20.07.2013 Views

Culegere de probleme de Analiz˘a numeric˘a

Culegere de probleme de Analiz˘a numeric˘a

Culegere de probleme de Analiz˘a numeric˘a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20 Elemente <strong>de</strong> Analiză funct¸ională s¸i teoria aproximării<br />

2.4.2 Exemple <strong>de</strong> polinoame ortogonale<br />

I. Polinoamele lui Cebîs¸ev <strong>de</strong> spet¸a I<br />

Tn(t) = cos(narccost), t ∈ [−1,1]<br />

Ele sunt ortogonale pe[−1,1] în raport cu pon<strong>de</strong>reaw(t) = 1<br />

√ 1−t 2 .<br />

1<br />

−1<br />

Are loc relat¸ia <strong>de</strong> recurent¸ă<br />

II. Polinoamele lui Hermite<br />

∞<br />

−∞<br />

⎧<br />

Tm(t)Tn(t)<br />

⎨<br />

√ dt =<br />

1−t 2 ⎩<br />

0, m = n<br />

π,<br />

m = n = 0 2<br />

π, m = n = 0<br />

Tn+1(t) = 2tTn(t)−Tn−1(t)<br />

T0(t) = 1, T1(t) = t<br />

hn(t) = (−1) n dn<br />

t2<br />

e<br />

dtn(e−t2), t ∈ R<br />

a = −∞, b = ∞, w(t) = e −t<br />

e −t2<br />

hm(t)hn(t)dt =<br />

III. Polinoamele lui Laguerre<br />

∞<br />

IV. Polinoamele lui Hermite<br />

0<br />

0, m = n<br />

2 n n! √ π, m = n<br />

hn+1(t) = 2thn(t)−2nhn−1(t)<br />

h0(t) = 1, h1(t) = 2t<br />

gn(t) = et d<br />

n!<br />

n<br />

dtn(tn e −t )<br />

a = 0, b = ∞, w(t) = e −t<br />

e −t <br />

0, m = n<br />

gm(t)gn(t)dt =<br />

1, m = n<br />

gn+1(t) = 2n+1−t<br />

gn(t)−ngn−1(t)<br />

n+1<br />

g0(t) = 1, g1(t) = 1−t<br />

w(t) = e −t2<br />

pe R (a = −∞, b = ∞)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!