20.07.2013 Views

Culegere de probleme de Analiz˘a numeric˘a

Culegere de probleme de Analiz˘a numeric˘a

Culegere de probleme de Analiz˘a numeric˘a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.4. Polinoame ortogonale 27<br />

ne dă precizia dorită pe[−1,1].<br />

Încercăm să eliminăm termenul <strong>de</strong> grad 3 înlocuindx 3 cu 3<br />

4<br />

P3(x) = 191 13<br />

+x+<br />

192 24 x2 + 1<br />

<br />

3 1<br />

T1(x)+<br />

6 4 4 T3(x)<br />

= 191<br />

192<br />

9 13<br />

+ x+<br />

8<br />

max<br />

x∈[−1,1]<br />

24 x2 + 1<br />

24 T3(x)<br />

<br />

<br />

<br />

1<br />

24<br />

T3(x)<br />

<br />

<br />

<br />

= 0.0417<br />

0.0417+0.0283 ≈ 0.07 > 0.5<br />

T1(x)+ 1<br />

4 T3(x).<br />

Deci P3 <strong>de</strong> mai sus ne dă polinomul <strong>de</strong> grad cel mai mic pentru această aproximare.<br />

Problema 2.4.7 Polinoamele lui Legendre<br />

Arătat¸i că<br />

Ln(x) = 1<br />

2n d<br />

n!<br />

n<br />

dxn[(x2 −1) n ] (formula lui Rodrigues)<br />

Ln ∈ Pn s¸i 〈Ln,Lm〉 L 2 [−1,1] = 2<br />

2n+1 δnm<br />

<br />

(2.29)<br />

nLn(x) = (2n−1)xLn−1(x)−(n−1)Ln−2(x) (2.30)<br />

Ln(x) = 1(2n)!<br />

2 n (n!) 2xn +... (2.31)<br />

Ln(1) = 1, Ln(−1) = (−1) n , (2.32)<br />

Ln este par pentrunimpar s¸i impar pentrunpar<br />

L ′ n (x) = xL′ n−1 (x)+nLn−1(x) (2.33)<br />

L ′ n (x)−L′ n−2 (x) = (2n−1)Ln−1(x)<br />

(x 2 −1)L ′ n (x) = n(xLn(x)−Ln−1(x))<br />

∞<br />

t n Ln(x) =<br />

n=0<br />

1<br />

√ 1−2xt+t 2<br />

Solut¸ie. (2.29) Presupunem căn ≥ m,<br />

pentru |t| < 1 (2.34)<br />

〈Ln,Lm〉 L2 = 1<br />

2n 1<br />

Lm(x)<br />

n! −1<br />

d<br />

dxn[(x2 −1) n ]dx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!