydz =<br />

=<br />

r 5<br />

5<br />

0<br />

1<br />

.<br />

0<br />

π<br />

2<br />

0<br />

1<br />

sin 3 θ<br />

3<br />

0<br />

π<br />

2<br />

0<br />

r 4 sin 2 <br />

θ cos θ sin ϕ dr dθ dϕ =<br />

. [− cos ϕ] π<br />

0<br />

= 2<br />

15 .<br />

(x<br />

A<br />

2 + y 2 ) dxdydz; A = {(x, y, z); x 2 + y 2 − z ≤ 1, z ≤ 0}; [ π<br />

(1) ρ 2 ≤ 1 + z, z ≤ 0 ⇒ ρ 2 − 1 ≤ z ≤ 0, 0 < ρ ≤ 1, 0 ≤ ϕ ≤ 2π;<br />

<br />

(x<br />

A<br />

2 + y 2 2π 1 0<br />

) dxdydz =<br />

0 0 ρ2−1 <br />

61.<br />

A<br />

= 2π<br />

1<br />

0<br />

ρ 3 <br />

dz dρ dϕ = 2π<br />

<br />

ρ 3 − ρ 5<br />

dρ = π<br />

6 .<br />

1<br />

0<br />

<br />

ρ 3 z 0<br />

ρ 2 −1<br />

x dxdydz; A = {(x, y, z); x 2 + y 2 ≤ 2x, 0 ≤ z ≤ xy} [ 4<br />

5 ]<br />

(1) ρ 2 ≤ 2ρ cos ϕ, 0 ≤ z ≤ ρ 2 cos ϕ sin ϕ ⇒<br />

0 ≤ z ≤ ρ 2 cos ϕ sin ϕ, 0 < ρ ≤ 2 cos ϕ, 0 ≤ ϕ ≤ π/2;<br />

<br />

=<br />

A<br />

π<br />

2<br />

0<br />

x dxdydz =<br />

π<br />

2<br />

<br />

2 cos ϕ ρ2 cos ϕ sin ϕ<br />

0 0<br />

0<br />

2 cos ϕ<br />

ρ<br />

0<br />

4 cos 2 <br />

ϕ sin ϕ dρ<br />

20<br />

dϕ = 32<br />

5<br />

π<br />

2<br />

0<br />

ρ 2 cos ϕ dz<br />

<br />

dρ<br />

<br />

dϕ =<br />

cos 7 ϕ sin ϕ dϕ = 4<br />

5 .<br />

6 ]<br />

dρ =


62.<br />

<br />

yz dxdydz;<br />

A<br />

A = {(x, y, z); x 2 + y 2 ≤ 4, 0 ≤ z ≤ y}; [ 64<br />

15 ]<br />

(1) ρ2 ≤ 4, 0 ≤ z ≤ ρ sin ϕ ⇒ 0 ≤ z ≤ ρ sin ϕ, 0 < ρ ≤ 2, 0 ≤ ϕ ≤ π;<br />

<br />

A<br />

<br />

63.<br />

π<br />

yz dxdydz =<br />

0<br />

2 ρ sin ϕ<br />

0<br />

0<br />

= 16<br />

5<br />

π<br />

0<br />

ρ 2 <br />

z sin ϕ dz dρ dϕ = 1<br />

π 2<br />

ρ<br />

2 0 0<br />

4 sin 3 <br />

ϕ dρ dϕ =<br />

sin ϕ(1 − cos 2 ϕ) dϕ = 64<br />

15 .<br />

(x<br />

A<br />

2 + y 2 + z 2 ) 2 dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 1, z 2 ≤ x 2 + y 2 , z > 0};<br />

[ π√2 7 ]<br />

(2) r2 ≤ 1, r2 cos2 θ ≤ r2 sin2 θ, r cos θ ≥ 0 ⇒ 0 < r ≤ 1, π/4 ≤ θ ≤ π/2, 0 ≤ ϕ ≤ 2π;<br />

<br />

(x<br />

A<br />

2 +y 2 +z 2 ) 2 2π<br />

dxdydz =<br />

0<br />

<br />

<br />

64.<br />

A<br />

π<br />

2<br />

π<br />

4<br />

1<br />

0<br />

r 6 <br />

sin θ dr dθ dϕ = 2π<br />

r 7<br />

7<br />

1<br />

0<br />

. [− cos θ] π<br />

2<br />

π<br />

4<br />

x 2 y dxdydz; A = {(x, y, z); 1 ≤ x 2 + y 2 ≤ 4, y > 0, |z| < 2}; [ 248<br />

15 ]<br />

(1) 1 ≤ ρ 2 ≤ 4, |z| ≤ 2, ρ sin ϕ ≥ 0 ⇒ 1 ≤ ρ ≤ 2, −2 ≤ z ≤ 2, 0 ≤ ϕ ≤ π;<br />

A<br />

x 2 π<br />

y dxdydz =<br />

<br />

65.<br />

A<br />

0<br />

2 2<br />

1<br />

−2<br />

ρ 4 cos 2 <br />

ϕ sin ϕ dz dρ dϕ =<br />

ρ 5<br />

5<br />

2 . [z]<br />

1<br />

2<br />

−2 .<br />

<br />

− cos3 ϕ<br />

3<br />

xy dxdydz; A = {(x, y, z); x 2 + y 2 ≤ 1, 0 < z < 2, x > 0, y > 0}; [ 1<br />

4 ]<br />

π<br />

= π√ 2<br />

7 .<br />

0<br />

= 248<br />

15 .<br />

(1) 0 ≤ ρ 2 ≤ 1, 0 ≤ z ≤ 2, ρ cos ϕ ≥ 0, ρ sin ϕ ≥ 0 ⇒ 0 < ρ ≤ 1, 0 ≤ z ≤ 2, 0 ≤ ϕ ≤ π<br />

2 ;<br />

<br />

A<br />

<br />

68.<br />

xy dxdydz =<br />

π<br />

2<br />

0<br />

1 2<br />

0<br />

0<br />

ρ 3 <br />

cos ϕ sin ϕ dz dρ dϕ =<br />

ρ 4<br />

4<br />

1 . [z]<br />

0<br />

2<br />

0 .<br />

<br />

− cos2 ϕ<br />

2<br />

dxdydz; A = {(x, y, z); z ≥ 0, x + y + z ≤ 2, x<br />

A<br />

2 + y 2 ≤ 1}; [2π]<br />

(1) ρ(cos ϕ + sin ϕ) + z ≤ 2, ρ 2 ≤ 1, z ≥ 0 ⇒<br />

0 ≤ z ≤ 2 − ρ(cos ϕ + sin ϕ), 0 < ρ ≤ 1, 0 ≤ ϕ ≤ 2π;<br />

<br />

69.<br />

<br />

A<br />

=<br />

dxdydz =<br />

2π 1<br />

0<br />

0<br />

<br />

2π <br />

1 2−ρ(cos ϕ+sin ϕ)<br />

0<br />

0<br />

0<br />

ρ dz<br />

<br />

dρ<br />

(2ρ − ρ 2 <br />

(cos ϕ + sin ϕ)) dρ dϕ = 2π.<br />

<br />

dϕ =<br />

π<br />

2<br />

0<br />

= 1<br />

4 .<br />

(x<br />

A<br />

2 + y 2 ) dxdydz; A = {(x, y, z); x 2 + y 2 − 2z + 2 ≤ 0, x 2 + y 2 + z ≤ 4}; [2π]<br />

21


(1) ρ 2 − 2z + 2 ≤ 0, ρ 2 + z ≤ 4 ⇒ 1 + ρ2<br />

2 ≤ z ≤ 4 − ρ2 , 0 < ρ ≤ √ 2, 0 ≤ ϕ ≤ 2π;<br />

<br />

70.<br />

A<br />

<br />

(x<br />

A<br />

2 + y 2 <br />

2π √ <br />

2 4−ρ2 ) dxdydz =<br />

0 0 1+ ρ2<br />

2<br />

ρ 3 dz<br />

<br />

dρ<br />

<br />

dϕ = 2π.<br />

dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 9, 1 ≤ z ≤ 2}; [ 20π<br />

3 ]<br />

(1) ρ 2 + z 2 ≤ 9, 1 ≤ z ≤ 2 ⇒ 0 < ρ ≤ √ 9 − z 2 , 1 ≤ z ≤ 2, 0 ≤ ϕ ≤ 2π;<br />

<br />

<br />

72.<br />

A<br />

A<br />

dxdydz =<br />

<br />

2π <br />

2 √<br />

9−z2 0<br />

1<br />

0<br />

ρ dρ<br />

<br />

dz<br />

<br />

2<br />

dϕ = π (9 − z<br />

1<br />

2 ) dz = 20π<br />

3 .<br />

dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 2, x 2 + y 2 ≤ 1}; [ 4<br />

3 π(2√ 2 − 1)]<br />

(1) ρ 2 + z 2 ≤ 2, ρ 2 ≤ 1 ⇒ − √ 2 − ρ 2 ≤ z ≤ √ 2 − ρ 2 , 0 < ρ ≤ 1, 0 ≤ ϕ ≤ 2π;<br />

<br />

<br />

73.<br />

A<br />

dxdydz =<br />

⎛ ⎛<br />

2π 1<br />

⎝ ⎝<br />

0 0 −<br />

√ 2−ρ2 ⎞ ⎞<br />

√ ρ dz⎠<br />

dρ⎠<br />

dϕ = 2π<br />

2−ρ2 <br />

= 2π − 2<br />

3 (2 − ρ2 ) 3<br />

1<br />

2 =<br />

0<br />

<br />

2 √ 2 − 1 4π<br />

3 .<br />

A<br />

(1) ρ2 ≤ z2 , 0 ≤ z ≤ 1 ⇒ ρ ≤ z ≤ 1, 0 ≤ z ≤ 1, 0 ≤ ϕ ≤ 2π;<br />

<br />

A<br />

<br />

80.<br />

1<br />

0<br />

<br />

2ρ 2 − ρ2 dρ =<br />

<br />

x 2 + y 2 dxdydz; A = {(x, y, z); x 2 + y 2 ≤ z 2 , 0 ≤ z ≤ 1}; [ π<br />

6 ]<br />

<br />

x2 + y2 2π<br />

dxdydz =<br />

0<br />

1 1<br />

0<br />

ρ<br />

ρ 2 1<br />

dz dρ dϕ = 2π (ρ<br />

0<br />

2 − ρ 3 ) dρ = π<br />

6 .<br />

(x<br />

A<br />

2 + y 2 ) dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 3} : [ 24π√3 (1) ρ 2 + z 2 ≤ 3 ⇒ − √ 3 − ρ 2 ≤ z ≤ √ 3 − ρ 2 , 0 < ρ ≤ √ 3, 0 ≤ ϕ ≤ 2π;<br />

<br />

(x<br />

A<br />

2 + y 2 ⎛<br />

2π <br />

) dxdydz = ⎝<br />

0<br />

√ ⎛<br />

3<br />

⎝<br />

0 −<br />

<br />

81.<br />

A<br />

<br />

<br />

<br />

= <br />

<br />

3 − ρ 2 = t 2 , ρ 2 = 3 − t 2<br />

−ρdρ = tdt,<br />

√ 3−ρ2 √ ρ<br />

3−ρ2 3 ⎞ ⎞<br />

dz⎠<br />

dρ⎠<br />

dϕ = 2π<br />

<br />

<br />

<br />

<br />

<br />

<br />

= 4π<br />

√ 3<br />

0<br />

√ 3<br />

(3t 2 − t 4 ) dt = 24π√3 .<br />

5<br />

0<br />

5 ]<br />

2ρρ 2<br />

3 − ρ 2 dρ =<br />

dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 1, x 2 + y 2 ≥ z 2 }; [ 2√ 2<br />

3 π]<br />

(2) r 2 ≤ 1, r 2 sin 2 θ ≥ r 2 cos 2 θ ⇒ 0 < r ≤ 1, π/4 ≤ θ ≤ 3π/4, 0 ≤ ϕ ≤ 2π;<br />

22


A<br />

<br />

82.<br />

dxdydz =<br />

A<br />

2π<br />

0<br />

3π<br />

4<br />

π<br />

4<br />

1<br />

0<br />

r 2 <br />

sin θ dr dθ dϕ = 2π<br />

r 3<br />

3<br />

1<br />

0<br />

. [− cos θ] 3π<br />

4<br />

π<br />

4<br />

= 2π√2 .<br />

3<br />

xyz dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 2, x ≥ 0, y ≥ 0, z ≥ 0}; [ 1<br />

48 ]<br />

(2) r 2 ≤ 2, r sin θ cos ϕ ≥ 0, r sin θ sin ϕ ≥ 0, r cos θ ≥ 0 ⇒<br />

0 < r ≤ √ 2, 0 ≤ θ ≤ π/2, 0 ≤ ϕ ≤ π/2;<br />

<br />

83.<br />

<br />

A<br />

xyz dxdydz =<br />

=<br />

π<br />

2<br />

0<br />

r 6<br />

6<br />

π<br />

2<br />

√ 2<br />

0<br />

0<br />

.<br />

√<br />

2<br />

0<br />

r 5 sin 3 <br />

θ cos θ cos ϕ sin ϕ dr<br />

π<br />

2<br />

π<br />

2<br />

sin 4 θ<br />

4<br />

0<br />

.<br />

sin 2 ϕ<br />

2<br />

0<br />

= 1<br />

48 .<br />

dθ<br />

<br />

dϕ =<br />

(x<br />

A<br />

2 + y 2 ) dxdydz; A = {(x, y, z); x 2 + y 2 + z 2 ≤ 4, x 2 + y 2 ≤ 2x} : [ 128 26 (π − 15 15 )]<br />

(1) ρ2 + z2 ≤ 4, ρ2 ≤ 2ρ cos ϕ ⇒<br />

− √ 4 − ρ2 ≤ z ≤ √ 4 − ρ2 , 0 < ρ ≤ 2 cos ϕ, −π/2 ≤ ϕ ≤ π/2;<br />

=<br />

= −2<br />

<br />

85.<br />

π<br />

2<br />

<br />

(x<br />

A<br />

2 + y 2 π<br />

2<br />

) dxdydz =<br />

− π<br />

⎛ ⎛<br />

2 cos ϕ <br />

⎝ ⎝<br />

0 2<br />

√ 4−ρ2 √ ρ<br />

− 4−ρ2 3 ⎞ ⎞<br />

dz⎠<br />

dρ⎠<br />

dϕ =<br />

2 cos ϕ <br />

2ρ<br />

0<br />

3<br />

4 − ρ2 <br />

<br />

4 − ρ<br />

dρ dϕ = <br />

<br />

2 = t2 <br />

, 0 → 2 <br />

<br />

<br />

−ρdρ = tdt, 2 cos ϕ → 2| sin ϕ| =<br />

− π<br />

2| sin ϕ|<br />

(4t<br />

2 2<br />

2 − t 4 π<br />

2<br />

)dt dϕ = 2<br />

− π<br />

<br />

64 32<br />

−<br />

15 3 2<br />

| sin3 ϕ| + 32<br />

5 | sin5 <br />

ϕ| dϕ =<br />

π <br />

2 64 32<br />

= 4 −<br />

0 15 3 sin3 ϕ + 32<br />

5 sin5 <br />

ϕ dϕ = 128<br />

<br />

π −<br />

15<br />

26<br />

<br />

.<br />

15<br />

− π<br />

2<br />

π<br />

2<br />

dxdydz; A = {(x, y, z); x<br />

A<br />

2 + y 2 ≤ 4, z ≥ 0, z + y ≤ 2}; [8π]<br />

(1) ρ 2 ≤ 4, z ≥ 0, ρ sin ϕ + z ≤ 2 ⇒ 0 ≤ z ≤ 2 − ρ sin ϕ, 0 < ρ ≤ 2, 0 ≤ ϕ ≤ 2π;<br />

<br />

A<br />

<br />

86.<br />

dxdydz =<br />

2π 2 2−ρ sin ϕ<br />

0<br />

0<br />

0<br />

=<br />

2π<br />

0<br />

2π<br />

ρ dz dρ dϕ =<br />

<br />

4 − 8<br />

<br />

sin ϕ dϕ = 8π.<br />

3<br />

0<br />

2<br />

0<br />

(2ρ − ρ 2 <br />

sin ϕ)dρ dϕ =<br />

z dxdydz; A = {(x, y, z); x<br />

A<br />

2 + y 2 + z 2 ≤ 9, 1 ≤ z ≤ 2}; [ 39<br />

4 π]<br />

(1) ρ2 + z2 ≤ 9, 1 ≤ z ≤ 2 ⇒ 0 < ρ ≤ √ 9 − z2 , 1 ≤ z ≤ 2, 0 ≤ ϕ ≤ 2π;<br />

<br />

A<br />

z dxdydz =<br />

<br />

2π <br />

2 √<br />

9−z2 0<br />

1<br />

0<br />

ρz dρ<br />

23<br />

<br />

dz<br />

<br />

2<br />

dϕ = π (9z − z<br />

1<br />

3 ) dz = 39π<br />

4 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!