24.07.2018 Views

Practical_Antenna_Handbook_0071639586

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I n d e x 755<br />

maximum effective length (MEL), 334–335<br />

maximum useable frequency (MUF), 53, 54–55,<br />

61–64<br />

MUF control points, 61, 64<br />

Maxwell, James Clerk, 3, 9, 90–91<br />

displacement current, 91–92<br />

prediction of electromagnetic waves, 9,<br />

90–91, 93<br />

Maxwell’s equations, 9, 13, 88, 91, 92–93<br />

medium (media), 12–13<br />

megahertz (MHz), 11–12<br />

Mercator projection, 65<br />

meteor scatter propagation, 76<br />

micromatch SWR bridge, 606–607<br />

microwave antennas, 471–489<br />

aperture, 478<br />

arrays, 485–487<br />

branch feed, 485–486<br />

corporate feed, 485–486<br />

flatplate array, 488–489<br />

phase shifters, 485–487<br />

slot array, 487–488<br />

solid-Âstate, 486–487<br />

back lobes, 477<br />

beamwidth 476–477<br />

Cassegrain feed geometry, 483–484<br />

cavity antenna, 480<br />

corner reflector, 480–481<br />

dipole elements, 473–474<br />

directivity, 474–477<br />

directivity gain (G d ), 477–478<br />

directrix (of a parabola), 481–482<br />

dish antennas (see parabolic antennas)<br />

effective radiated power (ERP), 477<br />

efficiency, 473, 477<br />

feed illumination, 482<br />

gain, 477–478, 483<br />

gain vs. aperture, 478<br />

horn radiators, 479<br />

impedance, 471, 473<br />

interference, 477<br />

isotropic radiator, 471–472<br />

monopulse feed system, 484–485<br />

near field vs. far field, 472<br />

phase shifter, 485–487<br />

radiation loss, 473<br />

radiation patterns, 475–476<br />

radiation resistance, 473<br />

reflector, 480–481<br />

splash plate, 483<br />

microwave waveguides, 447–470<br />

analyzed as Âquarter-Âwavelength shorted<br />

stub, 450–451<br />

attenuation, 377<br />

boundary conditions, 452<br />

characteristic impedance, 461–463<br />

coupling methods, 468–470<br />

aperture (slot), 470<br />

capacitive (probe), 468–469<br />

inductive (loop), 470<br />

choke joints, 466–467<br />

coordinate system, 453–454<br />

cutoff frequency (f C ), 458–461<br />

dominant mode, 453–454<br />

dummy loads, 463–466<br />

effective aperture (A e ), 478<br />

electric fields, 449, 452–453, 461<br />

end plate, 463, 466<br />

feedpoint impedance and matching,<br />

473<br />

free-Âspace velocity (c), 454–458<br />

frequency spectrum, 447<br />

graphite-Âsand, 463–464<br />

group velocity (V g ), 455–458<br />

joints and bends, 466–468<br />

light pipe analogy, 448<br />

losses, 447–449<br />

magnetic fields, 452–453, 461<br />

materials, 449<br />

permanent joints, 466<br />

phase velocity (V p ), 455–458<br />

power gain (G p ), 477–478<br />

probe coupling, 468–469<br />

propagation modes, 451–454<br />

radiating vs. nonradiating slots, 470<br />

rotating joints, 468<br />

safety issues, 447<br />

semipermanent joints, 466–467<br />

side lobes, 476, 477<br />

terminations, 463–466<br />

transverse electric (TE) mode, 452,<br />

453–454, 459–460, 462<br />

transverse electromagnetic (TEM) mode,<br />

452<br />

transverse magnetic (TM) mode,<br />

453–454, 461, 462<br />

velocities, 454–458<br />

wavelength, 454–458<br />

millimeter waves, 12<br />

MiniNEC modeling software, 546

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!