20.07.2013 Views

Молодой учёный

Молодой учёный

Молодой учёный

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

“Young Scientist” . #3 (50) . March 2013 Mathematics<br />

max ut≤ h.<br />

(37)<br />

[0,1]<br />

Moreover, it is opposite in meaning: here the greater t the better accuracy.<br />

Thus, this approach is convenient for the problems with huge velocity u(t, x) which come from a computational aerodynamics:<br />

we have computational stability on the base of Theorem 3 and conservation law on the base of Theorem 2.<br />

4. Numerical experiment<br />

Let take u(t, x) =100t, T =1.0 and solve this equation with initial condition<br />

r π<br />

2<br />

init ( x) = sin (2 x), x∈[0,1).<br />

Then exact solution is<br />

r r<br />

2<br />

( tx , ) = init ( x-50 t), x∈[0,1).<br />

The result of implementing the presented algorithm is given in Table 1 for several t and h The first column of Table 1 expresses<br />

a relation t/ h (for most implemented values in computations) and the first string shows a number n of mesh nodes.<br />

Other entries contain the value<br />

t/ h<br />

n<br />

Table 1<br />

64 128 256 512 1024 2048<br />

4 0,02358 0,01203 0,00608 0,00305 0,00153 0,00077<br />

2 0,04536 0,02360 0,01204 0,00608 0,00305 0,00153<br />

1 0,08423 0,04546 0,02362 0,01204 0,00608 0,00305<br />

1 / 2 0,14610 0,08442 0,04548 0,02362 0,01204 0,00608<br />

1 / 4 0,22493 0,14643 0,08446 0,04549 0,02362 0,01204<br />

Thus we indeed have the first order of accuracy on h when t/ h is fixed.<br />

5. Conclusion<br />

Thus, we present the numerical approach which is more convenient for huge velocity u(t, x) then approaches listed in introduction.<br />

Of course, we stay some open questions like boundary condition instead of periodical one, nonlinear dependence<br />

of velocity u on solution r and other. Of course, we need to trace the effect of the approximate solving the characteristics equations<br />

instead of exact process. But we successively consider these issues in next publications, including generalization for twodimensional<br />

and three-dimensional equations.<br />

At first glance, this approach is some integral version of the characteristics method. Moreover, its accuracy is higher, the<br />

less time steps done in the algorithm. But in the future, we will apply it to the equations with nonzero right-hand side for the<br />

approximation of which a small time step t will be crucial.<br />

References:<br />

1. Harten A.: On a class of high resolution total-variation-stable finite-difference schemes // SIAM J. Numer. Anal. –<br />

1984. – V. 21. – P. 1–23.<br />

2. Harten A., Osher S.: Uniformly high-order accurate non-oscillatory schemes // I. SIAM J. Numer. Anal. – 1987. –<br />

V. 24. – P. 279–309.<br />

3. Harten A., Engquist B., Osher S., Chakravarthy S.: Uniformly high-order accurate non-oscillatory schemes, III // J.<br />

Comput. Phys. – 1987. – V. 71. – P. 231–303.<br />

4. Osher S.: Convergence of generalized MUSCL schemes // SIAM J. Numer. Anal. – 1985. – V. 22. – P. 947–961.<br />

5. Osher S., Chakravarthy S.: High-resolution schemes and entropy condition // SIAM J. Numer. Anal. – 1984. – V.<br />

21. – P. 955–984.<br />

6. Osher S., Tadmor E.: On the convergence of different approximations to scalar conservation laws // Math. Comput. –<br />

1988. – V. 50. – P. 19–51.<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!