31.03.2021 Views

resolucao-halliday-vol-3-ed-9 questoes marcadas

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MATERIAL SUPLEMENTAR PARA ACOMPANHAR


MATERIAL SUPLEMENTAR PARA ACOMPANHAR

FUNDAMENTOS DE FÍSICA

Eletromagnetismo

9 a Edição

HALLIDAY & RESNICK

JEARL WALKER

Cleveland State University

VOLUME 3

Tradução e Revisão Técnica

Ronaldo Sérgio de Biasi, Ph.D.

Professor Titular do Instituto Militar de Engenharia – IME


Este Material Suplementar contém as Soluções dos Problemas – Volume 3 que podem ser usadas como apoio

para o livro Fundamentos de Física, Volume 3 – Eletromagnetismo, Nona Edição, 2012. Este material é de uso

exclusivo de professores que adquiriram o livro.

Material Suplementar Soluções dos Problemas – Volume 3 traduzido do material original:

HALLIDAY & RESNICK: FUNDAMENTALS OF PHYSICS, VOLUME TWO, NINTH EDITION

Copyright © 2011, 2008, 2005, 2003 John Wiley & Sons, Inc.

All Rights Reserved. This translation published under license.

Obra publicada pela LTC Editora:

FUNDAMENTOS DE FÍSICA, VOLUME 3 – ELETROMAGNETISMO, NONA EDIÇÃO

Direitos exclusivos para a língua portuguesa

Copyright © 2012 by

LTC __ Livros Técnicos e Científicos Editora Ltda.

Uma editora integrante do GEN | Grupo Editorial Nacional

Projeto de Capa: M77 Design

Imagem de Capa: ©Eric Heller/Photo Researchers, Inc. Used with permission of John Wiley & Sons, Inc.

Reproduzida com permissão da John Wiley & Sons, Inc.

Editoração Eletrônica do material suplementar:


SUMÁRIO

Capítulo 21 1

Capítulo 22 23

Capítulo 23 51

Capítulo 24 75

Capítulo 25 105

Capítulo 26 127

Capítulo 27 142

Capítulo 28 172

Capítulo 29 194

Capítulo 30 225

Capítulo 31 254

Capítulo 32 285


Capítulo 21

1. O módulo da força que uma das cargas exerce sobre a outra é dado por

F =

1

4 0

( )

qQ−

q

r

2

em que r é a distância entre as cargas. Queremos determinar o valor de q que minimiza a função

f(q) = q(Q 2 q). Derivando a função em relação a q e igualando o resultado a zero, obtemos

Q 2 2q = 0, o que nos dá q = Q/2. Assim, q/Q = 0,500.

2. O fato de que as esferas são iguais permite concluir que, ao serem colocadas em contato,

ficam com cargas iguais. Assim, quando uma esfera com uma carga q entra em contato com

uma esfera descarregada, as duas esferas passam a ter (quase instantaneamente) uma carga

q/2. Começamos com as esferas 1 e 2, que possuem uma carga q cada uma e experimentam

uma força repulsiva de módulo F = kq 2 /r 2 . Quando a esfera neutra 3 é colocada em contato

com a esfera 1, a carga da esfera 1 diminui para q/2. Em seguida, a esfera 3 (que agora possui

uma carga q/2) é colocada em contato com a esfera 2 e a carga total das duas esferas, q/2 + q,

é dividida igualmente entre elas. Assim, a carga final da esfera 2 é 3q/4 e a força de repulsão

entre as esferas 1 e 2 se torna

(

F′ = k q / 2)( 3 q / 4)

3

= k q 2

3 F

= F ⇒ ′ 3

= = 0,

375.

r

2

8 r

2

8 F 8

3. Explicitando a distância r na Eq. 21-1, F = k|q 1 ||q 2 |/r 2 , obtemos:

r

2 2

( )( × ) ,

6

( −

C) =

k q q

× ⋅

| 1|| 2 | 899 , 109N m C 260 , 10

6C

47 0×

10

= =

F

570 , N

139 , m.

4. A corrente elétrica é discutida na Seção 21-4. Chamando de i a corrente, a carga transferida

é dada por

q= it = ( 25 , × 104A)( 20 × 10−

6s) = 050 , C.

5. De acordo com a Eq. 21-1, o módulo da força de atração entre as partículas é

F k q q

×

1 2

= = ×

9

(, 300 10

6C)( 150 ,

(, 899 10 N⋅m

C )

r

2

( 0, 120 m)

2

2 2

×

10 − 6C)

= 281 , N.

6. (a) Chamando de a o módulo da aceleração, a segunda e a terceira leis de Newton nos dão

(, 63×

10−

7

kg)( 70 , ms2)

ma 2 2 = ma 1 1⇒ m2

=

= 49 ,

90 , ms2

(b) O módulo da (única) força que age sobre a partícula 1 é

× 10−

7 kg.

F m a k q 1 q 2

q

= 1 1= = (, 899× 109

N⋅

m2 C2) r

2

( 0 , 0032 m )

Substituindo os valores conhecidos de m 1 e a 1 , obtemos |q| = 7,1 × 10 –11 C.

2

2 .


2 SOLUÇÕES DOS PROBLEMAS

7. Considerando positivo o sentido para a direita, a força resultante que age sobre q 3 é

F = F + F = k

3 13 23

qq 1 3

( L + L )

12 23

2

k qq 2 3

+ .

L2

Note que cada termo apresenta o sinal correto (positivo se a força aponta para a direita,

negativo se a força aponta para a esquerda), quaisquer que sejam os sinais das cargas. Assim,

por exemplo, o primeiro termo (a força que q 1 exerce sobre q 3 ) é negativo se as cargas tiverem

sinais opostos, o que indica que a força será atrativa, e positivo se as cargas tiverem o mesmo

sinal, o que significa que a força será repulsiva. Igualando a zero a força resultante, fazendo L 23 =

L 12 e cancelando k, q 3 e L 12 , obtemos

q1

q1

+ q2

= 0 ⇒ = − 4, 00.

400 ,

q

2

23

8. No experimento 1, a esfera C entra em contato com a esfera A, e a carga total das duas esferas

(4Q) é dividida igualmente entre elas. Isso significa que a esfera A e a esfera C ficam com uma

carga 2Q cada uma. Em seguida, a esfera C entra em contato com a esfera B e a carga total das

duas esferas (2Q 2 6Q) é dividida igualmente entre elas, o que significa que a esfera B fica

com uma carga igual a −2Q. No final do experimento 1, a força de atração eletrostática entre

as esferas A e B é, portanto,

F

( 2Q)( −2Q)

4

= k =−k Q d d

1 2

No experimento 2, a esfera C entra primeiro em contato com a esfera B, o que deixa as duas

esferas com uma carga de −3Q cada uma. Em seguida, a esfera C entra em contato com a esfera

A, o que deixa a esfera A com uma carga igual a Q/2. Assim, a força de atração eletrostática

entre as esferas A e B é

(

F k Q / 2)( −3 Q ) 3

k Q 2 =

=−

d

2

2d

2

2

2

2

A razão entre as duas forças é, portanto,

F2

F

1

32 /

= = 0, 375.

4

9. Vamos supor que a distância entre as esferas é suficiente para que possam ser consideradas

cargas pontuais e chamar de q 1 e q 2 as cargas originais. Escolhemos o sistema de coordenadas

de tal forma que a força que age sobre a esfera 2 é positiva quando a esfera é repelida pela esfera

1. Nesse caso, de acordo com a Eq. 21-1, a força a que a esfera 2 está submetida é

1 qq 1 2

F

k qq

a =− =−

r

2

r

2

4 0

na qual r é a distância entre as esferas. O sinal negativo indica que as esferas se atraem. Como

as esferas são iguais, adquirem a mesma carga ao serem ligadas por um fio; isso significa que a

carga de cada esfera é (q 1 + q 2 )/2. A força agora é de repulsão e é dada por

F

b

1 2

1 2 1 2

1 2 2

=

k q q

4

r

2

4r

2

De acordo com a primeira das equações mostradas,

qq

1 2

0

q + q q + q

2

( )( ) + =

( 1 2)

rF

2

a ( 0, 500 m) 2( 0, 108 N)

=− =−

k 899 , × 109

N⋅m2 C2

=− 300× 10−

12

.

, C 2 .


SOLUÇÕES DOS PROBLEMAS 3

De acordo com a segunda equação,

Fb

q1+ q2 = 2r

= 2( 0,

500m)

k

0,

0360 N

8,99 × 10 N⋅m C

9 2 2

=

200 , × 10 − 6 C,

na qual escolhemos o sinal positivo para a raiz quadrada (o que equivale a supor que q 1 + q 2 ≥

0). Explicitando q 2 na equação do produto das cargas, obtemos

q

2

300 10

= − , × −

q

1

12

C 2

Substituindo q 2 pelo seu valor na equação da soma das cargas, obtemos

q

1

300 , × 10

q

1

−12

C

2

.

= 200 , × 10

Multiplicando por q 1 e reagrupando os termos, obtemos a equação do segundo grau

cujas soluções são

q

−6

C.

( ) − × =

− 200 , × 10 − C q 3,

00 10−

12

C 2 0

1 2 6 1

( ) − ( − × )

6 6

2

200 , × 10− ± − 2, 00 × 10− 4 3,

00 10−

12

q 1 =

C C C 2

(a) Escolhendo o sinal positivo da raiz quadrada, obtemos q 1 = 3,00 × 10 –6 C, o que nos dá q 2 =

(–3,00 × 10 –12 )/q 1 = −1,00 × 10 −6 C. Escolhendo o sinal negativo da raiz quadrada, obtemos q 1 =

−1,00 × 10 −6 C. Nos dois casos, a resposta é −1,00 × 10 −6 C = −1,00 mC.

(b) Como vimos no item (a), escolhendo o sinal positivo da raiz quadrada, obtemos q 1 = 3,00 ×

10 –6 C. Escolhendo o sinal negativo, q 1 = −1,00 × 10 −6 C, o que nos dá q 2 = (–3,00 × 10 –12 )/q 1 =

3,00 × 10 −6 C. Nos dois casos, a resposta é 3,00 × 10 −6 C = 3,00 mC.

O que aconteceria se tivéssemos suposto que a carga total das partículas era inicialmente

negativa? Como as forças permaneceriam as mesmas se os sinais das duas cargas fossem

invertidos e a carga total mudaria de sinal, a resposta do item (a) seria −3,00 × 10 −6 C e a do

item (b) seria 1,00 × 10 −6 C.

10. Para facilitar o raciocínio, vamos supor que Q > 0 e q < 0, embora o resultado final não

dependa do sinal das cargas.

(a) Por simetria, os valores absolutos das componentes x e y das forças experimentadas pelas

partículas 1 e 4 são todos iguais:

2

.

F

1

1 ⎡ ( Q)( Q)

q Q ⎤

= − 45° +

4

0 a

2

a2

⎣ ( 2 ) cos (| |)( ) Q| q| ⎛ Q/| q|

= − +

⎦ a ⎝

⎜ 1

⎟ .

4 2 0 2 2

Fazendo |F 1 | = 0, obtemos Q/| q| = 2 2, o que nos dá Q/ q=− 2 2 =−283

, .

(b) Por simetria, os valores absolutos das componentes x e y das forças experimentadas pelas

partículas 2 e 3 são todos iguais:

F

2

1 ⎡ | q |

2

q Q ⎤ q

⎢ 45

4 0 a

2

a2

⎥ =

⎣( 2 ) sen | | | |

2

⎦ 4 a

= ° − ( )( )

0 2

⎛ 1 Q ⎞

− .

2 2 | q | ⎠

Fazendo |F 2 | = 0, obtemos Q/ | q|=−12 / 2 = −0,35. Como este valor é diferente do obtido

no item (a), não existe um valor de q para o qual a força eletrostática a que todas as partículas

estão submetidas seja nula.


4 SOLUÇÕES DOS PROBLEMAS

11. Como a força experimentada pela partícula 3 é

1 ⎛ | q3 || q1

q3

F3 = F31+ F32 + F34

= −

|ˆ | || q2

|

j +

ˆ q3 q4

sen 45 ˆ | || |ˆ ⎞

(cos45° i+ ° j) + i

4

a2

a

2

a2

( 2 )

⎟ ,

0

(a) a componente x da força a que a partícula 3 está submetida é

F

3x

| q3

| ⎛ | q | ⎞

= + q

9

4 899 10

4 a ⎝

⎜ | |

2 2 ⎠

⎟ = , × N

⋅ m 2 C

2

= 0,17 N

0 2 2

(b) e a componente y é

F

3y

0 2 1

( )

210 ( , × 10 − 7C)

( 0, 050 m)

2

( )

| q3

| ⎛ | q2 | ⎞

= − q + 899 109

4 a ⎝

⎜ | |

2 2⎠

⎟ = , × N

⋅ 210 , × 10 C

m2 C2

( )

− 7

( 0, 050 m)

2

=

− 0, 046 N.

2

2

⎛ 1 ⎞

+

⎜ 2

2 2

⎛ 1 ⎞

− +

⎜ 1

2 2

12. (a) Para que a aceleração inicial da partícula 3 seja na direção do eixo x, é preciso que a força

resultante tenha a direção do eixo x, o que, por sua vez, significa que a soma das componentes y

das forças envolvidas seja zero. O ângulo que a força exercida pela partícula 1 sobre a partícula

3 faz com o eixo x é tan −1 (2/2) = 45 o e o ângulo que a força exercida pela partícula 2 sobre a

partícula 3 faz com o eixo x é tan −1 (2/3) = 33,7 o . Assim, para que a soma das componentes y

seja nula, devemos ter

qq 1 3

k

( 002 , 2 m)

2

sen 45

= k

| Q|

q

3

0 030

2

( ( , m) + ( 00 , 20 m) )

2 2

sen 33, 7,

o que nos dá |Q| = 83 mC. Como as componentes y das forças exercidas pelas cargas 1 e 2 sobre

a carga 3 devem ter sentidos opostos, concluímos que as cargas das partículas q 1 e q 2 devem ter

sinais opostos e, portanto, Q = –83 mC.

(b) Nesse caso, são as componentes x das forças envolvidas que devem se cancelar. Para que a

soma das componentes x seja nula, devemos ter

qq 1 3

k

( 002 , 2 m)

2

cos 45

= k

Qq

3

0 030

2

( ( , m) + ( 0,

020 m) )

cos , ,

2 2 33 7

o que nos dá |Q| = 55,2 mC ≈ 55 mC. Como as componentes x das forças exercidas pelas cargas

1 e 2 sobre a carga 3 devem ter sentidos opostos, concluímos que as cargas q 1 e q 2 devem ter o

mesmo sinal e, portanto, Q = 55 mC.

13. (a) É óbvio que não existe posição de equilíbrio para a partícula 3 fora do eixo x. Também

não existe posição de equilíbrio para a partícula 3 no eixo x na região entre as partículas fixas, já

que, nessa região, as duas partículas, por terem cargas opostas, exercem necessariamente forças

de mesmo sentido sobre a partícula 3. Além disso, não existe posição de equilíbrio no eixo x à

direita da partícula 2, porque, nessa região, como |q 1 | < |q 2 |, o módulo da força exercida por q 2

é sempre maior que a força exercida por q 1 . Assim, o ponto de equilíbrio só pode estar na parte

do eixo x à esquerda da partícula 1, na qual o módulo da força resultante a que está submetida

a partícula 3 é dado por

F

res =

1 3

k qq

L2

0

−k

qq 2 3

( L+

L )

2

0


SOLUÇÕES DOS PROBLEMAS 5

em que L 0 é a distância (em valor absoluto) entre a partícula 3 e a partícula 1. Igualando a zero

a equação apresentada, temos, depois de cancelar k e q 3 :

q

L

1

2

0

q2

( L+

L )

0

2

L L

= 0 ⇒ ⎛ +

L

0

0

2

⎞ q2

30

⎟ = q

= − , C

+ 10 , C

1

= 30 , ,

o que nos dá (depois de extrair a raiz quadrada)

L+

L

L

0

0

= 3 ⇒ L =

0

L

− = 10 cm

3 1 3 −1 ≈ 14 cm

para a distância entre a partícula 3 e a partícula 1. Isso significa que a coordenada x da partícula

3 deve ser x = −14 cm.

(b) Como foi dito no item anterior, y = 0.

14. (a) Vamos chamar de Q a carga da partícula 3. Igualando os módulos das forças que agem

sobre a partícula 3, dadas pela Eq. 21-1, temos:

1 q1

Q 1 q2

Q

2

=

4

−a−a/ 2 4

a−

a/

2

0

( )

0

( )

2

,

o que nos dá |q 1 | = 9,0 |q 2 |. Como a partícula 3 está situada entre q 1 e q 2 , concluímos que q 1 e q 2

têm o mesmo sinal e, portanto, q 1 /q 2 = 9,0.

(b) Nesse caso, temos:

1 q1

Q 1 q2

Q

2

=

4

−a−3a/ 2 4

a−

3a/

2

0

( )

0

( )

o que nos dá |q 1 | = 25 |q 2 |. Como a partícula 3 está situada à direita das duas partículas, concluímos

que q 1 e q 2 têm sinais opostos e, portanto, q 1 /q 2 = 225.

15. (a) Como a distância entre a partícula 1 e a partícula 2 é

2

2 2

12 ( 2 1) + ( 2 − 1) = − , − ,

r = x − x y y

= 0,

056 m,

o módulo da força que a partícula 1 exerce sobre a partícula 2 é

F

21

( 0 020 m 0 035 m ) + ( 0, 015 m − 0,

005 m)

|

k qq 2 1| (, 899× 10 N⋅ m )( 3, 0× 10−

)

= =

2 C 2 C ( 40 , × 10 − 6C

) = 35 N.

r

( 0, 056 m)

2

12 2 9 6

(b) O vetor F 21 aponta na direção da partícula 1 e faz com o semieixo x positivo um ângulo

= tan

⎛ y

x

−1 2 1

− y ⎞

− ⎠

⎟ = −

, − ,

tan

1

⎛ 15cm

05cm

10, 3 10 .

x ⎝

−20 , cm − 35 , cm ⎠

⎟ =− ° ≈− °

2 1

(c) Suponha que as coordenadas da terceira partícula sejam (x 3 , y 3 ) e que a partícula esteja a uma

distância r da partícula 2. Sabemos que, para que as forças exercidas pelas partículas 1 e 3 sobre

a partícula 2 sejam iguais, as três partículas devem estar sobre a mesma reta. Além disso, as

partículas 1 e 3 devem estar em lados opostos em relação à partícula 2, já que possuem cargas

de mesmo sinal e, portanto, se estivessem do mesmo lado em relação à partícula 2, exerceriam

forças com o mesmo sentido (de atração). Assim, em termos do ângulo calculado no item

(a), temos x 3 = x 2 − r cosu e y 3 = y 2 – r senu (o que significa que y 3 > y 2 , já que u é negativo).

O módulo da força que a partícula 3 exerce sobre a partícula 2 é F = k| qq | r

2

e deve ser

2

,

23 2 3

2


6 SOLUÇÕES DOS PROBLEMAS

igual ao módulo da força exercida pela partícula 1 sobre a partícula 2, que é F21 = k| qq 2 1| r

2

.

Assim,

2 3

k qq

r

2

k qq 1 2

q3

= ⇒ r = r = 0, 0645m

= 645 , cm,

r

q

12 2 12

1

o que nos dá x 3 = x 2 – r cosu = –2,0 cm – (6,45 cm) cos(–10°) = –8,4 cm

(d) e y 3 = y 2 – r senu = 1,5 cm – (6,45 cm) sen(–10°) = 2,7 cm.

16. (a) De acordo com o gráfico da Fig. 21-26b, quando a partícula 3 está muito próxima da

partícula 1 (e, portanto, a força exercida pela partícula 1 sobre a partícula 3 é muito maior que

a força exercida pela partícula 2 sobre a partícula 3), existe uma força no sentido positivo do

eixo x. Como a partícula 1 está n origem e a partícula 3 está à direita da partícula 1, esta força é

uma força de repulsão. Assim, como a carga da partícula 3 é positiva, concluímos que a carga

da partícula 1 também é positiva.

(b) Como o gráfico da Fig. 21-26b cruza o eixo x e sabemos que a partícula 3 está entre a

partícula 1 e a partícula 2, concluímos que, ao se aproximar da partícula 2, a partícula 3 é

repelida, o que significa que a carga da partícula 2 também é positiva. O ponto em que a curva

se anula é o ponto x = 0,020 m, no qual a partícula 3 se encontra a uma distância d 1 = 0,020 m da

partícula 1 e a uma distância d 2 = 0,060 m da partícula 2. Assim, de acordo com a Eq. 21-1,

1

4

0

qq

d

1 3

1 qq 2 3

d2

= ⇒ q = ⎛ q1

4

d

⎝ ⎜ ⎞ ⎛

d ⎠

⎟ = 0 , 060 m⎞

1 90 , 1,

0,

020 m⎠

⎟ q = q

1 2 0

2 2 2

1

2

2

o que nos dá q 2 /q 1 = +9,0.

17. (a) De acordo com a Eq. 21-1,

F

12

k qq 1 2

9

20 0 × 10−

= = (, 899× 10 N⋅m2 C2) ( , C )

d

2

( 1, 50 m)

2

6 2

= 160 , N.

(b) O diagrama a seguir mostra as forças envolvidas e o eixo y escolhido (linha tracejada).

O eixo y foi escolhido como a mediatriz do segmento de reta que liga as cargas q 2 e q 3 para fazer

uso da simetria do problema (um triângulo equilátero de lado d, cargas de mesmo valor q 1 =

q 2 = q 3 = q). Vemos que a força resultante coincide com o eixo y, e o módulo da força é

F

= ⎛ k q 2

⎝ ⎜ ⎞

20 0

2

d ⎠

⎟ cos 30° = 2( 899 , × 109

N⋅m2 C2 ) ( , × 10 − C)

2

(, 150 m)

2

6 2

cos 30° = 277 , N.

18. Como todas as forças envolvidas são proporcionais às cargas das partículas, vemos que a

diferença entre as duas situações é que F 1 ∝ q B + q C na situação em que as cargas B e C estão no


SOLUÇÕES DOS PROBLEMAS 7

mesmo lado em relação à carga A e F 2 ∝ −q B + q C na situação em que as cargas estão em lados

opostos. Assim, temos:

F1

F

2

qB

+ qC

=

− q + q

B

C

⇒ − 2,

014 × 10

− 2,

877 × 10

−23

−24

N

N

1+

qC/

qB

= 7 = ,

− 1+

q / q

C

B

o que nos dá, após algumas manipulações algébricas, q C /q B = 1,333.

19. (a) Se a partícula 3 permanece imóvel, a resultante das forças a que está submetida é zero.

Como as partículas 1 e 2 têm cargas de mesmo sinal, para que isso aconteça, a partícula 3 deve

estar entre as outras duas cargas. Além disso, deve estar no eixo x. Suponha que a partícula 3

está a uma distância x da partícula 1 e a uma distância L 2 x da partícula 2. Nesse caso, a força

resultante a que a partícula 3 está submetida é

1 ⎡ qq3

4qq3

F3

= −

4 ⎢

0 x2

L−

x

2 ⎥

⎣ ( ) ⎦

Fazendo F 3 = 0 e explicitando x, obtemos x = L/3 = 3,00 cm.

(b) Como foi dito no item (a), y = 0.

(c) A força a que a partícula 1 está submetida é

1 qq3

400q2

F1

= − ⎛ , ⎞

+

4

x2

L2

⎟ ,

0

em que os sinais foram escolhidos de tal forma que uma força negativa faz a partícula 1 se

mover para a esquerda. Fazendo F 1 = 0, explicitando q 3 e usando o resultado do item (a), x =

L/3, obtemos:

q

3

4qx2

4 q3

4

=− =− q ⇒ = − = − 0, 444.

L2

9 q 9

Note que a resultante das forças a que a partícula 2 está submetida também é zero:

F

2

1 q2

⎛ 4 4qq

q2

0 ⎞ 1 4 4

= +

4 0 ⎝

L2

L−

x

2

⎟ = ⎡

( ) 40

L

+ ( − 49)

q

⎢ 2

⎣ ( 49)

L2

2

= 1 ⎛ 4q2

4 ⎝

⎜ − 4q

2 2

0 L L

20. Note que as distâncias entre as partículas B e A e entre as partículas C e A são as mesmas

para todas as posições da partícula B. Vamos nos concentrar nos pontos extremos (u = 0º e u =

180º) das curvas da Fig. 21-29c, pois representam situações em que as forças que as partículas

B e C exercem sobre a partícula A são paralelas ou antiparalelas (ou seja, situações em que

a força resultante é máxima ou mínima, respectivamente). Note, também, que, como a força

dada pela lei de Coulomb é inversamente proporcional a r 2 , se as cargas fossem iguais, a força

exercida pela partícula C seria quatro vezes menor que a força exercida pela partícula B, já que

a distância entre a partícula C e a partícula A é duas vezes maior que a distância entre a partícula

B e a partícula A. Como as cargas não são iguais, existe, além do fator de 1/4 já mencionado, um

fator j igual, em módulo, à razão entre a carga da partícula C e a carga da partícula B. Assim, a

força eletrostática exercida pela partícula C, de acordo com a lei de Coulomb, Eq. 21-1, é igual

a j/4 vezes a força exercida pela partícula B.

(a) De acordo com a curva 1 da Fig. 21-29c, a força máxima é 2F 0 e corresponde a u = 180º

(situação na qual B está no eixo x, à esquerda de A). Nesse caso,

2F 0 = (1 − j/4)F 0 ⇒ j = –4.

2

= 0.


8 SOLUÇÕES DOS PROBLEMAS

(b) De acordo com a curva 2 da Fig. 21-29c, a força máxima é 1,25F 0 e corresponde a u = 0 o

(situação na qual B está no eixo x, à direita de A). Nesse caso,

1,25F 0 = (1 + j/4)F 0 ⇒ j = +1.

21. A carga dq contida em uma casca fina de largura dr é dq = rdV = rAdr, na qual A = 4pr 2 .

Como r = b/r, temos:

r

2

q= ∫

dq= 4b∫

rdr = 2 b r2 2 −r1 2 .

r1

( )

Para b = 3,0 mC/m 2 , r 2 = 0,06 m e r 1 = 0,04 m, obtemos q = 0,038 mC = 3,8 × 10 −8 C.

22. (a) A soma das componentes x das forças que as partículas 3 e 4 exercem sobre a partícula

1 é

| qq 1 3|

3 3 | qq |

2 cos( 30° ) =

4 16

2 .

r

d

0 2 0

1 3

Para que a força que age sobre a partícula 1 seja nula, o valor calculado deve ser igual, em valor

absoluto, à força exercida pela partícula 2 sobre a partícula 1:

3 3 | qq 1 3| | qq 1 2|

=

16

d

2

4

( D+

d)

0

0

2

⎛ 5 ⎞

⇒ D= d 2 − 1

3 3 ⎠

⎟ = 0, 9245d.

Para d = 2,00 cm, obtemos D = 1,92 cm.

(b) Quando as partículas 3 e 4 são aproximadas do eixo x, o ângulo u diminui e a soma das

componentes x das forças que essas partículas exercem sobre a partícula 1 aumenta. Para

compensar este fato, a força exercida pela partícula 2 sobre a partícula 1 deve ser maior, o que

exige que a distância D seja menor.

23. Seja F o módulo da força exercida pela partícula 1 e pela partícula 2 sobre a partícula 2

sobre a partícula 3, seja e = +1,60 × 10 −19 C e seja u o ângulo entre uma das forças acima e o

eixo x. Nesse caso,

22 ( e)( 4e)

x

4ex

2

Fres = 2Fcos

=

=

.

40( x2 + d2)

x2 + d2

2 2 32

0 ( x + d )

/

(a) Para determinar os valores de x para os quais a força é máxima ou mínima, derivamos a

expressão apresentada em relação a x e igualamos o resultado a zero. É aconselhável desenhar

um gráfico, tanto para compreender melhor o comportamento da função como para verificar se

o valor calculado é um máximo ou um mínimo. Agindo dessa forma, constatamos que o valor

obtido igualando a derivada a zero corresponde a um máximo [(veja o item (b)] e que o mínimo

da função corresponde ao limite inferior do intervalo, ou seja, ao ponto x = 0.

(b) Derivando a função do enunciado e igualando o resultado a zero, obtemos:

dF

dx

4e2

( x2 + d2) 32− x( 3 2)( x2 + d2) 12(

2 )

=

= 0,

( x2 + d2)

3

/

res /

/

x

0

o que nos dá, depois de algumas manipulações algébricas, x = d/

2 ≈ 12 cm.

(c) O valor da força resultante no ponto x = 0 é F res = 0.

(d) O valor da força resultante no ponto x = 12 cm é F res = 4,9 × 10 −26 N.


SOLUÇÕES DOS PROBLEMAS 9

24. (a) De acordo com a Eq. 21-1,

(, 899× 10 N⋅ m2 C2)( 1, 00 × 10−

C)

F =

(, 100×

10−

2

m)

2

9 16 2

= 899 , × 10− 19

N.

(b) Se n é o número de elétrons em excesso (com uma carga –e = 1,60 × 10 −19 C cada um),

temos:

25. De acordo com a Eq. 21-11, temos:

q

n =− =− − 100 , × 10

e 160 , × 10−

n

q

= =

e

10 , × 10

16 , × 10

−7

−19

−16

19

C

= 625.

C

C

= 63 , × 1011.

C

26. De acordo com as Eqs. 21-1 e 21-5, o módulo da força é

F k e 2

= = ×

r

2

⎜899 , 10

9

N⋅

m

C2

2

( ×

−19

2

160 , 10 C)

2,

82 10

10

2

( ×

m)

= 289 , × 10

−9

N.

27. (a) De acordo com a Eq. 21-1, o módulo da força eletrostática entre os íons é

F

q q

r

= ( )( ) =

k q r

4 0 2 2

2

na qual q é a carga de um dos íons e r é a distância entre os íons. Explicitando a carga,

obtemos:

F

q= r = 50 , × 10

k

−10

( m)

37 , × 10−

9

N

899 , × 109

N⋅m

C

2 2

= 3, 2× 10− 19 C.

(b) Seja n o número de elétrons que estão faltando em cada íon. Nesse caso,

n

q

= =

e

32 , × 10

16 , × 10−

−9

19

C

= 2.

C

28. Como 1 ampère equivale a 1 coulomb por segundo (1 A = 1 C/s) e 1 minuto equivale a 60

segundos, o valor absoluto da carga que atravessa o peito é

O número de elétrons correspondente é

n

|q| = (0,300 C/s)(120 s) = 36,0 C.

q

= =

e

36,

0 C

160 , × 10−

19

= 225 , × 1020.

C

29. (a) Na configuração inicial, de alta simetria, a força F y a que a partícula central (partícula

5) está submetida aponta no sentido negativo do eixo y e tem módulo 3F, na qual F é a força

exercida por uma das partículas sobre a outra a uma distância d = 10 cm, já que as forças

exercidas pelas partículas 1 e 3 se cancelam e a força exercida “para baixo” pela partícula 4 é

4 vezes maior que a força exercida “para cima” pela partícula 2. Esta força não muda quando a

partícula 1 é deslocada, fazendo com que passe a existir também uma força F x paralela ao eixo

x. Como a força a que partícula estava submetida inicialmente era paralela ao eixo y, o fato de

sofrer uma rotação de 30 o significa que, quando a partícula 1 se encontra na nova posição,

F

F

x

y

Fx

= tan( 30o

1

) ⇒ = ,

3F

3


10 SOLUÇÕES DOS PROBLEMAS

o que nos dá F x = F 3. Como a partícula 3 exerce uma força “para a esquerda” de módulo F

sobre a partícula 5 e a partícula 1 exerce uma força “para a direita” de módulo F ′, temos:

F′ − F = F 3 ⇒ F′ = ( 3+

1) F.

Como a força eletrostática varia inversamente com a distância, temos:

r

2

=

d

2

d

r

3+ 1 ⇒ = =

3+

1

10 cm

3+

1

10 cm

= = 605 , cm

165 ,

na qual r é a distância entre a partícula 1 e a partícula 5. Assim, a nova coordenada da partícula

1 deve ser x = −6,05 cm.

(b) Para que a força resultante volte à direção original, é preciso que as componentes x das

forças exercidas pelas partículas 1 e 3 se cancelem, o que pode ser conseguido aproximando

a partícula 3 da partícula 5 até que esteja à mesma distância que a partícula 1. Assim, a nova

coordenada da partícula 3 deve ser x = 6,05 cm.

30. (a) Seja x a distância entre a partícula 1 e a partícula 3. Nesse caso, a distância entre a

partícula 2 e a partícula 3 é L ñ x. Como as duas partículas exercem forças para a esquerda sobre

a partícula 3, o módulo da força total a que a partícula 3 está submetida é

qq qq e2

1 3

2 3 ⎡

Ftot = F13 + F23

= +

=

1 27 ⎤

40x

2 4 0( L−

x) 2

⎢ +

2 2

0 ⎣ x L−

x

⎥.

( ) ⎦

Derivando a função apresentada e igualando o resultado a zero, obtemos

dF

dx

tot

e2

⎡ 2 54( L−

x)

= ⎢− +

⎣ x L−

x

= 0,

3 4

0 ( )

o que, depois de algumas manipulações algébricas, nos dá x = L/4. Assim, x = 2,00 cm.

(b) Fazendo x = L/4 na expressão de F tot e substituindo e, p e â 0 por valores numéricos, obtemos

F tot = 9,21 × 10 −24 N.

31. Como cada próton possui uma carga q = +e, a corrente em uma superfície esférica de área

4pR 2 = 4p (6,37 × 10 6 m) 2 = 5,1 × 10 14 m 2 seria

i = ( 51×

10 14 2 prótons

, m )

⎜1500 ⋅ ⎠

⎟ 16 , × 10−

19 ( Cpróton) = 0, 122 A = 122 mA.

s m2

32. Como a curva da Fig. 21-33 passa pelo ponto F 2, tot = 0, a carga da partícula 1 é positiva: q 1 =

+8,00e. O fato de que F 2, tot = 0 quando a partícula 3 está no ponto x = 0,40 m significa que a

distância entre as partículas 1 e 2 é r = 0,40 m. Como o valor assintótico de F 2, tot corresponde à

situação em que a única força a que a partícula 2 está submetida é a força exercida pela partícula

1, temos:

qq 1 2

4

r

= F ⇒ q = 2, 086 × 10−

18

C =+ 13e.

0 2 assint

2

33. Como a massa específica da água é 1,0 g/cm 3 , um volume de 250 cm 3 corresponde a uma

massa de 250 g, que, por sua vez, corresponde a 250/18 = 14 mols, já que a massa molar da

água é 18. Como uma molécula de H 2 O possui 10 prótons, temos:

Q = 14N q= 14N 10e

= 14 602× 1023

A A( ) (, )( 10)( 160 , × 10− 19C) = 13 , × 107C.


SOLUÇÕES DOS PROBLEMAS 11

34. Por simetria, a componente y da força total a que o elétron 2 está submetido é nula, qualquer

que seja o ângulo u. A componente x da força total exercida pelos elétrons 3 e 4 é dada por

F

qe

2qecos

2qecos3

, = 2 cos

= = .

4 r 4

( R/

cos )

2

4

R2

x 34

0 2 0

Assim, para que a força total a que está submetido o elétron 2 seja nula, é preciso que a força

exercida pelo elétron 1 seja igual à componente x da força exercida pelos elétrons 3 e 4, ou seja,

F 1 = F x 3,4 , o que nos dá

e2

4

R

0

2

2qecos3

3

e

= ⇒ cos = .

4

R2

2q

0

Os “valores fisicamente possíveis de q” mencionados no enunciado são múltiplos inteiros da

carga elementar e. Fazendo q = ne, temos:

Assim, os valores possíveis de u são dados por

cos 3 1

=

2 n

0

na qual n é um número inteiro.

⎛ ⎞

= cos − 1

1

2n

13 /

(a) O menor valor de u é

−1

1

(b) O segundo menor valor de u é

13 /

⎛ 1⎞

= cos 37 5 0 654

2⎠

⎟ = ,

o

= , rad.

−1

2

(c) O terceiro menor valor de u é

13 /

⎛ 1⎞

= cos 50 95 0 889

4⎠

⎟ = ,

o

= , rad.

−1

3

13 /

⎛ 1⎞

= cos 56 6 0 988

6⎠

⎟ = ,

o

= , rad.

35. (a) Os íons de césio situados nos vértices do cubo exercem forças sobre o íon de cloro

situado no centro do cubo. As forças são atrativas e as direções coincidem com as diagonais do

cubo. Para cada íon de césio existe outro situado na mesma diagonal. Como esses pares de íons

estão à mesma distância do íon de cloro e exercem forças de sentidos opostos, todas as forças

se cancelam e a força resultante a que os íons de cloro estão submetidos é zero.

(b) Em vez de remover um íon de césio, vamos supor que existe uma carga adicional 2e na

posição de um dos íons de césio, o que equivale, do ponto de vista elétrico, a remover o íon.

Como a resultante das forças que os oito íons de césio exercem sobre o íon de cloro é zero, só

é necessário considerar a força exercida pela carga adicional.

O comprimento da diagonal de um cubo é i = ( 51×

10 14 2 prótons

, m )

⎜1500 ⋅ ⎠

⎟ 16 , × 10−

1 9

Cp

s m2

Cpróton) = 0, 122 A = 122 mA. em que a é o comprimento da aresta do cubo. Assim, a distância

entre o centro do cubo e uma aresta é d = a 32 / e a força exercida pela carga adicional é

F k e 2

ke2

(, 899× 109N⋅ m2 C2)( 160 , × 10−

19C)

2

= = =

= 19 , × 10−

9

N.

d

2

( 34)

a2

( 34)( 040 , × 10−

9m)

2

Como a carga adicional e o íon de cloro são negativos, a força é repulsiva. Isso significa que o

íon de cloro se afasta do vértice que não contém um íon de césio.

( ) = =


12 SOLUÇÕES DOS PROBLEMAS

36. (a) Como o próton é positivo e o nêutron é neutro, a partícula emitida deve ser um pósitron

(uma partícula positiva) para que a carga elétrica seja conservada.

(b) Nesse caso, como o estado inicial tem carga zero, a soma das cargas das partículas produzidas

deve ser zero. Como uma das partículas produzidas é um próton, cuja carga é positiva, a outra

partícula deve ser um elétron.

37. Para conhecer o número atômico (número de prótons) dos elementos envolvidos nas

reações, consulte o Apêndice F.

(a) Como o 1 H tem 1 próton e 0 nêutron e o 9 Be tem 4 prótons e 9 2 4 = 5 nêutrons, os nuclídeos

originais têm 5 prótons e 5 nêutrons. Como um nêutron é liberado, o elemento X possui 4

prótons e 5 nêutrons. De acordo com o Apêndice F, esse elemento é o boro. Assim, a resposta

é 9 B.

(b) Como o 12 C tem 6 prótons e 12 2 6 = 6 nêutrons e o 1 H tem 1 próton e 0 nêutron, o elemento

X possui 7 prótons e 6 nêutrons. De acordo com o Apêndice F, esse elemento é o nitrogênio.

Assim, a resposta é 13 N.

(c) Como o 15 N tem 7 prótons e 15 2 7 = 8 nêutrons , o 1 H tem 1 próton e 0 nêutron e o 4 He

tem 2 prótons e 4 2 2 = 2 nêutrons, o elemento X possui 7 + 1 2 2 = 6 prótons e 8 + 0 2 2 = 6

nêutrons. De acordo com o Apêndice F, esse elemento é o carbono. Assim, a resposta é 12 C.

38. Após o primeiro contato, a esfera W e a esfera A possuem uma carga q A /2, na qual q A é a

carga inicial da esfera A. Após o segundo contato, a esfera W possui uma carga

1 ⎛ q

2⎝

2

A −

32e

⎟ .

Após o terceiro contato, a esfera W possui uma carga

1

2

⎡ 1 ⎛ q

2⎝

⎣ 2

A −

⎞ ⎤

32e

48e

⎟ + ⎥

.

Igualando esta última expressão a +18e, obtemos, depois de algumas manipulações algébricas,

a resposta pedida: q A = +16e.

39. De acordo com Eq. 21-1, o módulo da força que a partícula 1 exerce sobre a partícula 2 é

F 21 = kq 1 q 2 /r 2 , na qual r = d1 2 + d2 2 e k = 14 / 0 = 899 , × 109

N⋅m2 C2. Como a partícula 1 e

a partícula 2 têm cargas positivas, a partícula 2 é repelida pela partícula 1 e, portanto, a força F 21

aponta para baixo e para a direita. Na notação dos vetores unitários, F

= F ˆr, sendo

r ( d ˆi ˆ) j

r

2 − d1

ˆ = = .

r d + d

1 2 2 2

21 21

A componente x de F 21 é F = F d / d + d Combinando essas expressões, obtemos

F

k qqd 1 2 2 qqd 1 2 2

= = k

r3

( d + d )

21, x 21 2 1 2 2 2 .

21, x

1 2 2 2 3 / 2

(, 899× 109N⋅m2 C2)( 4⋅ 160 , × 10−

19

C)( 6⋅ 160 , × 10−

19

C)(6, 00 × 10−

3

m

=

(2,00 × 10−

m + (6,00 × 10−

/

) m)

=

131 , × 10− 22 N.

[ ]

3 2 3 2 3 2 )


SOLUÇÕES DOS PROBLEMAS 13

40. Como as partículas 1 e 2 estão do mesmo lado da partícula 3, para que as forças exercidas

pelas duas partículas se cancelem, é preciso que uma das forças seja atrativa e a outra seja

repulsiva. Isso, por sua vez, significa que as cargas das partículas 1 e 2 devem ter sinais opostos.

Além disso, naturalmente, as duas forças devem ter módulos iguais, ou seja,

| q1|| q3

|

k

( L + L )

|

k q || q |

=

( L )

12 23 2 23 2

2 3

Para L 23 = 2,00L 12 , a expressão apresentada nos dá q 1 /q 2 = −2,25.

41. (a) Para que as forças gravitacional e elétrica se neutralizem mutuamente, devem ter módulo,

ou seja,

k q r

2

= G mM

r

2 2

na qual k é a constante eletrostática, q é a carga de um dos astros, r é a distância entre o centro

da Terra e o centro da Lua, G é a constante gravitacional, m é a massa da Lua e M é a massa da

Terra. Explicitando q, obtemos:

q

GmM

= =

k

(, 667× 10−

11

N⋅ m2 kg2)( 7, 36 × 1022

kg)(,

598×

10

899 , × 109

Nm ⋅

2

C2

24

kg)

= 57 , × 10

13

C.

(b) A distância r não aparece nos cálculos porque tanto a força elétrica como a força gravitacional

são proporcionais a 1/r 2 e, portanto, as distâncias se cancelam.

(c) Como a carga de um íon de hidrogênio é e = 1,60 × 10 –19 C, seriam necessários

n

q

= =

e

57 , × 10

16 , × 10−

13

19

C

= 36 , × 10

C

32

íons.

Como a massa de um íon de hidrogênio é m p = 1,67 × 10 –27 kg, a massa necessária seria

m = nmp = (, 36× 1032)( 167 , × 10 − 27

kg) = 6,

105

kg.

42. (a) A figura a seguir mostra o diagrama de corpo livre da esfera da esquerda. A força da

gravidade mg aponta para baixo, a força eletrostática da outra esfera aponta para a esquerda e a

tensão do fio aponta na direção do fio, que faz um ângulo u com a vertical. Como a esfera está

em equilíbrio, a aceleração é zero. A componente y da segunda lei de Newton nos dá T cosu –

mg = 0 e a componente x nos dá T senu – F e = 0. De acordo com a primeira equação, T = mg/

cosu. Substituindo esse resultado na segunda equação, obtemos mg tanu – F e = 0.

Aplicando relações trigonométricas ao triângulo da Fig. 21-38 formado pelo ponto de suspensão

e as duas esferas, obtemos:

x 2

tan =

.

L

2 x 2

2

− ( )


14 SOLUÇÕES DOS PROBLEMAS

Se L é muito maior que x (o que acontece se u for muito pequeno), podemos desprezar o

termo x/2 do denominador e fazer tanu ≈ x/2L. De acordo com a Eq. 21-1, o módulo da força

eletrostática que uma das esferas exerce sobre outra é

Substituindo essas duas expressões na equação mg tanu = F e , obtemos

F

e =

k q x

2

. 2

mgx

k q 2

2kq2L

≈ ⇒ x ≈ ⎛ ⎞

2L

x2

⎝ ⎜ mg ⎠

(b) Explicitando q na expressão apresentada e substituindo os valores dados, obtemos:

13 /

.

q

mgx

= =

2kL

( 0, 010 kg)( 98 , ms 2 )( 0, 050m)

2899 (, × 109

N⋅

m2 C2)( 120 , m)

3 3

= 24 , × 10−

8

C.

43. (a) Se uma das esferas é descarregada, deixa de existir repulsão eletrostática entre as esferas,

e o ângulo u diminui até que as esferas se tocam.

(b) Quando as esferas se tocam, metade da carga da esfera que não foi descarregada é transferida

para a outra esfera, o que faz com que cada esfera fique com uma carga q/2. Assim, de acordo

com a equação obtida no item (a) do Problema 42, a nova distância de equilíbrio é

( )

13 /

2

⎡ 2k q 2 L ⎤

′ = ⎢ ⎥ = ⎛

⎣⎢

⎦⎥

⎝ ⎜ 1⎞

x

mg 4

13 /

x = ⎛ ⎝ ⎜

1⎞

4⎠

13 /

⎟ ( cm) =

em que x = 5,0 cm é a distância dada no item (b) do Problema 42.

44. Fazendo kq 2 /r 2 = m p g, obtemos

50 , 31 , cm,

k

r = q = (, 160×

10−

19C)

mg

p

899 , × 109 N⋅m2

C2

(, 167×

10−

27

kg)( 98 , ms2)

= 0,

119 m = 11,9 cm.

45. Como cada molécula contém dois prótons de carga q = +e, temos:

Q = N A q = (, 602× 1023)( 2)( 160 , × 10 − 19

C) = 19 , × 105

C=

0,19 MC.

46. (a) O módulo da força eletrostática a que a partícula 1 está submetida é a soma algébrica das

forças exercidas pelas outras três partículas:

2e| −e| ( 2e)()

e ( 2e)( 4e)

11 e2

F1 = F12 −F13 − F14

= − − =

4 d

2

4 ( 2d)

2

4

( 3d)

2

18 4

d

0

0

0

0

2

=

11

18

o que nos dá F 25

1 = (, 352× 10−

N)i. ˆ

(, 899 × 10 N⋅ m C )( 160 , × 10−

C)

( 200 , × 10−

2m)

2

9 2 2 19 2

= 35 , 2× 10− 25 N,

(b) Analogamente, o módulo da força eletrostática a que a partícula 2 está submetida é

4e| −e|

e| −e|

2e| −e|

F2 = F23 + F24 − F21

= + − = 0.

4

( 2d)

2

4

d

2

4

d

2

0

0

0


SOLUÇÕES DOS PROBLEMAS 15

47. Vamos chamar a carga de +6 mC de q 1 , a carga de –4 mC de q 2 , a carga desconhecida de

q 3 e as distâncias entre essas cargas e a origem de r 1 , r 2 e r 3 , respectivamente. Para que a força

eletrostática total que age sobre uma carga colocada na origem seja nula, devemos ter

Ftot = F1+ F2 + F3 .

Vamos supor, sem perda de generalidade, que a carga da partícula colocada na origem é positiva.

Nesse caso, a força exercida pela carga q 1 aponta para a esquerda, a força exercida pela carga

q 2 aponta para a direita e a carga exercida pela carga q 3 aponta para a esquerda se for positiva e

para a direita se for negativa. De acordo com a Eq. 21-1, temos:

− k qq 1

+ k qq ± k qq =

r r r

1 2 2

Substituindo os valores conhecidos, obtemos:

2 2 3

3 2 0.

6 4 q3

− + ± = 0.

82 162

242

Reduzindo a um denominador comum, obtemos

q 3

54 9

− + ± = 0.

576 576 576

Para que essa equação seja satisfeita, é preciso que o sinal do terceiro termo do lado direito

seja positivo (ou seja, que a força F 3 aponte para a direita) e que |q 3 | = 45 mC. Assim, q 3 = 245

mC.

48. (a) De acordo com a Eq. 21-4,

| qq A C | |( 899 , × 109N⋅m2 C2)( −2,

00 × 10−

9C) (, 800×

10−

9C)

|

| FAC

| = =

= 360 , × 10

4

d

2

( 0,

200 m)

2

0

(b) Depois de serem colocadas em contato, as esferas A e B ficam com uma carga de [−2,00

nC −4,00 nC]/2 = −3,00 nC. Quando a esfera B é aterrada, a carga diminui para zero. Quando

a esfera B faz contato com C, as duas esferas ficam com uma carga de 2(8,00 nC)/2 = 24,00

nC. Assim, as cargas finais são Q A = 23,00 nC, Q B = −4,00 nC e Q C = 24,00 nC e, portanto,

de acordo com a Eq. 21-4,

| qq A C | |( 899 , × 109N⋅m2 C2)( −3,

00 × 10−

9C) ( − 400 , × 10−

9C)

|

| FAC

| = =

= 270 , × 10−

6

N.

4

d

2

( 0,

200 m)

2

0

(c) De acordo com a Eq. 21-4,

| qq B C | |( 899 , × 109N⋅m2 C2)( −4,

00 × 10−

9C) ( − 400 , × 10−

9C)

|

| FBC

| = =

= 360 , × 10−

6

N.

4

d

2

( 0,

200 m)

2

0

49. De acordo com a Eq. 21-4,

−6

N.

| q |

2

ke ( 3) (, 8 99 × 109N⋅m

C2)( 160 ,

F = = =

4

r r

2

926 ( , × 10−

15m)

2

0 2 2

2

×

10

−19

C)

2

= 38 , N.

50. (a) Como a barra está em equilíbrio, a força resultante a que a barra está submetida é zero e

o torque resultante em relação a qualquer ponto da barra também é zero. Vamos escrever uma

expressão para o torque resultante em relação ao apoio, igualar a expressão a zero e calcular

o valor de x. A carga Q da esquerda exerce uma força para cima de módulo kqQ/h 2 a uma

distância L/2 do apoio. Vamos tomar este torque como negativo. O peso exerce uma força para

baixo de módulo W a uma distância x − L/2 do apoio. Este torque também é negativo. A carga


16 SOLUÇÕES DOS PROBLEMAS

Q da direita exerce uma força para cima de módulo 2kqQ/h 2 a uma distância L/2 do apoio. Este

torque é positivo. A equação de equilíbrio para rotações é

Explicitando x, obtemos:

⎛ ⎞

−k qQ L L 2

− W −

⎜ x

⎟ + k

qQ L

= 0.

h2 2 2 h2

2

L⎛

kqQ ⎞

x = +

Wh ⎠

2 1 .

2

(b) Se F N é o módulo da força para cima exercida pelo apoio, a segunda lei de Newton (com

aceleração zero) nos dá

Fazendo F N = 0 e explicitando h, obtemos:

W k qQ 2

− −k

qQ − F N = 0.

h2 h2

kqQ

h = ⎛ ⎝ ⎜ 3 ⎞

W ⎠

51. Vamos chamar de L o comprimento da barra e de A a área da seção reta da barra. A carga

dq em uma pequena fatia da barra, de largura dx, é rAdx, na qual r é a densidade volumétrica

de carga. O número de elétrons em excesso que existem na barra é n = |q|/e, em que e é a carga

elementar, dada pela Eq. 21-12.

(a) Para r = –4,00 × 10 –6 C/m 3 , temos:

q A L | | AL

n = = dx = = ×

e e ∫

2,00 10 10 .

0 e

(b) Para r = bx 2 (na qual b = –2,00 × 10 –6 C/m 5 ), temos:

05 ,

bA L bAL3

n = x2

dx = = ×

e ∫

133 , 10

10.

0 3e

52. Para que a força de atração eletrostática mantenha a partícula em movimento circular

uniforme a uma distância r, devemos ter a seguinte relação:

Qq

r

mv

=− .

r

4 0 2 2

Explicitando Q e substituindo os valores conhecidos, temos:

×

4 rmv2 0 ( 0, 200 m)( 800 , 10

4

kg)( 500 , m/s)

2

Q =− =−

q (, 899× 109 N⋅ m2

C2)( 4, 00 × 10−

6C)

=− 111 , × 10 − 5C = 11,1 C.

53. (a) De acordo com a Eq. 21-1, temos:

qq 1 2 kq (, 899× 10 N⋅m F = = =

2 C )( 1, 00 C)

4

r r

2

(, 100 m)

2

0 2 2

9 2 2

= 899 , × 109

N.

(b) Para r = 1000 m, temos:

qq 1 2 kq

F = = =

4

r r

2

0 2 2

( )(

899 , × 10 N⋅m2

C 1, 00 C)

( 100 , × 103 m)

2

9 2 2

= 899 , × 103

N = 8,99 kN.


SOLUÇÕES DOS PROBLEMAS 17

54. Seja q 1 a carga de uma das partes e seja q 2 a carga da outra parte; nesse caso, q 1 + q 2 = Q =

6,0 mC. A força de repulsão entre as partes é dada pela Eq. 21-1:

qq 1 2 q ( Q−

q )

F = = .

4

r 4

r

1 1

0 2 0 2

Derivando essa expressão em relação a q 1 e igualando o resultado a zero, obtemos:

dF

dq

1

Q−

2q

=

4

r

1

0 2

= 0,

o que nos dá q 1 = Q/2 como o valor da carga q 1 que maximiza a força de repulsão. Isso significa

que q 2 = Q − q 1 = Q/2. Assim, temos:

( Q/ 2)( Q/ 2) 1 Q 1 (, 899× 109

N ⋅m C )( 60 , × 10−

C)

F = = =

4 r 44 0 r

2 4 (, 300×

10−

3m)

2

0 2 2

2 2 6 2

≈ 90 , × 10

3

N

= 9, 0kN.

55. As cargas das duas esferas são q = aQ (em que a é um número maior que 0 e menor que 1)

e Q – q = (1 – a)Q. De acordo com a Eq. 21-1, temos:

1

F =

4

0

[ ] =

( Q) ( 1−

) Q Q2( 1 ) d

2

4

d

2 .

0

O gráfico a seguir mostra a força normalizada F/F max em função de a, em que F max = Q 2 /16pâ 0 d 2 .

(a) É evidente que o valor da força eletrostática é máximo para a = 0,5.

(b) Fazendo F = F max /2, obtemos:

Q2( 1−

)

Q2

=

4

d

2

32

d

0

0

2

que nos dá, depois de algumas manipulações algébricas, a equação do segundo grau

cujas raízes são

− + = 0

8

2

1

1 ⎛

2 1 2 ⎞ 1 ⎛

2 2 1 2 ⎞

+

⎟ e −

⎜ 2 ⎠

1 ⎛ ⎞

(c) O menor valor de a é = −

2 ⎝

⎜ 1 2

2 ⎠

⎟ ≈

1 ⎛ ⎞

(d) O maior valor de a é = +

2 ⎝

⎜ 1 2

2 ⎠

⎟ ≈

015 , .

085 , .


18 SOLUÇÕES DOS PROBLEMAS

56. (a) De acordo com a Eq. 21-11, temos:

n

q

= =

e

200 , × 10

160 , × 10−

−6

19

C

= 125 , × 10

C

13

elétrons.

(b) Como o dono do gato está com excesso de elétrons e a torneira está em contato com a Terra

(que é um reservatório de cargas de grande capacidade), elétrons são transferidos do dono do

gato para a torneira.

(c) Como cargas de mesmo sinal se repelem, os elétrons da torneira são repelidos para longe da

mão do dono do gato e, portanto, a parte da torneira mais próxima da mão fica positivamente

carregada.

(d) Como o gato está positivamente carregado, a transferência de elétrons seria da torneira para

o gato.

(e) Se pensarmos no focinho do gato como uma esfera condutora, o lado da esfera mais próximo

do pelo tem cargas com o mesmo sinal que as cargas do pelo, e o lado mais afastado do pelo

tem cargas com o sinal oposto (que, por sua vez, têm o sinal oposto ao da mão da pessoa que

acabou de afagar o gato). Assim, as cargas da mão e do focinho têm sinais opostos e podem se

atrair com força suficiente para produzir uma centelha.

57. Se a diferença relativa entre as cargas do próton e do elétron, em valor absoluto, fosse

q

p

− q

e

e

= 0, 0000010,

a diferença absoluta seria qp − qe = 16 , × 10−

25 C. Multiplicada por um fator de 29 ×3 × 10 22 ,

como sugere o enunciado, a diferença entre as cargas positivas e negativas em uma moeda de

cobre seria

q = ( 29 × 3× 1022)(, 16× 10−

25

C) = 0,

14C.

De acordo com a Eq. 21-1, a força de repulsão entre duas moedas de cobre situadas a 1,0 m de

distância seria

F = q

k

( ) r

= 17 , × 10 8 N.

2

2

58. (a) De acordo com a Eq. 21-1, a força a que a partícula 3 está submetida é

F F F k q 3 q 1

k qq 3 2

3 res =− ˆ

31 i + | 32 | ˆ ⎛ | | ⎞ ⎛

i = − + ˆ | q1

| q2

r31

2 r32

2 ⎟ i = kq3

⎜ − + ˆ

⎠ ⎝ 31

2 32

2 ⎟ i

r r ⎠

= ( 8, 99 109 2

80 10

)( 20 10

6

− ×

−6

× N⋅ m2

×

⎛ C + 40 × 10

C C)

+

( 040 , m)

2

( 020 , m)

= ( 89, 9 N)i. ˆ

(b) De acordo com a Eq. 21-1, a força a que a partícula 3 está submetida é

F F F k q 3 q 1

k qq 3 2

3 res =− ˆ

31 i + | 32 | ˆ ⎛ | | ⎞ ⎛

i = − + ˆ | q1

| q2

r31

2 r2 ⎟ i = kq3

⎜ − + ˆ

32

31

2 2 ⎟ i

⎠ ⎝ r r32⎠

= ( 8, 99 109 2

80 10

)( 20 10

6

− ×

−6

× N⋅ m2

×

⎛ C + 40 × 10

C C)

+

( 080 , m)

2

( 060 , m)

=−( 250 , N)i. ˆ

6

C

2

⎞ ˆ

⎟ i

6

C

2

⎞ ˆ

⎟ i


SOLUÇÕES DOS PROBLEMAS 19

(c) Entre as posições do item (a) e do item (b), deve haver uma posição na qual F

3 res = 0.

Fazendo r 31 = x e r 32 = x 2 0,20 m, igualando F 31 a F 32 e cancelando fatores comuns,

obtemos

| q1

| q2

=

.

x2

2

( x − 020 , m)

Levando em conta o fato de que |q 1 | = 2q 2 , extraindo a raiz quadrada de ambos os membros e

explicitando x, obtemos

02 , 2

x =

2 − 1

= 0, 683 m = 68,3 cm.

(d) Para que a resultante da força que age sobre a partícula 3 seja nula, é preciso que as três

partículas estejam sobre a mesma reta, que no caso é o eixo x; assim, y = 0.

59. Como a massa de um elétron é m = 9,11 × 10 –31 kg, o número de elétrons em um conjunto

com uma massa M = 75,0 kg é

n

M

= =

m

A carga total desse conjunto de elétrons é

75,

0 kg

= 823 , × 10

9,11 × 10−

31

kg

31

elétrons.

q =− ne =− Z(, 823× 1031)( 160 , × 10−

19

C) =− 132 , × 1013

C.

60. Note que, em consequência do fato de que a força eletrostática é inversamente proporcional

a r 2 , uma partícula de carga Q situada a uma distância d da origem exerce sobre uma carga q o

situada na origem uma força de mesma intensidade que uma partícula de carga 4Q situada a

uma distância 2d de q o . Assim, a carga q 6 = +8e situada a uma distância 2d abaixo da origem

pode ser substituída por uma carga +2e situada a uma distância d abaixo da origem. Somando

esta carga à carga q 5 = +2e, obtemos uma carga +4e situada a uma distância d abaixo da origem,

que cancela a força exercida pela carga q 2 = +4e situada a uma distância d acima da origem.

Analogamente, a carga q 4 = +4e, situada a uma distância 2d à direita da origem, pode ser

substituída por uma carga +e situada a uma distância d à direita da origem. Somando esta

carga à carga q 3 = +e, obtemos uma carga +2e situada a uma distância d à direita da origem,

que cancela a força exercida pela carga q 1 = +2e situada à esquerda da origem. Assim, a força

resultante que age sobre a partícula 7 é zero.

61. (a) De acordo com a Eq. 21-1, a força a que a partícula 3 está submetida é dada por

F3 = F31+ F32

, em que

| F | k QQ 3 1

| F | k Q 3 Q 2

31 = e = .

r

r

2

31 2 32

O teorema de Pitágoras nos dá r 31 = r 32 = ( 0, 003 m) 2 + ( 0, 004 m) 2 = 0, 005 m.

Na notação

módulo-ângulo (que é a mais conveniente quando se usa uma calculadora científica no modo

polar), a soma vetorial indicada se torna

F 3 = 0, 518∠−

37° 0, 518 37° 0,

829 0°

e a força resultante é

( ) + ( ∠ ) = ( ∠ )

F 3 = ( 0, 829 N)i. ˆ

(b) Trocar o sinal de Q 2 equivale a inverter o sentido da força que a partícula 2 exerce sobre a

partícula 3. Assim, temos:

F 3 = 0, 518∠−

37° 0, 518 143° 0,

621 90°

( ) + ( ∠− ) = ( ∠− )

32


20 SOLUÇÕES DOS PROBLEMAS

e a força resultante é

F 3 =−( 0,

621 N)j ˆ

62. A força eletrostática total a que está submetida a partícula 4 é dada por

Fres = F1+ F2 + F3,

na qual F F

F

1, 2 e 3 são as forças exercidas pelas outras três partículas sobre a partícula 4. De

acordo com a Eq. 21-1, temos, na notação módulo-ângulo (que é a mais conveniente quando se

utiliza uma calculadora científica no modo polar):

F res = 460 , × 10−

24

∠180 230 , 10−

24

90 1,

02 × 10−

24

∠− 145

( ) + ( × ∠− ) + ( )

( )

= 616 , × 10−

24

∠−152

.

(a) De acordo com esse resultado, o módulo da força é 6,16 × 10 –24 N.

(b) De acordo com o resultado do item anterior, a força faz um ângulo de –152° com o eixo x,

ou seja, um ângulo de 208° no sentido anti-horário.

63. De acordo com a Eq. 21-1, chamando a primeira carga de q 1 , a segunda carga de q 2 e a

carga da partícula que foi liberada de q, o módulo da força a que está submetida a partícula no

momento em que é liberada é

k qq 1 |

k q 2 |

+ q = 022 , N.

028 ,

2

0,

44 2

De acordo com a segunda lei de Newton,

m

= F =

a

022 , N

100 × 103

ms

2

= 22 , × 10−

6

kg.

64. De acordo com a Eq. 21-1,

F k qq 1 2

= ,

r

2

na qual F é a força de repulsão, q 1 e q 2 são as cargas das esferas e r é a distância entre as esferas.

Fazendo q 2 = Q 2 q 1 , na qual Q é a carga total, e explicitando q 1 , obtemos a equação do segundo

grau

cujas soluções são

q

− Qq +

1 2 1

Fr

k

2

q

1

Q−

Q2 −4Fr 2/

k

=

2

Assim, a carga da esfera com a menor carga é

q

1

Q−

Q2 −4Fr 2/

k

=

2

e

q

2

Q+ Q2 −4Fr 2/

k

=

.

2

=

, × C− ( , × C) − (,0 N)( 2, 0m )

2/ (, 8 99 × 109N⋅m 2/C2)

2

50 10−

5

50 10−

5 2

41

= 116 , × 10 − 5

C ≈ 1 , 2× 10 − 5 C .


SOLUÇÕES DOS PROBLEMAS 21

65. Quando a esfera C faz contato com a esfera A, a carga total, Q + Q/2, é dividida igualmente

entre as duas esferas. Assim, a carga da esfera A passa a ser 3Q/4 e, de acordo com a Eq. 12-1,

a força de atração entre as esferas A e B é

( 3Q/ 4)( Q/ 4)

F = k

= 468 , × 10−

d

2

66. Chamando de F e o módulo da força eletrostática e de F g o módulo da força gravitacional,

temos, de acordo com as Eqs. 13-10 e 21-1:

=±51 , m.

−1

19

N.

F F k e 2

ke

e = g ⇒ = mg e ⇒ y = ⎛ 2

⎞ ⎡

y

⎝ ⎜ (, 899×

10

mg e ⎠

⎟ =

9 N ⋅ m

2/C

2

)( 160 , × 10−

19

C)

2

2

(, 911×

10−

31

kg)( 9,

8 m/s2

)

Supondo que o sentido positivo do eixo y é para cima, escolhemos o sinal negativo para a raiz,

já que o segundo elétron deve estar abaixo do primeiro para que a força de repulsão eletrostática

tenha o sentido contrário ao da força da gravidade. Assim, a resposta é y = −5,1 m.

67. A força resultante que age sobre a partícula 3 é a soma vetorial das forças exercidas pelas

partículas 1 e 2: F F F

3 = 31+ 32. Para que F 3 = 0, é preciso que a partícula 3 esteja no eixo x e seja

atraída por uma das outras partículas e repelida pela outra. Como as partículas 1 e 2 têm cargas

opostas, isso significa que a partícula 3 não pode estar entre as partículas 1 e 2, mas deve estar

à esquerda da partícula 1 ou à direita da partícula 2. Como a carga da partícula 1 é maior, em

valor absoluto, que a carga da partícula 2, concluímos que a partícula 3 deve estar à direita da

partícula 2. Chamando de x a distância entre a partícula 3 e a partícula 2, temos:

F

(a) Explicitando x nessa equação, obtemos:

3

⎡ qq 1 3 qq 2 3⎤

5 2

= k⎢

+ kq q

x L

2

x2 3

+

x L

2

= ⎡ − ⎤

+

( )

0

( + ) x2

= .

x =

L 2

= 172 , L.

5−

2

(b) Como foi mencionado no item anterior, para que a soma das forças seja nula, é preciso que

a partícula 3 esteja no eixo x; assim, y = 0.

68. A carga de João é

q

= ( 0,

0001)

= ( 0,

0001)

= 87 , × 10 5 C.

mN AZe

M

( 90 kg)(,

602×

1023 moléculas mol)( 18)( 16 , × 10−

19C)

0,

018 kg mol

Como a massa de Maria é metade da massa de João, sua carga é metade da carga de João e a

força de atração entre os dois estudantes é

F ≈ k qq d

( 2) ×

= × ⋅

2

87 105

(, 899 109N m2

2) (, C)

C

230 ( m

2

≈ 4× 10 N.

) 2 18

Assim, a força de atração eletrostática entre os dois estudantes é da ordem de 10 18 N.

69. (a) Como o núcleo de hélio possui 2 prótons e o núcleo de tório possui 90 prótons (veja o

Apêndice F), a Eq. 21-1 nos dá

F k q 2

(, 899× 109N⋅ m2 C2)( 2)( 160 , × 10−

19

C) ( 90)( 160 , × 10

= =

r

2

(, 90×

10−

15

m)

2

−19

C)

= 51 , × 10

2

N.


22 SOLUÇÕES DOS PROBLEMAS

(b) Como o núcleo de 4 He é formado por 2 prótons e 2 nêutrons, a segunda lei de Newton nos

dá (as massas do próton e do nêutron estão no Apêndice B):

a

F

= =

m

51 , × 102

N

2167 (, × 10−

kg) + 2168 ( , × 10

27 −27

= 76 , × 10 28 ms 2 .

kg)

70. Para que a força total a que a partícula 1 é submetida seja nula, a componente x da força de

repulsão exercida pela partícula 2 deve ser igual à componente x da força de atração exercida

pela partícula 4. Além disso, a componente y da força de repulsão exercida pela partícula 3 deve

ser igual à componente y da força de atração exercida pela partícula 4. Entretanto, por simetria,

as duas condições são expressas pela mesma equação:

o que nos dá q

Qq Q| 2Q|

Q2

= 45 =

4 a 4 ( 2a) cos °

2

4

2a

, 2

0 2 0

= Q 2. Assim, q/ Q= 1/

2 = 0, 707.

0


Capítulo 22

1. Note que os símbolos q 1 e q 2 usados no enunciado se referem ao valor absoluto das cargas.

O desenho abaixo é para q 1| = |q 2 |.

Os desenhos abaixo são para q 1 > q 2 (à esquerda) e q 1 < q 2 (à direita).

2. (a) De acordo com a Eq. 22-1, o módulo da força a que é submetido um próton no ponto A é

F = qE A = (1,6 × 10 −19 C)(40 N/C) = 6,4 × 10 −18 N.

(b) Como é explicado na Seção 22-3, o número de linhas de campo por unidade de área, em um

plano perpendicular às linhas, é proporcional ao módulo do campo elétrico. Como a separação

das linhas é duas vezes maior no ponto B, concluímos que E B = E A /2 = 20 N/C.

3. Como a carga está uniformemente distribuída na esfera, o campo na superfície é o mesmo

que se toda a carga estivesse concentrada no centro. Assim, o módulo do campo é

em que q é a carga total e R é o raio da esfera.

(a) Como a carga total é Ze, temos:

E

q

= 4 0R 2

Ze

E = R

= (, 899× 109N⋅ m2 C2)( 94)( 160 , × 10−

19C)

= 307 , × 1021

NC.

4

2

(, 664×

10−

15m)

2

0

(b) Como a carga é positiva, o campo aponta para fora do núcleo.

4. Como x 1 = 6,00 cm e x 2 = 21,00 cm, a coordenada do ponto a meio caminho entre as partículas

é x = [(6,00 cm) + (21,00 cm)] /2 = 13,5 cm. Assim, de acordo com a Eq. 22-3,

E

1

E

2

| q1

|

=−

4

( x−

x )

ˆ (, 899× 10 N⋅m C )| −2,

00 × 10 − 7C|

ˆ

2

i =− (, 3 196 × 105

N Ci )ˆ

0 135 0 060 m

9 2 2

i =−

0 1 2 , m−

,

q2

=−

4

( x−

x )

( )

ˆ (, 899× 10 N⋅m

C )( 200 , × 10 − 7C)

i =−

ˆ

2

i =− (, 3 196 × 10 5

NCi )ˆ

0, 135 m−

0,

210 m

( )

0 2 2 9 2 2


24 SOLUÇÕES DOS PROBLEMAS

Assim, o campo elétrico total é

E

= E

+ E =− (, 639×

10 5 NCi )ˆ

5. De acordo com a Eq. 22-3, temos:

tot

1 2

q

050 2 0

= 4 0r 2 ( , m)(, 2

N C)

E =

899 , × 109N⋅m2

C2

= 56 ,

× 10−

11 C=

56pC.

6. De acordo com a Eq. 22-3, temos:

q= 4 Er

2

(, 100 NC)( 1, 00 m)

0

=

899 , × 10 N⋅m

C

2

9 2 2

= 1,

11 × 10− 10 C = 0,111 nC.

7. Como a componente x do campo elétrico no centro do quadrado é

1 ⎡ | q1

| | q2

| | q3

| | q4

|

Ex = + − −

4

0 ( a / 2)

2

( a / 2)

2

( a / 2)

2

( a / 2)

2

⎥ cos45°

1 1

= ( | q

2 1| + | q2

| − | q3 | − | q4

| )

4

a / 2

0

1

2

= 0

e a componente y é

1 ⎡ | q1

| | q2

| | q3

| | q4

|

Ey = − + + −

4

0 ( a / 2)

2

( a / 2)

2

( a / 2)

2

( a / 2)

2

⎥ cos45°

1 1

= − | q q

a2 1| + | 2 | + | q3 | −| q4

|

4

/ 2

0

( )

1

2

(, 899× 10 N⋅ m / C )( 2,

0× 10−

=

( 0, 050 m)

2

/ 2

9 2 2 8

C)

1

2

= 102 , × 10 5 N/C,

o campo elétrico no centro do quadrado é E

= E y

ˆ j= (, 102×

10 5 N/C)j. ˆ A figura a seguir (que

não está em escala) mostra os campos elétricos produzidos pelas quatro cargas e o campo

elétrico total.

8. Colocamos a origem do sistema de coordenadas no ponto P e o eixo y na direção da partícula

4 (passando pela partícula 3). Escolhemos um eixo x perpendicular ao eixo y, ou seja, passando

pelas partículas 1 e 2. Os módulos dos campos produzidos pelas cargas são dados pela Eq. 22-3.

Como as contribuições das partículas 1 e 2 se cancelam, o campo total no ponto P é dado por

E

tot

1 ⎡ q4

q

= −

4

0 ⎣( 2d)

2

d

3

2

⎤ ˆ

q

⎥ j = 1 ⎛ 12 3q

⎦ 4

0 4d

2 ⎠

⎟ ĵ=

0

d

2


SOLUÇÕES DOS PROBLEMAS 25

9. (a) As componentes verticais dos campos produzidos pelas duas partículas se cancelam por

simetria. Somando as componentes horizontais, obtemos

E

x,tot

2 | q|

d

=

4

( d + y )

0

= 138 , × 10−

2 2 32 /

10

N/C.

2899 (, × 109N⋅m2

C2)( 320 , × 10− 19

C)(3,00 m)

=

[( 300 , m)

2

+ ( 4,

00 m)

2]

32 /

(b) O campo elétrico aponta no sentido negativo do eixo x, ou seja, faz um ângulo de 180 o com

o semieixo x positivo.

10. Vamos escrever as cargas das partículas como múltiplos de um número positivo j a ser

determinado. De acordo com a Fig. 22-33a e o enunciado do problema, q 1 = 4j e q 2 = −j. De

acordo com a Eq. 22-3, temos:

4

Etot = E1+ E2

=

4

( L+

x)

2

4

x

Como, de acordo com a Fig. 22-33b, E tot = 0 para x = 20 cm, essa equação nos dá L = 20 cm.

(a) Derivando E tot em relação a x e igualando o resultado a zero, obtemos, após algumas

simplificações,

0

0 2

⎛ 3 3

2 2 4 1⎞

x = + + L

⎟ = (, 170)( 20cm) = 34 cm.

3 3 3

Note que este resultado não depende do valor de j.

(b) Se −q 2 = −3e, j = 3e. Nesse caso, de acordo com o resultado obtido anteriormente,

E

tot

4

=

4

( L+

x)

4 x a

2

=

0

0 2

899× 10 N⋅m /C

( 054 , m)

(,

9 2 2) 43 ( )( 160 , × 10−

19

C)

= 22 , × 10−

8

N/C.

2

.

(, 899× 109

N⋅m 2

/C2)( 3)( 160 , × 10−

19

C)

( 034 , m)

2

11. Como as partículas 1 e 2 têm cargas opostas, em pontos situados entre as partículas os

campos elétricos apontam na mesma direção e não podem se cancelar. Como a carga da partícula

2 é maior que a carga da partícula 1, o ponto em que o campo elétrico é nulo deve estar mais

próximo da carga 1. Concluímos, portanto, que o campo está à esquerda da partícula 1.

Seja x a coordenada de P, o ponto em que o campo é zero. Nesse caso, o campo elétrico total

no ponto P é dado por

Para que o campo se anule,

E =

1

4 0

⎡ | q2

|

⎣( x−

x )

| q | ⎤

x−

x

⎥.

( 1)

2

2 2 1

| q2

|

( x−

x )

| q | ( x 70)

− x−

x x − 20

2

1

=

2 2 ( 1) 2 ( )

2

= 4.

Extraindo a raiz quadrada de ambos os membros e explicitando x, obtemos duas soluções:

x9= −30 cm e x = +37 cm. Como o ponto P deve estar à esquerda da partícula 1, escolhemos a

solução x9 = −30 cm. (A outra solução estaria correta se as cargas das partículas 1 e 2 tivessem

o mesmo sinal.)


26 SOLUÇÕES DOS PROBLEMAS

12. O valor do módulo do campo elétrico no centro do arco é o mesmo para todas as cargas:

E

kq e

×

= = k

= ×

9

2

160 10

(, 899 10 ) ,

19

N m2

C

C

= 36 , × 10−

6

NC.

r

2

( 0, 020 m)

2

( 0, 020 m)

2

Na notação módulo-ângulo (que é a mais conveniente quando se usa uma calculadora científica

no modo polar), a soma vetorial dos campos assume a forma:

E E∠−

20 E 130 E 100 E 150 + E∠0

tot =

( ) + ( ∠ ) + ( ∠− ) + ( ∠− )

= 393 , × 10−

6

N/C∠−764

, .

( )

(a) De acordo com o resultado obtido, o módulo do campo elétrico no centro do arco é 3,93 ×

10 26 N/C.

(b) De acordo com o resultado anterior, o ângulo do campo elétrico no centro do arco é 276,4°

em relação ao eixo x.

13. (a) Como o próton está a uma distância r = z = 0,020 m do centro do disco,

e

E c = r

= (, 899× 109N⋅ m2

C2)( 160 , × 10−

19C)

= 360 , × 10−

4 2 0 ( 0,

020 m)

2

6

N/C.

(b) Como as componentes horizontais se cancelam, o campo total produzido pelos elétrons e s é

vertical e o módulo do campo é dado por

E

s,tot

2ez

=

4 ( R + z )

0

= 255 , × 10−

2 2 32 /

6

N/C.

(,

9 2 2)(

2899 × 10 N⋅m

C 16 , × 10− 19

C)(0,020 m)

=

[( 0, 020 m)

2

+ ( 0,

020 m)

2]

32 /

(c) Como o próton agora está a uma distância 10 vezes menor, o campo é 100 vezes maior que

o do item (a), ou seja, E c = 3,60 × 10 −4 N/C.

(d) Como as componentes horizontais continuam a se cancelar, o campo produzido pelos

elétrons e s é vertical e o módulo do campo é dado por

E

s,tot

2ez

=

4 ( R + z )

0

= 709 , × 10−

2 2 32 /

7

N/C.

(,

9 2 2)(

2899 × 10 N⋅m

C 16 , × 10− 19

C)(0,002 m)

=

[( 0, 020 m)

2

+ ( 0,

002 m)

2]

32 /

(e) Porque, quando o próton se aproxima do disco, as componentes verticais y dos campos

produzidos pelos elétrons e s diminuem e as componentes horizontais aumentam. Como as

componentes horizontais se cancelam, o efeito global é uma redução do módulo de E s,tot .

14. (a) Nos pontos do eixo x à esquerda da partícula 1, os campos têm sentidos opostos, mas não

há possibilidade de que o campo se anule porque esses pontos estão mais próximos da partícula

1 do que da partícula 2 e a carga da partícula 1 é maior, em valor absoluto, que a carga da

partícula 2. Na região entre as cargas, os dois campos não podem se cancelar, pois apontam no

mesmo sentido. Nos pontos do eixo x à direita da partícula 2, os campos têm sentidos opostos,

e existe a possibilidade de que os campos se anulem porque esses pontos estão mais próximos

da partícula 2, e a carga da partícula 2 é menor. Chamando de x a coordenada do ponto em que

os campos se anulam e igualando os módulos dos campos produzidos pelas duas partículas,

temos:

1

4

0

| q1

| 1

=

x2

4

0

q2

2

.

( x−

L)


SOLUÇÕES DOS PROBLEMAS 27

Explicitando x e substituindo os valores conhecidos de q 1 e q 2 , obtemos:

L

x = ≈ 272 , L.

1 − 2 5

(b) A figura a seguir mostra um esboço das linhas de campo elétrico.

15. Por simetria, vemos que as contribuições das cargas das partículas 1 e 2 para o campo

elétrico no ponto P se cancelam, de modo que só é preciso calcular o campo elétrico produzido

pela partícula 3.

(a) De acordo com a Eq. 22-3, o módulo do campo elétrico é

1 2e

1 2e

1

| Etot | = = =

4 r

2

4 ( a / 2)

2

4

0

0

4e

a2

4160 10

= ( 899 109 2

(, ×

−19

)

, × N⋅m2

C

C )

(, 600×

10−

6

m)

2

0

= 160 N/C.

(b) O campo faz um ângulo de 45,0° no sentido anti-horário com o semieixo x positivo.

16. As componentes x e y do campo total são

E

tot, x

q1

q2

cos

q2

sen

= − , Etot,

y =−

4

R2

4

R2

.

R 2

0

0

4 0

O módulo do campo total é a raiz quadrada da soma dos quadrados das componentes. Fazendo

o módulo igual a E, elevando ao quadrado e simplificando, temos:

Explicitando u, obtemos::

E

= cos −

q + q −2qq

cos

=

.

( 4

R2)

2

2 1 2 1 2 1 2

0

⎡ q + q −( 4

R ) E

⎣ 2qq

1 2

1 1 2 1 2 0

2 2 2

Substituindo por valores numéricos, obtemos duas respostas:

(a) O valor positivo do ângulo é u = 67,8°.

(b) O valor negativo do ângulo é u = −67,8°.

17. Vamos supor que a conta 2 está na parte inferior do anel, já que seria difícil para a conta

1 passar pela conta 2 se ela estivesse no caminho. Note que, de acordo com o gráfico da Fig.

22-39c, a componente y do campo elétrico na origem é negativa para u = 0 o (posição na qual a

contribuição da partícula 1 para o campo elétrico é nula), o que significa que a carga da conta

2 é negativa.

⎥.


28 SOLUÇÕES DOS PROBLEMAS

(a) De acordo com o gráfico da Fig. 22-39b, a componente x do campo total é 0 para u = 90°, ou

seja, quando a conta 1 está no semieixo y positivo. Isso significa que a conta 2 está no semieixo

y negativo, ou seja, que o ângulo da conta 2 é 290°.

(b) Como a componente y é máxima quando as duas contas estão no eixo y e sabemos que a

carga da conta 2 é negativa, concluímos que a carga da conta 1 é positiva, pois isso faz com que,

com as contas nessa posição, os dois campos se somem. Nos pontos u = 0° e u = 180°, o valor

absoluto da componente x é igual ao módulo do campo elétrico criado pela conta 1. Assim, de

acordo com a Eq. 22-3,

q

= 4 r E = 4( 8, 854 × 10−

C

2

/N⋅m

)( 060 , m) ( 5, 0× 10 N/C) = 2,

10

1 0 2 12 2 2

= 2,0 C.

4 −6

(c) No ponto u = 0°, o valor absoluto da componente y é igual ao módulo do campo elétrico

criado pela conta 2. Assim, de acordo com a Eq. 22-3,

q =− 4 r E = 4( 8, 854 × 10−

C

2

/N⋅

m )( 060 , m) ( 40 , × 10 N/C) = − 16 , × 10

2 0 2 12 2 2

=−16

, C.

C

4 −6

18. Partindo da Eq. 22-6, usamos a expansão binomial (veja o Apêndice E), mas conservamos

termos de ordem superior à usada para obter a Eq. 22-7:

q ⎡⎛

d 3 d

2

1 d

3

⎞ d

E = + + + +

z ⎝

⎜1

4

z 4 z 2 z ⎠

⎟ − ⎛

1 − z

+ 3 d

0 2 ⎢

2 3

4 z

qd qd

= +

2 z 4 z + 5

0 3 0

3

Assim, na terminologia do problema,

E

1

qd

3

= .

4 z

0 5

2

2

1 d

3

⎞ ⎤

− +

2 z3

⎟ ⎥

19. (a) Considere a figura a seguir. O módulo do campo elétrico total no ponto P é

C

E

tot

⎡ 1 q ⎤ d / 2

= 2E1

sen = 2⎢

2 ⎥

⎣ 4 ( d/

2) + r2

0

⎦ d / 2) + r

(

1 qd

=

4 ⎡(

d/

2) + r ⎤

2 2 0

2 2 32 /

Para r >> d, [(d/2) 2 + r 2 ] 3/2 ≈ r 3 e a expressão mostrada se reduz a

qd

| Etot | ≈ . 4 0r

3

(b) Como mostra a figura, o campo elétrico no ponto P aponta no sentido negativo do eixo y,

ou seja, faz um ângulo de −90° com o semieixo x positivo.


SOLUÇÕES DOS PROBLEMAS 29

20. De acordo com o enunciado do problema, E ver é dado pela Eq. 22-5 (com z = 5d):

q

q 160 q

Ever = − = ⋅

40( 4, 5d) 2

40( 55 , d) 2

9801 40

d 2

e E apr é dado pela Eq. 22-8:

qd 2 q

Eapr = = ⋅

2

( 5d)

3

125 4

d

0

0

2

.

Assim, a razão pedida é

E

E

apr

ver

2 9801

= ≈

125 160

098 , .

21. Podemos pensar no quadrupolo da Fig. 22-41 como um conjunto de dois dipolos, cada

um com um momento dipolar de módulo p = qd. Os momentos apontam na direção do eixo

do quadrupolo, em sentidos opostos. Considere o ponto P do eixo, a uma distância z à direita

do centro do quadrupolo, e tome como positivo o sentido para a direita. Nesse caso, o campo

produzido pelo dipolo da direita é qd/2pâ 0 (z − d/2) 3 e o campo produzido pelo dipolo da

esquerda é –qd/2pâ 0 (z + d/2) 3 . Usando as expansões binomiais

obtemos

(z – d/2) –3 ≈ z –3 – 3z –4 (–d/2) e (z + d/2) –3 ≈ z –3 – 3z –4 (d/2),

qd ⎡ 1 3d

1 3d

⎤ qd

E = + − +

2 ⎣

⎢ z 2z

z z ⎦

⎥ = 6

2

3 4 3

2

4

4 z

. 4

0

0

Fazendo Q = 2qd 2 , obtemos

E =

3Q

z

4 0 4

.

22. (a) Vamos usar a notação usual para a densidade linear de carga: l = q/L. O comprimento

do arco é L = ru, na qual u é o ângulo em radianos. Assim,

L = (0,0400 m)(0,698 rad) = 0,0279 m.

Para q = −300(1,602 10 −19 C), obtemos l arco = −1,72 > 10 −15 C/m.

(b) se a mesma carga está distribuída em uma área A = pr 2 = p(0,0200 m) 2 , a densidade

superficial de carga é s disco = q/A = −3,82 10 −14 C/m².

(c) Como a área da superfície de uma esfera é 4p 2 , a mesma carga do item (b) está distribuída

em uma área quatro vezes maior e, portanto, a densidade superficial de carga é quatro vezes

menor: s esfera = s disco /4 = −9,56 10 −15 C/m².

(d) Se a mesma carga está distribuída em um volume V = 4p r 3 /3, a densidade volumétrica de

carga é r esfera = q/V = −1,43 10 −12 C/m 3 .

23. Vamos usar a Eq. 22-3 e supor que as duas cargas são positivas. No ponto P, temos:

E

anel 1

Simplificando, obtemos

= E ⇒

anel2

qR 1

q2( 2R)

=

40

( R2 + R2)

32 /

4 [( 2R) + R ] /

0

2 2 32

q

q

1

2

= 2 ⎛ 2 ⎝ ⎜ ⎞

5⎠

32 /

≈ 0, 506.


30 SOLUÇÕES DOS PROBLEMAS

24. (a) Por simetria (e também de acordo com a Eq. 22-16), o campo é zero no centro do anel.

(b) O resultado (E = 0) para pontos infinitamente afastados do anel pode ser obtido a partir da

Eq. 22-16, de acordo com a qual o campo é proporcional a 1/z² para valores muito grandes de z.

(c) Derivando a Eq. 22-16 em relação a z e igualando o resultado a zero, obtemos:

d

dz

⎡ qz ⎤ q R2 2z2

4

z2 R2 3 2 4

0 +

0 z2

⎣⎢

( ) ⎦⎥ = −

R

/

+ R2 5 / 2 = 0 ⇒ z =+ = 0, 707R.

( )

2

(d) De acordo com a Eq. 22-16, temos:

qz

( 400 , × 10−

6

C)( 0, 707 × 002 , m)

E =

=

4

( z2 + R2)

4

(, 8 854 × 10− 12

C

2

/N⋅ m2)[( 0, 707 × 002 , m) 2

+ ( 0,

02 m)]

0

= 346 , × 10 7 N/C.

2 3/

2

25. Vamos chamar o raio do arco menor de r 1 , o raio do arco do meio de r 2 e o raio do arco

maior de r 3 . O comprimento do arco menor é L 1 = pr 1 /2 = pR/2, o comprimento do arco do

meio é L 2 = pr 2 /2 = pR e o comprimento do arco maior é L 3 = pr 3 /2 = 3pR/2. Como a carga dos

arcos está uniformemente distribuída, a densidade linear de carga do arco menor é l 1 = Q/L 1 =

2Q/pR, a densidade linear de carga do arco do meio é l 2 = −4Q/L 2 = −4Q/pR e a densidade

linear de carga do arco maior é l 3 = 9Q/L 3 = 6Q/pR. Nesse caso, usando o mesmo raciocínio

do problema seguinte, o campo elétrico total é dado por

E tot = 1

( 2sen 45° )

r

+ 2

( 2sen 45° )

r

+ 3

( 2sen 45°

)

4

4

4

r

01

0 2

2Q

2sen45°

4Q

2sen

45° 6Q

2sen

45°

Q

= −

+ = = 162 , × 10 6

N/C.

R

4 R R

8 R R

12 R 2

2 2 0 R

0

03

0 0

(b) O campo faz um ângulo de 245º com o semieixo x positivo.

26. No Exemplo “Campo elétrico de um arco de circunferência carregado”, vimos que o campo

no centro de um arco circular é dado por

E =

sen x

r

4 0

Em que l é a densidade linear de carga. Neste problema, cada quarto de circunferência produz

um campo cujo módulo é

/ 4

| q | 1

1 2 2 | q |

| E | = sen x =

.

r/2

4 r

4 r

2

0 −

/ 4

O campo produzido pelo quarto de circunferência que está acima do eixo x faz um ângulo de

−45 o com o semieixo x positivo e o campo produzido pelo quarto de circunferência que está

abaixo do eixo x faz um ângulo de −135 o com o semieixo x positivo.

0

(a) O módulo do campo total é

E

tot

q

= Etot

x = ⎛ 1 2 2 | | ⎞ 1

, 2

⎝ ⎜ r ⎠

⎟ cos45°

=

4

2

4

0

0

4 | q |

r

2

(, 899× 109N⋅ m2

C2) 4( 450 , × 10−

12C)

=

20, 6 .

(

500 , × 10 −

= N/C

2

m)

2

(b) Por simetria, o campo total faz um ângulo de −90 o com o semieixo x positivo.


SOLUÇÕES DOS PROBLEMAS 31

27. Por simetria, vemos que o campo no ponto P é duas vezes maior que o campo produzido

pelo arco semicircular superior, cuja densidade linear de carga é l = q/pR. Usando o mesmo

raciocínio do problema anterior, obtemos

E

tot

90°

( ) =− ⎛ ⎞

⎝ ⎜

= 2 −ˆj

sen

R

4 0 −90°

q

2R2⎠

⎟ ĵ.

(a) Para R = 8,50 10 −2 m e q = 1,50 10 −8 C, | | = 23,

8 N/C.

(b) O campo elétrico total faz um ângulo de −90 o com o semieixo x positivo.

28. Derivando a Eq. 22-16 em relação a z e igualando o resultado a zero, obtemos:

o que nos dá z

d

dz

E tot

⎡ qz ⎤ q R 2z

4

z2 R2 32 4

0 +

0 z2

⎣⎢

( ) ⎦⎥ = −

/

( + R )

= R/ 2. Para R = 2,40 cm, obtemos z = 1,70 cm.

0

2 2

2 52 /

= 0,

29. Vamos primeiro calcular o campo produzido pelo arco circular, cuja densidade linear de

carga é l = Q/L, na qual L é o comprimento do arco. Usando o mesmo raciocínio do Exemplo

“Campo elétrico de um arco de circunferência carregado”, chegamos à conclusão de que

o módulo do campo elétrico produzido por um arco de circunferência de raio r, com uma

densidade linear de carga l, que subtende um ângulo u, é

2sen( /

2)

Earco = [ sen( / 2) −sen( −/

2)

]=

.

4

r

r

Como, no nosso caso, l = Q/L = Q/Ru e r = R, temos:

E

arco

0

4 0

2( QR / )sen( / 2) 2Q

sen( /

2)

= =

4

R 4 R2 .

0 0

O módulo do campo produzido por uma carga pontual é dado pela Eq. 22-3:

Q

Eponto = 4 0R 2

A razão pedida é, portanto,

E

E

ponto

arco

Q/

4

R2

0

= =

2Qsen( / 2) / 4 R2

2sen( /2) .

0

Para u=p, temos:

E

E

ponto

arco

= ≈157

, .

2

30. De acordo com a Eq. 22-16, temos:

2RQ

2Rq

+

4

[( 2R) 2

+ R2] 3 2

4

[( 2R) ( 3R)]

0

/ 2 2 3

0 + / 2

3/

2

13

= 0 ⇒ =− ⎛ 419

⎝ ⎜ ⎞

q Q

5 ⎠

⎟ =− , Q.

31. (a) Como a carga está uniformemente distribuída na barra,

= − q

= − 423 , × 10−

15

C

=− 519 , × 10

L 0,0815 m

−14

C/m.

(b) Vamos posicionar o eixo x paralelamente à barra, como a origem na extremidade esquerda

da barra, como mostra a figura.


32 SOLUÇÕES DOS PROBLEMAS

Seja dx um segmento infinitesimal da barra, situado no ponto x. A carga do segmento é dq =

ldx. A carga dq pode ser considerada uma carga pontual. O campo elétrico produzido por esta

carga no ponto P possui apenas a componente x, que é dada por

dE

1

x =

40

dx

2

.

( L+ a−

x)

O campo elétrico produzido no ponto P pela barra inteira é

E

x

Assim, |E x | = 1,57 × 10 −3 N/C.

L

dx

= ⌠

1

2

=

40

⌡ ( L+ a−

x)

4

L+ a−

x

⎡ L ⎤

=

157 10

4

0 ⎣ aL+

a

=− , × − 3

N/C.

( )

0 0 0 0

L

⎛ 1 1 ⎞

= −

4

a L+

a⎠

(c) O sinal negativo de E x indica que o campo elétrico aponta no sentido negativo do eixo x, ou

seja, que o ângulo do campo elétrico E é −180 o .

(d) se a >> L, podemos usar a aproximação L + a ≈ a na equação apresentada, o que nos dá

q

E x =− a

=− (, 899× 109 N⋅ m

2/C2)( 4, 23 × 10−

15

C)

=− 152 , × 10−

3

N/C.

4 2 0 ( 50 m)

2

Assim, |E x | = 1,52 × 10 −3 N/C.

(e) Como a expressão do item anterior é igual à do campo elétrico criado por uma partícula de

carga 2q situada a uma distância a do ponto considerado, o resultado é o mesmo do item (d):

|E x | = 1,52 × 10 −3 N/C.

32. Um elemento infinitesimal dx da barra contém uma carga dq = l dx, na qual l = dq/dx é

a densidade linear de carga. Por simetria, as componentes horizontais dos campos produzidos

pelos elementos de carga se cancelam e precisamos apenas calcular, por integração, a soma das

componentes verticais. A simetria do problema também permite calcular apenas a contribuição

de metade da barra (0 ≤ x ≤ L/2) e multiplicar o resultado por dois. No cálculo que se segue,

fazemos uso do fato de que sen u = R/r, na qual r = x2 + R 2

.

(a) De acordo com a Eq. 22-3, temos:

E

= 2⎮

L / 2

0

⎛ dq

4

r

0 2

⎞ 2 ⌠

⎟ sen

=

4

0 ⌡

L / 2

0

⎛ dx

x2 + R2

⎞ ⎛

x

y

+ R

2 2

L / 2

L / 2

2 2 2

0

0

R

⌠ dx ( qLR / ) x

= ⎮

20

x2 + R2 3 2

= ⋅

20

R x + R

( )

=

2

q L 2 q 1

=

2 2

R L + 4R

0LR

2

L R2 0

( ) +

2 2

= 12, 4 N/C,

na qual a solução da integral pode ser obtida usando os métodos do cálculo ou consultando o

Apêndice E (veja a fórmula 19 da lista de integrais).


SOLUÇÕES DOS PROBLEMAS 33

(b) Como foi mencionado no item a, o campo elétrico E é vertical e faz um ângulo de 90 o com

o semieixo x positivo.

33. Considere um elemento infinitesimal dx da barra, situado a uma distância x da extremidade

esquerda, como mostra a figura. O elemento possui uma carga dq = l dx e está a uma distância

r do ponto P. O módulo do campo produzido pelo elemento no ponto P é dado por

dE =

1

4 0

dx

.

r

2

As componentes x e y do campo são

dEx =− 1

4

2

0

dx

sen

r

e

dEy =− 1

4

2

0

dx

cos .

r

Vamos usar u como variável de integração e usar as relações r = R/cos u, x = R tan u e dx =

(R/cos 2 u) du. Os limites de integração são 0 e p/2 rad. Temos:

e

π2

Ex =− d = = −

R ∫

sen

cos

4 0

4

R

4 R

0

π2

0 0 0

/ 2

π2

Ey =− d =− =−

R ∫

cos sen

4 0

4

R

4

R .

0

0 0

Note que E x = E y , qualquer que seja o valor de R. Assim, faz um ângulo de 45° com a barra para

qualquer valor de R.

34. De acordo com a Eq. 22-26, temos:

0

E = ⎜1−

2 ⎝

0

z

z

+ R

2 2

= 53 , × 10

2885 , × 10−

Cm 2

1 12 cm

12 cm 25 , cm

−6

12

( C 2 /N⋅

m

2 ) ⎢

2 2

( ) + ( )

⎥ = 6,3× 10 3 NC.

35. De acordo com a Eq. 22-26, o módulo do campo elétrico em um ponto do eixo do disco

situado a uma distância z do centro do disco é dado por

E = ⎢1

20

z

z

+ R

2 2


34 SOLUÇÕES DOS PROBLEMAS

na qual R é o raio do disco e s é a densidade superficial de carga do disco. O módulo do campo

no centro do disco (ou seja, no ponto z = 0) é E c = s/2â 0 . Para que E/E c = 1/2,

1−

z

z

+ R

1

= ⇒

2

+ R

2 2 2 2

Explicitando z nessa equação, obtemos z = R/ 3 = 0, 346 m.

z

z

1

= .

2

A figura a seguir mostra o gráfico de E/ Ec

= 1− ( zR / )/ ( zR / )

2

+ 1em função de z/R. O ponto

assinalado corresponde à solução do problema, ou seja, ao ponto z/R = (0,346 m)/(0,600 m) =

0,577, E/E c = 0,5.

36. A partir das relações dA = 2prdr (que pode ser vista como a diferencial de A = pr²) e dq =

s dA, na qual s é a densidade superficial de carga, temos:

Q

dq = ⎛ rdr

⎝ ⎜ ⎞

R ⎠

⎟ 2

2

na qual usamos o fato de que a carga está uniformemente distribuída para fazer a densidade

superficial de carga igual à carga total Q dividida pela área total pR 2 . Fazendo r = 0,0050 m e

dr ≈ 30 × 10 −6 m, obtemos dq ≈ 2,4 × 10 −16 C.

37. Podemos usar a Eq. 22-26, notando que o disco da Fig. 22-52b é equivalente ao disco da

Fig. 22-52a mais um disco menor, de raio R/2, com a carga oposta à do disco principal. Assim,

temos:

E

( a)

= ⎢1

20

⎣⎢

2R

( 2R)

+ R

2 2

⎦⎥

e

E

= E a − ⎢1

20

⎣⎢

( b) ( )

2R

( 2R) + ( R/ 2)

2 2

⎥.

⎦⎥

Isso nos dá

E

− E

( a) ( b)

E

( a)

1

= − 2/ 4 + 1/

4

1− 2/

4+

1

1

= − 2/ 17/

4

1−

2/ 5

0,

0299

= = 0, 283 ≈ 28%

0,

1056

38. Escrevemos a Eq. 22-26 na forma

E

E

max

z

= 1−

( z + R )

2 2 12 /

e notamos que, no gráfico da Fig. 22-53b, E/E max = 0,5 para z = 4,0 cm. Fazendo E/E max = 0,5 e

z = 4,0 cm na equação apresentada, obtemos R = 6,9 cm.


SOLUÇÕES DOS PROBLEMAS 35

39. Quando a gota está em equilíbrio, a força da gravidade é compensada pela força do campo

elétrico: mg = −qE, em que m é a massa da gota, q é a carga da gota e E é o módulo do campo elétrico.

A massa da gota é dada por m = (4p/3)r 3 r, na qual r é o raio da gota e r é a massa

específica do óleo. Assim,

×

mg 4r3g

4( 164 , 10

6m) ( 851kgm)(

98 , ms)

q =− =− =−

=− 80 , × 10−

E 3E

3192 (, × 105

NC)

3 3

e q/e = (−8,0 × 10 –19 C)/(1,60 × 10 –19 C) = −5, o que nos dá q = −5e.

40. (a) A direção inicial do movimento é tomada como o sentido positivo do eixo x, que é

também a direção do campo E). Usando a Eq. 2-16, v2 f − v2 i = 2a x, com v f = 0 e a = F/m =

−eE/m e , para calcular a distância ∆x:

vi mv e i

x = − 2

= − 2

= − (, 911 × 10−

31

kg)(

5,00 × 106m s)

2

= 712 , × 10−

2

m = 7,12 cm.

2a

−2eE

− 2160 (, × 10−

19

C)( 1,00 × 103

NC)

(b) De acordo com a Eq. 2-17, temos:

x

2x

2( 712 , × 10−

2

m)

t = = =

= 285 , × 10−

8 s = 28,5 ns.

v

500 , × 106

ms

med

(c) Usando a Eq. 2-16 com o novo valor de ∆x, temos:

v i

K

( 1

mv2

) v2 e f − v2

i ax

= 2 2

= = = − 2eEx

1

Ki

2

mv2

e i v2 i v2

i mv2

e i

2160 10

19C 1,00 103

NC

= − (, × −

)( × )( 8,00 × 10−

3m)

=−0, 112.

(, 911× 10−

31kg)( 5,00 × 106ms)

2

Assim, a fração da energia cinética perdida na região é 0,112.

41. (a) O módulo da força a que a partícula está submetida é dado por F = qE, na qual q é o

valor absoluto da carga da partícula e E é o módulo do campo elétrico na posição da partícula.

Assim,

E

= F =

q

30 , × 10

20 , × 10

−6

−9

N

= 15 , × 103

NC.

C

Como a força aponta para baixo e a carga é negativa, o campo aponta para cima.

(b) O módulo da força eletrostática exercida pelo campo sobre um próton é

K

( 1

mv2

) v2 e f − v2

i ax

= 2 2

= = = − 2eEx

1

Ki

2

mv2

e i v2 i v2

i mv2

e i

2160 10

19C 1,00 103

NC

= − (, × −

)( × )( 8,00 × 10−

3m)

=−0, 112.

(, 911× 10−

31kg)( 5,00 × 106ms)

2

(c) Como o próton tem carga positiva, a força eletrostática aponta na direção do campo, ou seja,

para cima.

(d) O módulo da força gravitacional a que está sujeito o próton é

Fg = mg = (, 167× 10 − 27

kg)( 9,8m s) = 16 , × 10−

26

N.

2

2

19

C

(e) A razão das forças é

F

F

el

g

24 , × 10

=

164 , × 10

−16

−26

N

= 15 , × 10

10.

N


36 SOLUÇÕES DOS PROBLEMAS

42. (a) F e = Ee = (3,0 × 10 6 N/C)(1,6 × 10 –19 C) = 4,8 × 10 –13 N.

(b) F i = Eq íon = Ee = (3,0 × 10 6 N/C)(1,6 × 10 –19 C) = 4,8 × 10 –13 N.

43. O módulo da força a que o elétron está submetido é F = eE, na qual E é o módulo do campo

elétrico na posição do elétron. A aceleração do elétron é dada pela segunda lei de Newton:

F

a = eE

m

= m

= (, 160× 10−

19

C)( 2,00 × 104

NC)

= 351 , × 10 15 ms 2 .

911 , × 10−

31

kg

44. (a) Para que a partícula esteja em equilíbrio, devemos ter

mg

qE = mg ⇒ E = . 2 e

Substituindo os valores dados no problema, obtemos

E

mg (, 664×

10−

27

kg)( 9, 8 m/s2)

= =

2e

216 (, × 10−

19C)

= 203 , × 10−

7 NC.

(b) Como a força da gravidade aponta para baixo, a força qE deve apontar para cima. Como a

carga da partícula alfa é positiva, o campo elétrico deve apontar para cima.

45. Combinando a Eq. 22-9 com a Eq. 22-28, temos:

F = q E = q

2

p

z

⎞ kep

⎟ = 2

z

0 3 3

na qual k é a constante eletrostática, dada pela Eq. 21-5. Assim, temos:

2899 (, × 10 ⋅ ×

×

F =

9 N m C )( 1,60 10 C)(

3,6 10 29 C

×

3

25 10

9m

2 2 19

( )

m)

= 66 , × 10

Se o momento do dipolo aponta no sentido positivo do eixo z, a força F aponta no sentido

negativo do eixo z.

46. (a) De acordo com a Eq. 22-28 e a segunda lei de Newton, temos:

E = F ma m

q

= e

= ⎛ ⎝ ⎜ ⎞

e ⎠

⎟ a ⎛ 911 , × 10

=

160 , × 10

= 1,02 × 10−

2

N/C.

−31

−19

−15

kg⎞

C ⎠

⎟ (, 180× 109

m/s2) = 0,

0102 N/C

(b) Como o elétron tem carga negativa e é acelerado para leste, isso significa que o campo

elétrico tem o sentido oposto, ou seja, aponta para oeste.

47. (a) O módulo da força que age sobre o próton é F = eE, na qual E é o módulo do campo

elétrico. De acordo com a segunda lei de Newton, a aceleração do próton é a = F/m = eE/m, na

qual m é a massa do próton. Assim,

(, 160× 10−

19

C)( 2,00 × 104

NC)

a =

= 19 , 2× 10 12 ms 2 .

167 , × 10−

27

kg

(b) Supondo que o próton parte do repouso e usando a Eq. 2-16, temos:

2

v = 2ax

= 2(, 192× 1012 ms)( 0, 0100m) = 196 , × 105

m s.

N.


SOLUÇÕES DOS PROBLEMAS 37

48. De acordo com a Eq. 22-26, a Eq. 22-28 e a segunda lei de Newton, temos:

e

a = −

m

⎜1

2 ⎝

0

z

z

+ R

2 2

na qual z é a distância entre o elétron e o centro do disco.

(a) Para z = R, temos:

e

a = −

2m

⎜1

0

R

R

+ R

2 2

⎞ e

⎟ = ( 2−

2)

= 116×

10

4m

0

m/s .

,

16 2

e

( 10. 001−

10.

001

(b) Para z = R/100, a =

= 394 , × 1016 m/s2.

20.

002m

e

(. 1 000. 001−

1. 000.

001

(c) Para z = R/1000, a =

= 397 , × 1

2. 000.

002m

0

0

0 16 2

m/s .

(d) O módulo da aceleração quase não varia quando o elétron está próximo do disco porque a

resultante da força produzida pelas cargas próximas da borda do disco diminui com a redução

da distância entre o elétron e o centro do disco.

49. (a) De acordo com a Eq. 22-28, temos:

F = (, 800× 10−

5C)( 3,00 × 103 NCi )ˆ + (, 8 00 × 10−

5C)(

−600

NCj )ˆ

Assim, o módulo da força é

= ( 0, 240 Ni )ˆ −( 0, 0480 Nj. )ˆ

F = F2 + F

2

= ( 0, 240 N) 2

+ ( − 0, 0480 N) 2

= 0,

245 N.

x

(b) O ângulo que a força F faz com o semieixo x positivo é

y

⎛ F ⎞

=

⎟ = ⎛ −

tan − 1 y − 1

0.

0480

tan

F ⎝

0.

240

x

N

N

=− 11,

(c) De acordo com a Eq. 2-18,

x

1 Ft x

= axt

= = ( 0, 240 N )( 300 , s )

2

2 2m

200100 ( , kg)

2 2

= 108 m.

(d) De acordo com a Eq. 2-18,

Ft y

y= 1 ayt2

(

= = − 0, 0480 N)( 300 , s)

2 2m

200100 ( , kg)

2 2

=−21,

6 m.

50. Como o campo elétrico e a força da gravidade são verticais, não existem forças na direção

do eixo x. Vamos combinar a Eq. 22-28 com a segunda lei de Newton, usar a Eq. 4-21 para

determinar o tempo t e usar a Eq. 4-23 para determinar a velocidade final, substituindo 2g

por a y . As componentes da velocidade dadas no enunciado do problema como v x e v y serão

chamadas de v 0x e v 0y .

(a) Como

a = qE / m = −( e/ m) E, temos:

⎛ 160 , × 10−

19C⎞

a =−

× ⎠

⎟ ⎛ ⎝ ⎜

N⎞

120

9,11 10−

31kg

C ⎠

⎟ ˆ 2

j=− ( 21 , × 10 13 m s ) ˆj.


38 SOLUÇÕES DOS PROBLEMAS

(b) Como v x = v 0x neste problema (ou seja, a x = 0), temos:

v

x

0,

020 m

t = =

= 133 , × 10

v 1,5 × 105

ms

y

0x

−7

s

= v0

y + at y = 30 , × 103ms+ ( − 21 , × 1013ms)( 1,33 × 10−

7s)

=−28 , × 10 6 m/s.

Assim, a velocidade final é

v = (, 15× 105 m/s) ˆ i− ( 28 , × 106

m/s) ˆj.

51. (a) Vamos chamar de Q a carga da abelha e de q o valor absoluto das cargas induzidas nos

lados do grão de pólen. Representando a carga da abelha por uma carga pontual situada no

centro do inseto, a força eletrostática exercida pela abelha sobre o grão de pólen é

kQq kQ( −q)

⎡ 1 1

F = + =−kQ | q | −

( d + D/ 2)

2

( D/ 2)

2 ⎢

( D/

2) 2

⎣ ( d + D

na qual D é o diâmetro da esfera que representa a abelha e d é o diâmetro do grão de pólen.

Substituindo os valores numéricos, obtemos

F =− (, 899× 109 N⋅ m2

C2)( 450 , × 10−

12C)

(, 1 000 × 10

−12

=− 256 , × 10−

10 N.

2

/2)

2

⎡ 1

1 ⎤

C ) ⎢

500×

10−

3 2

504×

10−

3 2

⎣ (, m ) ( , m ) ⎥ ⎦

O sinal negativo indica que a força entre a abelha e o grão de pólen é atrativa. O módulo da

força é |F| = 2,6 × 10 −10 N.

(b) Seja | Q′ | = 45,

0pC o valor absoluto da carga da ponta do estigma. A força eletrostática que

o estigma exerce sobre o grão é

k| Q′

| q k| Q′ |( −q)

⎡ 1 1 ⎤

F′ = +

=− k| Q′

|| q | −

( d + D′

)

2

( D′

)

2

⎣(

D′

)

2

( d + D′

)

2 ⎥

na qual D′ = 1, 000 mm é a distância entre o grão de pólen e o estigma. Substituindo os valores

numéricos, obtemos

F ′ =− (, 899× 109 N⋅ m2

C2)( 450 , × 10−

12C)

(, 1 000 × 10

−12

=− 306 , × 10−

8 N.

⎡ 1

1

C ) ⎢

1 000 × 10−

3 2

1 040 × 10−

3 2

⎣ (, m ) ( , m ) ⎥

O sinal negativo indica que a força entre o grão de pólen e o estigma é atrativa. O valor absoluto

da força é | F′ | = 306 , × 10−

8 N.

(c) Como | F′ | > | F |, o grão salta para o estigma.

52. (a) De acordo com a Eq. 2-11, a Eq. 22-28 e a segunda lei de Newton, temos:

v = v − eE

a t = v − m t = × − ×

4

(1,6 10

19

C)( 50

N/C)

0 | | 0 4,0 10 m/s

(1,5 × 10−

9

s)

911 , × 10−

31

kg

= 27 , × 104

m/s = 27 km/s.


SOLUÇÕES DOS PROBLEMAS 39

(b) Como o campo elétrico é uniforme, a aceleração é constante e, portanto, de acordo com a

Eq. 2-17, a distância percorrida é

v+

v

d =

0 t = 50 , × 10−

5m = 50 m.

2

53. Tomamos o sentido positivo para a direita na Fig. 22-55. A aceleração do próton é a p =

eE/m p e a aceleração do elétron é a e = 2eE/m e , na qual E é o módulo do campo elétrico, m p

é a massa do próton e m e é a massa do elétron. Tomamos a origem como a posição inicial do

próton. Nesse caso, a coordenada do próton no instante t é x = a p t 2 /2 e a coordenada do elétron

é x = L + a e t 2 /2. No instante em que as partículas passam uma pela outra, suas coordenadas são

iguais, ou seja,

Isso significa que t 2 = 2L/(a p 2 a e ) e, portanto,

1 1

at p

2 = L+ aet

2 .

2 2

ap

x

a a L eE mp

eE m eEm L ⎛ m ⎞

e

=

=

p −

e

⎝ me

+ m

p⎠

L

= ( ) + ( )

p

⎛ 911 , × 10−

31kg

=

0,

050 m

911 , × 10−

31kg

+ 167 , × 10−

27

kg⎠

= 27 , × 10−

5 m = 27m.

e

⎟ ( )

54. Como a carga do elétron é negativa e o campo elétrico aponta no sentido positivo do eixo y,

a força a que o elétron é submetido, de acordo com a Eq. 22-28, aponta para baixo, e a aplicação

da segunda lei de Newton ao problema leva a equações análogas às do movimento balístico

discutido no Capítulo 4, com a aceleração da gravidade g substituída por uma aceleração a =

eE/m = 8,78 × 10 11 m/s 2 . De acordo com a Eq. 4-21,

x

300 , m

t = =

v

× 10 ° = 196 ,

cos

(2,00

6

m/s)cos 40,

0

0 0

o que nos dá (usando a Eq. 4-23)

× 10−

6 s,

vy = v0sen 0 − at = (2,00 × 106

m/s)sen 40, 0° −(8,78

× 10 m/s )(1,96 × 10 −

=− 434 , × 105

m/s .

Como a componente x da velocidade não muda, a velocidade final é

v = (, 153× 106 m/s)ˆ i − ( 4, 34 × 105

m/s)ˆ.

j

55. (a) De acordo com a Eq. 2-17,

2x

2( 20 , × 10−

2m)

v = =

= 27 , × 106

ms.

t 15 , × 10−

8s

(b) De acordo com a Eq. 2-15, a Eq. 22-28 e a segunda lei de Newton,

11 2 6

)

E

ma 2xm

2( 20 , × 10 ×

= = =

− 2

m)( 9,11 10 − 31

kg)

= 10 , × 103

NC=

1,0 kN/C.

e et2

(, 160× 10−

19

C)( 1,5 × 10−

8

s) 2

56. (a) Para u = 0, a Eq. 22-33 nos dá

(b) Para u = 90 o , a Eq. 22-33 nos dá

t = pE sen 0 o = 0.

( )( × ) ( ) = 85× 10−

22 ⋅

= pE = ⎡

⎣216 , × 10−

19 C 0,78 10−

9 m ⎤

⎦ 3,4 × 106

NC

, N m.

s


40 SOLUÇÕES DOS PROBLEMAS

(c) Para u = 180 o , a Eq. 22-33 nos dá

57. (a) O módulo do momento dipolar é

t = pE sen 180 o = 0.

p= qd = (, 150× 10 − 9C)( 6,20 × 10 − 6m) = 9,

30 × 10

− 15

C⋅

m.

(b) Usando o mesmo raciocínio do item (c) do Exemplo “Torque e energia de um dipolo elétrico

em um campo elétrico”, obtemos:

U( 180° ) − U( 0) = 2pE

= 2930 (, × 10− 15 C⋅ m)( 1100 N/C)

= 205 , × 10− 11 J.

58. De acordo com a Eq. 22-38 e o gráfico da Fig. 22-57,

Para E = 20 N/C, obtemos p = 5,0 × 10 −28 C·m.

U max = pE = 100 × 10 −28 J.

59. Usando o mesmo raciocínio do item (c) do Exemplo “Torque e energia de um dipolo elétrico

em um campo elétrico”, obtemos:

[ 0

]

W = U( + ) − U( ) = − pE cos( + ) − cos( )

0 0 0

= 2 pE cos = 2302 (, × 10 − 25C⋅

m)(46,0 N/C)cos64,0°

= 1,

22 × 10− 23 J.

0

60. De acordo com a Eq. 22-35, o ângulo para o qual o torque é máximo é u= −90° e t max = pE.

Assim, como E = 40 N/C e, de acordo com o gráfico da Fig. 22-58, t max = 100 × 10 −28 N · m, o

momento dipolar é p = 2,5 × 10 −28 C·m.

61. A Eq. 22-35, t = −pE sen u expressa o fato de que existe um torque restaurador que tende

a fazer um dipolo voltar à posição de equilíbrio depois de perturbado. Se a amplitude do

movimento é pequena, podemos substituir sen u por u em radianos, obtendo a relação t ≈ −pEu.

Como essa relação expressa uma proporcionalidade entre o torque restaurador e o ângulo de

rotação, o dipolo executa um movimento harmônico simples semelhante ao de um pêndulo de

torção com uma constante de torção κ = pE. Assim, a frequência angular ω é dada por

2

= =

I

em que I é o momento de inércia do dipolo. A frequência de oscilação é

pE

I

f

1 pE 1 ⎛

= = =

I ⎝

2 2 2

pE

I

05 ,

62. (a) De acordo com a Eq. 22-28 e a segunda lei de Newton, temos:

| q| E ⎛ 160 , × 10

a = =

m ⎝

911 , × 10

−19

−31

C ⎞ ⎛

⎟ 140 , × 106 N⎞

2 46 1017 2

ms

kg ⎝

C ⎠

⎟ = , × .

(b) De acordo com a Eq. 2-11, para v = c/10 = 3,00 × 10 7 m/s, temos:

v v

t = − o 300 , × 10

=

a 246 , × 10

7

17

m/s

m/s

2

= 122 , × 10−

10

s.

(c) De acordo com a Eq. 2-16, temos:

v

x− x =

0

2

− v

2a

(, 300×

10 m/s)

=

= 183 , × 10−

3 m.

2246 ( , × 1017

m/s 2 )

0 2 7 2


SOLUÇÕES DOS PROBLEMAS 41

63. (a) Como a massa específica da água é r = 1000 kg/m 3 , o peso mg de uma gota esférica de

raio r = 6,0 × 10 –7 m é

⎡ 4

W = Vg

= ( 1000 kg m3) (, 60×

10−

7m) 3

( 98 , ms

⎣⎢ 3 ⎦⎥

2 ) = 887 , × 10− 15 N.

(b) O equilíbrio vertical das forças nos dá mg = qE = neE, em que n é o número de elétrons em

excesso. Explicitando n, obtemos

n

mg

= =

eE

887 , × 10−

15

N

= 120.

( 1,60 × 10−

19C)( 462 N C)

64. Os campos produzidos pelas duas cargas mais próximas do ponto médio se cancelam.

Assim, precisamos considerar apenas o campo produzido pela terceira carga, que está a uma

distância r = 3d/ 2do ponto médio. De acordo com a Eq. 22-3, temos:

Q Q Q

E = = =

4 r 4 ( 3d

/ 2)

2

3

d

0 2 0

65. Usando o mesmo raciocínio do Exemplo “Campo elétrico de um arco de circunferência

carregado”, chegamos à conclusão de que o módulo do campo elétrico produzido por um arco

de circunferência de raio R, com uma densidade linear de carga Q/L, que subtende um ângulo

u, é

E

arco

Como L = Ru, com u em radianos, temos:

QL /

2( QL / )sen( /2) = [ sen( / 2) −sen( −/

2)

]=

.

4 0 R

40R

E

arco

2( QR / )sen( / 2) 2Q

sen( /

2)

= =

4

R 4 R2 .

0 0

Fazendo E arco = 0,500E part , em que E part é dado pela Eq. 22-3, temos:

2Q

sen( /

2)

1 Q

= ⇒ sen =

4 R2 24

R2

2 4

A solução aproximada da última equação é u = 3,791 rad ≈ 217°.

0

66. Na figura a seguir, o terceiro vértice do triângulo foi escolhido como origem do sistema de

coordenadas.

0

0

2

.


42 SOLUÇÕES DOS PROBLEMAS

De acordo com a Eq. 22-3,

E

e

= e

Ep

= 4 0 d

2

em que d é o lado do triângulo. Note que as componentes y dos campos elétricos se cancelam.

Como, no caso de um triângulo equilátero, o ângulo u indicado na figura é 60 o , temos:

⎛ e ⎞

Etot = Ex

= 2Ee cos

= 2

(

d ⎠

⎟ cos = 2 8,

99× 109

N⋅m /C

4

2

0

= 36 , × 10 2 NC.

2 2

1,6 × 10−

19

C

) ( )

20×

10−

6

m

cos 60°

( , )

2

67. A carga de um pequeno trecho da corda é dada por dq = ldx, na qual l é a densidade linear

de carga. Como a contribuição desse trecho da corda para o módulo do campo elétrico no ponto

x P do eixo x é

temos:

Fazendo u = x – x P , obtemos:

E

dE =

E = ⌠

dq

( x−

) , 2

4 0

3

0 4 0

x P

dx

2

.

( x−

)

−1

du −

= ⌠ ⎛ 1 −1

=

4

⌡ u2

−4

40 −10

, m −40

, m⎠

⎟ = 61 N/C.

0

68. Todos os campos produzidos por cargas diametralmente opostas se cancelam, exceto os

campos produzidos pelas cargas q 4 e q 8 . O campo resultante dessas duas cargas é dado por

3e

3899 × 109

⋅ ×

E = ˆ (, N m2 C2)(

1,60 10

19

C)

i =

ˆ (, ˆ

4

d

2

2

i = 108× 10−

5 N/C)i.

0,

020m

0

( )

69. (a) Supondo que as duas partículas estão no eixo x, vemos que, por simetria, a componente

x do campo total é zero; assim, o campo total é igual à componente y, que aponta para cima e

cujo módulo é dado por

E

tot,

y

Qsen ( 899 , × 10 N⋅ m

2/C2)(

12×

10−

9)sen60

= 2 = 2 4 a

( 20 , )

2

0 2 9

x P

o

= 46, 7N/C≈47

N/C.

(b) Por simetria, vemos que, neste caso, a componente y do campo total é zero; assim, o campo

total é igual à componente x, que aponta para a direita e cujo módulo é dado por

E

tot,

x

Q cos ( 899 , × 10 N⋅ m

2/C2)(

12×

10−

9)cos60

= 2 = 2 4 a

( 20 , )

2

0 2 9

o

= 27 N/C.

70. Nossa abordagem, baseada na Eq. 22-29, envolve várias etapas. A primeira consiste em

encontrar um valor aproximado de e calculando as diferenças entre todos os pares de valores

experimentais. A menor diferença é a que existe entre o sexto e o quinto valores:

18,08 × 10 –19 C – 16,48 × 10 – 19 C = 1,60 × 10 –19 C,


SOLUÇÕES DOS PROBLEMAS 43

que vamos chamar de e aprox . A etapa seguinte é determinar valores inteiros de n usando este

valor aproximado de e:

dado 1

dado 2

6,563 × 10−19C

= 410 , ⇒ n1

= 4

e

aprox

8, 204 × 10

e

aprox

−19

C

= 513 , ⇒ n = 5

2

18,08 × 10−19C

dado 6 = 11,

30 ⇒ n6

= 11

eaprox

dado 7 19, 71 × 10−

19C

= 12,

32 ⇒ n7

= 12

e

aprox

11,50 × 10−

19C

dado 3 = 719 , ⇒ n3

= 7

eaprox

dado 4 13,13 × 10 −19

C = 821 , ⇒ n4

= 8

e

aprox

dado 8

dado 9

22,89 × 10

e

aprox

−19

26,13 × 10−

19C

e

aprox

C

= 14,

31 ⇒ n = 14

= 16, 33 ⇒ n 9 = 16

8

dado 5

16,48 × 10−

19C

= 10,

30 ⇒ n5

= 10

e

aprox

Em seguida, preparamos um novo conjunto de dados (e 1 , e 2 , e 3 , Ö) dividindo os dados pelos

números inteiros n i obtidos na etapa anterior:

⎛ 6,

563 × 10−

19C 8,

204 × 10−

19C 11,

50 × 10−

( e1, e2, e3,

…) =

,

,

19 C ⎞

, ,

n

n

n ⎠

1

o que nos dá (usando mais decimais que o número de algarismos significativos)

1, 64075 × 10 − 19C, 1,6408 × 10 − 19C, 1,64286 × 10 − 1

( 9 C,… )

com um novo conjunto de dados (que podem ser considerados valores experimentais de e).

Finalmente, calculamos a média e o desvio-padrão desse conjunto de dados. O resultado é

e = e ± e

= 1, 641±

0,

004 10 19

exp med C

2

( ) ×

que não concorda (dentro de um desvio-padrão) com o valor atualmente aceito de e. O limite

inferior do valor de e, de acordo com o resultado apresentado, é e med – ∆e = 1,637 × 10 –19 C ≈

1,64 × 10 −19 C, que está 2% acima do valor atualmente aceito, e = 1,60 × 10 −19 C.

71. No Exemplo “Campo elétrico de um arco de circunferência carregado”, vimos que o campo

no centro de um arco circular é dado por

E =

sen x

r

4 0

na qual l é a densidade linear de carga, r é o raio do arco e 2u é o ângulo subtendido pelo arco.

Como l = q/L = q/ru, com u em radianos, em que q é a carga do arco e L é o comprimento do

arco, 2u = L/r e

q

E = sen

4

rL

0

Lr /

−Lr

/

= 37,

8N/C≈

38 N/C.

(, 899× 109

N⋅ m /C )( 20×

10

( 20 , m)( 40 , m)

2 2 −9

3

C)

[ sen( 1rad) −sen( −1rad)

]

72. De acordo com a Eq. 22-16, o campo elétrico em um ponto do eixo de um anel uniformemente

carregado situado a uma distância z do centro do anel é dado por

E =

qz

( z + R ) /

4 0

2 2 32


44 SOLUÇÕES DOS PROBLEMAS

em que q é a carga do anel e R é o raio do anel. No caso de uma carga positiva, o campo aponta

para cima nos pontos acima do anel e para baixo nos pontos abaixo do anel. Vamos tomar o

sentido para cima como positivo. Nesse caso, a força a que é submetido um elétron que está no

eixo do anel é

F =−

eqz

( z + R )

4 0

2 2 32 /

No caso de oscilações de pequena amplitude em torno do centro do anel, z << R e podemos

fazer z 2 + R 2 ≈ R 2 no denominador. Assim,

F

eqz

=− . 4 0R 3

A força F é uma força restauradora proporcional ao deslocamento do elétron em relação à

posição de equilíbrio, como se o elétron estivesse preso a uma mola de constante elástica k =

eq/4pâ 0 R 3 . Assim, de acordo com a Eq. 15-12,

.

k

= =

m

eq

40mR 3

em que m é a massa do elétron.

73. Vamos chamar as coordenadas da partícula de (x 0 ,y 0 ). De acordo com a Eq. 22-3, o campo

elétrico produzido pela partícula em um ponto de coordenadas (x,y) é dado por

q x x y y

E = E ˆ

x + E ˆ ( − 0)ˆ i+ ( − 0)ˆ

j

i yj=

4 0 ( x− x ) + ( y−

y )

0 2

/

[ 0 2 ]

3 2

.

A razão entre as componentes do campo é

E

E

y

x

y y

= − x−

x

0

0

.

(a) O fato de que o campo elétrico no ponto (2,0 cm, 0) é E = ( )ˆ 100 N/C i mostra que y 0 = 0, ou

seja, que a partícula está no eixo x. Assim, a expressão do campo elétrico pode ser simplificada

para

E

=

q ( x− x0)ˆ i+

y ˆ j

( x− x ) + y

4 0

[ ]

0 2 2 32 /

Por outro lado, o campo no ponto (3,0 cm, 3,0 cm) é E = ( 72 , N/C )( 40 , ˆ i + 30 , ˆ), j o que nos dá

E / E = 34. / Assim, temos:

y

x

(b) Como já foi dito, y 0 = 0.

3

4

30 , cm

=

30 , cm − x

0

x

0

.

= −10

, cm.

(c) Para calcular o valor da carga, partimos do fato de que o módulo do campo no ponto (2,0 cm,

0) (que está a uma distância r = 0,030 m da partícula) é

Assim,

E

= 1 q

4 r

= 100 NC.

2

q= 4 E r

2

( 100 NC)(0,030 m)

0

=

899 , × 109 N⋅m2

C2

0

2

= 10 , × 10−

11 C.


SOLUÇÕES DOS PROBLEMAS 45

Nota: Também poderíamos calcular o valor da carga partindo do fato de que, no ponto (3,0 cm,

3,00 cm),

q

Ex = 28,

8 N/C =

4

0

( 0, 040 m)

0 040

2

[( , m) + ( 0,

030 m)

]

q

2 3 / 2 4

0

320 / m2

,

= ( )

o que nos dá

28,

8 N/C

q =

= 10 , × 10−

(, 899× 109 N⋅m2 C

2)(

320/m)

2

11

C,

o mesmo valor calculado anteriormente.

74. (a) De acordo com a Eq. 22-27, E = s/2â 0 = 3 × 10 6 N/C. Como s = |q|/A, isso nos dá

q R RE RE ×

×

= 2

2

=

2

( 25 , 10

2m) 2( 30 , 106

N C)

2 0 = =

= 10 , × 10−

7

C = 0,10 C.

2k

2(, 899× 109 N⋅m2

C2)

(b) Usando a relação n = A d /A a = pR 2 /A a , em que n é o número de átomos, A d é a área do disco

e A a é a seção reta efetiva de um átomo, temos:

( 25 , × 10−

m)

n =

0,

015 × 10−

18

2 2

m 2

= 13 , × 1017.

(c) A fração pedida é

q

Ne = 10 , × 10−

7C

≈ 50 , × 10

(, 13× 1017)( 16 , × 10−

19C)

75. Podemos concluir que Q = +1,00 µC unicamente por considerações de simetria. Entretanto,

é possível chegar ao mesmo resultado usando a Eq. 22-3 para calcular o módulo do campo

elétrico no centro do triângulo e determinar o valor da carga para o qual o campo elétrico

no centro do triângulo é zero. Tomando o eixo y como vertical e igualando a zero a soma

das componentes y dos três campos, obtemos a equação 2kq sen 30°/ r2 = kQr /

2, na qual q é a

carga das outras duas partículas e r = a/ 3. Isso nos dá Q = 2q sen 30° = q, o mesmo valor

mencionado anteriormente.

76. De acordo com a Eq. 22-38, U =−p⋅ E = − pE cos , na qual φ é o ângulo entre o momento

do dipolo e o campo elétrico. De acordo com o enunciado do problema e a Fig. 22-62, φ i =

90° + u i = 110° e φ f = 90° − u f = 70,0°. Assim,

− 6

.

U =−pE[ cos( 70, 0° ) − cos( 110° )]=− 328 , × 10−

21 J.

77. (a) Como as duas cargas têm o mesmo sinal, o ponto x = 2,0 mm deve estar situado entre as

cargas, para que os campos elétricos criados pelas duas cargas apontem sem sentidos opostos.

Vamos chamar de x9 a coordenada da segunda partícula. Nesse caso, o módulo do campo

produzido pela partícula de carga –q 1 no ponto x é dado por E = q 1 /4pâ 0 x 2 e o módulo do campo

produzido pela partícula de carga –4q 1 é E9 = 4q 1 /4pâ 0 (x9 – x) 2 . Igualando a zero o campo total,

temos:

Enet = 0 ⇒ E = E′

e, portanto,

q1

4

x

4q

=

4

( x x

2

′ − ) ,

1

0 2 0

o que nos dá x9 = 3x = 3(2,0 mm) = 6,0 mm.


46 SOLUÇÕES DOS PROBLEMAS

(b) Neste caso, os campos elétricos produzidos pelas duas partículas no ponto x = 2,0 mm

apontam no sentido negativo do eixo x. Assim, o campo total também aponta no sentido

negativo do eixo x e, portanto, faz um ângulo de 180° com o semieixo x positivo.

78. Seja q 1 a carga da partícula 1, que está no ponto y = d, e seja q 2 a carga da partícula 2, que

está no ponto y = 2d. Os módulos dos campos produzidos pelas duas cargas, E 1 e E 2 , são dados

pela Eq. 22-3. A distância entre a partícula 1 e qualquer ponto do eixo x é igual à distância entre

a partícula 2 e o mesmo ponto, e é dada por r = x2 + d 2

. Por simetria, a componente y do

campo total em qualquer ponto do eixo x é zero. A componente x é dada por

Ex = ⎛ ⎝ ⎜ 1 ⎞ ⎛

2

⎟ ⎝

x

4 0

q

+ d

⎞ ⎛

x

x

2 2 2 2

na qual o último fator é cosu = x/r, sendo que u é o ângulo entre os campos produzidos pelas

duas partículas e o eixo x.

(a) Simplificando essa expressão e fazendo x = ad, obtemos

E

x =

q ⎡

2

d

0 ⎣( + 1)

2 2 32

(b) A figura a seguir mostra o gráfico de E = E x em função de a para d = 1 m e q = 5,56 × 10 –11 C.

+ d

⎥.

(c) Observando o gráfico, estimamos que o valor de E é máximo para a ≈ 0,71. Derivando a

equação do item a e igualando o resultado a zero, obtemos o valor exato, = 1 2.

(d) Observando o gráfico, estimamos que os pontos de “meia altura” correspondem a a ≈ 0,2 e

a ≈ 2,0. Um cálculo matemático leva aos resultados exatos: a = 0,2047 e a = 1,9864.

79. Vamos considerar pares de cargas diametralmente opostas. O campo total produzido pelas

cargas situadas na posição de uma hora (–q) e na posição de sete horas (27q) é igual ao campo

produzido por uma carga 26q na posição de sete horas. Da mesma forma, o campo total

produzido pelas cargas situadas nas posições de seis horas (26q) e na posição de doze horas

(212q) é igual ao campo produzido por uma carga 26q na posição de doze horas. Pelo mesmo

raciocínio, vemos que os doze vetores de campo elétrico podem ser reduzidos a seis vetores de

mesmo módulo, que apontam para as direções de sete horas, oito horas, nove horas, dez horas,

onze horas e doze horas. Por simetria, o campo total aponta na direção de nove horas e trinta

minutos (9 h 30 min).


SOLUÇÕES DOS PROBLEMAS 47

80. O módulo do momento dipolar é dado por p = qd, na qual q é a carga positiva do dipolo e d

é a distância entre as cargas. No caso do dipolo descrito no enunciado do problema,

p = (, 160× 10 − 19

C)( 4, 30 × 10 − 9

m) = 688 , × 10

− 28

C⋅m.

O momento dipolar é um vetor que aponta da carga negativa para a carga positiva.

81. (a) Como o campo E aponta para baixo e precisamos de uma força para cima (para cancelar

a força da gravidade), a carga da esfera deve ser negativa. O valor absoluto da carga pode ser

calculado usando a Eq. 22-28:

o que nos dá q = −0,029 C.

,

| q | = F mg

,

E

= E

= 44N

= 0 029 C,

150 NC

(b) Podemos estudar a viabilidade deste experimento usando a Eq. 22-3. O módulo do campo

produzido pela carga q na superfície da esfera é

na qual r é o raio da esfera, dado por

q

E = 4 0r

2

P

r = ⎡ ⎣ ⎢ 3 ⎤

4g

na qual P é o peso da esfera e r é a massa específica do enxofre, dada no Apêndice F. Substituindo

por valores numéricos, obtemos

13 /

r = q

0, 037 m ⇒ E = 4 r

≈ 2 × 10 N C,

,

0 2 11

um valor muito maior que a rigidez dielétrica do ar (veja a Seção 25-6). Além disso, a esfera

seria desintegrada pela força de repulsão.

82. Usando o mesmo raciocínio do Exemplo “Campo elétrico de um arco de circunferência

carregado”, chegamos à conclusão de que o módulo do campo elétrico produzido por um arco

de circunferência de raio R, com uma densidade linear de carga l, que subtende um ângulo u, é

Fazendo l = Q/L = Q/Ru, obtemos:

E

arco

2sen( /

2)

Earco = [ sen( / 2) −sen( −/

2)

]=

4

R

R .

0

0

4 0

[ ]

Q / ×

2 2 2625 10

12

sen( ) (, C)sen(

1, 20 rad)

= =

= 539N/C , .

4

R2

4 (, 8 85 × 10−

12 F/m)( 009 , m) 2 ( 2,

40 rad)

83. (a) Usando a Eq. 22-38 e as relações ˆ i⋅ ˆ i =1e ˆ j⋅ ˆ i =0, obtemos:

U =−p⋅ E = − [( 300 , ˆi + 4,00j ˆ)( 1, 24 × 10

−30

C⋅m )] ⋅[ ( 4000 N Ci )ˆ]

=− 149 , × 10−

26 J.

(b) Usando a Eq. 22-34 e as relações ˆ i × ˆ i = 0 e ˆ j× ˆ i= − k ˆ , obtemos:

= p× E = [( 300 , ˆi + 4,00j ˆ)( 1, 24 × 10 − 30

C⋅ m )] × [ ( 4000 N Ci )ˆ]

= ( − 198 , × 10−

26 N⋅m) k. ˆ


48 SOLUÇÕES DOS PROBLEMAS

(c) O trabalho realizado é

W = U = ( −p⋅ E) = ( pi

− pf)

⋅ E

= [( 300i , ˆ+

4,00j) ˆ − ( − 400 , ˆi + 3,00j ˆ)]( 1 , 24 × 10 − 30

C ⋅ m) ⋅[

( 4000 N Ci )ˆ]

= 347 , × 10−

26 J.

84. (a) Como o campo elétrico da Fig. 22-63 aponta para cima e a carga do elétron é negativa,

a força que o campo exerce sobre o elétron aponta para baixo. O módulo da aceleração é a =

eE/m, na qual E é o módulo do campo e m é a massa do elétron. Substituindo por valores

numéricos, obtemos

(, 160× 10−

19C)( 2,00 × 103

NC)

a =

= 35 , 1× 10 14 ms 2 .

911 , × 10−

31kg

Vamos colocar a origem do sistema de coordenadas na posição inicial do elétron, escolher um

eixo x horizontal e positivo para a direita e um eixo y vertical e positivo para cima. Nesse caso,

as equações cinemáticas são

1

x = v0tcos , y= vt 0 sen− at2, vy

= v0

sen

− at.

2

Em primeiro lugar, determinamos a maior coordenada y atingida pelo elétron. Se for menor que

d, isso significa que o elétron não se choca com a placa de cima. Se for maior que d, isso significa

que o elétron se choca com a placa de cima se a coordenada x nesse instante for menor que L.

A maior coordenada y é atingida no instante em que v y = 0. Isso significa que v 0 sen u – at =

0, o que nos dá t = (v 0 /a) sen u e

y

max

v0 a v v (

= 2 sen 2 1 0

− 2 sen 2 1 0

= 2 sen

2 6, 00 × 106

ms)

2sen245°

=

a 2 a2

2 a 2351 (, × 1014

2

ms)

= 256 , × 10−

2

m.

Como este valor é maior que d = 2,00 cm, pode ser que o elétron se choque com a placa de

cima.

(b) Vamos agora calcular o valor da coordenada x no instante em que a coordenada y é y = d.

Como

e

v

6 6

0 = (, 600× 10 ) ° = 4,

24 × 10

sen m ssen 45 ms

14 2 13 2 2

2ad = 2(, 351× 10 ms)( 0, 0200m) = 140 , × 10 m s ,

1

a solução da equação d = v tsen − 2

at2

é

0

v0sen−

v0 2 sen2 −2ad

( 424 , × 10 6 ms) − ( 4, 24 × 106ms) − 1,

40 × 1013

m s

t =

=

a

351 1014

2

, × ms

= 643 , × 10 − 9s.

2 2 2

Escolhemos a raiz negativa porque estamos interessados no primeiro instante em que y = d. A

coordenada x é

x = v tcos = (, 600× 106m s)( 6,43 × 10−

9scos45

) ° = 2,

72 × 10 − 2 m.

0

Como este valor é menor que o comprimento L das placas, o elétron se choca com a placa

superior no ponto x = 2,72 cm.

85. (a) Subtraindo cada valor do valor mais próximo da tabela para o qual a diferença é positiva,

obtemos uma série de números que sugere a existência de uma unidade de carga: 1,64 × 10 −19 ,

3,3 × 10 −19 , 1,63 × 10 −19 , 3,35 × 10 −19 , 1,6 × 10 −19 , 1,63 × 10 −19 , 3,18 × 10 −19 e 3,24 ×10 −19


SOLUÇÕES DOS PROBLEMAS 49

coulombs. Todos esses valores são próximos de 1,6 × 10 −19 C ou 2(1,6 × 10 19 C) = 3,2 × 10 −19

C. Tomando o valor e = 1,6 × 10 −19 C como uma aproximação grosseira do valor da unidade de

carga, dividimos todos os valores da tabela por este valor e arredondamos o resultado para o

número inteiro mais próximo, obtendo, como resultado, n = 4, 8, 12 (linha de cima); n = 5, 10,

14 (linha do meio; n = 7, 11, 16 (linha de baixo).

(b) Fazendo uma regressão linear dos valores de q da tabela em função dos valores de n, obtemos

a seguinte equação linear:

q = 7,18 × 10 −21 + 1,633 × 10 −19 n .

Desprezando o termo constante (que pode ser atribuído a erros sistemáticos nos experimentos),

obtemos e = 1,63 × 10 −19 ao fazer n = 1 na equação apresentada.

86. (a) Por simetria, a componente y da força total é zero; a força total aponta no sentido

positivo do eixo x, ou seja, o ângulo que a força F 3 faz com o semieixo x positivo é 0 o .

(b) O módulo da força total é dado por

F

3

qq 3 1cos 60 kq q ( 899 , × 109

N⋅m

= 2

= =

4

a a2

o 3 1

2

0 2

C2)( 500 , × 10−

12C)( 2, 00 × 10−

12C)

( 0, 0950 m)

2

= 9,

96 × 10− 12 N = 9,96 pN.

87. (a) Para o ponto A, temos:

⎡ q1

q2

EA = ⎢ +

⎣ 40r1 2 4

r

0 2 2

⎥( ⎦

−ˆ)

i

(, 899×

109 N⋅ m2

C2)( 100 , × 10−

12C)

8

=

( − ˆ) ( , 99 × 109 N⋅m2

C2)| − 200 , × 10−

12C|

i +

(ˆ) i

(, 500×

10−

2

m)

2

( 2× 5, 00 × 10−

2

m)

2

= ( −180

, NC)i ˆ.

(b) Para o ponto B, temos:

⎡ q1

q

EB = ⎢ +

| 2 | ⎤

⎣ r r

ˆ i

40 1 2 40 2 2

(, 899×

109

N⋅ m2

C2)( 100 , × 10−

12

C)

=

ˆ (, 899× 109 N⋅m2

C2)| − 2,

00 × 10−

12

C|

i +

ˆi

( 0, 500 × 500 , × 10−

2

m)

2

( 0, 500 × 500 , × 10−2 m)

2

= ( 43, 2 NC)i ˆ.

(c) Para o ponto C, temos:

E

C =

⎡ q1

q

⎢ −

| 2 | ⎤

⎣ r r

ˆ i

40 1 2 40 2 2

(, 899×

109

N⋅ m2

C2)( 100 , × 10−

12C)

=

ˆ (8, 99× 109 N⋅m2

C2)| − 2,

00 × 10−

12C|

i −

ˆi

( 200 , × 5, 00 × 10−

2

m)

2

(, 500×

10−

2

m)

2

=−629 (, NC)i ˆ.

(d) A figura é semelhante à Fig. 22-5 do livro, exceto pelo fato de que há duas vezes mais linhas

“entrando” na carga negativa do que “saindo” da carga positiva.


50 SOLUÇÕES DOS PROBLEMAS

88. Como as duas cargas são positivas e estão no eixo z, temos:

1 ⎡ q q

E = ⎢ +

4 0 ⎣( z−

d/ 2)

z+

d/

2

( )

2 2

Para z >> d, podemos usar a aproximação z± d/2 ≈ z, que nos dá

⎥.

1 ⎛ q q ⎞ 1

E ≈ +

z z ⎠

⎟ =

4

2 2

4

0

0

2q

.

z2


Capítulo 23

1. O diagrama a seguir mostra o vetor área A e o vetor campo elétrico E. Como o ângulo u entre

os dois vetores é 180° 2 35° = 145°, o fluxo do campo elétrico através da superfície é

= E⋅ A= EAcos = ( 1800 NC)( 32 , × 10−

3

m) 2 cos145° = − 15 , × 10 − 2

N⋅

m2

C

=−0,

015 N⋅

m2

C

2. (a) Na face superior do cubo, y = 2,0 m e dA = ( dA ) ĵ. Assim,

E = 4ˆ i− 3[( 20 , )

2

+ 2]ˆ j= 4 ˆ i−

18 ˆ j

e o fluxo é

= E⋅ dA= 4 ˆ i−18 ˆ j dA ˆ j 18 dA = −18 20 , 2 N m2 C 72 N m2

C.

( )⋅( ) =−

sup sup sup

(b) Na face inferior do cubo, y = 0 e dA = ( dA )( − ˆ) j . Assim,

( ) = −

E = 4ˆi− 3 02

+ 2 ˆj 4ˆi 6ˆj

( )( ) ⋅ = − ⋅

e o fluxo é

=

E⋅ dA= ( 4 ˆ i−6 ˆ)( j ⋅ dA)( − j = 6 dA = 6(

20 , )

2

N⋅ m2

C= + 24 N⋅m2

C.

inf

inf

(c) Na face esquerda do cubo, dA = ( dA )( − ˆ) i e

=

E⋅ dA= ∫

( 4 ˆ i+ E ˆ)( y j ⋅ dA)( − ˆ) i =− 4∫ dA = −420 ( , )

2

N⋅ m2

C=−16

N⋅

m2

C.

esq

esq

(d) Na face traseira do cubo, dA = ( dA )( −k

ˆ) . Como o campo E

não possui componente z,

E⋅ dA = 0; portanto, Φ = 0.

(e) Agora temos que somar o fluxo através das seis faces do cubo. É fácil constatar que o fluxo

através da face dianteira é zero e que o fluxo através da face direita é igual ao fluxo através da

face esquerda com o sinal trocado, ou seja, +16 N · m 2 /C. Assim, o fluxo total através do cubo é

Φ = (–72 + 24 – 16 + 0 + 0 + 16) N · m 2 /C = 2 48 N · m 2 /C.

3. Como o campo elétrico é constante, podemos usar a equação = E⋅A, na qual

A A ˆ , 2

j 140m ˆ j.

600 , ˆ 2

NCi 1, 40 m ˆj 0.

(a) = ( ) ⋅( ) =

inf

inf

= =( )


52 SOLUÇÕES DOS PROBLEMAS

( ) ⋅( ) =− ⋅

2 2

(b) = −200 , NCˆ j 1, 40 m ˆ j 392 , N m C.

⎡( ) + ( )

(c) =

−300 , ˆ 400 ˆ ⎤

⎦ ⋅( 140 ) 2

NCi N Ck , m ˆj

= 0.

(d) O fluxo total de um campo uniforme através de uma superfície fechada é sempre zero.

4. Como o fluxo através da superfície plana limitada pelo aro é dado por = a 2 E, o fluxo

através da rede é

′ =− =− aE

2 =− ( 011 , m)

2(3,0 × 10−

3

N/C) = − 11 , × 10−

4

N⋅

m

2

/C.

5. Para aproveitar a simetria da situação, imagine uma superfície gaussiana na forma de um

cubo, de aresta d, com um próton de carga q = +1,6 × 10 −19 C no centro do cubo. O cubo tem

seis faces e, por simetria, o fluxo do campo elétrico através de todas as faces tem o mesmo valor.

Como o fluxo total é Φ tot = q/â 0 , o fluxo através de uma das faces deve ser um sexto deste

valor. Assim,

q 16 , × 10−

19

C

= =

= 301 , × 10−

9

N⋅ m2 C= 301 , nNm ⋅

2

C.

6

6885 (, × 10−

12

C2 N⋅m2)

0

6. Como o fluxo através das faces laterais do cubo é nulo, temos apenas dois fluxos “para dentro”

do cubo, um através da face superior, de valor absoluto 34(3,0) 2 , e outro através da face

inferior, de valor absoluto (20)(3,0) 2 . Como um fluxo “para dentro” é considerado negativo, o

resultado é Φ = – 486 N ⋅m 2 /C. Assim, de acordo com a lei de Gauss,

= = (, 885× 10 C /N⋅m )( −486 N⋅ m C) =−4, 3× 10 − 9C= −4, 3 nC.

q

− 2 2 2

env

12

0

7. De acordo com a lei de Gauss, â 0 Φ = q, na qual Φ é o fluxo total através da superfície do cubo

e q é a carga total no interior do cubo. Assim,

q 18 , × 10−

6

C

= =

×

−12

0 885 , 10 C N⋅m

2 2

= 20 , × 10

5

N ⋅ m2 C.

8. (a) A área total da superfície que envolve o banheiro é

( ) + ( × ) + ( × ) =

A = 225 , × 3, 0 2 30 , 20 , 220 , 2, 5 37 m 2 .

O valor absoluto do fluxo do campo elétrico é

| | = | ∑ E ⋅ A | = | E

| A= ( 600 N/C)( 37 m2)

= 22 × 10 3 N ⋅ m 2

/ C.

De acordo com a lei de Gauss, o valor absoluto da carga envolvida é

| q env | = | | = , ×

0 20 10

7

C.

Assim, como o volume do banheiro é V = (2,5 m) × (3,0 m) × (3,0 m) = 15 m 3 e a carga, segundo

o enunciado, é negativa, temos:

q

= = − × −

env 20 , 10

7

C

=− 13 , × 10

V 15 m3

−8

C/m

3.

(b) O número de cargas em excesso por metro cúbico é

q

env =

eV

20 , × 10−

7

C

= 82 , × 10

(, 16×

10−

19

C)( 15 m3)

10

cargas/m 3 .


SOLUÇÕES DOS PROBLEMAS 53

9. (a) Chamando de A a área das faces do cubo, temos:

= (, 300yˆ) j ⋅ ( − Aˆ) j + ( 3 , 00y

ˆ) j ⋅ ( Aˆ)

j

(b) A carga é

y=0

y=

140 ,

( )( ⋅ ) =

q

2 2 2

env = = ×

−12

0 ⋅

= ( 300)( 1 40)( 140) = 8 23 ⋅

2

, , , , N m2

C.

885 , 10 C / N m 8,23 N m C 7, 29 × 10− 11

C=

72, 9 pC.

(c) Se E

= [ − 400 , ˆ i+ (, 6 00 + 300 , y)] N/C , o campo elétrico pode ser escrito na forma E

= 300 , yˆ

+

= y ĵ + E 0 , na qual E 0 =− 400 , ˆ i+

6, 00ˆj é um campo constante que não contribui para o fluxo total

através do cubo. Assim, Φ tem o mesmo valor do item (a), 8,23 N ⋅m 2 /C.

(d) A carga tem o mesmo valor do item (b), 72,9 pC.

10. Como nenhum dos termos constantes contribui para o fluxo (veja as Eqs. 23-4 e 23-7), precisamos

nos preocupar apenas com o termo que depende de x. Em unidades do SI, temos:

Ex ( ) = 3xˆi.

A contribuição para o fluxo da face do cubo situada em x = 0 é 0, já que E(x) = 0. A contribuição

da face situada em x = −2 m é

−E(x)A = −(3)(−2)(4) = 24 N·m/C 2 ,

na qual A é a área das faces do cubo. Como a contribuição das outras faces é zero, o fluxo total

é Φ = 0 + 24 = 24 N · m/C 2 . De acordo com a lei de Gauss, a carga no interior do cubo é

q env = â ο Φ = 2,13 × 10 −10 C = 0,213 nC.

11. Como nenhum dos termos constantes contribui para o fluxo (veja as Eqs. 23-4 e 23-7), precisamos

nos preocupar apenas com o termo que depende de y. Em unidades do SI, temos:

Ey ( ) =−400 , y

2 ˆi.

A contribuição para o fluxo da face situada em y = 4,00 é

na qual A é a área da face do cubo.

E(y)A = (−4)(4 2 )(4) = –256 N · m/C 2 ,

A contribuição para o fluxo da face situada em y = 2,00 m é

−E(y)A = − (−4)(2 2 )(4) = 64 N · m/C 2 .

Como a contribuição das outras faces é zero, o fluxo total é Φ = (−256 + 64) N · m/C 2 = −192

N · m/C 2 . De acordo com a lei de Gauss, a carga no interior do cubo é

q

− 2 2 2

env

12

0

= = (, 885× 10 C /N⋅m )( −192 N⋅ m C) =−1, 70 × 10 − 9 C = 1,70 nC.

12. Note que apenas a casca menor contribui para o campo no ponto dado, já que o ponto

está no interior da casca maior (E = 0 no interior de uma carga esférica), e o campo aponta no

sentido negativo do eixo x. Assim, para R = 0,020 m (o raio da casca menor), L = 0,10 m e x =

0,020 m, temos:

E

q

R

R

= E( − ˆ) =− ˆ 4

2

2

=−

ˆ 2

j j j =−

4

r 4

( L−

x)

2

( L−

x)

2

0 2 0

( , )(,

2

×

−6

)

0 020 m 40 10 C/m

=−

2

ˆ = − 28×

10

(, 8 85 × 10− 12

C /N⋅m 010 m−

0 20 m j

2 2

( , 4

N/C) ˆ j.

)( , , )

2

0

2

ˆj


54 SOLUÇÕES DOS PROBLEMAS

13. Seja A a área da face do cubo, seja E s o módulo do campo elétrico na face superior e seja E i

o módulo do campo elétrico na face inferior. Como o campo aponta para baixo, o fluxo através

da face superior é negativo e o fluxo através da face inferior é positivo. Como o fluxo através

das outras faces é zero, o fluxo total através da superfície do cubo é Φ = A(E i − E s ). De acordo

com a lei de Gauss, a carga total no interior do cubo é

q= = A Ei

− Es

= ×

0

12

0 ( ) (, 885 10 C

2/N⋅m2 )( 100 m) 2

( 100 N/C − 60,0 N/C)

= 354 , × 10−

6 C = 3,54 C.

14. (a) A carga central pode ser calculada aplicando a lei de Gauss (Eq. 23-6) ao fluxo mostrado

na Fig. 23-33b para pequenos valores de r, Φ = 2,0 × 10 5 N . m 2 /C:

q

2 2

central

−12 0 C /N m

5

= = (, 885× 10 ⋅ )( 2, 0× 10 N⋅m

2

/C) =+ 177 , × 10−

6C≈+ 18 , × 10−

6C

=+ 1,8C.

(b) Para valores maiores de r, Φ = −4,0 × 10 5 N . m 2 /C. Isso significa que

q

2 2 2

env = = ×

−12 0 ⋅ − ×

5

(, 885 10 C /N m )( 4, 0 10 N m /C) =− 354 , × 10−

6 C≈−3,5 C.

Entretanto, parte dessa carga é a carga central, calculada no item (a), de modo que a carga da

casca A é

q A = q env – q central = −3,5 mC − (+1,8 mC) = 5,3 mC.

(c) Finalmente, para valores muito grandes de r, Φ = 6,0 × 10 5 N . m 2 /C, o que significa que

q

2 2 2

env = = ×

−12 0 C /N⋅ m ×

5

(, 885 10 )( 6, 0 10 N m /C) = 531 , × 10−

6C ≈ 5,3 C.

De acordo com os resultados anteriores, isso significa que a carga da casca B é

q B = q env − q A − q central = +5,3 mC − (−5,3 mC) − (+1,8 mC) = 8,8 mC.

15. (a) Se dispusermos cubos iguais lado a lado e um em cima do outro, veremos que oito cubos

se encontram em um vértice. Assim, um oitavo das linhas de campo que partem de uma carga

pontual situada em um vértice passam por um dos cubos e o fluxo total através da superfície

desse cubo é q/8â 0 . Como as linhas de campo são radiais, nas três faces que se encontram no

vértice que contém a carga, as linhas de campo são paralelas à face e o fluxo através da face é

zero.

(b) Como os fluxos através das outras três faces são iguais, o fluxo através de uma dessas três

faces é um terço do total. Assim, o fluxo através de uma dessas faces é (1/3)(q/8â 0 ) = q/24â 0 e

o múltiplo é 1/24 = 0,0417.

16. O fluxo total do campo elétrico através do cubo é =

∫ E

⋅dA.

O fluxo total através das

faces paralelas ao plano yz é

y2

1

yz = [ x ( = 2) − x ( = 1)

] =

y1

0

= 6

∫∫ ∫ =

=

z2

= 3

E x x E x x dydz dy dz 10 + 24 ( ) −10 − 21 ()

y2

= 1

y1

= 0

z = 3

2

dy∫ dz = 61 ()( 2) = 12.

z1

= 1

O fluxo total através das faces paralelas ao plano xz é

x2

4

xz = ⎡⎣ y ( = 2) − y ( = 1)

⎤ ⎦ =

x1

1

z1

= 1

[ ]

2

E y y E y y dxdz dy∫ dz[ −3−( − 3)]

= 0

∫∫ ∫ =

=

e o fluxo total através das faces paralelas ao plano xy é

[ ] =

x2

4

xy = z ( = 2) − z ( = 1)

x1

1

∫∫ ∫ =

=

z = 3

z1

= 1

y2

= 1

E z z E z z dxdy dx dy

y1

= 0

( ) = =

3b−

b 2b()() 3 1 6b.


SOLUÇÕES DOS PROBLEMAS 55

De acordo com a lei de Gauss, temos:

o que nos dá b = 2,00 N/C . m.

qenv = 0= 0( xy + xz + yz

) = 0(, 600b+ 0+ 12, 0) = 240 , 0 ,

17. (a) A carga da superfície da esfera é o produto da densidade superficial de carga s pela área da

2

superfície da esfera, 4pr 2 , na qual r é o raio da esfera. Assim,

⎛ ⎞

q= 4r2 = 4 ⎝

1, 2 m

⎟ (, 81× 10 − = ×

=

2

⎟ × 10−

6

C/m 2 ) = 37 , × 10 − 5 C=

37C.

(b) Usamos uma superfície gaussiana de forma esférica, concêntrica com a esfera condutora e

com um raio ligeiramente maior. O fluxo é dado pela lei de Gauss:

Φ= q

366 , × 10 C

885 , × 10 C /N⋅m

−5

=

−12

2 2

0

= 41 , × 10

18. De acordo com a Eq. 23-11, a densidade superficial de carga é

6

N⋅ m2/

C.

= E

= × ×

0 ( 23 , 105

NC)( 8,85 10

12

C

2/N⋅ m2) = 20 , × 10− 6

C/m

2 = 2, 0 C/m

2 .

19. (a) A área da superfície de uma esfera é 4pR 2 = pD 2 . Assim,

(b) De acordo com a Eq. 23-11, temos:

q 24 , × 10−

6

C

= =

= 45 , × 10−

7

C/m 2 .

D 2 (, 13m)

2

45 , × 10−

7

C/m2

E = =

×

−12

0 885 , 10 C / N⋅m

2 2

= 51 , × 10 4 N/C.

20. De acordo com a lei de Gauss (Eq. 23-6), â ο Φ=q env .

(a) Como Φ = −9,0 × 10 5 N⋅ m 2 /C para pequenos valores de r,

q

2 2

central

−12 0 C /N m

5

= = (, 885× 10 ⋅ )( − 9, 0× 10 N ⋅ m 2 /C) =− 797 , × 10−

6C ≈− 8, 0 C.

(b) Para valores maiores de r, Φ = 4,0 × 10 5 N . m 2 /C. Isso significa que

q

2 2 2

env = = ×

−12 0 ⋅ − ×

5

(, 885 10 C /N m )( 4, 0 10 N m /C) = 354 , × 10−

6 C≈

3,5 C.

Entretanto, parte dessa carga é a carga central, calculada no item (a), de modo que a carga da

casca A é

q A = q env – q central = −8,0 mC − 3,5 mC) = −11,5 mC ≈ 12 mC.

(c) Finalmente, para valores muito grandes de r, Φ = −2,0 × 10 5 N . m 2 /C, o que significa que

= = (, 885× 10 C /N⋅m )( − 2, 0× 10 N⋅

m /C) =− 177 , × 10−

6C ≈−1,8 C.

q

− 2 2 2

env

12 5

0

De acordo com os resultados anteriores, isso significa que a carga da casca B é

q B = q env − q A − q central = −1,8 mC − 12 mC − (−8 mC) = −5,8 mC.

21. (a) Considere uma superfície gaussiana que esteja totalmente no interior do condutor e

envolva a cavidade. Como o campo elétrico é zero em toda a superfície, a carga envolvida pela

superfície é zero. Como a carga total é a soma da carga q no interior da cavidade e a carga q 1

na superfície da cavidade, temos:

q + q 1 = 0 ⇒ q 1 = 2q = −3,0 × 10 –6 C.


56 SOLUÇÕES DOS PROBLEMAS

(b) Como a carga total Q do condutor é a soma da carga q 1 na superfície da cavidade com a

carga q 2 na superfície externa do condutor, temos:

q = Q− q = ( 10 × 10− 6

C) −( − 30 , × 10− 6

C) = + 13 , × 10−

5

C.

2 1

22. O problema pode ser resolvido combinando a segunda lei de Newton (F = ma) com a definição

de campo elétrico (E = F/q) e com a Eq. 23-12 (E = l/2pâ 0 r), o que nos dá

e

e

ma = eE = ⇒ a = = 21 , × 1017

m/s 2 .

2

r 2 rm

0 0

23. (a) Como a área da superfície lateral do tambor é A = pDh, na qual D é o diâmetro do tambor

e h é a altura do tambor, temos:

q= A= Dh = EDh = (, 885× 10−

12

C

2/N⋅ m2)( 2,

105

N/C) 0, 12 m 042 , m

= 32 , × 10−

7

C = 0,32 C.

(b) A nova carga é

0

⎛ ′ ⎞ ⎛ ′ ′ ⎞

q′ = q

A Dh

⎟ = q

⎟ = (, 32× 10−

7

C)

A Dh

( 8,

0 cm)( 28 cm)

( 12 cm)( 42 cm)

( )( )

⎥ = 14 , × 10−

7 C=

0, 14C.

24. Usando uma superfície gaussiana cilíndrica A de raio r e comprimento unitário, concêntrica

com o tubo de metal, temos, por simetria,

(a) Para r < R, q env = 0 e, portanto, E = 0.

q

∫ E⋅ dA= 2rE =

A

env .

(b) Para r > R, q env = l e, portanto, para r = 2R = 0,0600 m, temos:

0

20 , × 10−

8

C/m

E = =

= 599 , × 10 3

2r 2

0, 0600 m ( 885 , 10−

12

C 2 /N ⋅ m

2 )

0

( ) ×

N/C.

(c) A figura a seguir mostra o gráfico de E em função de r.

25. Como, de acordo com a Eq. 23-12, o módulo do campo elétrico produzido por uma linha

infinita de carga é E = l/2pâ 0 r, na qual l é a densidade linear de carga e r é a distância entre o

ponto onde o campo é medido e a linha de carga, temos:

= 2 Er = 2(, 885× 10−

12

C 2 /N⋅ m

2 )( 4, 5×

104

N/C)(

20 , m) = 50 , × 10 − 6 C/m

0

= 5,0 C/m.


SOLUÇÕES DOS PROBLEMAS 57

26. Quando nos aproximamos da distância r = 3,5 cm a partir do lado de dentro da casca, temos:

E

interno

2

= = 1000 N/C.

4

r

Quando nos aproximamos da distância r = 3,5 cm a partir do lado de fora da casca, temos:

Assim, temos:

E

externo

0

2

2′

= + =−3000

N/C.

4

r 4

r

0 0

2′

Eexterno − Einterno = =−1000 N/C ⇒ ′ =−58

, × 10−

9

C/m = −58

, nC/m

4

r

0

27. Vamos chamar de R o raio da casca cilíndrica. De acordo com a Eq. 23-12, o campo elétrico

para r > R é dado por

E = Efio

+ Ecasca

= + ,

r 2

r

2 0

na qual l é a densidade linear de carga do fio e l9 é a densidade linear de carga da casca. O

fato de que a carga da casca pode ser expressa através da densidade linear de carga l9 ou da

densidade superficial de carga s permite obter uma relação entre l9 e s :

qcasca = ′ L = (2 RL) ⇒ ′ = (2R).

Para que o campo E do lado de fora da casca seja nulo, devemos ter l9 = −l, o que nos dá

3,6 × 10−

6

C/m

=− =

= 3,8 × 10

2R

( 2)( 0,

015 m)

0

−8

C/m 2 .

28. (a) Considerando uma superfície gaussiana cilíndrica, coaxial com a barra, de raio r > r ext ,

na qual r ext é o raio externo da casca, a única carga envolvida é a carga da barra. Assim, de

acordo com a Eq. 23-12, o módulo do campo a uma distância r = 15 cm do eixo da casca é

dado por

2 2(2,0 × 10−

9C/m)

E = =

= 2,4 × 102 N/C = 0,24 kN/C.

4 r 4

(0,15 m)

0

0

(b) Como, na ausência de uma corrente elétrica, o campo é zero no interior dos condutores, há

uma carga 2q na superfície interna da casca e uma carga +q na superfície externa da casca,

na qual q é a carga da barra. Assim, a densidade superficial de carga na superfície interna da

casca é

int

−q

2,0 × 10−

9C/m

= =− =−

=− 64 , × 10−

9

C/m 2 = −64

, nC/m

2 .

2rintL

2rint 2( 0, 050

m)

(c) A densidade superficial de carga na superfície externa da casca é

ext

q 20 , 10

9

C/m

= = =

=+ 32 , × 10−

9

C/m2 = + 32 , nC/m2.

2r L 2r

2( 0,

100 m)

ext

ext

×

29. (a) Vamos usar como superfície gaussiana um cilindro de comprimento L coaxial com a

barra e a casca e de raio r maior que o raio da casca. O fluxo através desta superfície é Φ =

2prLE, na qual E é o módulo do campo elétrico na superfície gaussiana. Podemos ignorar o

fluxo nas bases da superfície cilíndrica. A carga envolvida pela superfície gaussiana é q env =

Q 1 + Q 2 = –Q 1 = –3,40×10 −12 C. Assim, a lei de Gauss nos dá

qenv

E = = =

2rL

2 Lr 2 (8,85 × 10

0

=−021

, 4N/C.

− 340 , × 10−

12

C

C

2/N⋅ m

2)

(11,0 m)(20,0 × 1,30 × 10−

m)

−12 3


58 SOLUÇÕES DOS PROBLEMAS

Assim, |E| = 0,214 N/C.

(b) O sinal negativo indica que o campo elétrico aponta para dentro.

(c) Para r = 5,00 R 1 , a carga envolvida pela superfície gaussiana é q env = Q 1 = 3,40×10 −12 C.

Assim, de acordo com a lei de Gauss,

q

×

env

340 , 10

12

C

E = =

=

2

Lr 2 (8,85 × 10−

12

C

2

/N ⋅ m 2

0, 855 N/C.

)(11,0 m)(5,00 × 1,30 × 10−

3m)

0

(d) O sinal positivo indica que o campo elétrico aponta para fora.

(e) Considere uma superfície gaussiana cilíndrica de raio maior que o raio interno da casca

e menor que o raio interno. Como, na ausência de uma corrente elétrica, o campo é zero no

interior dos condutores, o fluxo do campo elétrico através da superfície gaussiana é zero e,

portanto, de acordo com a lei de Gauss, a carga total envolvida pela superfície gaussiana é zero.

Como a barra central possui uma carga Q 1 , a superfície interna da casca deve possuir uma carga

Q int = –Q 1 = –3,40 ×10 −12 C.

(f) Como sabemos que a casca possui uma carga total Q 2 = –2,00Q 1 , a superfície externa deve

possuir uma carga Q ext = Q 2 – Q int = –Q 1 = –3,40 ×10 −12 C.

30. Vamos chamar de x P a coordenada x do ponto P no qual o campo elétrico total é zero. De

acordo com a Eq. 23-12, temos:

Explicitando x, obtemos

x

P =

21

22

Etot

= E1+ E2

=

+

= 0.

4

( x + L/ 2) 4

( x − L/

2)

0

P

⎛ 1−

2⎞

L ⎛ 60 , C/m−( −20

, C/m)

⎞ 80 , cm

+ ⎠

⎟ =

cm.

60 , C/m+ − C/m

⎟ = 80 ,

( 20 , ) 2

1 2 2

31. Vamos usar os índices int e ext para indicar a casca interna e a casca interna, respectivamente.

(a) Como, nesse caso, r int < r < r ext ,

int

5,0 × 10−

6

C/m

Er () = =

= 23 , × 106

N/C.

2

r 2

(8,85 × 10−

12

C 2 /N ⋅ m

2)

(4,0 × 10−

2

m)

0

(b) O sinal positivo indica que o campo elétrico aponta para fora.

(c) Como, nesse caso, r > r ext ,

0

P

Er () =

+

r

int ext

2 0

5,0 × 10−

6

C/m − 7,0 × 10−

6

C/m

=

=− 45 , × 105

N/C,

2 (8,85 × 10−

12

C

2/N⋅ m

2)

(8,0 × 10−

2

m)

o que nos dá |E| = 4,5 × 10 5 N/C.

(d) O sinal negativo indica que o campo elétrico aponta para dentro.

32. Vamos usar uma superfície gaussiana de área 2prL, na qual L é suficientemente grande

para que o fluxo através das bases do cilindro possa ser desprezado. Como o volume envolvido

pela superfície gaussiana é V = pr 2 L, o elemento de volume é dV = 2prLdr e a carga envolvida

é dada por

r

qenv

= Ar2

2

rLdr = ALr

4.

0

2


SOLUÇÕES DOS PROBLEMAS 59

De acordo com a lei de Gauss,

| E | q Ar3

env

= = ⇒ | E | = .

2rL

0

4 0

(a) Para r = 0,030 m, obtemos | E | = 19N/C. ,

(b) Como, nesse caso, r > R, em que R é o raio do cilindro, devemos usar a Eq. 23-12. A densidade

linear de carga l é dada por

Assim, de acordo com a Eq. 23-12, temos:

33. Podemos usar a Eq. 23-13.

(a) À esquerda das placas, temos:

(b) À direita das placas, temos:

(c) Entre as placas, temos:

q 1 004 ,

= =

Ar2

2rLdr

= 1,0 × 10−

11

C/m.

L L 0

10 , × 10−

11

C/m

| E | = =

2 r 2

(, 8 85 × 10−

12

F/m)(0,050 m)

E = ⎛ ⎞

⎝ ⎜

⎟ − +⎛ ⎞

⎝ ⎜

( ˆi) 2

2

⎟ − ˆi

0

E = ( − ˆ) i + (ˆ) i = 0.

2

2

0 0

E = (ˆ) i + ( − ˆ) i = 0.

2

2

0 0

( ) = ⎛ ⎞

⎝ ⎜

0 0 0

( )

= − 791 , × 10−

11 N/C ˆi.

= 36N/C. ,

− = − ⎛ ×

( ˆ 700 , 10

22

C/m2

i)

ˆ

885 , × 10−

12

C

2/N⋅m2⎠

⎟ i

34. A distribuição de carga descrita no enunciado equivale à de uma placa infinita de densidade

superficial de carga s com uma pequena região circular de densidade superficial de carga

2s. Vamos usar os índices 1 e 2 para representar os campos elétricos produzidos pela placa e

pela região circular, respectivamente. Usando a Eq. 23-13 para calcular E 1 e a Eq. 22-26 para

calcular E 2 , obtemos:

( ) −

E = E + E = ⎛ ⎞

⎝ ⎜

⎟ + − ⎛

1 2

ˆk

2 2

⎜1

0 0

z

z

+ R

2 2

⎟ kˆ

=

⎠ 2

0

z

z

+ R

2 2

( 450 , × 10−

12

C/m )( , ×

=

2 2 56 10−

2

m)

ˆ

2885 (, × 10−

12

C

2/N⋅ m2) ( 256 , × 10−

2

m) 2

+ ( 1, 80 × 10 − 2

m)

k

2

= ( 0, 208 N/C) k. ˆ

35. Na região entre as placas 1 e 2, o campo total é E 1 – E 2 − E 3 = 2,0 × 10 5 N/C; na região entre

as placas 2 e 3, o campo total é E 1 + E 2 − E 3 = 6,0 × 10 5 N/C; na região à direita da placa 3, o

campo total é E 1 + E 2 + E 3 = 0. Combinando as três equações, obtemos:

E 1 = 1,0 × 10 5 N/C, E 2 = 2,0 × 10 5 N/C, E 3 = −3,0 × 10 5 N/C.

De acordo com a Eq. 23-13, temos:

3

30 , × 10

=−

20 , × 10

2

5

5

N/C

=−15

, .

N/C


60 SOLUÇÕES DOS PROBLEMAS

36. De acordo com a Eq. 23-13, o campo elétrico produzido por uma placa de grande extensão

com uma densidade superficial de carga s tem módulo E = s/2â 0 , é perpendicular ao plano da

placa e aponta na direção oposta à da placa se a carga for positiva e na direção da placa se a

carga for negativa. Usando o princípio da superposição, temos:

(a) E = s/â 0 = (1,77×10 −22 C/m 2 )/(8,85 ×10 −12 C

2/N⋅

m2) = 2,00×10 −11 N/C, apontando para

cima, ou seja,

E = ( 200 , × 10−

11 N/C)j. ˆ

(b) E = 0.

(c) E = s/â 0 apontando para baixo, ou seja,

E =− ( 200 , × 10−

11 N/C)j. ˆ

37. (a) Para calcular o campo elétrico nas proximidades do centro de uma placa finita com uma

densidade superficial de carga uniforme, podemos substituir a placa finita por uma placa infinita

com a mesma densidade superficial de carga e estimar o módulo do campo como E = s/â 0 ,

na qual s é a densidade superficial de carga na superfície mais próxima no ponto considerado.

Para os dados do problema,

e o módulo do campo é

q 6,0 × 10−

6

C

= =

= 4,69 × 10−

4

C/m

2A

2( 0,

080 m)

2

4,69 × 10−

C/m2

E = =

885 , × 10−

12

C /N⋅m

0

4

2 2

= 5,3 × 107

N/C.

O campo é perpendicular à placa e aponta para longe da placa, já que a carga é positiva.

(b) Em um ponto afastado da placa, o campo elétrico é aproximadamente igual ao de uma carga

pontual com uma carga igual à carga total da placa. Assim,

q

E = r

= (, 899× 109 N⋅ m

2/C2)( 6, 0× 10−

6

C)

= 60 N/C.

4 2 0 ( 30 m)

2

38. De acordo com a Eq. 23-13, o campo produzido pela placa é E = s/2â 0 . Como o módulo da

força que o campo exerce sobre o elétron é F = eE, a aceleração do elétron é dada por

F e

a = = .

m 2

0 m

Por outro lado, a aceleração é igual à inclinação do gráfico da Fig. 23-44b (2,0 ×10 5 m/s/7,0 ×

10 −12 s = 2,86 × 10 16 m/s 2 ) . Assim, temos:

2

×

×

0ma

2(, 885 10

12)( 911 , 10

31)( 286 , × 1016)

= =

= 29 , × 10 − 6

C/m 2 .

e

160 , × 10−

19

39. A figura a seguir mostra o diagrama de corpo livre da bola, na qual T é a tensão do fio, qE

é a força exercida pelo campo elétrico e mg é a força da gravidade.

2


SOLUÇÕES DOS PROBLEMAS 61

Como a bola está em equilíbrio, a aplicação da segunda lei de Newton às componentes horizontal

e vertical da força resultante nos dá

qE 2 T sen u = 0 e T cos u − mg = 0.

A primeira equação nos dá T = qE/sen u; substituindo na segunda equação, obtemos qE = mg

tan u. De acordo com a Eq. 23-13, o campo elétrico produzido pela placa é dado por E = s/2â 0 ,

sendo que s é a densidade superficial de carga. Assim,

q

= mg tan

2

0

e

2

×

×

0mg

tan 2( 885 , 10

12

C

2/Nm .

2)( 1,

0 10

6

kg)( 98 , m/s2)tan

30°

= =

q

20 , × 10−

8

C

= 50 , × 10− 9

C/m2

= 5,

0nC/m 2 .

40. O ponto no qual os campos produzidos pela placa e pela partícula se cancelam não pode

estar na região entre a placa e a partícula (−d < x < 0) porque a placa e a partícula possuem

cargas de sinais opostos, mas pode estar na região à direita da partícula (x > 0) ou na região à

esquerda da placa (x < d). A condição para que o campo se anule é

| | Q

=

2

4

r

0 0 2

Explicitando r e substituindo os valores conhecidos, obtemos:

Q 6 C

3

r = = = = ± 0,

691 m = ± 69,1 cm.

2 | | 2( 2C/m2)

2

Para d = 0,20 m, nenhum dos pontos calculados está na “região proibida” entre a placa e a

partícula. Assim, temos:

(a) x = +69,1 cm

(b) x = −69,1 cm

(c) Para d = 0,80 m, um dos pontos (x = −69,1 cm) está na “região proibida” entre a placa e a

partícula e não é uma solução válida. Assim, o único ponto no qual os campos se cancelam é

x = +69,1 cm.

41. Para resolver o problema, escrevemos uma expressão para a aceleração do elétron e calculamos

a distância que o elétron percorre antes de parar. A força a que o elétron está submetido

é F = –eE = –es/â 0 (veja a Eq. 23-11) e a aceleração é

F e

a = = −

m m

na qual m é a massa do elétron. De acordo com a Eq. 2-16, se v 0 é a velocidade inicial do elétron,

v é a velocidade final e x é a distância percorrida entre as posições inicial e final, v2

− v0 2 = 2ax.

Fazendo v = 0, substituindo a por –es/â 0 m e explicitando x, obtemos

0

v0 mv

x =− 2 0 0

=

2

2a

2e .

.


62 SOLUÇÕES DOS PROBLEMAS

Como a energia cinética inicial é K0 = mv0 2 / 2, temos:

K ×

⋅ ×

0 0 (, 885 10

12

C

2/N m2)( 1, 60 10

17

J)

x = =

= 44 , × 10−

4

m = 0,44 mm.

e

( 1, 60 × 10−

19

C)( 20 , × 10−

6

C/m2)

42. Como, de acordo com a Eq. 23-11, E = s/â 0 , a densidade superficial de carga é dada por

= E = (, 885× 10−

12

C

2/N⋅ m2)( 55 N/C) = 4,

10−

10

C/m 2 .

0

Como a área das placas é A = 1,0 m 2 , o módulo da carga em cada placa é

Q = A= 49 , × 10−

10 C.

43. Vamos usar uma superfície gaussiana em forma de paralelepípedo, indicada por retas tracejadas

na vista lateral da figura a seguir. As faces direita e esquerda da superfície gaussiana estão

a uma distância x do plano central. Vamos tomar a altura e o comprimento do paralelepípedo

como iguais a a, de modo que as faces direita e esquerda são quadrados.

O campo elétrico é perpendicular às faces direita e esquerda e é uniforme. Como a densidade

volumétrica de carga é positiva, aponta para fora nas duas faces, ou seja, aponta para a esquerda

na face esquerda e para a direita na face direita. Além disso, o valor absoluto da densidade de

carga é o mesmo nas duas faces. Assim, o fluxo do campo elétrico através das duas faces é Ea 2 .

Como o campo elétrico é paralelo às outras faces do paralelepípedo, o fluxo do campo elétrico

através dessas faces é zero; assim, o fluxo total através da superfície gaussiana é Φ = 2Ea 2 .

Como o volume envolvido pela superfície gaussiana é 2a 2 x e a carga contida nesse volume é

q = 2a 2 xr, na qual r é a densidade volumétrica de carga, a lei de Gauss nos dá

2â 0 Ea 2 = 2a 2 xr.

Explicitando o campo elétrico E, obtemos E = rx/â 0 .

(a) Para x = 0, E = 0.

(b) Para x = 2,00 mm = 2,00 × 10 −3 m,

x

(, 580× 10−

15

C/m3)( 2, 00 × 10−

3

m)

E = =

= 131 , × 10−

6

N/C = 1,31 N/C.

0 885 , × 10−

12

C

2/N⋅

m2

(c) Para x = 4,70 mm = 4,70 × 10 −3 m,

x

(, 580× 10−

15

C/m3)( 4, 70 × 10−

3

m)

E = =

= 308 , × 10−

6

N/C = 3,08 N/C.

0 885 , × 10−

12

C

2/N⋅

m2

(d) Para x = 26,0 mm = 2,60 × 10 −2 m, usamos uma superfície gaussiana de mesma forma e

orientação, mas com x > d/2, de modo que as faces esquerda e direita estão do lado de fora da


SOLUÇÕES DOS PROBLEMAS 63

placa. O fluxo total através da superfície continua a ser Φ = 2Ea 2 , mas a carga envolvida agora

é q = a 2 dr. De acordo com a lei de Gauss, 2â 0 Ea 2 = a 2 dr e, portanto,

d

(, 580× 10−

15

C/m3)( 9, 40 × 10−

3

m)

E = =

= 308× 10−

6

N/C = 3,08 N/C.

2 2885 (, × 10−

12

C

2/N⋅m

2

,

)

0

44. Podemos determinar a carga da esfera observando que o valor máximo do campo elétrico

mostrado no gráfico da Fig. 23-48 (E = 5,0 × 10 7 N/C) é atingido para r = 2 cm = 0,020 m.

Como E = q/4pâ 0 r 2 , temos:

0 020 50×

10

q= 4 0r 2 ( , m)(, 2 7

N/C)

E =

= 22 , × 10−

6C.

899 , × 109

N⋅m 2 C2

45. (a) Como r 1 = 10,0 cm < r = 12,0 cm < r 2 = 15,0 cm,

1 q (, × ⋅ )( , ×

1 899 10 N m /C 4 00 10

Er () = =

4

r

2

( 0, 120 m)

2

0

9 2 2 8

C

)

= 250 , × 10

4

N/C.

(b) Como r 1 < r 2 < r = 20,0 cm,

1

Er () =

4

0

q + q

r

2

1 2

(, 899× 109

N⋅ m

2/C2 )( 4,

00 + 2, 00)( 1×

10 − 8

C)

=

= 135 , × 10

( 0, 200 m2)

4

N/C.

46. (a) O fluxo continua a ser −750 N . m 2 /C, já que depende apenas do valor da carga envolvida.

(b) De acordo com a lei de Gauss, Φ = q/â 0 , temos:

( )( − ⋅ ) =−

q = = ×

0 885 , 10

12

C

2/N⋅m2 750 N m2 / C 6,

64× 10 − 9 C = −6,64 nC.

47. O campo produzido por uma esfera carregada é igual ao campo produzido por uma carga

pontual para pontos situados do lado de fora da esfera. Isso significa que o módulo do campo é

dado por E = |q|/4pâ 0 r 2 , na qual |q| é o valor absoluto da carga da esfera e r é a distância entre

o ponto em que o campo é medido e o centro da esfera. Assim,

( 015 , )(, 3 0×

10 )

| q|

= 4 0r 2 m

2

3

N/C

E =

899 , × 109

N⋅

m

2/C2

= 75 , × 10−

9

Como o campo aponta para o centro da esfera, a carga é negativa, ou seja,

q = −7,5 × 10 −9 C = −7,5 nC.

A figura abaixo mostra o módulo do campo elétrico em função de r. Dentro da esfera condutora,

E = 0; fora da esfera, E = k|q|/r 2 , na qual k = 1/4pâ 0 .

C.

48. Vamos chamar de E A o módulo do campo para r = 2,5 cm. De acordo com o gráfico da Fig.

23-49, E A = 2,0 × 10 7 N/C. Este campo se deve exclusivamente ao campo criado pela partícula.

Como E partícula = q/4pâ 0 r 2 , o campo em qualquer outro ponto está relacionado a E A através da


64 SOLUÇÕES DOS PROBLEMAS

razão entre os quadrados das distâncias. O gráfico mostra também que, no ponto r = 3,0 cm, o

campo produzido pela partícula e pela casca é 8,0 × 10 7 N/C. Assim,

e, portanto,

E casca + E partícula = E casca + (2,5/3) 2 E A = 8,0 × 10 7 N/C

E casca = 8,0 × 10 7 N/C − (0,7)(2,0 × 10 7 N/C) = 6,6 × 10 7 N/C.

Como E casca = Q/4pâ 0 r 2 , na qual Q é a carga da casca, e E casca = 6,6 × 10 7 N/C para r = 0,030 m,

temos:

rE 0 030 66×

10

Q = 4 0r 2 2 2 7

casca ( , m)(, N/C)

Ecasca

= =

= 66 , × 10−

6C = 6,6 C.

k 899 , × 109 N⋅m2

C2

49. Por simetria, o campo elétrico é radial em todas as regiões nas quais é diferente de zero.

Vamos usar superfícies gaussianas de forma esférica, concêntricas com a esfera e a casca,

passando pelo ponto cujo campo elétrico queremos determinar. Como o campo é uniforme na

superfície,

∫ E⋅ dA=

4

r 2

E , na qual r é o raio da superfície gaussiana.

Para r < a, a carga envolvida pela superfície gaussiana é q 1 (r/a) 3 e a lei de Gauss nos dá

(a) Para r = 0, essa equação nos dá E = 0.

(b) Para r = a/2, temos:

4

2

q1

r

qr 1

rE= ⎛ ⎞

E

⎝ ⎜ ⎠

⎟ ⎛ ⎝ ⎜ ⎞

a⎠

⎟ ⇒ =

4

a

E

q a × ⋅ ×

1( / 2) (, 899 10 N m

2/C2)( 5,

00 10

= =

4

a

2200 ( , × 10−

2m)

2

(c) Para r = a, temos:

9 15

0 3

0

3

0 3

.

C)

= 562× 10 N/C = 56,2 mN/C

,

−2

.

q × ⋅ ×

1 (, 899 10 N m

2/C2)( 5, 00 10 C)

E = =

0, 112

.

4

a

( 2, 00 × 10 −

= N/C = 112 mN/C

2m)

2

0 2 9 15

Para a < r < b, a carga envolvida pela superfície gaussiana é q 1 e a lei de Gauss nos dá

(d) Para r = 1,50a, temos:

4

2 1

1

rE q q

= ⇒ E = .

4

r

0

q × ⋅ ×

1 (, 899 10 N m

2/C2)( 5, 00 10 C)

E = =

0, 0499

.

4

r ( 1, 50 × 200 , × 10 −

= N/C = 49,9 mN/C

2m)

2

0 2 9 15

(e) Para b < r < c, como a casca é condutora, o campo elétrico é zero. Assim, para r = 2,30a,

E = 0.

(f) Para r > c, a carga envolvida pela superfície gaussiana é zero e, portanto, de acordo com a

lei de Gauss, 4pr 2 E = 0 ⇒ E = 0. Assim, para r = 3,50a, E = 0.

(g) Considere uma superfície gaussiana que esteja no interior da casca condutora. Como o campo

elétrico no interior do condutor é nulo,

E⋅ dA = 0 e, de acordo com a lei de Gauss, a carga

envolvida pela superfície é zero. Se Q int é a carga na superfície interna da casca, q 1 + Q int = 0 e,

portanto, Q int = 2q 1 = 25,00 fC.

0 2


SOLUÇÕES DOS PROBLEMAS 65

(h) Seja Q ext a carga da superfície externa da casca. Como a carga total da casca é 2q, Q int +

Q ext = 2q 1 , o que nos dá

Q ext = 2q 1 2 Q i = 2q 1 2(2q 1 ) = 0.

50. O ponto no qual os campos se cancelam não pode estar na região entre as cascas porque

as cargas das cascas têm sinais opostos. Não pode estar no interior de uma das cascas porque,

nesse caso, o único campo existente seria o campo da outra casca. Como a carga da casca 2

é maior em valor absoluto que a casca 1 (|s 2 |A 2 > (|s 1 |A 1 ), o ponto não pode estar à direita da

casca 2. Assim, o ponto está à esquerda da casca 1, a uma distância r > R 1 do centro, em que R 1

é o raio da casca 1. Para que o campo se anule nesse ponto,

o que nos dá

E

| q1

| | q |

= E ⇒ =

4

r 4

( r+

L)

1 2

2

0 2 0

1A1

| | A

=

4

r 4

( r+

L) . 2

2 2

0 2 0

Usando o fato de que a área da superfície de uma esfera é A = 4pR 2 , obtemos:

2

,

r =

R

LR

1 1

| | − R

2 2 1 1

×

( 006 , m)(0,005 m) ( 4,

0 10

6

C/m2

=

( 0, 020 m) ( 20 , × 10−

6

C/m2

− ( 0, 005 m) ( 40 , × 10

−6

C/m

2

= 0, 033 m = 33 , cm.

Como este valor satisfaz a condição r > R 1 , a resposta é

x = −r = −3,3 cm.

51. Vamos usar uma superfície gaussiana na forma de uma esfera concêntrica com a casca e

com um raio r g tal que a < r g < b. A carga da parte da casca esférica envolvida pela superfície

gaussiana é dada pela integral qs =∫ dV, em que r é a densidade volumétrica de carga, e os

limites de integração são o raio interno da carga e o raio da superfície gaussiana. Como a distribuição

de carga possui simetria esférica, podemos tomar o elemento de volume dV como o

volume de uma casca esférica de raio r e espessura infinitesimal dr: dV = 4pr 2 dr. Assim,

q

s

r

rg g

A

rg

= 4∫

r2dr

= 4 ⌠ rdr

2

= 4A rdr =

a ⌡ r ∫

2 A ( r2 a2

g − ).

a

A carga total no interior da superfície gaussiana é

a

q+ q = q+ 2 A ( r2 −a2).

s

Como o campo elétrico é radial, o fluxo através da superfície gaussiana é = 4r2

g E, na qual

E é o módulo do campo. De acordo com a lei de Gauss, temos:

Explicitando E, obtemos:

4

Er

2

= q+ 2

A( r2 − a2).

0

g

1 ⎡ q 2

Aa

E = ⎢ + 2

A −

40

⎣r

2

g

r

2

g

Para que o campo seja uniforme, o primeiro e o terceiro termos devem se cancelar, o que

acontece se q 2 2pAa 2 = 0, ou seja, se A = q/2pa 2 . Para a = 2,00 × 10 −2 m e q = 45,0 × 10 −15 C,

obtemos A = 1,79 × 10 −11 C/m 2 .

g

g

2

⎥.


66 SOLUÇÕES DOS PROBLEMAS

52. De acordo com a Eq. 23-16, o campo é zero para 0 ≤ r ≤ a. Assim,

(a) E = 0 para r = 0.

(b) E = 0 para r = a/2,00.

(c) E = 0 para r = a.

Para a ≤ r ≤ b, a carga envolvida q env está relacionada ao volume através da equação

Assim, o campo elétrico é

0

q

env =

⎛ 4r3 4a3⎞

3 3 ⎠

⎟ .

1 qenv ⎛ 4r

4a

E = = −

4

r 4 r ⎝

3 3 ⎠

⎟ = r3 − a3

.

2

3

r

2

(d) Para r = 1,50a, o campo elétrico é

0 2 3 3

0

E =

3

0

(, 150a)

3

− a3

a

⎛ 2,

375⎞

=

(, 150a)

2

3

225 , ⎠

⎟ = (, 184×

10−

9

C/m3)( 0, 100 m)

⎛ 2,

375⎞

3885 (, × 10−

12

C 2

N/C.

/N ⋅ m2)

, ⎠

⎟ = 732 ,

225

0

(e) Para r = b = 2,00a, o campo elétrico é

E =

3

0

( 200 , a)

3

− a3

a

⎛ 7⎞

(,84 1 × 10−

9

C/m3)( 0, 100 m)

⎛ 7⎞

=

a ⎝

⎟ =

12 1

( 200 , )

2

3

4 3885 (, × 10−

12

C

2/N⋅m2) ⎝

4⎠

⎟ = , N/C.

0

(f) Para r ≥ b, o campo elétrico é

qtotal

b3

E = =

4

r 3

r

0 2 0

Assim, para r = 3,00b = 6,00a, o campo elétrico é

E =

3

0

− 3

( 200 , a)

3

− a3

a

⎛ 7 ⎞ ( 1, 84 × 10−

9

C/m3)( 0, 100 m)

⎛ 7 ⎞

=

a ⎝

⎟ =

135

(, 600 )

2

3

36 3885 (, × 10−

12

C

2/N⋅m2)

36⎠

⎟ = , N/C.

0

53. (a) Vamos integrar a densidade volumétrica de carga para toda a esfera e igualar o resultado

à carga total:

∫ ∫ ∫

dx dy dz = 4π dr r2

= Q.

Fazendo r =r s r/R, em que r s = 14,1 pC/m 3 , e executando a integração, obtemos

o que nos dá

4

4

s ⎞ R

Q

R ⎠

⎟ ⎛ ⎝ ⎜

4 ⎠

⎟ = ,

Q = R3 = ( 14, 1× 10−

12

C/m )( 0, 0560 m) = 778 , ×

s

0

R

2

a

3 3

10 − 15 C =

.

7,78 fC.

(b) Para r = 0, o campo elétrico é zero (E = 0), já que a carga envolvida por uma superfície

gaussiana é zero.

De acordo com a lei de Gauss (veja as Eqs. 23-8 a 23-10), em um ponto do interior da esfera

situado a uma distância r do centro, o campo elétrico é dado pela equação

E =

1

4 0

q

r

env ,

2


SOLUÇÕES DOS PROBLEMAS 67

na qual q env pode ser calculada usando uma integral semelhante à do item (a):

Assim,

q

env

r

⎛ s ⎞ r

= drr =

R ⎠

⎟ ⎛ 4

⎝ ⎜

4 2

4 ⎠

⎟ .

0 4

1 sr

4

1

E = =

4

Rr

2

4

0

0

sr

R

2

.

(c) Para r = R/2,00, em que R = 5,60 cm, o campo elétrico é

1 s( R/

200 , )

2

1

E = =

sR

4

R 4

4,

00

0

(, 899×

10

=

9 2 2 −12

3

= 5,

58 × 10 − 3 N/C = 5,58 mN/C.

(d) Para r = R, o campo elétrico é

0

N⋅ m C ) ( 14, 1×

10 C/m )( 0, 0560 m)

400 ,

1 sR2

E = =

sR

= (, 899× 109 N⋅

m

2 C2) (

14

4

R 4

, 1×

10−

12

C/m3

)( 0 , 0560 m )

0

0

= 223 , × 10−

2

N/C = 22,3 mN/C.

(e) A figura a seguir mostra um gráfico do módulo do campo elétrico em função de r.

54. De acordo com a Eq. 23-20, temos:

Do lado de fora da esfera 2, temos:

| q1

|

E

R r | q | ⎛ R⎞

| q |

1 = =

R ⎝

⎟ =

3 1 1 1 1

4 4 3

2 24 2 0 R .

0

0

| q2

| | q |

E2 = =

4

r 4

(, 150R) . 2

2

0 2 0

Igualando as expressões dos campos, obtemos a relação

q

q

2

1

9

= = 1, 125.

8

55. Como

q

r

enc 1

Er () = = () r r dr

4 r 4 r ∫

4

2

0 2 0 2 0


68 SOLUÇÕES DOS PROBLEMAS

temos:

() r = 0 d

[ () .

r dr rEr 2 ]= 0 d

( r dr Kr 6

) = 6 K r

2

2

0 3

56. (a) Φ 2 = EA = 4p(0,20) 2 = 0,50 N·m 2 /C.

(b) Como o fluxo do campo elétrico através da superfície lateral do cilindro é zero, e o fluxo

através da base situada em x = 0 é Φ 0 = −2p(0,20) 2 = 0,25 N·m 2 /C, a lei de Gauss nos dá

q env = â 0 (Φ 2 + Φ 0 ) = (8,85 × 10 −12 )(0,50 N·m 2 /C − 0,25 N·m 2 /C) = 2,2 × 10 –12 C

= 2,2 pC.

57. (a) De acordo com a Eq. 23-16, para r < R, E = 0.

(b) Para r ligeiramente maior que R,

1 q q (, 899× 109

N⋅ m C )( 2,

00 × 10

ER = ≈ =

4

r

2

4

R2

2

0,

250 m

(c) Para r > R,

0

1 q

E = = E

4

r

2

58. De acordo com a lei de Gauss, temos:

0

0

R

R

r

2

2 2

( )

−7

C)

= 288 , × 10

0 250

⎟ = ( 288 , × 104

⎛ , m⎞

NC)

NC.

3,00 m ⎠

⎟ = 200

2

4

NC.

q

×

env r2

(, 80 10

9C/m ) (0,050 m)

= = =

8,85 × 10−

12

C

2/N⋅m2

0

0

2 2

= 71 , N⋅m 2

/C.

59. (a) Nos pontos do plano x = 4,0 cm, o campo total é a soma de um campo que aponta para

a direita, produzido pelas cargas que estão entre x = 25,0 cm e x = 4,0 cm, e um campo que

aponta para a esquerda, produzido pelas cargas que estão entre x = 4,0 cm e x = 5,0 cm. Os

dois campos podem ser calculados com o auxílio da Eq. 23-13. Como s = q/A = rV/A = r∆x,

temos:

( 0, 090 m) ( 0, 010 m) (, 12× 10−

9C/m )

E = − =

3 ( 0, 090 m−

0,

010 m)

= 54 , NC.

2

2

2( 885 , × 10−

12

C

2/N⋅m2)

0 0

(b) Nos pontos do plano x = 6,0 cm, só existe o campo que aponta para a direita, produzido por

todas as cargas da placa, e temos:

( 0, 100 m) (, 12× 10−

9C/m3)( 0,

100 m)

E = =

= 68NC.

2

2( 88 , 5× 10−

12

C

2/N⋅m

2

,

)

0

60. (a) Considere o campo radial produzido no interior de uma distribuição cilíndrica de carga.

O volume envolvido por uma superfície gaussiana cilíndrica de comprimento L e raio r é Lpr 2 .

De acordo com a lei de Gauss, temos:

( ) =

| qenv

| | |

Lr2

| | r

E = =

.

A 0( 2rL)

2 0

0 cilindro

(b) De acordo com a expressão do item anterior, o campo radial aumenta quando r aumenta.

(c) Como o pó está carregado negativamente, o campo aponta para o eixo do cilindro.


SOLUÇÕES DOS PROBLEMAS 69

(d) O campo elétrico é máximo quando o valor de r é tal que toda a carga presente no cano

é envolvida pela superfície cilíndrica, ou seja, quando r = R. Assim, para |r| = 0,0011 C/m 3 e

R = 0,050 m, temos:

E

max

| | R ( 0, 0011 Cm3)( 0, 050 m)

= =

= 31×

10 6 NC.

2 2( 885 , × 10−

12

C

2/N⋅

m 2

,

)

Este campo é atingido na superfície interna do cano.

0

(e) Comparando o valor do campo máximo calculado no item (d) com a condição (1) do enunciado,

vemos que o campo atinge um valor suficiente para produzir uma centelha e que esse

valor é atingido nas proximidades da superfície interna do cano.

61. Podemos usar a Eq. 23-15, a Eq. 23-16 e o princípio de superposição.

(a) Para r < a, E = 0.

(b) Para a < r < b, E = q 4 r

2 0 .

(c) Para r > b, E = ( q + q )/4 0r

2 .

a

a

b

(d) Como E = 0 para r < a, a carga na superfície interna da casca menor é zero e, portanto, a

carga na superfície externa da casca menor é q a . Como E = 0 no interior da casca maior, a carga

envolvida por uma superfície gaussiana situada entre a superfície interna e a superfície externa

da casca maior é zero. Isso significa que a carga da superfície interna da casca maior é 2q a . Em

consequência, a carga da superfície externa da casca maior é q b − q a .

62. De acordo com as Eqs. 23-16 e 23-17, temos:

a)

E

q (, 899× 109 N⋅ m 1 0× 10−

= =

2 C2)( ,

7

C)

= 40 , × 10 6 NC.

4 0 r

2 1 ( 00 , 15m)

2

(b) E = 0, já que o campo no interior de um condutor é zero no regime estacionário.

63. O próton está executando um movimento circular uniforme, no qual a força centrípeta é a

força de atração eletrostática da esfera. De acordo com a segunda lei de Newton, F = mv 2 /r,

na qual F é o módulo da força, v é a velocidade do próton e r é o raio da órbita. O módulo da

força a que o próton está submetido é F = e|q|/4pâ 0 r 2 , na qual |q| é o valor absoluto da carga da

esfera. Assim,

e, portanto,

1 e| q| r

2 =

4 0

4 mv2r

(, 1 67 × 10−

27

0

kg)( 300 , × 105

m/s)

| q | = =

2 ( 0, 0100 m)

= 104 , × 10−

9 C=

1,04 nC.

e (, 899× 109 N⋅ m 2 / C 2 )(, 1 60 × 10−

9

C)

Como a força deve ser atrativa e o próton é uma partícula de carga positiva, a carga da esfera é

negativa: q = –1,04 × 10 –9 C.

64. Como a área da superfície de uma esfera é A = 4pr 2 e a densidade superficial de carga é

s = q/A (sem perda de generalidade, estamos supondo que a carga é positiva), temos:

mv

r

1 ⎛ q ⎞ 1

E = =

r ⎠

⎟ =

4 2

4

0 0

que é o campo produzido por uma carga pontual (veja a Eq. 22-3).

2

0

q

r

2


70 SOLUÇÕES DOS PROBLEMAS

65. (a) Como o volume de uma esfera de raio R/2 é igual a um oitavo do volume de uma esfera

de raio R, a carga da região em que 0 < r < R/2 é Q/8. Assim, a fração pedida é 1/8 = 0,125.

(b) No ponto r = R/2, o módulo do campo é

Q / 8 1 Q

E = =

4

( R / 2)

2

24

R

0

o que equivale a metade do campo na superfície da esfera. Assim, a fração pedida é 1/2 =

0,500.

66. Vamos chamar de q o valor absoluto da carga da esfera e de E o módulo do campo produzido

pela esfera da posição do próton. Quando o próton está a uma distância r ≥ R do centro da

esfera, a força exercida pela esfera sobre o próton é

Note que, para r = R, esta expressão se torna

q eq

F = eE = e

⎛ ⎞

⎝ ⎜ 4

r ⎠

⎟ = 4

r

eq

FR = 4 0R 2

0

2

0 2 0 2

(a) Fazendo F = F R /2 e explicitando r, obtemos r = R 2. Como o problema pede a distância a

partir da superfície da esfera, a resposta é R 2 − R= 0, 41R.

(b) Nesse caso, devemos ter F int = F R /2, na qual F int = eE int e E int é dado pela Eq. 23-20. Assim,

⎛ q ⎞

e

R r 1 eq

R

r 050R

4

3

2 4

R2

⎟ = ⎛ ⎞

⎝ ⎜ ⎠

⎟ ⇒ = = , .

2

0

0

,

.

67. O campo inicial (calculado “a uma pequena distância da superfície externa”, o que significa

que é calculado para r = R 2 = 0,20 m, o raio externo da casca) está relacionado à carga q da

casca através da Eq. 23-15: Einicial = q/

4

0R2 2 . Depois que a carga pontual Q é colocada no

centro geométrico da casca, o campo final no mesmo ponto é a soma do campo inicial com o

campo produzido pela carga Q (dado pela Eq. 22-3):

(a) A carga da casca é

E

final

Q

= Einicial

+ . 4 0R2 2

020 450

q= 4 0R2 2 ( , m)( 2

N/C)

Einicial

=

899 , × 109

N⋅

m2 C2

= 20 , × 10−

9

C =+ 2,0 nC.

(b) A carga Q é

0 2 2 2

( ) =

Q = 4 R E −E

final inicial

( 020 , m)( 180 N/C − 450 N/C)

=− 12 , × 10−

9

C= −12

, nC.

899 , × 109 N⋅m2 C2

(c) Como o campo no interior da casca condutora é zero, o campo produzido pela carga Q

deve ser cancelado pelo campo produzido pela carga da superfície interna da casca. Assim, a

resposta é +1,2 × 10 −9 C.

(d) Como a carga total da casca condutora é +2,0 nC e a carga da superfície interna é +1,2 nC,

a carga da superfície externa é (+2,0 nC) − (+1,2 nC) = +0,80 nC.


SOLUÇÕES DOS PROBLEMAS 71

68. Seja Φ 0 = 10 3 N . m 2 /C. O fluxo total através da superfície do dado é

6 6

∑ n

n= 1 n=

1

n

= = ∑ ( −1) n0 = 0( − 1+ 2− 3+ 4− 5+

6) = 30

.

Assim, de acordo com a lei de Gauss, a carga no interior do dado é

q = = 3

= 3(, 885× 10−

12

C 2 /N⋅m 2 )( 103

N⋅m 2 /C)

= 266 , × 10−

8 C = 26,6 nC.

0 0 0

69. Como todos os campos envolvidos são uniformes, a localização precisa do ponto P não é

importante; o que importa é que o ponto está acima das três placas, com as placas positivamente

carregadas produzindo campos que apontam para cima e a placa negativamente carregada produzindo

um campo que aponta para baixo. De acordo com a Eq. 23-13, o campo total aponta

para cima e o módulo do campo é

1

2

3

10 , × 10

| E | = + + =

2

2

2

2885 (, × 10−

0

0

0

−6

12

C/m 2

C /N⋅

m

Na notação dos vetores unitários, E = (, 565×

10 4 N/C)ˆ

j.

2 2

)

= 565 , × 10

4

NC.

70. Como a distribuição de carga é uniforme, podemos calcular a carga total q multiplicando a

densidade volumétrica r pelo volume da esfera (4p r 3 /3), o que nos dá

(a) De acordo com a Eq. 23-20,

q = × − 4 ( 0, 050)

3

(, 32 10

6

C/m3

)

= 168 , × 10−

9

C=

168 , nC.

3

| q| r (, 899× 109 N⋅ m2)( 1, 68 × 10−9

C)( 00 , 35)

E = =

= 42 , × 103

N/C = 4,2 kN/C.

4

R3

( 0, 050)

3

0

(b) De acordo com a Eq. 22-3,

| q | (, 899× 109 N⋅ m2

C2)( 1,

68 × 10−

9C)

E = =

= 24 , × 10 3 N/C = 2,4 kN/C.

4 0 r

2 (0, 080 m)

2

71. Vamos usar um sistema de coordenadas com a origem no centro da base, o plano xy horizontal,

coincidindo com a base, e o hemisfério no semiplano z > 0.

(a) base = R2( −kˆ) ⋅ Ekˆ = − RE

2

= −( 0, 0568 m)

2(2,50

N/C) =−0,

0253 N⋅

m

2

/C

=− 253 , × 10−

2 N⋅m2.

(b) Como o fluxo através do hemisfério é zero, o fluxo através da superfície curva é

=− =+ 253 , × 10−

2 N⋅m 2

/C.

72. De acordo com a lei de Gauss, a carga total envolvida é

c

base

q = = ×

0 (, 885 10

12

C /N⋅m )( −48N⋅ m C) =− 4,

10

2 2 2 −10

C.

73. (a) De acordo com a lei de Gauss, temos:

1 q 1 ( 4 r3

env / 3)

r

Er ( ) = r = =

4

r3

4

r3

0

0

r

.

3 0


72 SOLUÇÕES DOS PROBLEMAS

(b) A distribuição de carga neste caso é equivalente à da combinação de uma esfera completa

de densidade de carga r, com uma esfera menor de densidade –r ocupando o lugar da cavidade.

Assim, por superposição,

r ( r a a

Er ( ) = + − )

( − )

= .

3

3

3

0 0 0

74. (a) Como o cubo está totalmente no interior da esfera, a carga envolvida pelo cubo é

q env = r V cubo = (500 × 10 –9 C/m 3 )(0,0400 m) 3 = 3,20 × 10 –11 C.

Assim, de acordo com a lei de Gauss,

Φ = q env /â 0 = 3,62 N·m 2 /C.

(b) Como esfera está totalmente no interior do cubo (note que o raio da esfera é menor que

metade da aresta do cubo), a carga total é

q env = r V esfera = (500 × 10 −9 C/m 3 )(4/3)p (0,0600 m) 3 = 4,52 × 10 –10 C.

Assim, de acordo com a lei de Gauss,

Φ = q env /â 0 = 51,1 N·m 2 /C.

75. O campo elétrico aponta radialmente para fora a partir do fio central. Estamos interessados

em determinar o módulo do campo na região entre o fio e o cilindro em função da distância r

entre o fio e o ponto considerado. Como o módulo do campo na superfície interna do cilindro

é conhecido, escolhemos essa superfície como superfície gaussiana. Assim, a superfície gaussiana

escolhida é um cilindro de raio R e comprimento L, coaxial com o fio. Apenas a carga

do fio é envolvida pela superfície gaussiana; vamos chamá-la de q. A área lateral da superfície

gaussiana é 2pRL e o fluxo que atravessa é Φ = 2pRLE. Supondo que o fluxo através das bases

do cilindro é desprezível, este é o fluxo total. Assim, de acordo com a lei de Gauss,

q= 2

RLE =2(, 8 85 × 10 − 12

C

2/N⋅

m

2) (0,014 m)(0,16 m) (2,9 × 104

N/C)

0

= 3,6 × 10−9

C = 3,6 nC.

76. (a) A figura mostra uma seção reta do cilindro (linha cheia).

Considere uma superfície gaussiana na forma de um cilindro de raio r e comprimento l, coaxial

com o cilindro carregado, representada na figura do item a pela linha tracejada. A carga envolvida

pela superfície gaussiana é q = rV = pr 2 lr, na qual V = pr 2 l é o volume do cilindro.

Como, por simetria, o campo elétrico é radial, o fluxo total através do cilindro gaussiano é Φ =

EA cilindro = E(2prl). Assim, de acordo com a lei de Gauss,

2

2

r

0rE l = r l

⇒ E = .

2

(b) Considere uma superfície gaussiana cilíndrica de raio r > R. Se o campo elétrico externo é

E ext , o fluxo através da superfície gaussiana é Φ = 2prlE ext . A carga envolvida é a carga total em

um segmento do cilindro carregado, de comprimento l, ou seja, q = pR 2 lr. Assim, de acordo

com a lei de Gauss,

2

2

R2

0rE l ext = R l

⇒ Eext

= .

2

r

0

0


SOLUÇÕES DOS PROBLEMAS 73

77. (a) Como a carga total da casca é 210 mC e a carga da superfície externa é –14 mC, a carga

da superfície interna é +4,0 mC. (Não existem cargas no interior de condutores em situações

estáticas.)

(b) Como o campo no interior da casca é zero, a carga de +4,0 mC deve cancelar a carga da

partícula que se encontra no interior da cavidade. Assim, a carga da partícula é –4,0 mC.

78. (a) Como o ponto está do lado de fora da esfera, usamos a Eq. 23-15:

1 q (, 899× 109 N⋅ m2

C2)( 6, 00 × 10−

12C)

E = =

4

r

2

(0, 0600 m)

2

0

(b) Como o ponto está no interior da esfera, usamos a Eq. 23-20:

q

E = ⎛ ⎞

⎝ ⎜ R ⎠

⎟ r (, 899× 109

N⋅ m /C )( 6,

00 × 10−

=

4

3

( 004 , m)

3

0

2 2 12

= 15,

0

NC.

C)( 003 , m)

= 25, 3 N/C.

79. (a) O fluxo mássico é wdrv = (3,22 m) (1,04 m) (1000 kg/m 3 ) (0,207 m/s) = 693 kg/s.

(b) Como a água passa apenas pela área wd, o fluxo mássico é o mesmo do item (a), 693 kg/s.

(c) O fluxo mássico é (wd/2) rv = (693 kg/s)/2 = 347 kg/s.

(d) O fluxo mássico é (wd/2) rv = 347 kg/s.

(e) O fluxo mássico é (wd cos u) rv = (693 kg/s) (cos 34 o ) = 575 kg/s.

80. O campo produzido por uma placa carregada é dado pela Eq. 23-13. As duas placas são

horizontais (paralelas ao plano xy), e produzem campos verticais (paralelos ao eixo z), que

apontam para cima acima da posição da placa e apontam para baixo abaixo da posição da placa.

Vamos chamar a placa que está no plano z = 0 de placa A e a placa que está no plano z = 2,00

m de placa B.

(a) O módulo do campo elétrico total na região entre as placas onde se encontra o plano z =

1,00 m, é

A B 800 , × 10−

9C/m

− 3,

00 × 10−

9C/m

| E | = − =

2

2 2885 (, × 10−

12

C

2/N⋅m2)

0 0

2 2

= 282 , × 102

NC=

0,282 N/C.

(b) O módulo do campo elétrico total na região acima das duas placas onde se encontra o plano

z = 3,00 m, é

A B 800 , × 10−

9C/m

+ 3,

00 × 10−

9C/m

| E | = + =

2

2 2885 (, × 10−

12

C

2/N⋅m2)

0 0

2 2

81. (a) O campo é máximo na superfície da bola:

E

max

De acordo com a Eq. 23-20, temos:

E

int

| q | | q |

= ⎛ ⎞

⎝ ⎜ r ⎠

⎟ =

4

4

R

0 2 para r = R 0

| q|

r Emax

R

= = ⇒ r = = 025 , R.

4

R3

4 4

0

= 621 , × 102

NC=

0,621 NC.

2


74 SOLUÇÕES DOS PROBLEMAS

(b) Do lado de fora da bola, temos:

| q | Emax

Eext = = ⇒ r = 20 , R.

4 r 4

0 2

82. (a) Usamos as relações m e g = eE = es/â 0 para calcular a densidade superficial de carga:

mg

×

e 0 (, 911 10 kg)( 9,8 ms)( 8,

85 × 10

= =

e

160 , × 10−

19

C

31 −12

C 2 /N ⋅ m

2

)

= 49 , × 10−

22

Cm2

.

(b) Para equilibrar a força gravitacional, que aponta para baixo, a força elétrica deve apontar

para cima. Como F

qE

e = e, no caso do elétron, q = −e < 0, o campo elétron aponta para baixo.


Capítulo 24

1. (a) Como um ampère equivale a um coulomb por segundo, temos:

⎛ C⋅

h⎞

s

84 A⋅ h=

84 3600 30 10 5 C

s ⎠

⎟ ⎛ ⎝ ⎜ ⎞

h⎠

⎟ = , × .

(b) A variação de energia potencial é

∆U = q∆V = (3,0 × 10 5 C)(12 V) = 3,6 × 10 6 J.

2. A variação é

∆U = e∆V = 1,2 × 10 9 eV.

3. Se o potencial elétrico é zero no infinito, na superfície de uma esfera uniformemente carregada

tem o valor V = q/4pâ 0 R, na qual q é a carga da esfera e R é o raio da esfera. Assim, q =

4pâ 0 RV e o número de elétrons é

4. (a)

(b)

q

n = RV

e

= 4 e

= 10×

10−

6

0 (, m)( 400 V)

= 28 , × 105.

(, 899× 109 N⋅m2

C 2 )( 160 , × 10−

19 C)

E

= F =

e

39 , × 10−

160 , × 10

15

−19

N

C

= 24 , × 104

N/C= 24 , × 10 4 V/m

( )( ) = × =

V

= Es

= 24 , × 10 4 NC 012 , m 2, 9 10

3 V 2,9 kV.

5. O módulo do campo elétrico produzido por uma placa infinita não condutora é E = s/2â 0 , na

qual s é a densidade superficial de carga. O campo é perpendicular à superfície e é uniforme.

Vamos colocar a origem do sistema de coordenadas na posição da placa e o eixo x paralelo ao

campo e positivo no sentido do campo. Nesse caso, o potencial elétrico é

x

V = Vp

Edx = Vp

−Ex,

0

na qual V p é o potencial na posição da placa. As superfícies equipotenciais são superfícies de x

constante, ou seja, planos paralelos à placa. Se a distância entre duas dessas superfícies é ∆x, a

diferença de potencial é

Assim,

∆V = E∆x = (s/2â 0 )∆x.

2

V

×

0 2(, 885 10

12

C ⋅ 50

x

= =

2 N m2)( V)

= 88 , × 10−

3 m = 8,8 mm.

010 , × 10−

6

Cm2

6. (a) V B – V A = ∆U/q = –W/(–e) = – (3,94 × 10 –19 J)/(–1,60 × 10 –19 C) = 2,46 V.

(b) V C – V A = V B – V A = 2,46 V.

(c) V C – V B = 0 (C e B estão na mesma linha equipotencial).


76 SOLUÇÕES DOS PROBLEMAS

7. Ligamos o ponto A à origem seguindo uma trajetória sobre o eixo y, ao longo da qual não

há diferença de potencial (Eq. 24-18:

E⋅ ds = 0). Em seguida, ligamos a origem ao ponto B

seguindo uma trajetória sobre o eixo x; a diferença de potencial nesse percurso é

o que nos dá V B – V A = –32,0 V.

x =4

4

⎛ ⎞

V =− E⋅ ds = − 400∫

xdx = −4 00

4 2

, ,

2 ⎠

⎟ =− 32,

0

0

0

8. (a) De acordo com a Eq. 24-18, a variação de potencial é o negativo da área sob a curva

do campo elétrico em função da distância. Assim, usando a fórmula da área de um triângulo,

temos:

o que nos dá V = 30 V.

1

V − 10 = 2 20 = 20

2 ( )( ) ,

(b) No intervalo 0 < x < 3 m, −∫

E⋅ds é positiva; para x > 3 m, é negativa. Assim, V = V max para

x = 3 m. Usando a fórmula da área de um triângulo, temos:

o que nos dá V max = 40 V.

V − 10 =

1

()(

2 3 20 ),

(c) Diante do resultado do item (b), sabemos que o potencial se anula em um ponto de coordenada

X > 3 m tal que a área de x = 3 m até x = X é 40 V. Usando a fórmula da área de um

triângulo para 3 m < x < 4 m e da área de um retângulo para x > 4 m, temos:

o que nos dá X = 5,5 m.

1

()( 1 20) ( 4)( 20) 40 ,

2 + X − =

9. (a) O trabalho realizado pelo campo elétrico é

f q d

0

q0d

W =

q0E⋅ ds = dz = =

i 2

∫ 0 2

= 187 , × 10−

21 J.

0

0

160×

10−

C)( 580 , × 10−

C/m 2 )( 0, 0356 m)

2885 (, × 10−

12

C

2/N⋅

m2)

(,

19 12

(b) Como V – V 0 = –W/q 0 = –sz/2â 0 , com V 0 = 0 na superfície da placa, o potencial elétrico no

ponto P é

z

(, 580×

10−

12

C/m2)( 0, 0356 m)

V =− =−

=− 117×

10−

2

V

2 2885 (, × 10−

12

C

2/N⋅

m 2

, .

)

0

10. Na região entre as placas, ou seja, para 0 < x < 0,5 m, os campos produzidos pelas duas

placas, dados pela Eq. 23-13, têm o mesmo sentido e o campo total é

⎡ 50 × 10 C/m

⎣ 2885 × 10 C /N⋅m

−9

2

E int =−⎢

(,

−12

2 2)

25 × 10−

9

C/m2

+

ˆ 42

2885 × 10−

12

C /N⋅m

i =− ( ,

(, × 10 3 N/C)i. ˆ

2 2)

Para x > 0,5 m, os campos produzidos pelas duas placas têm sentidos opostos e o campo total é:

=− 50 × 10 C/m

2885 × 10 C /N⋅m

−9

2

E ext

(,

−12

2 2)

ˆ i 25 × 10−

9

C/m2

+

ˆ =− 14×

103

2885 × 10−

12

C /N⋅m i (,

(, N /C)i ˆ.

2 2)


SOLUÇÕES DOS PROBLEMAS 77

De acordo com a Eq. 24-18, temos:

V =− 08 ,

E ⋅

ds = − 05 ,

∫ ∫

E dx −∫

08 ,

int Eext

dx =− ( 42 , × 103)( 05 , ) − 14 , × 103

03 ,

0

0

05 ,

= 25 , × 103

V = 2,5 kV.

11. (a) Para r = 1,45 cm = 0,0145 m, o potencial é

V r V 0 E rdr 0

r

r

qrR dr qr

2

4 3

8 0 R

( ) = ( ) − ( ) = − =−

0

0

899× 109 N⋅ m2 C2 3 50 × 10−

15C

0 0145 m)

2

(, )( , )( ,

=−

200231 ( , m)

3

=− 268 , × 10−

4

V = −0, 268 mV.

(b) Como ∆V = V(0) – V(R) = q/8pâ 0 R, temos:

V R

q

8

R

( ) =− =−

0

0

(, 899× 109 N⋅ m 2 C2)( 3, 50 × 10−

15C)

200231 ( , m)

=− 681 , × 10−

4

V = −0, 681 mV.

3

( )( )

12. A carga é

( 10 m)( −10

, V)

q= 40RV

=

899 , × 109

N ⋅m/C

2 2

=− 11 , × 10 − 9 C =−1,1 nC.

13. (a) A carga da esfera é

(0,15 m)(200 V)

q= 4 RV =

899 , × 10 N⋅m2

C

0 9 2

= 33 , × 10 9 C

− =

3,3 nC.

(b) A densidade superficial de carga é

q 33 , × 10−

9

C

= =

4R2

4( 0, 15 m)

2

14. (a) A diferença de potencial é

= 12 , × 10

−8

C/m 2 = 12 nC/m 2 .

V

A

− q q

VB

= r

− r

= (, 10 × 10−

6

C)( 899 ,

4 4

× 109

N⋅m2

C

0 A 0 B

=− 45 , × 103

V = −4,5

kV.

2

⎛ 1 1 ⎞

) −

2,0 m 10 , m⎠

(b) Como V(r) depende apenas do módulo de r, o resultado é o mesmo do item (a): V = −4,5 kV.

15. (a) O potencial elétrico V na superfície da gota, a carga q da gota e o raio R da gota estão

relacionados através da equação V = q/4pâ 0 R. Assim,

q

R = V

= (, 899× 109 N⋅ m 2 / C 2 )( 30× 10−

12

C)

= 54 , × 10−

4 m = 0,54 mm.

4

500 V

0

(b) Quando as gotas se combinam, o volume total fica duas vezes maior e, portanto, o raio da

nova gota é R9 = 2 1/3 R. Como a carga da nova gota é q9 = 2q, temos:

V 1 q ′

′ =

′ = 1 2q

R

R

= 22/ 3V

4 4 2

= 22/ 3( 500 V) ≈ 790 V.

13 /

0 0


78 SOLUÇÕES DOS PROBLEMAS

16. Como as partículas dos vértices estão todas à mesma distância do centro, e como a carga

total dessas partículas é

2q 1 – 3q 1 + 2 q 1 – q 1 = 0,

a contribuição dessas partículas para o potencial, de acordo com a Eq. 24-27, é zero. Assim, o

potencial é a soma dos potenciais das duas partículas de carga +4q 2 , que estão a uma distância

a/2 do centro:

q

V = 1 4 2 q q

a

+ 1 4 2

4 2 4 a 2

= 16 2

4 a

= 16(, 899 × 109 N⋅ m2 C2)( 600 , × 10 − 12C)

= 221 , V.

0

/ 0

/ 0

039 , m

17. O potencial elétrico no ponto P é

q ⎡ 1 1 1 1⎤

q

V = − − + +

⎣⎢ d d d d⎦⎥ = d

= (, 899×

109

N⋅ m2

C2)( 500 , × 10−

15C)

4

2

8

2400 ( , × 10−

2

m)

0 0

= 562 , × 10− 4

V = 0,562 mV.

18. Quando a partícula 2 está a uma distância infinita, o potencial na origem se deve apenas à

carga da partícula 1:

q1

V1

= = 576 , × 10 2 7

V.

4

d

0

Assim, q 1 /d = (5,76 × 10 7 )/(8,99 × 10 9 ) = 6,41 × 10 −17 C/m. De acordo com o gráfico da

Fig. 24-34b, quando a partícula 2 se encontra no ponto x = 0,080 m, o potencial total é zero.

Assim,

kq2 kq1

q1 0 = + ⇒ 2 = − 008 = − 513 × 10−

18

513 , × 10

q , , C =−

008 , m d

d

160 , × 10

−18

−19

e=−32e.

19. Em primeiro lugar, observamos que V(x) não pode ser igual a zero para x > d. Na verdade,

V(x) é negativa para todos os valores de x maiores que d. Vamos considerar as duas outras regiões

do eixo x, x < 0 e 0 < x < d.

(a) Para 0 < x < d, temos d 1 = x e d 2 = d – x. Assim,

⎛ q1

q

V( x)= k +

d d

1

2

⎞ q

⎟ = ⎛ 1

x + − 3 ⎞

d 24,

0 cm

d − x ⎠

⎟ = 0 ⇒ x = = = 60 , cm.

4

4 4

2 0

(b) Para x < 0, temos d 1 = –x e d 2 = d – x. Assim,

⎛ q1

q

V( x)= k +

d d

1

2

⎞ q

⎟ = ⎛ 1 − x + − 3 ⎞

d 24,

0 cm

4

d − x ⎠

⎟ = 0 ⇒ x =− =− =−12, 0 cm.

2 2

2 0

20. Como, de acordo com o enunciado, existe um ponto entre as duas cargas no qual o campo

elétrico é zero, as cargas têm necessariamente o mesmo sinal, o que significa que os potenciais

elétricos produzidos pelas cargas se somam em todos os pontos do espaço. Assim, não existe

nenhum ponto, além do infinito, no qual o potencial elétrico é zero.

21. De acordo com a Eq. 24-30,

1 p (, 899× 109 N⋅ m2 C2)( 1, 47 × 334 , × 10−

30

C⋅

m)

V = =

4

r

2

( 52, 0×

10−

9m)

2

0

= 163 , × 10−

V = 16,3 V.

5

22. De acordo com as Eqs. 24-14 e 24-30, temos, para θ i = 0º:

p p i ep

Wa

= q ⎛ cos

cos

V = e −

r r ⎠

⎟ = co

cos

− 1

4

4 4

r

0 2

0 2 0 2 s

( )


SOLUÇÕES DOS PROBLEMAS 79

De acordo com o gráfico da Fig. 24-36b, W a = −4,0 × 10 −30 J para θ = 180 o . Assim,

× ⋅ ×

− 40× 10−

30

2899 (, 109N m/C )( 16 , 10

19C)

, J =

( 20 × 10−

9

m)

2

2

p

⇒ p = 56 , × 10−

37

C⋅m.

23. (a) De acordo com a Eq. 24-35, o potencial é

⎡ L 2+ L2 4 + d

2

V = 2 ⎢

4 ln / ( / )

0 ⎣⎢

d

⎦⎥

= 2899 (, × 109

m/ m

N⋅ m2

C2 +

368×

10−

12

006 2 006

)( , C/m)ln ( , ) ( , ) / 4+

( 0 , 08 m

)

⎣⎢

008 , m

= 243 , × 10−

2

V = 24,3 mV.

(b) Por simetria, o potencial no ponto P é V = 0.

24. O potencial é

2 2

1 dq

Q

VP = ⌠ 1

= ⌠ dq = − (, 899× 109 N⋅ m2

C2)( 256 , × 10−

12C)

=−

4 ⌡barra

R 4 R⌡

4

R

371 , × 10−

2

m

=−620 , V.

0 0 barra

0

Note que o resultado não depende do ângulo do arco e é igual ao que seria obtido no caso de

uma carga pontual –Q situada a uma distância R do ponto P. Esta “coincidência” se deve, em

parte, ao fato de que o potencial V é uma grandeza escalar.

25. (a) Como todas as cargas estão à mesma distância R do ponto C, o potencial elétrico no

ponto C é

1 ⎛ Q1 6Q1⎞

5Q1

5899 (, × 109

N⋅ m2

C2)( 420 , × 10−

12C)

V = −

R R ⎠

⎟ =− =−

=−230

, V.

4

4

R

820 , × 10−

2

m

0

0

(b) Todas as cargas estão à mesma distância do ponto P. Como essa distância, de acordo com o

teorema de Pitágoras, é R2 + D2, o potencial elétrico no ponto P é

⎦⎥

1 ⎡

V = ⎢

40

R

Q

1

+ D

2 2

6Q1

⎤ Q

R + D

=− 5 1

2 2

⎦ 4

R + D

0

2 2

5899 (, × 109 N⋅ m 420×

10−

=−

2 C2)( ,

12C)

(, 820×

10−

2

m) 2

+ ( 671 , × 10−

2

m)

2

=−178

, V.

26. Podemos usar o mesmo raciocínio do livro (veja as Eqs. 24-33 a 24-35), mudando apenas o

limite inferior da integral de x = 0 para x = D. O resultado é o seguinte:

⎛ L+ L2 + d

2 ⎞

V = ⎜

⎝ D+ D + d ⎠

= 20 , × 10−

ln

4 2 2

0

40

6

⎛ 4+

17 ⎞

ln 218 , 10 4

1+

2 ⎠

⎟ = × V.

27. De acordo com o que foi observado na solução do Problema 24, as barras podem ser substituídas

por cargas pontuais situadas à mesma distância do ponto considerado. Assim, fazendo

d = 0,010 m, temos:

Q1

3Q1

3Q1

Q1

(, 899 × 109 N⋅ m2

C2)( 30 × 10−

9C)

V = + − = =

4 d 8 d 16 d 8

d

2001 ( , m)

0

= 13 , × 104

V = 13 kV.

0

0

0


80 SOLUÇÕES DOS PROBLEMAS

28. Considere um segmento infinitesimal da barra, situado entre x e x + dx. O segmento tem

comprimento dx e contém uma carga dq = l dx, na qual l = Q/L é a densidade linear de carga.

A distância entre o segmento e o ponto P 1 é d + x e o potencial criado pelo segmento no ponto

P 1 é

1

dV =

4

dq dx

d + x

= 1

.

4

d + x

0 0

Para calcular o potencial total no ponto P 1 , integramos o potencial dV para toda a extensão da

barra, o que nos dá

L dx

Q L

V =

d x

d + x

=

ln( + )

= ln ⎛ 1

4 4

4

L

+ ⎞

d ⎠

0

0

0

0 0

(, 899× 109 N⋅ m2

C2)( 561 , × 10−

15C)

⎛ 012 , m ⎞

=

ln 1+

012 , m

0,

025 m⎠

= 739 , × 10−

3 V = 7,39 mV.

L

29. Usando o mesmo raciocínio dos Problemas 24 e 27, temos:

1 + Q1 1 + 4Q1 1 −2Q1

1

V = +

+

=

4 R 4 2R

4 R 4

0

ο 0

0

Q1

R

(, 899× 109 N⋅ m2

C2)( 7, 21 × 10−

12C)

=

200 , m

= 324 , × 10 2 V

− =

32,4 mV.

30. De acordo com a Eq. 24-30, o potencial produzido pelo dipolo elétrico é

p cos

p cos90° V = = = 0.

4 r 4

r

0 2 0 2

Usando o mesmo raciocínio dos Problemas 24, 27 e 29, o potencial produzido pelo arco menor

é q / 4 r e o potencial produzido pelo arco maior é q / 4 r . Assim, temos:

1 0 1

2 0 2

q1

q2

1 ⎛ q1

q2

V = + = +

4 r 4 r 4 ⎝

r r ⎠

⎟ = 1 ⎛ 2 C

3 C

− 0.

4

40 , cm 60 , cm ⎠

⎟ =

01

0 2 0

1

2

0

31. Como a carga do disco é uniforme, o potencial no ponto P produzido por um quadrante é

um quarto do potencial produzido pelo disco inteiro. Vamos primeiro calcular o potencial produzido

pelo disco inteiro. Considere um anel de carga de raio r e largura infinitesimal dr. A área

do anel é 2pr dr e a carga é dq = 2psr dr. Como todo o anel está a uma distância r2 + D2

do

ponto P, o potencial que o anel produz no ponto P é

O potencial total no ponto P é

R

1

dV =

4

0

2rdr

r

+ D

2 2

=

2

0

rdr

r

+ D

2 2

rdr

V = ⌠

= r2 + D2

= ⎡ R2 + D2

− D⎤

20

⌡ r2 + D2

2

0 2 ⎣

⎦ .

0

0 0

R

.


SOLUÇÕES DOS PROBLEMAS 81

O potencial V q produzido por um quadrante no ponto P é, portanto,

V σ

Vq = = ⎡ R2 + D2

− D⎤

4 8

0

( 773 , × 10−

15C/m )

=

2

888 (, 5× 10−

12

C /N⋅m

2 2

)

( 0, 640 m) 2

+ ( 0, 259 m) 2

−0, 259 m⎤

Para D >> R, temos:

= 471 , × 10−

5 V = 47,1 V.

R

Vq = ⎡ R + D − D⎤

D

D

⎦ ≈ ⎡ ⎛

⎜ + D

+ ⎞

1 1 2

2 2

8

8 2 ⎠

⎟ − ⎤

2

0

0 ⎣

⎥ = R2

= R2/

4

8 2 4

= qq

0 D 0D

40D

e o potencial é aproximadamente igual ao produzido por uma carga pontual q q = pR 2 s/4.

32. Podemos usar a Eq. 24-32, com dq = l dx = bx dx (no intervalo 0 ≤ x ≤ 0,20 m).

(a) Nesse caso, r = x e, portanto,

020 ,

(b) Nesse caso, r = x2 + d

2

e, portanto,

1 bx dx b

V = ⌠

( 020 , )

⎮ = = 36 V.

4

⌡ x 4

020 ,

0 0

0

020 ,

2 2

( ) =

1 bxdx b

V = ⌠⎮

= x + d

4

⌡ x2 + d2

0 40

0

0

18 V.

33. Considere um segmento infinitesimal da barra, situado entre x e x + dx. O segmento tem um

comprimento dx e uma carga dq = l dx = cx dx. A distância entre o segmento e o ponto P 1 é

d + x e o potencial criado pelo segmento no ponto P 1 é

1

dV =

4

dq cx dx

d + x

= 1

.

4

d + x

0 0

Para calcular o potencial total no ponto P 1 , integramos o potencial dV para toda a extensão da

barra, o que nos dá

L

c xdx c

c

V = ⌠⎮

x d x d

d + x

= [

− ln(

4 4 + )] = 4

0 0 0

0

L

0

⎡ ⎛ L ⎞ ⎤

⎢L− dln

1+

d ⎠

⎟ ⎥

= (, 899× 109 N⋅

m2 C2

0,

120

)( 28, 9× 10− 12C/m2

⎛ m ⎞ ⎤

) ⎢0, 120 m− ( 0, 030 m)ln

1+

0,

030 m⎠

⎟ ⎥

= 186 , × 10−

2 V = 18,6 mV.

34. O módulo do campo elétrico é dado por

(,

| E | =− V

,

x

= 250V)

= 67 × 10 2 Vm.

0,015m

Em todos os pontos da região entre as placas, o campo

E aponta na direção da placa negativa.


82 SOLUÇÕES DOS PROBLEMAS

35. De acordo com a Eq. 24-41,

V

Ex ( x, y) =− ∂ ( , ) x , ) y

∂ x

=− ∂ [ 20V/m

2 − 30V/m

2 ]=

∂x

2 2

220 ( , V/m2) x;

=− ∂ V

E ( x, y) ∂ =− ∂ ( 20 , V/m2)

2

y

[ x − 30 , V/m2) y2

]= 230 (, V/m2) y.

y ∂y

Para x = 3,0 m e y = 2,0 m, temos:

E = ( − 12 V/m)i ˆ + ( 12 V/m)j. ˆ

36. De acordo com a Eq. 24-41,

E

dV d

=− ⎛ x

x

⎝ ⎜ ⎞

dx ⎠

ˆ i =− ( 1500 2 )ˆ i = ( − 3000 )ˆ i = ( − 3000 V/m2)( 0, 0130 m)i ˆ = ( −39

V/m)i. ˆ

dx

(a) O módulo do campo elétrico é E = 39 V/m.

(b) O campo elétrico aponta para a placa 1.

37. De acordo com a Eq. 24-41,

E

E

E

x

y

z

V

=− ∂ yz

∂ x

=− 200 ,

2

V

=− ∂ xz

∂ y

=− 200 ,

2

V

=− ∂ ∂ z

= −4, 00xyz

e, portanto, no ponto (x, y, z) = (3,00 m, –2,00 m, 4,00 m), temos

O módulo do campo é, portanto,

(E x , E y , E z ) = (64,0 V/m, –96,0 V/m, 96,0 V/m).

E = E2 + E2 + E2 = 150 Vm=

150 NC.

x y z

38. (a) De acordo com o resultado do Problema 24-28, o potencial elétrico em um ponto de

coordenada x é

No ponto x = d, temos:

V =

Q ⎛ x−

L⎞

ln

L ⎝

x ⎠

⎟ .

4 0

Q ⎛ d + L⎞

(, 899× 109 N⋅ m2 C2)( 436 , × 10

V = ln

L ⎝

d ⎠

⎟ =

4

0,

135 m

0

= ( 290 , × 10−

3 ⎛

1 0 , 135 m⎞

V

290mV

1 0 , 135 m⎞

)ln +

( , )ln

⎟ = +

d

d ⎠

⎟ .

−15

C)

1+

0 , 135 m⎞

ln

d

(b) Derivando o potencial em relação a x, temos:

V Q x L Q

Ex =− ∂ ∂ x

=− ∂ ⎛ − ⎞

ln

L ∂x

x ⎠

⎟ =−

4

4

L

0 0

x ⎛ 1 x L Q

− ⎞

x−

L⎝

x x2

⎟ =−

4 x( x−

L)

0

(, 899× 109

N⋅m =−

2 C2)( 43, 6×

10−

15C)

(, 392× 10−

4

N ⋅m

C

=−

,

xx ( + 0, 135 m)

xx+ ( 0, 135 m)

2

)


SOLUÇÕES DOS PROBLEMAS 83

o que nos dá

| E |

x =

(, 392× 10 − 4

N⋅m2 C)

( 0,

392 mN⋅

m2 C)

=

.

xx ( + 0, 135 m)

xx+ ( 0, 135 m)

(c) Como E x < 0, o ângulo que o campo faz com o semieixo x positivo é 180 o .

(d) Para x = d = 6,20 cm, temos:

(, 392× 10 )

| E x | =

− 4

N⋅m2

C

= 0, 0321 N/C = 32,1 mN/C.

( 0, 0620 m)( 0, 0620 m+

0,

135 m)

(e) Considere dois pontos muito próximos da barra situados na mesma reta vertical, um de cada

lado da barra. A componente E y do campo elétrico é dada pela diferença de potencial elétrico

entre os dois pontos dividida pela distância entre os pontos. Como os pontos estão situados à

mesma distância da barra, a diferença de potencial é zero e, portanto, E y = 0.

39. O campo elétrico em uma direção qualquer é o negativo da derivada do potencial V em

relação à coordenada nessa direção. Neste problema, as derivadas em relação às direções x e y

são as inclinações das retas das Figs. 24-46a e 24-46b, respectivamente. Assim, temos:

V

Ex =− ∂ ∂ x

=− ⎛ − 500 V⎞

⎟ = 2500 V/m = 2500 N/C

0,20 m

V

Ey =− ∂ ∂ y

=−⎛ ⎝ ⎜ 300 V ⎞

⎟ =− 1000 V/m =−1000

N/C

0,30 m

A força a que o elétron é submetido é dada por F

= qE

, na qual q = –e. O sinal negativo associado

ao valor de q significa que F aponta no sentido oposto ao de E. Para e = 1,60 × 10 –19 C,

temos:

F = ( − 160 , × 10−

19

C)[( 2500 N/C)i ˆ −( 1000 N/C)j] ˆ = ( − 40 , × 10−

N)i ˆ + (, 160×

10−

N)j ˆ

16 16

.

40. (a) Considere um segmento infinitesimal da barra situado entre x e x + dx. A contribuição

do segmento para o potencial no ponto P 2 é

Assim,

xdx

dV = 1 ( )

40

x + y

L

2 2

1

=

4

0

cx

x + y dx .

2 2

( )

c x

V dV

x y dx c

= P =

= L2 + y2

− y

barra 4

2

0 +

2

⌡ ⎮

40

0

= (, 899× 109 N⋅ m 2 C2)( 499 , × 10−

12C/m

2 ) ( 0,

100 m )

2

+ ( 0, 0356 m )

2

−0,

0356 m

= 316 , × 10−

2

V = 31, 6mV.

(b) A componente y do campo é

( )

E

y

V

=− ∂ ∂y

P

( ) = −

c d

c ⎛ y ⎞

=− L2 + y2

− y 1

40

dy

4 ⎜ 0 ⎝ L2 + y2

= (, × ⋅ )( , ×

,

899 109 0

N m2 C2 499 10

12C/m2 0356 m

) ⎜1−

⎝ ( 0, 100 m) + ( 0, 0356 m)

= 0,

298 N/C.

2 2


84 SOLUÇÕES DOS PROBLEMAS

(c) Calculamos o valor da componente E y do campo elétrico a partir do potencial que foi calculado

apenas em pontos do eixo y. Para calcular o valor da componente E x teríamos que calcular

primeiro o potencial em um ponto arbitrário do plano xy, da forma V(x,y), para depois calcular

o campo E x usando a relação E x = −∂V(x,y)/∂x.

41. Aplicando a lei de conservação da energia à partícula livre que está livre para se mover,

obtemos:

0 + U i = K f + U f ,

na qual U i = qQ/4pâ 0 r i , U f = qQ/4pâ 0 r f , r i é a distância inicial entre as partículas e r f é a distância

final.

(a) Como as partículas, por terem cargas de mesmo sinal, se repelem, o valor inicial da distância

entra elas é r i = 0,60 m e o valor final é 0,60 m + 0,40 m = 1,0 m. Assim, temos:

qQ qQ

Kf = Ui − U f = −

4

r 4

r

0 i 0 f

= (, 899× 109

N⋅

m 2 /C 2 )( , )( ) ⎛ 1 1

75× 10−

6

20 10

6

C ×

C −

060 , m 100 , m⎠

⎟ =

090 , J.

(b) Como as partículas, por terem cargas de sinais opostos, se atraem, o valor inicial da distância

entre elas é 0,60 e o valor final é 0,60 m − 0,40 m = 0,20 m. Assim, temos:

qQ qQ

Kf = Ui − U f =− +

4

r 4

r

0 i 0 f

=− (, 899× 109

N⋅m 2

/ C 2

⎛ 1 1

)( 75 , × 10−

6

C)( 20 × 10−

6

C)

060 , m 020 , m

= 45 , J.

42. (a) De acordo com a Eq. 24-43, temos:

U k qq k e 2

× ⋅ ×

1 2 (, 899 109 N m C2)( 1,

60 10

19C)

= = =

r r

200 , × 10−

9m

2 2

= 115 , × 10

−19

J.

(b) Como U > 0 e U ∝ r –1 , a energia potencial U diminui quando r aumenta.

43. Tomando a energia potencial elétrica do sistema como zero no infinito, a energia potencial

inicial U i do sistema é zero. Como a energia final é

q2

⎛ 1 1 1 1 1 1 ⎞ q

U f = − − + − − +

a a a a a a⎠

⎟ = 2

2

4

2

2 4 a ⎝

o trabalho necessário para montar o arranjo é

0

2q2

⎛ 1 ⎞

W = U = Uf − Ui = U f = −

4 a ⎝

⎜ 2

2

0

0

1

2

− 2

⎟ ,

2899 (, × 109

N⋅ m2

C )( 230 , × 10−

C)

=

0,

640 m

2 12 2

1 ⎞

− 2

2

=−1,92 × 10− 13 J = −0,192 pJ.

44. O trabalho executado é igual à variação da energia potencial elétrica. De acordo com as

Eqs. 24-14 e 24-26, temos:

( 3e− 2e+

2e)( 6e) (, 899× 109 N⋅m2 C2)( 18)(

160 , × 10

W =

=

4

r

0,

020 m

0

−19

C)

2

= 21 , × 10

−25

J.


SOLUÇÕES DOS PROBLEMAS 85

45. A energia potencial inicial da segunda partícula é U i = q 2 /4pâ 0 r 1 , a energia cinética inicial é

K i = 0, a energia potencial final é U f = q 2 /4pâ 0 r 2 e a energia cinética final é K f = mv 2 /2, na qual

v é a velocidade final da partícula. De acordo com a lei de conservação da energia, temos:

Explicitando v, obtemos

2q2

⎛ 1 1⎞

v = −

4

m⎝

r r ⎠

q2

q2

1

Ki + Ui = Kf + Uf

⇒ = + mv2

.

4

r 4

r 2

0 1 2

01

0 2

=

(, 899× 109

N⋅m2 C2 )( 2)

(, 31×

10−

6C)

2

⎛ 1

1

20 × 10 kg ⎝

090 , × 10 m 25 , × 10

−6 −3 −3m

= 25 , × 10 3 ms=

2,5 km/s.

46. Se q 1 é a carga do anel, q 2 é a carga pontual, r é o raio do anel e x é a distância entre a carga

pontual e o centro do anel, o trabalho realizado por um agente externo é

W U qq 1 2⎛

1 1 ⎞

= = −

4 ⎝

⎜ r r2 + x2

0

= ( − 90 , × 10−

9

C)( − 60 , × 10 − 12C)( 8,99 × 109N⋅m 2/C2

1

1

) ⋅⎢

⎣⎢

15 , m ( 15 , m) + (, 30m)

= 18 , × 10−

10 J.

2 2

47. Como no caso da força gravitacional, discutido no Capítulo 13, a velocidade de escape pode

ser calculada igualando a energia cinética inicial ao valor absoluto da energia potencial:

⎦⎥

1

mv2

2 = eq

eq

v

4

r

⇒ = 2

rm

=

0 0

(, 16× 10−

19

C)( 16 , × 10−

15

C)

2 (, 8 85 × 10−

12

F/m)( 001 , )(, 9 11 × 10−

31

kg)

= 22 , × 104

m/s = 22 km/s.

48. A variação da energia potencial elétrica do sistema elétron-casca quando o elétron parte da

posição inicial e chega à superfície da casca é ∆U = (–e)(–V) = eV. Para que essa energia seja

igual à energia inicial do elétron, K = m v 2

/ 2, a velocidade inicial do elétron deve ser

i e i

v

i

2 U 2eV

216 (, × 10−

19C)( 125 V)

= = =

m m 911 , × 10−

31

kg

e

e

= 663 , × 10 6 m/s.

49. Tomando a energia potencial como zero quando o elétron móvel está muito longe dos elétrons

fixos, a energia potencial final do elétron móvel é U f = 2e 2 /4pâ 0 d, na qual d é metade da

distância entre os elétrons fixos. A energia inicial do elétron móvel é K i = mv 2 /2, na qual m é a

massa e v é a velocidade inicial do elétron; a energia cinética final é zero. De acordo com a lei

de conservação da energia, temos:

o que nos dá

1 2e2

Ki

= Uf

⇒ mv2

= ,

2 4 0 d

4e

(, 899× 10 N⋅ m C )( 4)( 160 , × 10−

v = =

4 0 dm

( 0, 010 m)( 9,11 × 10−

31

kg)

2 9 2 2 19

C) 2

= 32 , × 102

ms=

0,32km/s.


86 SOLUÇÕES DOS PROBLEMAS

50. O trabalho necessário é

1 ⎛ qQ 1 qQ 2 ⎞ 1 ⎛ qQ 1 ( q

W = U

= +

d d ⎠

⎟ = + − 1/2)

Q⎞

0.

4

2

4

2d

d ⎠

⎟ =

0

51. (a) Seja c o comprimento do retângulo e l a largura. Como a carga q 1 está a uma distância c

do ponto A e a carga q 2 está a uma distância l, o potencial elétrico no ponto A é

1 ⎛ q1 q2⎞

⎛ −50

VA = +

c ⎠

⎟ = 899× 109

,

(, N⋅

m

2/C2 ×

)

4

l

015 , m

0

=+ 60 , × 10 4

V.

0

C 20 , × 10 C⎞

+

0,

050 m ⎠

10 − 6 − 6

(b) Como a carga q 1 está a uma distância l do ponto B e a carga q 2 está a uma distância c, o

potencial elétrico no ponto B é

1 ⎛ q1 q2⎞

⎛ −50

VB = +

c ⎠

⎟ = 899× 109

,

(, N⋅

m

2/C2 × 10

)

− 6C

20 , × 10 ⎞

+

− 6C

4

l

0,

050 m 015 , m ⎠

0

=− 78 , × 10 5

V.

(c) Como a energia cinética é zero no início e no final do percurso, o trabalho realizado por um

agente externo é igual à variação de energia potencial do sistema. A energia potencial é o produto

da carga q 3 pelo potencial elétrico. Se U A é a energia potencial quando q 3 está na posição

A e U B é a energia potencial quando q 3 está na posição B, o trabalho realizado para deslocar a

carga de B para A é

W = U A – U B = q 3 (V A – V B ) = (3,0 × 10 –6 C)(6,0 × 10 4 V + 7,8 × 10 5 V) = 2,5 J.

(d) Como o trabalho realizado pelo agente externo é positivo, esse trabalho faz a energia do

sistema aumentar.

(e) e (f) Como a força eletrostática é conservativa, o trabalho não depende do percurso; assim,

as duas respostas são iguais à do item (c).

52. De acordo com a Eq. 24-5, a Eq. 24-30 e o gráfico da Fig. 25-5b, a energia potencial do

elétron no ponto de máxima aproximação do dipolo (K f = 0) é

na qual r = 0,020 m.

U qV e p ep

f = = − ⎡ ⎣ ⎢ cos( 180o)

4

r

= 4

r

0 2 0 2

,

De acordo com o gráfico da Fig. 25-51b, K i = 100 eV. Como K f = U i = 0, a lei de conservação

da energia nos dá U f = K i = 100 eV = 1,6 × 10 −17 J. Assim,

ep

4

r

16 10

17

002

2

= 16× 10−

(, ×

J)( , )

, J ⇒ p=

= 45 , × 10−

12

C⋅

m.

( 8, 99 × 109N⋅ m

2/C2)( 16 , × 10−

19

C)

0 2 17

53. (a) Tomando como referência uma energia potencial zero quando a distância entre as esferas

é infinita, a energia potencial elétrica do sistema é

q2 (, 899× 109 N⋅ m C )( 5, 0× 10−

6

C)

U = =

4 0 d

10 , 0 m

2 2 2

= 0,

225 J

(b) As duas esferas se repelem com uma força cujo módulo é

q2

(, 899× 109 N⋅ m C )( 5, 0× 10−

6

C)

F = =

4 d

2 0 ( 1,00 m) 2

2 2 2

= 0,

225

N.


SOLUÇÕES DOS PROBLEMAS 87

De acordo com a segunda lei de Newton, a aceleração de cada esfera é igual à força de repulsão

dividida pela massa da esfera. Sejam m A e m B as massas das esferas. A aceleração da esfera A é

e a aceleração da esfera B é

a

a

A

B

= F

m

= 0,

225 N

= 45,

0 ms 2

5,0 × 10−

3

kg

A

= F

m

= 0,

225 N

= 22, 5 ms 2 .

10 × 10−

3

kg

B

(c) A energia potencial inicial, calculada no item (a), é U = 0,225 J. A energia cinética inicial é

zero, já que as esferas partem do repouso. A energia potencial final é praticamente zero, já que

a distância entre as esferas é muito grande. A energia cinética final é 1 2 1

2

mAvA +

2

mBvB

2 , na qual

v A e v B são as velocidades finais. Assim, de acordo com a lei de conservação da energia,

1 1

U = m v + m v

2 2

De acordo com a lei de conservação do momento,

2 2

A A B B.

0 = m v + m v

A A B B.

Explicitando v B na equação do momento, obtemos vB =−( mA/ mB)

vA. Substituindo na equação

da energia, obtemos

e, portanto,

1

U = ( m / m )( m + m ) v2

,

2

A B A B A

v

A

=

2UmB

2( 0,

225 J)(10× 10−

3

kg)

=

m ( m + m ) (, 50× 10− 3

kg)(5,0 × 10− 3

kg + 10 × 10−

3

kg)

A A B

= 775 , m/s.

e

v

B

mA

=−

m

v A =−

o que nos dá | v B | = 387 , m/s.

B

⎛ 5,0 × 10−

3

kg⎞

10 × 10−

kg ⎠

⎟ (7,75 m/s) =−387 , m/s,

3

54. (a) Usando a relação U = qV, podemos “traduzir” o gráfico de tensão da Fig. 24-54 para

um gráfico de energia em unidades de elétrons-volts. De acordo com o enunciado, a energia

cinética do pósitron, em elétrons-volts, é K i = mv 2 /2e = (9,11 ×10 −31 )(1,0 × 10 7 ) 2 /2(1,6 × 10 219 ) =

284 eV. Como este valor é menor que a altura da ìbarreiraî de energia potencial, 500 eV, o movimento

do pósitron se inverte e ele emerge da região em que existe campo em x = 0.

(b) De acordo com a lei de conservação da energia, a velocidade final do pósitron é igual à

velocidade inicial, 1,0 × 10 7 m/s.

55. Vamos chamar de r a distância pedida. A energia cinética inicial do elétron é Ki mevi

na qual v i = 3,2 × 10 5 m/s. Quando a velocidade dobra de valor, a energia cinética passa a ser

4K i . Assim,

o que nos dá

r

e

U

= − 2

3

=− K =−( 4Ki − Ki) = − 3Ki = − mv2

e i ,

4 0 r

2

2e2

34

mv

= ( )

=

0

e

2

i

216 (, × 10−

19

C)(,

2

8 99 × 109

N⋅

m2

C

3911 (, × 10−

19

kg)( 3,2 × 105ms)

2

2

)

= 16 , × 10−

9

m.

= 1 2

2

,


88 SOLUÇÕES DOS PROBLEMAS

56. De acordo com o gráfico da Fig. 24-53b, a energia potencial total do sistema é zero quando

a partícula 3 está passando pelo ponto x = 0,10 m. De acordo com a Eq. 24-43, temos:

e, portanto,

o que nos dá q 3 = −5,7 µC.

qq 1 2 qq 1 3

qq 3 2

0 = +

+

4 d 4 ( d + 010 , m) 4

( 01 , 0m) ,

q

3

0

0

⎛ q q q q

d + 010 + ⎞

, m 0,

10 m⎠

⎟ =− d

1 2 1 2

57. Vamos chamar de 1 e 2 as partículas fixas e de partícula 3 a partícula móvel. Vamos também

usar o índice 0 para representar a posição na qual as coordenadas da partícula 3 são (0, 0)

e o índice 4 para representar a posição na qual as coordenadas são (0, 4 m). Aplicando a lei de

conservação de energia à partícula 3, temos:

0

,

na qual

K 0 + U 0 = K 4 + U 4

qq 1 3

qq

U =

+

4

x2 + y2

4

x

0

0

2 3

+ y

2 2

.

(a) Fazendo q 1 = q 2 = q e explicitando K 4 , obtemos:

2qq

3

K0 = K4 + U4 − U0

= 12 , J + ⎜

40

1 1 ⎞

− ⎟

x2 + y2

| x | ⎠

= 12 , J − ( 899 , × 10 9 N⋅ m /C )( 2)( 50 × 10−

6 C)(

15 × 1

= 30 , J.

2 2

0−6

C)

1 1

9m2 + 16 m2

3 m⎠

(b) Fazendo K f = 0, temos:

K0 + U0

= U f ⇒

2qq

3 1 1 ⎞

30 , J = −

,

40

3 9

2

+ y2

⎜ m m ⎠

o que nos dá y = −8,5 m. (A raiz negativa foi escolhida porque é pedido o valor negativo de y.)

A figura a seguir mostra a energia cinética da partícula 3 em função de y.

Como se pode ver no gráfico, K = 3,0 para y = 0 e K = 0 para y = ±8,5. A partícula oscila entre

os dois pontos de retorno, y = +8,5 e y = −8,5.


SOLUÇÕES DOS PROBLEMAS 89

58. (a) Quando o próton é liberado, sua energia é K + U = 4,0 eV + 3,0 eV = 7,0 eV (a energia

potencial inicial pode ser obtida na Fig. 24-54). Isso significa que, se traçarmos uma reta horizontal

para V = 7,0 V na Fig. 24-54, o ponto de retorno estará na interseção da reta horizontal

com o gráfico do poço de potencial. Fazendo uma interpolação no trecho da reta entre 1,0 cm e

3,0 cm, descobrimos que o ponto de retorno é, aproximadamente, x = 1,7 cm.

(b) Para uma energia total de 7,0 eV, não existe ponto de retorno do lado direito; de acordo com

a lei de conservação da energia, a velocidade do próton no ponto x = 6,0 cm é

v =

220 ( , eV)( 1, 6×

10−

19

J/eV)

167 , × 10−

27

kg

= 20 km/s.

(c) O campo elétrico em qualquer ponto do gráfico da Fig. 24-54 é o negativo da inclinação do

gráfico nesse ponto. Uma vez conhecido o campo elétrico, a força a que o próton está submetido

pode ser calculada a partir da relação F = eE. Na região ligeiramente à esquerda do ponto

x = 3,0 cm, a inclinação do gráfico é (3 V − 9 V)/(0,03 m − 0,01 m) = −300 V/m, o campo é

E = 300 V/m e o módulo da força é F = (1,6 × 10 −19 C)(300 V/m) = 4,8 × 10 −17 N.

(d) A força F, como o campo E , aponta no sentido positivo do eixo x.

(e) Na região ligeiramente à direita do ponto x = 5,0 cm, a inclinação do gráfico é (5 V − 3 V)/

(0,06 m − 0,05 m) 200 V/m, o campo é E = −200 V/m e o módulo da força é F = (1,6 × 10 −19

C)(200) = 3,2 × 10 −17 N.

(f) A força F, como o campo E, aponta no sentido negativo do eixo x.

59. (a) O campo elétrico na região entre as placas da Fig. 24-55 aponta para a esquerda, já que

o campo elétrico sempre aponta do potencial mais alto para o potencial mais baixo. Como, de

acordo com o enunciado, a força aponta para a esquerda, no mesmo sentido que o campo, a

carga da partícula é positiva. Trata-se, portanto, de um próton.

(b) De acordo com a lei de conservação da energia, temos:

o que nos dá

1

K0 U0 Kf Uf mv p 0 2 1

+ = + ⇒ + eV1

= mv2

p f + eV2

,

2

2

v

f

= e

v0 2 + 2

m V 1 − V 2 = 90 × 103 2

+ 216 (, 10

( ) ( m/s)

167 , × 10

p

×

−19

−27

C)

( − 70 V+

50 V)

= 653 , × 104

m/s = 653 , km/s.

Note que a solução não depende do valor de d.

60. (a) Como o trabalho realizado é igual ao aumento de energia potencial, temos:

Q

W = q V = −e

⎛ ⎞

( )

⎝ ⎜ R⎠

⎟ = 216 , × 10−

13

J,

4

o que nos dá

Q = −1,20 × 10 −5 C = −12,0 µC.

(b) Como o trabalho é o mesmo, o aumento de energia potencial é

∆U = 2,16 × 10 −13 J = 0,216 pJ.

0


90 SOLUÇÕES DOS PROBLEMAS

61. A distância entre dois pontos de uma circunferência de raio R separados por um ângulo θ

(em radianos) é r = 2R sen(θ/2). Usando este fato, distinguindo os casos em que N é ímpar e

os casos em que N é par e calculando as interações entre pares de elétrons, podemos obter a

energia potencial total nos dois casos.

No caso da configuração 1, temos:

U

1, N = par

=

Nke

2R

2

N

2 1

j=

1

1 1

( j 2) + ⎟

sen 2⎟ , U 1 , N = ímpar =

⎠ ⎟

Nke

2R

2

N −1

2

j=

1

sen

1

( j

2)

na qual k = 1/4pâ 0 e θ = 2p /N.

No caso da configuração 2, temos:

U

2,

N = par

=

( )

N − 1 ke

2R

2

N

2 1

⎜∑

j=

1

1

sen j

′ 2

( ) +

2⎟

,

U

2,

N = ímpar

( N − 1)

ke

=

2R

2

N −3

2

j=

1

1

sen( j ′ 2) + 5⎟

2⎟

na qual θ ′ = 2p /(N − 1).

Os resultados são todos da forma

U

1 ou 2

ke2

= × um número adimensional.

2R

A tabela a seguir mostra os números adimensionais para vários valores de N, nas duas configurações.

Os valores da tabela são as energias potenciais divididas por ke 2 /2R.

N 4 5 6 7 8 9 10 11 12 13 14 15

U 1 3,83 6,88 10,96 16,13 22,44 29,92 38,62 48,58 59,81 72,35 86,22 101,5

U 2 4,73 7,83 11,88 16,96 23,13 30,44 39,92 48,62 59,58 71,81 85,35 100,2

Vemos que a energia potencial da configuração 2 é maior que a da configuração 1 para N < 12;

para N ≥ 12, a energia potencial da configuração 1 é maior.

(a) O menor valor para o qual U 2 < U 1 é N = 12.

(b) Para N = 12, a configuração 2 é formada por 11 elétrons distribuídos ao longo de uma

circunferência a intervalos iguais e um elétron central. A distância entre um dos elétrons da

circunferência, e 0 , e o centro da circunferência é R; a distância entre e 0 e os vizinhos mais próximos

que pertencem à circunferência (um de cada lado) é

⎛ ⎞

r = 2Rsen R

⎟ ≈ 056 , .

11

A distância entre e 0 e os segundos vizinhos mais próximos é

⎛ 2

r = 2Rsen R

⎟ ≈ 11 ,

11

Assim, existem apenas dois elétrons mais próximos de e 0 que o elétron central.


SOLUÇÕES DOS PROBLEMAS 91

62. (a) Se as duas esferas estão ligadas por um fio condutor, os potenciais V 1 e V 2 são necessariamente

iguais. Assim, a resposta é que o potencial V 1 se torna igual ao potencial V 2 .

Fazendo V 1 = q 1 /4pâ 0 R 1 = V 2 = q 2 /4pâ 0 R 2 , q 1 + q 2 = q e R 2 = 2R 1 , podemos obter os valores de

q 1 /q e q 2 /q.

(b) q 1 /q = 1/3 = 0,333.

(c) q 2 /q = 2/3 = 0,667.

(d) A razão entre as densidades superficiais de carga das duas esferas é

1

2

= q1 4

R1 2

4

= ⎛ ⎞

⎝ ⎜ q q

q R q q⎠

2 2 2 1

2

R2

R ⎠

1

2 2

1 2

= ⎛ 200

⎝ ⎜ ⎞

2⎠

⎟ ⎛ ⎝ ⎜ ⎞

1⎠

⎟ = , .

63. (a) O potencial elétrico é a soma das contribuições das esferas. Seja q 1 a carga da esfera

1, q 2 a carga da esfera 2 e d a distância entre as esferas. O potencial do ponto a meio caminho

entre os centros das esferas é

q + q × ⋅ ×

1 2 (, 899 109 N m2 C2 )( 1,

0 10

8

C−3, 0×

10 − 8

C)

V = =

=− 18 , × 10

4 0 d 2

10 , m

(b) A distância entre o centro de uma das esferas e a superfície da outra é d – R, na qual R é o

raio das esferas. O potencial na superfície de cada esfera é a soma da contribuição da própria

esfera com a contribuição da outra esfera. O potencial na superfície da esfera 1 é

V

1

1 ⎡ q1 q2 ⎤

9

10

= + 899 10

4 0 ⎣⎢ R d − R⎦⎥ = (,

× ⋅ ,

N m2 C2 ⎡ × 10 ×

)

− 8C

30 , 10 ⎤

− 8C

⎣ 0,

030 m 20 , m−

0,

030 m

= 2,9× 10 3 V = 2,9 kV.

(c) O potencial na superfície da esfera 2 é

V

2

1

=

4

0

⎡ q1 q2 ⎤

9

10

+ 899 10

⎣⎢ d − R R ⎦⎥ = (, × ⋅

,

N m2 C2 ⎡ × 10 ×

)

− 8C

30 , 10 ⎤

− 8C

⎣ 20 , m−

0,

030 m 0,

030 m

=−8, 9× 103V

= −8,

9 kV.

64. Como o potencial elétrico é o mesmo em qualquer ponto do interior de um condutor, o

potencial elétrico no centro também é +400 V.

65. Se o potencial elétrico é zero no infinito, o potencial na superfície da esfera é dado por V =

q/4pâ 0 r, na qual q é a carga da esfera e r é o raio da esfera. Assim,

( 015 , m)( 1500 V)

q= 4 0 rV =

899 , × 109

N⋅m

C

2 2

= 2,

5× 10 − 8 C.

66. Como a distribuição de carga tem simetria esférica, podemos escrever:

1 qenv

Er () = ,

r

4 0

na qual q env é a carga envolvida por uma superfície esférica de raio r e centro na origem.

(a) Como R 1 < R 2 < r, temos:

( ) =

E r

q + q × ⋅ ×

1 2 (, 899 109 N m2 C2)( 2,

00 10

6C+ 100 , × 10 C

=

− 6

)

40r

2 ( 400 , m)

2

= 169 , × 103

V/m = 1,69 kV/m.

2

V.


92 SOLUÇÕES DOS PROBLEMAS

(b) Como R 1 < r < R 2 , temos:

E r

q1

4

r

( ) = =

(, 899× 10 N⋅ m 2 C )( 2, 00 × 10−

C)

( 0, 700 m)

2

0 2 9 2 6

= 367 , × 104

V/m = 36,7 kV/m.

(c) Como r < R 1 < R 2 , E = 0.

Podemos calcular o potencial elétrico usando a Eq. 24-18:

(d) Como R 1 < R 2 < r, temos:

V r

( ) =

= 674 , × 103

V = 6,74 kV.

(e) Como R 1 < R 2 = r, temos:

V r

( ) =

r ′

V( r) − V( r′

) =

E( r)

dr.

r

q + q × ⋅ ×

1 2 (, 899 109 N m2 C2)( 2,

00 10

6C+ 100 , × 10

=

− 6C)

4

r

( 400 , m)

0

q + q × ⋅ ×

1 2 (, 899 109 N m2 C2)( 2,

00 10

6C+ 100 , × 10

=

− 6C)

4

r

(, 100 m)

= 270 , × 104

V = 27,0 kV.

(f) Como R 1 < r < R 2 , temos:

V r

1

4

⎛ q

r

( ) = +

0

0

q ⎞

R ⎠

⎟ = 899 × 109 ⋅ 2

2,

(, N m2 00 × 10−

⎛ C 100 , × 10−

C )

+

0,

700 m 100 , m

1 2

= 34 , 7× 10 4 V = 34,7 kV.

(g) Como r = R 1 < R 2 , temos:

V r

1

4

⎛ q

r

( ) = +

0

2

6 6

q ⎞

R ⎠

⎟ = 899 × 109 ⋅ 2

2,

(, N m2 00 × 10−

⎛ C 100 , × 10−

C )

+

0,

500 m 100 , m

1 2

= 45 , 0× 10 4 V = 45,0 kV.

(h) Como r < R 1 < R 2 ,

2

6 6

1 ⎛ q1

q2

V = +

4 ⎝

R R ⎠

⎟ = 899 × 109 ⋅ 2

200 ,

(, N m2 ⎛ × 10 ×

C )

− C 100 , 10

+

0,

500 m 100 , m

0

1

2

6 6

= 450 , × 10 4 V = 45,0 kV.

(i) Em r = 0, o potencial é o mesmo que no item (h), V = 45,0 kV.

(j) As figuras a seguir mostram o campo elétrico e o potencial em função de r.

C⎞

C⎞

C⎞


SOLUÇÕES DOS PROBLEMAS 93

67. (a) O módulo do campo elétrico é

q (, 30× 10−

8C)( 899 , × 109 N⋅

m

2

E = = =

2 C )

= 12 , × 104

NC.

4

R2

( 0, 15m)

2

0 0

(b) V = RE = (0,15 m)(1,2 × 10 4 N/C) = 1,8 × 10 3 V = 1,8 kV.

(c) Se x é a distância, temos:

= ( ) − =

V V x V

q

4

π 0

1

R+ x − 1⎞

R⎠

⎟ =−500

V,

o que nos dá

R V

x =

− V − V

= ( 015 , m)( −500

V)

= 58 , × 10− 2

m = 5,8 cm.

− 1800 V+

500 V

68. Como a energia potencial do sistema é

1

qq

U = ⎢

1 2 ⎥

⎣ ( x − x ) + ( y − y )

⎥ = 899 , × 109 N m2

2

3 00 400 10

6

( ⋅ C )( , × 10 −6 C) − , ×

C

4 2

2

2 2

0

1 2 1 2 ⎦

( 350 , + 2,

00) + ( 0, 500 −150

, ) cm

=−193

, J,

( )

o trabalho realizado pela força elétrica é W realizado = −U = 1,93 J e, portanto, o trabalho necessário

para colocar as cargas nas posições especificadas é W aplicado = −W realizado = −1,93 J.

69. Imagine uma superfície gaussiana cilíndrica A de raio r e comprimento h, concêntrica com

o cilindro. De acordo com a lei de Gauss,

q

∫ E⋅ dA= 2rhE =

A

na qual q env é a carga envolvida pela superfície gaussiana.

Vamos chamar de R o raio do cilindro. Para r < R, ou seja, no interior do cilindro, q env = 0, e,

portanto, E = 0.

Para r > R, ou seja, do lado de fora do cilindro, q env = q, a carga total do cilindro, e o módulo

do campo elétrico é

na qual l é a densidade linear de carga.

env ,

q qh /

E = = = ,

2rh 2

r 2

r

0 0 0

(a) Vamos chamar de E B o módulo do campo elétrico na superfície do cilindro, já que o ponto

B está na superfície do cilindro. De acordo com a equação apresentada, para pontos do lado de

fora do cilindro, o campo elétrico é inversamente proporcional a r:

Assim, para r = R C = 0,050 m, temos:

E E R C B

R

B

E = E R B , r ≥ RB

.

r

160 0,

020 m

⎟ = 64 NC.

B

= =( ) ⎛

C

⎝ ⎜ ⎞

N/C

0,

050 m⎠

0


94 SOLUÇÕES DOS PROBLEMAS

(b) De acordo com a Eq. 24-18, a diferença de potencial V B − V C é

V

B

RB

EBRB

⎛ RC

− VC

= −

dr = EBRBln RC

r

RB

⎟ =

⎛ 0,

050 m⎞

(160 N/C)( 0, 020 m)ln

0,020 m ⎠

= 29V , .

(c) Como o campo elétrico no interior do cilindro é zero, todos os pontos do cilindro têm o mesmo

potencial e, portanto, tanto o ponto A como o ponto B pertencem ao cilindro, V A – V B = 0.

70. (a) De acordo com a Eq. 24-18,

V V Edr

parede − = −∫

,

e, portanto, para E = ρr/2â 0 (veja a solução do Problema 60 do Capítulo 23), temos:

o que nos dá

0 − V = −

r

R

r

⎛ r

2 ⎠

⎟ ⇒ − V =− R − r

4

R

2 2

( )

0 0

( R2 − r2) V = .

4

(b) O valor da diferença de potencial para r = 0 é

−3

3

V eixo

0

− 11 , × 10 Cm

2

=

⎡( 005 , m)

− ⎤

4885 (, × 10−

12

CV⋅m)

0 ⎦ =− 7 , 8× 104 V = − 78 kV.

Assim, o valor absoluto da diferença de potencial é |V eixo | = 78 kV.

71. De acordo com a Eq. 24-30, o potencial elétrico de um dipolo em um ponto qualquer do

espaço é dado por

V =

1

4 0

p cos

r

2

na qual p é o módulo do momento p do dipolo, θ é o ângulo entre p e o vetor posição do ponto,

e r é a distância entre o ponto e o dipolo.

Como, no eixo do dipolo, θ = 0 ou θ = p, |cos θ| = 1. Assim, o módulo do campo elétrico é

V p d

p

| E | =− ∂ ⎛ 1 ⎞

=

.

∂r

dr ⎝

r ⎠

⎟ =

4 2

2 0 r

3

Nota: se tomarmos o eixo z como eixo do dipolo,

72. De acordo com a Eq. 24-18, temos:

E

0

p

p

= ( z > 0) e E =− ( z < 0)

2

z

2

z

+ −

0 3 0 3

3

A

V =− ⌠

r dr = A ⎛ 1

⎜ − 1 ⎞

⎟ = ( 29 , × 10− 2

m

−3)A

4 3 3

⌡ 3 2 3

73. (a) O potencial na superfície da esfera é

2

q

V = R

= ( 40 , × 10−

6C)( 899 , × 109 N⋅

m2

C2)

= 3, 6× 10 5 V.

4

010 , m

0

,


SOLUÇÕES DOS PROBLEMAS 95

(b) O campo logo acima da superfície da esfera seria

q

E = V

R

= R

= 36 , × 105

V

= 36 , × 106

Vm,

4 2 0 010 , m

um valor maior que 3,0 MV/m. Assim, a resposta é não.

74. O trabalho realizado é igual à variação da energia potencial elétrica do sistema, dada por

qq 1 2 qq 2 3 qq 1 3

U = + +

4 r 4 r 4

r

012

na qual r 12

indica a distância entre as partículas 1 e 2, e uma convenção semelhante é usada

para r 23 e r 13 .

(a) Considere a diferença entre a energia potencial com r 12

= b e r 23

= a e a energia potencial

com r 12

= a e r 23

= b (r 13

não muda). Convertendo os valores dados no enunciado para unidades

do SI, temos:

0 23

013

qq 1 2 qq 2 3 qq 1 2 qq 2 3

W = U

= + − − =−24 J.

4 b 4 a 4 a 4 b

0

0

(b) Por simetria, quando as partículas 2 e 3 trocam de posição, as condições permanecem as

mesmas do ponto de vista da energia potencial e, portanto,

W = ∆U = 0.

75. Suponha que a distribuição de carga da Terra tem simetria esférica. Nesse caso, se o potencial

elétrico é zero no infinito, o potencial elétrico na superfície da Terra é V = q/4pâ 0 R, na qual

q é a carga da Terra e R = 6,37 × 10 6 m é o raio da Terra. Como o módulo do campo elétrico na

superfície da Terra é E = q/4pâ 0 R 2 , temos:

V = ER = (100 V/m) (6,37 × 10 6 m) = 6,4 × 10 8 V.

76. De acordo com a lei de Gauss, q = â ο Φ=+495,8 nC. Assim,

q (, 899× 109 N⋅ m 2 C2)( 4, 958 × 10−

7C)

V = =

4

r

0,

120 m

77. A diferença de potencial é

0

0

0

,

= 371 , × 10 4

∆V = E∆s = (1,92 × 10 5 N/C)(0,0150 m) = 2,90 × 10 3 V.

78. Como as cargas presentes nos arcos são equidistantes do ponto cujo potencial queremos

calcular, podemos substituí-las por cargas pontuais e aplicar a Eq. 24-27. O resultado é o seguinte:

1 + Q 1 −2Q

1 + 3Q

1

V = +

+

=

4 R 4 R 4 R 4

2Q

R

1 1 1 1

0 0 0 0

2899 (, × 109 N⋅ m2

C2)( 452 , × 10 − 12C)

=

= 0,

956 V.

0,

0850 m

79. A energia potencial elétrica na presença do dipolo é

qp cos ( e ed

U = qV = = − )( )cos

dipolo

4

r 4 r

Para θ i = θ f = 0º, a lei de conservação da energia nos dá

0 2 0 2 .

2e2

⎛ 1 1 ⎞

Kf + Uf = Ki + Ui

⇒ v = −

md ⎝

⎟ = 70 , × 10 5

m/s.

4 0 25 49

V.


96 SOLUÇÕES DOS PROBLEMAS

80. Podemos tratar o sistema como a combinação de um disco completo, de raio R com uma

densidade superficial de carga s,com um disco menor, de raio r e densidade superficial de

carga –s. Aplicando a Eq. 24-37 aos dois objetos, temos:

( ) + − ( + − )

V = z2 + R2

− z z r z

2

2

0

0

2 2

.

Esta expressão se anula quando r → ∞, como exige o problema. Substituindo por valores numéricos,

temos:

R

⎛ 5 5 − 101⎞

V = ⎜

= (, 620× 10−

12C/m 2 )( 0,

130 m)

⎛ 5 5 − 101⎞

0 10

885 , × 10−

12

C

2/N⋅m2

⎝ 10

= 103 , × 10− 2

V = 10,3 mV.

81. (a) O elétron é liberado com uma energia K + U = 3,0 eV −6,0 eV = −3,0 eV (o valor da

energia potencial pode ser obtido a partir do gráfico da Fig. 24-60 e do fato de que U = qV =

−eV). Como a carga do elétron é negativa, é conveniente imaginar o eixo vertical em unidades

de elétrons-volts e com um sinal negativo. Assim, o valor de 2 V para x = 0 se torna –2 eV, o valor

de 6 V para x = 4,5 cm se torna –6 eV, etc. A energia total (− 3,0 eV) é constante e, portanto,

pode ser representada nesse gráfico como uma reta horizontal em − 3,0 V. A reta intercepta o

gráfico da energia potencial no ponto de retorno. Interpolando o trecho do gráfico no intervalo

de 1,0 cm a 4,0 cm, descobrimos que o ponto de retorno é x = 1,75 cm ≈ 1,8 cm.

(b) Como a reta não intercepta o gráfico de energia potencial em nenhum ponto à direita de

x = 4,5 cm, não há ponto de retorno se o elétron estiver se movendo para a direita. De acordo

com a lei de conservação da energia, a energia cinética do elétron no ponto x = 7,0 cm é K =

− 3,0 eV − (− 5,0 eV) = 2,0 eV e, portanto,

K

×

2 2( 2,0 eV)(, 1 60 10

19

J/eV)

v = =

911 , × 10−

31

kg

m e

= 84 , × 10 5

(c) O campo elétrico em um ponto qualquer é a inclinação do gráfico da tensão em função da

distância nesse ponto com o sinal trocado. Uma vez conhecido o campo elétrico, podemos calcular

a força a que o elétron está submetido usando a relação F

=− eE

. Usando esse método,

determinamos que o campo elétrico na região imediatamente à esquerda do ponto x = 4,0 cm é

E = ( −133 V/m)ˆ

i, a força é F = ( 21 , × 10−

17 Ni )ˆ e o módulo da força é F = 2,1 × 10 −17 N.

(d) O sinal positivo indica que a força aponta no sentido positivo do eixo x.

(e) Na região imediatamente à direita do ponto x = 5,0 cm, o campo é E = ( 100 V/m)ˆ

i, a força

é F = ( − 16 , × 10−

17 Ni )ˆ e o módulo da força é F = 1,6 × 10 −17 N.

(f) O sinal negativo indica que a força aponta no sentido negativo do eixo x.

82. (a) O potencial seria

V

e

Qe

4R2

ee

= = = 4Reek

4

R 4

R

0

e

0

e

m/s.

= 4( 6, 37 × 106 m)( 1, 0elétron m2)( − 1, 6× 10− 9C elétron)( 8,

99 × 10 N⋅m

=−012

, V.

(b) O campo elétrico seria

e

Ve

012 , V

E = = =−

=− 18 , × 10−

8

NC,

0 R 6,37 × 106m

o que nos dá | E | = 18 , × 10−

8 NC.

e

(c) O sinal negativo de E significa que o campo elétrico aponta para baixo.

C

9 2 2)


SOLUÇÕES DOS PROBLEMAS 97

83. (a) De acordo com a Eq. 24-26, o potencial elétrico no ponto P é

e e e

VP = − 2 2

(, 899×

10

+ = =

4 d 4 d 4 ( d / 2)

= 719 , × 10

0 1 0 2 0

−10

V.

9

N ⋅ m2 C2)( 16 , × 10−

19C)

200 , m

(b) Como U = qV, a contribuição da partícula móvel para a energia potencial é zero quando está

a uma distância r = ∞ das partículas fixas. Quando está no ponto P, a contribuição é

U m = qV P = 216 (, × 10−

19C)( 7, 192 × 10−

10

V) = 2, 301 × 10− 28

J ≈ 2,30 × 10−

28

J.

Assim, o trabalho realizado para deslocar a partícula móvel até o ponto P é

W m = 2,30 × 10 −28 J.

(c) Somando a contribuição U m da carga móvel, obtida no item (b), com a contribuição U f das

cargas fixas, dada por

U

f

1

=

4

0

=− 2, 058 × 10 −28

J,

( 2e)( −2e)

( 400 , m) + ( 2, 00 m)

2 2

(, 899 × 10 N⋅ m2

C )( 4)( 1, 60 × 10−

C)

=

20,

0 m

9 2 19 2

temos:

U total = U m + U f = 2,301 × 10 −28 J − 2,058 × 10 −28 J = 2,43 × 10 –29 J.

84. Como o campo elétrico no interior da esfera é zero, o potencial é o mesmo em toda a esfera

e, portanto, o potencial no ponto A tem o mesmo valor que na superfície de uma esfera carregada:

V

A

q

= VS

= 4 0R

na qual q é a carga da esfera e R é o raio da esfera.

Em pontos fora da esfera, o potencial é dado pela Eq. 24-26 e, portanto,

q

VB = 4 0r

na qual r é a distância entre o ponto B e o centro da esfera.

(a) Temos:

(b) Temos:

V

V

S

A

q ⎛ 1 1⎞

− VB

= −

R r⎠

⎟ = 36 , × 103

V = 36 , kV.

4

0

q ⎛ 1 1⎞

− VB

= −

R r⎠

⎟ = 36 , × 103

V = 36 , kV.

4

0

85. Considerando como zero o potencial elétrico da carga móvel na posição inicial (a uma distância

infinita das cargas fixas), o potencial elétrico na posição final é

+ 2e

+ e 2e

(, 899× 109

N⋅m V = + = =

2 C2)( 2)( 1, 60 × 10−

19C)

4 ( 2D)

4 D 4

D

400 , m

= 7,

192 × 10

0 0 0

−10

V.


98 SOLUÇÕES DOS PROBLEMAS

O trabalho realizado é igual à energia potencial na posição final da carga móvel:

W = qV = (2e)(7,192 × 10 −10 V) = 2,30 × 10 −28 J.

86. Como o potencial elétrico é uma grandeza escalar, o cálculo é muito mais simples que no

caso do campo elétrico. Podemos simplesmente dividir por dois o potencial elétrico que seria

produzido no ponto P por uma esfera completa. No caso de uma esfera completa (de mesma

densidade volumétrica de carga), a carga seria q esfera = 8,00 µC. Assim,

1 1 qesfera

V = Vesfera

= =

2 24

r

= 240 kV.

0

1

2

(, 899× 109

N⋅m 2

/ C 2

)( 800 , × 10−

6

C)

= 240 , × 10

015 , m

87. O trabalho necessário é igual à variação de energia potencial:

2q2

q q

W = U =

d′ − 2

2

d

= 2

2

⎛ 1

d′ − 1⎞

d⎠

40

40

4 0

⎛ 1 1

= 2899 (, × 109 N⋅m2

2)( 012 , )

2

C C −

17 , m/2 17 , m⎠

⎟ = 15 , × 108 J.

A uma taxa P = 0,83 kW = 830 J/s, seriam necessários W/P = 1,8 × 10 5 s ou cerca de 2,1 dias

para realizar o trabalho.

88. (a) A distância entre as cargas e o ponto C é a mesma e pode ser calculada usando o teorema

de Pitágoras: r = ( d / 2) 2

+ ( d / 2) 2

= d/ 2.

O potencial elétrico total no ponto C é a soma

dos potenciais produzidos pelas duas cargas, mas, graças à simetria do problema, podemos

calcular o potencial produzido por uma das cargas e multiplicar o resultado por dois:

2q

2 2 2q

(, 899× 109

N⋅m2 C2)( 2) 22 ( , 0×

10

V = = =

4

d 4

d

0,

020 m

0 0

− 6C

5

V

)

= 25 , × 106V

= 2,5 MV.

(b) Quando a terceira carga é deslocada do infinito até o ponto C, a energia potencial varia de

zero até qV, na qual V é o potencial elétrico no ponto C. A variação da energia potencial é igual

ao trabalho necessário para deslocar a carga até a posição final:

W = qV = ( 20 , × 10−

6C)( 254 , × 106V) = 51 , J.

(c) O trabalho calculado no item (b) é igual apenas à energia potencial da carga móvel na presença

das duas cargas fixas. Para determinar a energia potencial total do sistema de três cargas,

precisamos somar a energia potencial associada à interação das duas cargas fixas. Como a distância

entre as cargas fixas é d, esta energia potencial é q2

/ 4 d e a energia potencial total é

0

q2 (, 899× 109N⋅ m C )( 2,

0× 10−

6C

U = W + = 51 , J +

4 0 d

0,

020 m

2 2

)

2

= 69 , J.

89. O potencial no ponto P (o local onde colocamos o terceiro elétron) produzido pelas cargas

fixas pode ser calculado usando a Eq. 24-27:

V

P =

Substituindo por valores numéricos, temos:

−e

e e

+ − 2

=− .

4 d 4 d 4

d

0 0 0

2e

(, 899× 10 N⋅ m C )( 2)( 160 , × 10−

VP =− =−

4

d

200 , × 10−

6

m

0

9 2 2 19C

)

=− 1,

438 × 10

−3

V.


SOLUÇÕES DOS PROBLEMAS 99

De acordo com a Eq. 24-14, o trabalho necessário é

W = (−e)V P = 2,30 × 10 −22 J.

90. A partícula de carga –q possui energia potencial e energia cinética, que dependem do raio da

órbita. Para começar, vamos obter uma expressão para a energia total em termos do raio r

da órbita. A força de atração da partícula de carga Q é responsável pelo movimento circular

uniforme da carga –q. O módulo dessa força é F = Qq/4pâ 0 r 2 . A aceleração da partícula de

carga –q é v 2 /r, na qual v é a velocidade da partícula. De acordo com a segunda lei de Newton,

temos:

Qq mv

Qq

= ⇒ mv2

= ,

4 r r

4 0 r

0 2 2

o que nos dá uma energia cinética

A energia potencial é

1 Qq

K = mv2

=

2 8 0 r

U

Qq

=− 4 0r

.

e a energia total é

Qq Qq Qq

E = K + U = − =− .

8 r 4 r 8

r

0 0 0

Quando o raio da órbita é r 1 , a energia é E 1 = –Qq/8pâ 0 r 1 ; quando o raio da órbita é r 2 , a energia

é E 2 = –Qq/8pâ 0 r 2 . A diferença E 2 – E 1 é o trabalho W realizado por um agente externo para

mudar o raio:

Qq ⎛ 1 1⎞

Qq

W = E − E =− −

r r ⎠

⎟ = ⎛ 1

2 1

r

− 1

80 2 1 80 ⎝ ⎜ ⎞

1 r2⎠

⎟ .

91. A velocidade inicial, v i, do elétron satisfaz a relação

que nos dá

1

K = m v2 = e V,

i 2 e i

v

i

= 2e V

m

= 2(, 160×

10−

19

J)( 625 V)

911 , × 10−

31

kg

e

= 148 , × 10 7 ms.

92. O potencial elétrico total no ponto P é a soma dos potenciais produzidos pelas seis cargas:

V

P

6 6

qi

10−

15 ⎡ 500 , 200 , 300 ,

= ∑VPi

= ∑ =

+ − −

+

4

r

i= 1 i=

1 0 i 40

d

2

⎣⎢

+ (d / 2) 2 d / 2 d 2 + ( d/

2)

2

300 , 200 , 500 ,

+

+ − + ⎤

+

d2 + ( d/ 2)

2 d / 2 d2 + ( d/

2)

2

⎦⎥ = 94 , × 10−

16

40( 2, 54 × 10−

2)

= 334 , × 10−

4

V = 0,334 mV.

93. Como, de acordo com o Problema 99, o potencial elétrico no eixo do anel é

V =

q

,

0 z + R

4

2 2


100 SOLUÇÕES DOS PROBLEMAS

a diferença de potencial entre os pontos A (situado no centro do anel) e B é

V

B

q ⎛ 1 1⎞

− VA

=

4

⎝ z2 + R2

R

0

= (, 899× 109 N⋅

m2 C

2)

( 16, 0×

10 − 6

C)

⎣⎢

=− 192 , × 106

V= −1,

92 MV.

1

1 ⎤

− ⎥

( 0, 030 m) 2

+ ( 0, 040 m) 2 0,

030 m

⎦⎥

94. (a) De acordo com a Eq. 24-26, a superfície equipotencial é uma superfície esférica com

centro na carga q e raio

q

r = V

= (, 899× 109 N⋅ m2

C2)( 1,

50 × 10−

8C)

=

4

30,0 V

0

45 , m.

(b) Não. Se o potencial fosse uma função linear de r, as superfícies equipotenciais seriam igualmente

espaçadas; como, neste caso, V ∝ 1/r, o espaçamento diminui quando r aumenta.

95. (a) Para r > r 2 o potencial é o mesmo de uma carga pontual,

V =

1

4 0

(b) Para determinar o potencial na região r 1 < r < r 2 , vamos usar a lei de Gauss para obter uma

expressão do campo elétrico e, em seguida, calcular a integral dessa expressão em uma trajetória

radial de r 2 até r. A superfície gaussiana é uma esfera de raio r, concêntrica com a casca.

O campo elétrico é radial e, portanto, perpendicular à superfície. Como o módulo do campo

elétrico é o mesmo em todos os pontos da superfície, o fluxo através da superfície é Φ = 4pr 2 E.

Como o volume da casca é ( 4 / 3)( r3

2 − r 3

1 ), a densidade volumétrica de carga é

=

e a carga envolvida pela superfície gaussiana é

Q

r

.

3Q

( r − r )

4 2 3 1 3

q= ⎛ r r Q r r

⎝ ⎜ 4

⎛ − ⎞

3

⎟ ( − 1 3 3

1

) =

3

3

⎜ r − r ⎠

⎟ .

2 3 1 3

De acordo com a lei de Gauss, temos:

=

3Q

( r − r ) ,

4 2 3 1 3

o que nos dá

E =

Q r3

− r1 3

r2( r − r ) .

4 0

2 3 1 3

Se V s é o potencial elétrico na superfície externa da casca (r = r 2 ), o potencial a uma distância

r do centro é dado por

r

Q

V = Vs

Edr = Vs

r

4

r

1

− r

⎛ r ⎞

r −

r ⎠

⎟ dr

1 3

0 2 3 1 3 r 2

2 2

Q 1 ⎛ r r r r

= Vs

− + −

4 r − r ⎝ ⎜ ⎞

2 2 r r ⎠

⎟ .

0 2 3 1 3 2

r

2 2 1 3 1 3 2


SOLUÇÕES DOS PROBLEMAS 101

O potencial na superfície externa pode ser calculado fazendo r = r 2 na expressão obtida no item

(a); o resultado é V s = Q/4pâ 0 r 2 . Fazendo esta substituição e agrupando termos, obtemos:

Q

V =

4

Como = 3Q 4( r2 3 −r1 3 ), temos:

r

1 ⎛ 3r r r ⎞

− −

− r ⎝

2 2 r ⎠

⎟ .

0 2 3 1 3 2 2 2 1 3

⎛ 3r r r ⎞

V = − −

3 ⎝

2 2 r ⎠

0

2 2 2 1 3 .

(c) Como o campo elétrico é zero no interior da cavidade, o potencial é o mesmo em toda a

cavidade e na superfície interna da casca. Fazendo r = r 1 na expressão obtida no item (b) e

agrupando termos, obtemos:

Q 3( r2 − r

V =

2 1 2 )

4

2( r − r ) ,

ou, em termos da densidade volumétrica de carga,

0

2 3 1 3

V = ( r2 2 −r1 2 ).

2

0

(d) Sim; fazendo r = r 2 nas expressões obtidas nos itens (a) e (b) e r = r 1 nas expressões obtidas

nos itens (b) e (c), constatamos que as três soluções são compatíveis.

96. (a) Vamos usar a lei de Gauss para obter expressões para o campo elétrico dentro e fora

da distribuição esférica de carga. Como o campo é radial, o potencial elétrico pode ser escrito

como uma integral do campo ao longo de um dos raios da esfera, prolongado até o infinito. A

integral deve ser dividida em duas partes, uma do infinito até a superfície da distribuição de

carga e a outra da superfície até o centro da distribuição. Do lado de fora da distribuição, o módulo

do campo é E = q/4pâ 0 r 2 e o potencial é V = q/4pâ 0 r, na qual r é a distância entre o ponto

considerado e o centro da distribuição. Estas expressões são as mesmas do campo elétrico e

do potencial produzidos por uma carga pontual. Para obter uma expressão para o módulo do

campo no interior da distribuição de carga, usamos uma superfície gaussiana de forma esférica,

de raio r, concêntrica com a distribuição. Como o campo é normal à superfície gaussiana e tem

o mesmo valor em todos os pontos da superfície, o fluxo através da superfície é Φ = 4pr 2 E. A

carga envolvida é qr 3 /R 3 . De acordo com a lei de Gauss,

4 0 2 3

rE

qr

qr

= ⇒ E = .

R3

4

R3

Se V s é o potencial na superfície da distribuição (ou seja, o potencial para r = R), o potencial em

um ponto interno, situado a uma distância r do centro da distribuição, é dado por

r

q r

qr

2

q

V = Vs

Edr = Vs

− rdr = Vs

− +

R

4 R3

∫R

80R3

80R .

0

O potencial na superfície da distribuição pode ser calculado substituindo r por R na expressão

para pontos do lado de fora da distribuição; o resultado é V s = q/4pâ 0 R. Assim,

(b) A diferença de potencial é

q ⎡ 1 r

2

1 ⎤ q

V = − +

4

⎣ R 2R

2R⎥ ⎦

=

3

0

80R

3

0

( 3R2 − r2

) .

2q

3q

q

V = Vs

− Vc

= − = − ,

8 R 8 R 8

R

0 0 0


102 SOLUÇÕES DOS PROBLEMAS

o que nos dá

q

| V | = . 8 0R

97. Nos desenhos a seguir, as linhas com setas são linhas de campo e as linhas sem setas são

equipotenciais. Em todos os desenhos, q 2 é a carga da esquerda e q 1 é a carga da direita.

(a)

(b)

98. A energia potencial elétrica é

qq i j 1 ⎛

U k

r d qq qq qq qq q1q4 q2q3

= ∑ = 1 2+ 1 3+ 2 4 + 3 4 + +

2 2 ⎠

=

i≠

j

ij

899 10

13 ,

(, ×

9)

4 0

( 12)( 17) ( 24)(

3

( 12)( − 24) + ( 12)( 31) + ( − 24)( 17) + ( 31)( 17)

+ + − 1 ) ⎤

( 10

2 2

)

−19

2

=− 12 , × 10−

6

J= −12

, J.

99. (a) A carga é a mesma em todos os pontos do anel que estão à mesma distância de um ponto

P do eixo; a distância é r = z2 + R

2 , na qual R é o raio do anel e z é a distância entre o centro

do anel e o ponto P. O potencial elétrico no ponto P é

1 dq 1 dq 1 1 1 q

V = =

=

dq =

4 ∫ r ∫

0 4 z2 + R2

0

40

z2 + R2

∫ 4 2 2

0 z + R .

(b) O campo elétrico aponta na direção do eixo do anel, e o módulo é dado por

V q

E

z z z R q

=− ∂ ∂ =− ∂

+

− ⎛ 1⎞

(

2 2) 12 /

=

⎟ ( z2 q

+ R2) −3/

2( 2z)

=

40

4 0 2

40

z

( z + R )

2 2 3/

2

,

o que está de acordo com a Eq. 22-16.

100. A distância r pedida é aquela para a qual a partícula alfa possui (momentaneamente) energia

cinética zero. Assim, de acordo com a lei de conservação da energia,

e e

K U K U

12

2 92 2

0 + 0 = + ⇒ 048× 10−

( )( ) ( e)( 92e) ( , ) + = 0 + .

4

r r

Fazendo r 0 = ∞ (para que U 0 = 0), obtemos r = 8,8 × 10 −14 m.

0 0

4 0


SOLUÇÕES DOS PROBLEMAS 103

101. (a) Vamos chamar de r a distância entre os quarks. A energia potencial elétrica para dois

quarks up, em elétrons-volts, é dada por

U

up

1 ( 2e/ 3)( 2e/

3) 4ke

− up = =

r r e 4899 (, × 109

N⋅ m2

C2)( 160 , × 10−

19C)

=

e

4

9

9132 (, × 10−

15m)

0

= 484 , × 10 5

eV = 0,

484 MeV.

(b) Para os três quarks, temos:

e e

U = 1 ⎡( 2 / 3)( 2 / 3) e e

r

+ ( − / 3)( 2 / 3) r

+ ( −e / 3)(

2e/3)

0.

4 0 ⎣⎢

r ⎦⎥ =

102. (a) Como, na menor distância centro a centro d p , a energia cinética inicial K i do próton foi

totalmente convertida em energia potencial elétrica entre o próton e o núcleo, temos:

Explicitando d p , obtemos:

d

p

(b) Nesse caso,

K

i

1 eq 82e2

chumbo

= =

4

d 4

d

0 p

0

= 82e2

e

k

K

= 82

2

4 K

= 899 × 109 ⋅ 2

82(,

1

(, N m2 6×

10−

19C)

2

C )

(, 16× 10−

C)( 480 , × 10

0

i

= 25 , × 10−

14

m = 25 fm.

o que nos dá d α /d p = 2,0.

i

1 qq

e e

Ki = = ⎛ ⎞

d ⎝ ⎜ 82

2

2

4

4 d ⎠

⎟ = 82

2

chumbo

,

4 0 d p

0

0

p

.

19 6

103. Para que a energia potencial elétrica não mude com a introdução da terceira partícula, é

preciso que o potencial elétrico total produzido no ponto P pelas outras duas partículas seja

zero:

q1

q2

+ = 0.

4

r 4

r

Fazendo r 1 = 5d/2 e r 2 = 3d /2, obtemos q 1 = – 5q 2 /3, o que nos dá

q

q

1

2

01

0 2

5

=− ≈− 17 , .

3

104. Imagine que todas as cargas da superfície da esfera sejam deslocadas para o centro da esfera.

De acordo com a lei de Gauss, isso não mudaria o campo elétrico do lado de fora da esfera.

Assim, o módulo E do campo elétrico de uma esfera uniformemente carregada a uma distância

do centro da esfera é dado por E(r) = q/(4pâ 0 r 2 ) para r > R, na qual R é o raio da esfera. O potencial

V na superfície da esfera é dado por

V R V E()

r dr

R

q

r dr q

4

2

4

R

R

( ) = r + = ⌠

=∞ ∫ ⎮

= =

∞ ⌡

= 843 V.

0 0

eV)

( 899 , × 109 N⋅ m

2/C2)(,

1 50 × 108

C)

0,

160 m


104 SOLUÇÕES DOS PROBLEMAS

105. (a) Como V = 1000 V, a equação V = q/4pâ 0 R, na qual R = 0,010 m é o raio da esfera, nos

dá a carga da esfera, q = 1,1 × 10 −9 C. Dividindo por e, obtemos o número de elétrons que entraram

na esfera, n = 6,95 × 10 9 elétrons. Como esse número de elétrons corresponde à metade

dos 3,7 × 10 8 decaimentos por segundo, o tempo necessário é

695 , × 109

t =

= 38 s.

(, 37×

108 s

−1)

/ 2

(b) Uma energia de 100 keV equivale a 1,6 × 10 −14 J (por elétron que entrou na esfera). Como

a capacidade térmica da esfera é 1,40 J/K, a energia necessária para obtermos um aumento de

temperatura ∆T = 5,0 K é (1,40 J/K)(5,0 K) = 70 J. Dividindo por 1,6 × 10 −14 J, descobrimos

que o número de elétrons necessário para produzir esse aumento de temperatura é (70 J)/(1,6 ×

10 −14 J) = 4,375 × 10 15 decaimentos. Multiplicando esse número por 2, já que apenas metade dos

elétrons penetra na esfera, obtemos

N = 8,75 × 10 15 decaimentos.

Como a atividade do revestimento de níquel tem uma atividade de 3,7 × 10 8 decaimentos por

segundo, o tempo necessário para que 8,75 × 10 15 decaimentos ocorram é

875 , × 10

t =

37 , × 10

15

8

×

= 236× 107

236 , 107

s

, s =

≈ 273 dias.

86.

400

s/dia


Capítulo 25

1. (a) A capacitância do sistema é

q 70 pC

C = = = 35 , pF.

V

20 V

(b) Como a capacitância não depende da carga, o valor é o mesmo do item (a):

(c) O novo valor da diferença de potencial é

C = 3,5 pF.

q

V = C

= 200 pC

35

= 57V.

, pF

2. A corrente no circuito persiste até que a diferença de potencial entre os terminais do capacitor

seja igual à força eletromotriz da bateria. Quando isso acontece, a carga do capacitor é q =

CV e é igual à carga total que passou pela bateria. Assim,

q = (25 × 10 –6 F)(120 V) = 3,0 × 10 –3 C = 3,0 mC.

3. (a) A capacitância de um capacitor de placas paralelas é dada por C = â 0 A/d, na qual A é a

área das placas e d é a distância entre as placas. Como as placas são circulares, a área das placas

é A = pR 2 , em que R é o raio das placas. Assim,

R

×

×

0 (, 885 10 Fm) ( 8, 2 10 m)

C = =

d

13 , × 10−

3

m

2 12 2 2

= 144 , × 10−

10

F =

144 pF.

(b) A carga da placa positiva é dada por q = CV, na qual V é a diferença de potencial entre as

placas. Assim,

q = (1,44 × 10 –10 F)(120 V) = 1,73 × 10 –8 C = 17,3 nC.

4. (a) De acordo com a Eq. 25-17,

C = 4

ab

b− a

= ( 40, 0mm)( 380 , mm)

= 84,

5

(, 899× 10 N⋅m 2

/C2)( 40, 0mm − 380 , mm)

0 9

pF.

(b) Vamos chamar de A a área das placas. Nesse caso, C = â 0 A/(b – a) e

A Cb ( −

=

a ) ( 84, 5pF)( 400 , mm − 38, 0 mm)

=

= 191 cm2.

(, ×

0 885 10

12

C

2/N⋅

m2)

5. Se R é o raio de uma das gotas, quando as gotas se fundem, o volume passa a ser

V = 2(4p/3)R 3 e o raio da nova gota, R9, é dado por

4

3

3

2 4

R

3

21 3

′ R R R.

3

( ) = ⇒ ′ =

A nova capacitância é

C′ = 4 R′ = 4 2 R=

5, 04

R.

0 0 13 0

Para R = 2,00 mm, obtemos

q= CeqV = 3CV

= 3( 25, 0 F)( 4200 V) = 0,

315C = 315 mC.


106 SOLUÇÕES DOS PROBLEMAS

6. Podemos usar a equação C = Aâ 0 /d.

(a) A distância entre as placas é

A ×

d = 0 (, 100m2)( 8, 85 10

12

C

2/N m2)

=

= 88 , 5× 10− 12 m.

C

100 , F

(b) Como d é menor que o diâmetro de um átomo (∼ 10 –10 m), este capacitor não é fisicamente

viável.

7. Para uma dada diferença de potencial V, a carga na superfície da placa é

q= Ne=( nAd)

e

na qual d é a profundidade da qual os elétrons migram para a superfície e n é a densidade dos

elétrons de condução. De acordo com a Eq. 25-1, a carga acumulada na placa está relacionada

à capacitância e à diferença de potencial através da equação q = CV. Combinando as duas expressões,

obtemos

C

=

A

ne d .

V

Para dV / = ds/ Vs

= 50 , × 10−

14 m/V e n = 849 , × 10 28 /m 3 (veja o Exemplo “Carregamento de

um capacitor de placas paralelas”), obtemos

C

A = (, 849 × 1028 /m 3 )( 1, 6 × 10−

19C)(,

5 0 × 10−

14

m/V ) = 679 , × 10−

4 F/m 2.

8. A capacitância equivalente é dada por C eq = q/V, na qual q é a carga total dos capacitores e V

é a diferença de potencial entre os terminais dos capacitores. No caso de N capacitores iguais

em paralelo, C eq = NC, na qual C é a capacitância de um dos capacitores. Assim, NC = q/V e

N

q

= =

VC

9. A carga que atravessa o medidor A é

100 , C

= 909 , × 103.

(110 V)( 100 , × 10−

6

F)

q= CeqV = 3CV

= 3( 25, 0 F)( 4200 V) = 0,

315C=315 mC.

10. A capacitância equivalente é

C

eq

CC 1 2

= C3

+

C + C

1 2

11. A capacitância equivalente é

C

eq

( )

C + C C

=

C + C + C

1 2 3

1 2 3

F F

= F + ( 10, 0

400

)( 5,

00

,

) = 733 , F.

10,

0F+

5,

00F

( )( )

10, 0F + 5,00 F 4,

00 F

=

= 316 , F.

10, 0F+ 5, 00 F+

400 , F

12. Como os dois capacitores de 6,0 mF estão em paralelo, a capacitância equivalente é C eq =

12 mF. Assim, a carga total armazenada (antes da modificação) é

qtotal = CeqV

=( 12 F )( 10,

0 V) = 120 C.

(a) e (b) Após a modificação, a capacitância de um dos capacitores aumenta para 12 mF (já

que, de acordo com a Eq. 25-9, a capacitância é inversamente proporcional à distância entre as

placas), o que representa um aumento de 6,0 mF da capacitância e um aumento da carga de

qtotal = CeqV

=( 60 , F )( 10,

0V) = 60 C.


SOLUÇÕES DOS PROBLEMAS 107

13. A carga inicial do primeiro capacitor é q = C 1 V 0 , na qual C 1 = 100 pF é a capacitância e V 0 =

50 V é a diferença de potencial inicial. Depois que a bateria é desligada e o segundo capacitor é

ligado em paralelo com o primeiro, a carga do primeiro capacitor passa a ser q 1 = C 1 V, na qual

V = 35 V é a nova diferença de potencial. Como a carga é conservada no processo, a carga do

segundo capacitor é q 2 = q 2 q 1 , na qual C 2 é a capacitância do segundo capacitor. Substituindo

q por C 1 V 0 e q 1 por C 1 V, obtemos q 2 = C 1 (V 0 – V). Como a diferença de potencial entre os terminais

do segundo capacitor também é V, a capacitância é

C

2

q2 V0

− V

= = C

V V

1

50 V−

35V

=

( 100 pF) = 43pF.

35V

14. (a) Como a diferença de potencial entre os terminais de C 1 é V 1 = 10,0 V,

q 1 = C 1 V 1 = (10,0 mF)(10,0 V) = 1,00 × 10 –4 C = 100 mC.

(b) Considere primeiro o conjunto formado pelo capacitor C 2 e os dois vizinhos mais próximos.

A capacitância do conjunto é

CC 2

Ceq = C+

C+

C

2

= 150 , C.

A diferença de potencial entre os terminais do conjunto é

CV

V =

C+

C

CV

=

= 040 , V1

.

C+

150 C

1 1

eq ,

Como essa diferença de potencial é dividida igualmente entre C 2 e o capacitor em série com C 2 ,

a diferença de potencial entre os terminais de C 2 é V 2 = V/2 = V 1 /5. Assim,

q

10 0

= C V 10 0

200 10

5

=( ) ⎛ ⎝ ⎜ , V⎞

, F

⎟ = , ×

C = 20,0C.

5

2 2 2

15. (a) A capacitância equivalente dos dois capacitores de 4,00 mF ligados em série é dada por

4,00 mF/2 = 2,00 mF. Este conjunto está ligado em paralelo com outros dois capacitores de 2,00

mF (um de cada lado), o que resulta em uma capacitância equivalente C = 3(2,00 mF) = 6,00

mF. Esse conjunto está em série com outro conjunto, formado por dois capacitores de 3,0 mF

ligados em paralelo [que equivalem a um capacitor de capacitância C9 = 2(3,00 mF) = 6,00 mF].

Assim, a capacitância equivalente do circuito é

CC′

F F

Ceq

=

C+ C′ = ( 600 , )( 6,

00 ) = 3, 00 F.

600 , F+

6,

00 F

(b) Como a tensão da bateria é V = 20,0 V, temos:

q = C eq V = (3,00 mF)(20,0 V) = 6,00 × 10 –5 C = 60,0 mC.

(c) A diferença de potencial entre os terminais de C 1 é

V

(d) A carga do capacitor C 1 é

1

CV 600 200

=

10 0

C+ C′ = ( , F)( , V)

= , V.

600 , F+

6,

00 F

q 1 = C 1 V 1 = (3,00 mF)(10,0 V) = 3,00 × 10 –5 C = 30,0 mC.

(e) A diferença de potencial entre os terminais de C 2 é

(f) A carga do capacitor C 2 é

V 2 = V – V 1 = 20,0 V – 10,0 V = 10,0 V.

q 2 = C 2 V 2 = (2,00 mF)(10,0 V) = 2,00 × 10 –5 C = 20,0 mC.


108 SOLUÇÕES DOS PROBLEMAS

(g) Como a diferença de potencial V 2 é dividida igualmente entre C 3 e C 5 , a diferença de potencial

entre os terminais de C 3 é V 3 = V 2 /2 = (10,0 V)/2 = 5,00 V.

(h) q 3 = C 3 V 3 = (4,00 mF)(5,00 V) = 2,00 × 10 –5 C = 20,0 mC.

16. Podemos determinar as capacitâncias a partir da inclinação das retas do gráfico da

Fig. 25-32a. Assim, C 1 = (12 mC)/(2,0 V) = 6,0 mF, C 2 = (8 mC)/(2,0 V) = 4,0 mF e C 3 = (4 mC)(2,0 V) =

2,0 mF. A capacitância equivalente dos capacitores 2 e 3 é

C 23 = 4,0 mF + 2,0 mF = 6,0 mF

Como C 23 = C 1 = 6,0 mF, a tensão da bateria é dividida igualmente entre o capacitor 1 e os capacitores

2 e 3. Assim, a tensão entre os terminais do capacitor 2 é (6,0 V)/2 = 3,0 V e a carga

do capacitor 2 é (4,0 mF)(3,0 V) = 12 mC.

17. A diferença de potencial inicial entre os terminais de C 1 é

Assim,

CeqV

316 , F 100,

0 V

V1

=

=

C + C 10, 0F+

5,

00 F

1 2

(b) ∆V 1 = 100,0 V – 21,1 V = 78,9 V

e

= ( )( )

(a) ∆q 1 = C 1 ∆V 1 = (10,0 mF)(78,9 V) = 7,89 × 10 –4 C = 789 mC.

21, 1V.

18. Como a tensão entre os terminais de C 3 é V 3 = (12 V – 2 V – 5 V) = 5 V, a carga de C 3 é

q 3 = C 3 V 3 = 4 mC.

(a) Como C 1 , C 2 e C 3 estão ligados em série (e, portanto, têm a mesma carga),

(b) Analogamente,

4 C

C 1 = = 20 , F.

2 V

4 C

C 2 = = 080 , F.

5 V

19. A carga de C 3 é q 3 = 12 mC – 8,0 mC = 4,0 mC. Como a carga de C 4 é q 4 = 8,0 mC, a tensão

entre os terminais de C 4 é q 4 /C 4 = 2,0 V. A tensão entre os terminais de C 3 é V 3 = 2,0 V e,

portanto,

(b) C

3

q3

= = 20 , F.

V

3

C 3 e C 4 estão em paralelo e são equivalentes a um capacitor de 6,0 mF em série com C 2 ; como

C 2 = 3,0 mF, a Eq. 25-20 nos dá uma capacitância equivalente de (6,0 mF)(3,0 mF)/(6,0 mF)(3,0

mF) = 2,0 mF em série com C 1 . Sabemos que a capacitância total do circuito (no sentido de que

é a capacitância “vista” pela bateria) é

Assim, de acordo com a Eq. 25-20,

12 C

4

= F.

3

V bateria

(a) 1 1 3

+ = F

⇒ C1

= 40 , F.

C 2F

4

1


SOLUÇÕES DOS PROBLEMAS 109

20. Um capacitor desse tipo, com n placas fixas e n placas móveis, pode ser considerado um

conjunto de 2n 21 capacitores em paralelo, com uma distância d entre as placas. A capacitância

é máxima quando as placas móveis estão totalmente introduzidas entre as placas fixas, caso

em que a área efetiva das placas é A. Assim, a capacitância de cada capacitor é C 0 = â 0 A/d e a

capacitância total do conjunto é

( n−

1) A ( 8− 1)(,

8 85 × 10−

12

0

C

2/N⋅

m 2

)( 125 , × 10−

4

m2)

C = ( n− 1)

C0

= =

d

340 , × 10−

3

m

= 228 , × 10−

12F = 2,28pF.

21. (a) Quando as chaves são fechadas, os dois capacitores ficam ligados em paralelo. A diferença

de potencial entre os pontos a e b é dada por V ab = Q/C eq , na qual Q é a carga total

do conjunto e C eq é a capacitância equivalente, dada por C eq = C 1 + C 2 = 4,0 × 10 –6 F. A carga

total do conjunto é a soma das cargas armazenadas pelos dois capacitores. Como a carga do

capacitor 1 era

e a carga do capacitor 2 era

q

q

= CV = (, 10× 10 − 6F)( 100 V) = 10 , × 10−

4C;

1 1

= C V = (, 30× 10 − 6F)( 100V) = 30 , × 10−

4C,

2 2

a carga total do conjunto é 3,0 × 10 –4 C – 1,0 × 10 –4 C = 2,0 × 10 –4 C. A diferença de potencial é

20 , × 10

V ab =

40 , × 10

−4

−6

C

= 50 V.

F

(b) A nova carga do capacitor 1 é q 1 = C 1 V ab = (1,0 × 10 –6 F)(50 V) = 5,0 × 10 –5 C.

(c) A nova carga do capacitor 2 é q 2 = C 2 V ab = (3,0 × 10 –6 F)(50 V) = 1,5 × 10 –4 C.

22. Não podemos usar a lei de conservação da energia porque, antes que o equilíbrio seja atingido,

parte da energia é dissipada na forma de calor e de ondas eletromagnéticas. Entretanto, a

carga é conservada. Assim, se Q = C 1 V bat = 100 mC e q 1 , q 2 e q 3 são as cargas armazenadas nos

capacitores C 1 , C 2 e C 3 depois que a chave é acionada para a direita e o equilíbrio é atingido,

temos:

Q = q 1 + q 2 + q 3 .

Como C 2 e C 3 têm o mesmo valor e estão ligados em paralelo, q 2 = q 3 . Como os dois capacitores

estão ligados em paralelo com C 1 , V 1 = V 3 e, portanto, q 1 /C 1 = q 3 /C 3 e q 1 = q 3 /2. Assim,

Q = ( q / 2) + q + q = 5q

/ 2,

3 3 3 3

o que nos dá q 3 = 2Q/5 = 2(100 mC)/5 = 40 mC e, portanto, q 1 = q 3 /2 = 20 mC.

23. A capacitância equivalente é C 123 = [(C 3 ) −1 + (C 1 + C 2 ) −1 ] −1 = 6 mF.

(a) A carga que passa pelo ponto a é C 123 V bat = (6 mF)(12 V) = 72 mC. Dividindo por e =

1,60 × 10 −19 C, obtemos o número de elétrons, N = 4,5 × 10 14 , que se movem para a esquerda,

em direção ao terminal positivo da bateria.

(b) Como a capacitância equivalente de C 1 e C 2 é C 12 = C 1 + C 2 = 12 mF, a tensão entre os

terminais da capacitância equivalente (que é igual à tensão entre os terminais de C 1 e à tensão

entre os terminais de C 2 ) é (72 mC)/(12 mF) = 6 V. Assim, a carga armazenada em C 1 é q 1 =

(4 mF)(6 V) = 24 mC. Dividindo por e, obtemos o número de elétrons, N 1 = 1,5 × 10 14 , que

passam pelo ponto b, em direção ao capacitor C 1 .


110 SOLUÇÕES DOS PROBLEMAS

(c) A carga armazenada em C 2 é q 2 = (8 mF)(6 V) = 48 mC. Dividindo por e, obtemos o número

de elétrons, N 2 = 3,0 × 10 14 , que passam pelo ponto c, em direção ao capacitor C 2 .

(d) Finalmente, como C 3 está em série com a bateria, a carga de C 3 é igual à carga que passa

pela bateria (e também pela chave). Assim, N 3 = N 1 + N 2 = 1,5 × 10 14 + 3,0 × 10 14 = 4,5 × 10 14

elétrons passam pelo ponto d, em direção aos capacitores C 1 e C 2 .

(e) Os elétrons estão se movendo para cima ao passarem pelo ponto b.

(f) Os elétrons estão se movendo para cima ao passarem pelo ponto c.

24. De acordo com a Eq. 25-14, as capacitâncias são

C

C

1

2

20L

12

1 2

(, 885× 10 ⋅ 0

= =

− C

2/N m2)( , 050 m)

= 253 , pF

ln( b / a ) ln(15 mm/5,0 mm)

1 1

20L2

2

(, 8 85 × 10

12

C

2/N m2)( 0, 090 m)

= =

− ⋅

ln( b / a ) ln(10 mm/2,5 mm)

2 2

Inicialmente, a capacitância equivalente é

= 361 , pF.

1 1 1 C1+

C2

CC 1 2 ( 2, 53 pF)( 361 , pF)

= + = ⇒ C12

= = = 149 , pF

C C C CC

C + C 253 , pF + 3,

61 pF

12 1 2

1 2

1 2

e a carga dos capacitores é (1,49 pF)(10 V) = 14,9 pC.

Se o capacitor 2 é modificado da forma descrita no enunciado, temos:

2

×

0L2

2

(, 885 10

12

C

2/N⋅m2)(

0, 090 m)

C2′ = =

= 217 , pF.

ln( b′

/ a ) ln(25 mm/2,5 mm)

2 2

A nova capacitância equivalente é

CC 1 2′

C12

′ =

C + C′ = ( 253 , pF)( 2, 17 pF)

= 117 , pF

253 , pF + 217 , pF

1 2

e a nova carga dos capacitores é (1,17 pF)(10 V) = 11,7 pC. Assim, a carga transferida pela

bateria em consequência da modificação é 14,9 pC 2 11,7 pC = 3,2 pC.

(a) Como o número de elétrons que passam pelo ponto P é igual à carga transferida dividida

por e, temos:

32 , × 10

N =

16 , × 10

−12

−19

C

= 20 , × 107.

C

(b) Os elétrons transferidos pela bateria se movem para a direita na Fig. 25-39 (ou seja, na

direção do capacitor 1), já que as placas positivas dos capacitores (as que estão mais próximas

do ponto P) se tornaram menos positivas com a modificação. Uma placa metálica fica positiva

quando possui mais prótons que elétrons. Neste problema, com a modificação, parte dos elétrons

“voltou” para as placas positivas dos capacitores, tornando-as menos positivas.

25. A Eq. 23-14 pode ser aplicada aos dois capacitores. Como s = q/A, a carga total é

q total = q 1 + q 2 = s 1 A 1 + s 2 A 2 = â o E 1 A 1 + â o E 2 A 2 = 3,6 pC.

26. Inicialmente, os capacitores C 1 , C 2 e C 3 formam um conjunto equivalente a um único capacitor,

que vamos chamar de C 123 . A capacitância deste capacitor é dada pela equação

1 1 1

= +

C C C + C

123 1 2 3

C1+ C2 + C3

=

C ( C + C ) .

1 2 3


SOLUÇÕES DOS PROBLEMAS 111

Como q = C 123 V = q 1 = C 1 V 1 , temos:

V

1

q1

q 123

C C

CC V C2 + C3

= = = =

C + C + C V .

1 1

1

1 2 3

(a) Quando C 3 → ∞, a expressão apresentada se torna V 1 = V. Como, de acordo com o enunciado,

V 1 → 10 V neste limite, concluímos que V = 10 V.

(b) e (c) De acordo com o gráfico da Fig. 25-41c, V 1 = 2,0 V para C 3 = 0. Nesse caso, a expressão

apresentada nos dá C 1 = 4C 2 . O gráfico mostra ainda que, quando C 3 = 6,0 mF, V 1 = 5 V =

V/2. Assim,

V

V

1 C + 60 , F

C2

+ 60 , F

= =

=

,

2 C + C + 60 , F

4C

+ C + 6,

0 F

1 2

1 2

o que nos dá C 2 = 2,0 mF e C 1 = 4C 2 = 8,0 mF.

1 2

27. (a) Com apenas a chave S 1 fechada, os capacitores 1 e 3 estão em série e, portanto, suas

cargas são iguais:

q

CCV 1 3

= q =

C + C

1 3

1 3

(b) Como os capacitores 2 e 4 também estão em série,

q

CCV 2 4

= q =

C + C

2 4

(c) q 3 = q 1 = 9,00 mC.

(d) q 4 = q 2 = 16,0 mC.

2 4

(, 100F)( 3, 00 F)( 12, 0 V)

= = 900 , C.

10 , 0 F+3,00

F

( 200 , F)( 4, 00 F)( 12, 0 V)

= = 16,

0 C.

20 , 0F+

4,

00 F

(e) Quando a chave 2 é fechada, a diferença de potencial V 1 entre os terminais de C 1 se torna

igual à diferença de potencial entre os terminais de C 2 e é dada por

V

1

C3 + C4

C C C C V (, 300F + 4, 00 F)( 12, 0 V)

=

=

= 840 , V.

+ + + 100 , F + 2, 00 F + 300 , F + 4,

00 F

1 2 3 4

Assim, q 1 = C 1 V 1 = (1,00 mF)(8,40 V) = 8,40 mC.

(f) q 2 = C 2 V 1 = (2,00 mF)(8,40 V) = 16,8 mC.

(g) q 3 = C 3 (V – V 1 ) = (3,00 mF)(12,0 V – 8,40 V) = 10,8 mC.

(h) q 4 = C 4 (V – V 1 ) = (4,00 mF)(12,0 V – 8,40 V) = 14,4 mC.

28. Os capacitores 2 e 3 podem ser substituídos por um capacitor equivalente cuja capacitância

é dada por

1 1 1 C + C

= + =

C C C CC

eq

2 3

2 3

2 3

CC 2 3

⇒ Ceq

= .

C + C

2 3

A carga do capacitor equivalente é a mesma dos capacitores originais, e a diferença de potencial

entre os terminais do capacitor equivalente é q 2 /C eq . A diferença de potencial entre os

terminais do capacitor 1 é q 1 /C 1 . Como a diferença de potencial entre os terminais do capacitor

equivalente é igual à diferença de potencial entre os terminais do capacitor 1, q 1 /C 1 = q 2 /C eq .


112 SOLUÇÕES DOS PROBLEMAS

Quando a chave S é deslocada para a direita, parte da carga do capacitor 1 é transferida para

os capacitores 2 e 3. Se q 0 era a carga original do capacitor 1, a lei de conservação da carga

nos dá q 1 + q 2 = q 0 = C 1 V 0 , na qual V 0 é a diferença de potencial original entre os terminais do

capacitor 1.

(a) Resolvendo o sistema de equações

q

C

1

1

q

=

C

2

eq

q + q = CV ,

1 2 1 0

obtemos

q

1

CV 1 2 0

=

C + C

eq

1

=

CV 1 2 0

CC 2 3

+ C

C + C

2 3

1

C1 2 ( C2 + C3)V0

=

.

CC + CC + CC

1 2 1 3 2 3

Substituindo por valores numéricos, obtemos q 1 = 32,0 mC.

(b) A carga do capacitor 2 é

q2 = CV 1 0 − q1 = ( 400 , F)( 120 , V) − 32, 0C=

160 , C.

(c) A carga do capacitor 3 é igual à do capacitor 2:

q 3 = q 2 = 16,0 mC.

29. A energia armazenada por um capacitor é dada por U = CV 2 /2, na qual V é a diferença de

potencial entre os terminais do capacitor. Vamos converter para joules o valor da energia dado

no enunciado. Como 1 joule equivale a 1 watt por segundo, multiplicamos a energia em kW . h

por (10 3 W/kW)(3600 s/h) para obter 10 kW . h = 3,6 × 10 7 J. Assim,

2U

2(, 36×

107

J)

C = =

= 72F.

V

2

( 1000V)

2

30. Se V é o volume de ar, a energia armazenada, de acordo com as Eqs. 25-23 e 25-25, é dada

por

1 1

U = uV = E2V

= ×

0 (, 885 10

12

C

2/N⋅

m2)( 150 Vm)(

2

100 , m3)

2 2

= 996 , × 10−

8 J = 99,6 nJ.

31. A energia total é a soma das energias armazenadas nos dois capacitores. Como os capacitores

estão ligados em paralelo, a diferença de potencial entre os terminais dos capacitores é a

mesma e a energia total é

1

U = C1+

C2

V

2

32. (a) A capacitância é

1

( , F , F)( V)

2 = 027 , J.

2

( ) = ×

+ ×

2

20 10

6

40 10−

6

300

A ×

⋅ ×

C = 0 (, 885 10

12

C

2/N m2)( 40 10

4

m2)

=

= 35 , × 10−

11

F = 35pF.

d

10 , × 10−

3m

(b) q = CV = (35 pF)(600 V) = 2,1 × 10 –8 C = 21 nC.


SOLUÇÕES DOS PROBLEMAS 113

(c) U = CV 2 /2 = (35 pF)(21 nC) 2 /2 = 6,3 × 10 −6 J = 6,3 mJ.

(d) E = V/d = (600 V)/(1,0 × 10 –3 m) = 6,0 × 10 5 V/m = 0,60 MV/m.

(e) A densidade de energia (energia por unidade de volume) é

u

U

= =

Ad

33. Como E = q/4pâ 0 R 2 = V/R, temos:

63 , × 10−

6

J

= 16 ,

( 40 × 10−

4

m2)(, 10×

10−

3

m)

J

m 3 .

2

1 1 ⎛ V ⎞ 1

u= E2

=

R⎠

⎟ = ×

0 0 (, 885 10

12

C 2 /N⋅

m 2

2 2 2 ) ⎛ 8000 V ⎞

011

0,050 m

, J/m 3

⎟ = .

34. (a) A carga q 3 do capacitor C 3 da Fig. 5-28 é

(b) V 3 = V = 100 V.

q

= C V = ( 400 , F)( 100 V) = 400 , × 10−

4

C = 400 C.

3 3

1

(c) U3 = C3V3 2 = 200 , × 10−

2 J=

200 , mJ.

2

CCV 1 2 ( 10, 0F)( 5, 00 F)( 100 V)

(d) q1

= =

= 333 , × 10−

4 C = 333 C.

C + C 10,

0 F + 500 , F

1 2

(e) V 1 = q 1 /C 1 = 3,33 × 10 –4 C/10,0 mF = 33,3 V.

(f) U

1

= C V = 555 , × 10−

J=

5, 55 mJ .

2

1 1 1 2 3

(g) q 2 = q 1 = 333 mC.

(h) V 2 = V – V 1 = 100 V – 33,3 V = 66,7 V.

2

(i) U

1

= C V = 111 , × 10−

J=

111 , mJ.

2

2 2 2 2 2

35. A energia por unidade de volume é

1 1 ⎛ e ⎞ e2

u= E2

0 = 0 ⎝

r ⎠

⎟ =

2 2 4

2

32

2

r

0

2

0 4

.

(a) Para r = 1,00 × 10 −3 m, u = 9,16 × 10 −18 J/m 3 .

(b) Para r = 1,00 × 10 −6 m, u = 9,16 × 10 −6 J/m 3 .

(c) Para r = 1,00 × 10 −9 m, u = 9,16 × 10 6 J/m 3 .

(d) Para r = 1,00 × 10 −12 m, u = 9,16 × 10 18 J/m 3 .

(e) De acordo com a expressão anterior, u ∝ r –4 . Assim, para r → 0, u → ∞.

36. (a) Como, de acordo com a Fig. 25-44, apenas a superfície inferior e a superfície lateral do

líquido possuem carga elétrica, a carga induzida na superfície do líquido é

qs = A= 2rh + r

2

= ( 2, 0C/m2 )( 2

)(0,20 m)(0,10 m) + (0,20 m)

= 050 , C.

2


114 SOLUÇÕES DOS PROBLEMAS

De acordo com a lei de conservação da carga, a carga induzida no interior do líquido é

q = −q s = −0,50 mC.

(b) De acordo com a Eq. 25-21, a energia potencial é

U

q (, 50×

10

= =

2C

235 ( × 10

2 −7

−12

C)

2

= 36 , × 10−

3

J=

36mJ.

F)

(c) Como a energia calculada no item (b), 36 mJ, é menor que a necessária para inflamar o líquido,

100 mJ, a resposta é não. Entretanto, a diferença é relativamente pequena, de modo que

seria temerário garantir que o recipiente é seguro.

37. (a) Seja q a carga da placa positiva. Como a capacitância de um capacitor de placas paralelas

é dada por â 0 A/d, a carga é q = CV = â 0 AV i /d i , na qual V i é a tensão inicial do capacitor e d i é

a distância inicial entre as placas. Quando a distância entre as placas é aumentada para d f , a tensão

do capacitor passa a ser V f . Nesse caso, como a carga permanece a mesma, q = â 0 AV f /d f e

V

f

d f

A q d f 0

A

A d V d f

= = i =

d V 800 , 10

i =

30 , 0×

10

0 0

i

i

×

−3

(b) A energia armazenada pelo capacitor no estado inicial é

U

i

− 3

m

(, 600V) = 160 , V.

m

1 AVi

×

= CV

2

2

0 (, 885 10

12

C

2/N⋅m2)( 8,

50×

10−

m 2

)( 6, 00 V)

i = =

2 2d

2300 (, × 10−

3

m)

= 451 , × 10−

1 1

J = 45,1 pJ.

i

(c) A energia armazenada pelo capacitor no estado final é

4 2

U

f

1 0 A

d V A ⎛ d f

d d V ⎞ d f AV

=

2

1 0

⎛ 0

i

f =

i

⎟ =

2 2

d ⎝

d

f

f

i

2

i

i

⎞ d 800 10

⎟ = = , ×

2

f

i

d U

−3

3

i 300 , × 10−

m

( 45 , 1×

10

m

−11

J)

= 120 , × 10−

10

J = 120 pJ.

(d) O trabalho necessário para separar as placas é a diferença entre a energia final e a energia

inicial:

W = U f 2 U i = 7,49 pJ.

38. (a) A diferença de potencial entre os terminais de C 1 (e entre os terminais de C 2 ) é

V

CV 3

= V =

C + C + C

1 2

1 2 3

( 15, 0 F)( 100 V)

=

= 50,

0V.

10,

0 F + 5,00 F + 15,0 F

Assim,

q

= C V = ( 10, 0F)( 500 , V)

= 500 C

1 1 1

q

= C V = (, 500 F)( 50, 0 V)

= 250 C

2 2 2

q = q + q = 500 C+ 250 C=

750 C.

3 1 2

(b) V 3 = V − V 1 = 100 V − 50,0 V = 50,0 V.

(c) U

1

C V

2

1

15, 0F 500 , V 188 , 10 J 18,8 mJ.

2

= = ( )( ) = × =

3 3 3 2 2 −2

(d) Como foi visto no item (a), q 1 = 500 mC.


SOLUÇÕES DOS PROBLEMAS 115

(e) Como foi visto no item (a), V 1 = 50,0 V.

(f) U

= 1 1

CV 10 0 500 125 10

2

= ( , F)( , V) 2 = , × −

J.

1 1 1 2 2 2

(g) Como foi visto no item (a), q 2 = 250 mC.

(h) Como foi visto no item (a), V 2 = 50,0 V.

(i) U

= 1 1

C V 500 500 625 10

2

= (, F)( , V)

2 = , × −

J.

2 2 2 2 2 3

39. (a) Como a carga é a mesma nos três capacitores, a maior diferença de potencial corresponde

ao capacitor de menor capacitância. Com 100 V entre os terminais do capacitor de 10

mF, a tensão entre os terminais do capacitor de 20 mF é 50 V e a tensão entre os terminais do

capacitor de 25 mF é 40 V. Assim, a tensão entre os terminais do conjunto é 100 V + 50 V +

40 V = 190 V.

(b) De acordo com a Eq. 25-22, temos:

1

U = ( CV 1 1 2 + C2V2 2 + C3V3 2 )

2

1

= ( 10 × 10−

6

F)( 100 V )

2

+ ( 20 × 10−

F)( 50 V) + ( 25 × 10−

F)( 40 V)

2

= 0,

095 J=

95 mJ.

6 2 6 2

40. Se a capacitância original é dada por C = â 0 A/d, a nova capacitância é C′ = kâ 0 A/2d, na qual

k é a constante dielétrica da cera. Assim, C9/C = k/2, o que nos dá

k = 2C9/C = 2(2,6 pF/1,3 pF) = 4,0.

41. De acordo com a Eq. 25-14, a capacitância de um capacitor cilíndrico é dada por

20L

C = C0

=

ln( b/ a) ,

na qual k é a constante dielétrica, C 0 é a capacitância sem o dielétrico, L é o comprimento, a é

o raio interno e b é o raio externo. A capacitância por unidade de comprimento do cabo é

C

L

2

×

0 2(2,6)(8,85 10

12

F/m)

= =

= 81 , × 10−

11F/m

= 81 pF/m.

ln( b/

a) ln[( 0,

60 mm)/(0,10 mm)]

42. (a) Como C = â 0 A/d, temos:

A ×

d = 0 (, 885 10

12

C

2/N m2)( 0, 35 m2)

=

= 62 , × 10−

2 m = 6,2 cm.

C

50 × 10−

12F

(b) A nova capacitância é

C9 = C(k/k ar ) = (50 pF)(5,6/1,0) = 2,8 ×10 2 pF = 0,28 nF.

43. A capacitância com o dielétrico no lugar é dada por C = kC 0 , na qual C 0 é a capacitância sem

o dielétrico. Como a energia armazenada é dada por U = CV 2 /2 = kC 0 V 2 /2, temos:

2U

2( 74 , × 10−

6

J)

= =

CV2

( 74 , × 10−

12

F)(

652 V) 2

0

= 4,

7.

De acordo com a Tabela 25-1, você deveria usar pirex.


116 SOLUÇÕES DOS PROBLEMAS

44. (a) De acordo com a Eq. 25-14,

L

( 47 , )( 015 , m)

C = 2 =

0

ln( ba / ) 2899 (, × 10 9 N⋅m 2

/ C 2

= 073 , nF.

)ln( 38 , cm/3,6 cm)

(b) O potencial de ruptura é (14 kV/mm) (3,8 cm – 3,6 cm) = 28 kV.

45. De acordo com a Eq. 25-29, com s = q/A, temos:

o que nos dá

E

q

= = 200 × 10 NC,

A

0

3

q = ( 200 × 103NC)(,)( 55 885 , × 10−

12

C 2 /N⋅m

2 )( 0,

034 m 2 ) = 33 , × 10−

7 C

De acordo com as Eqs. 25-21 e 25-27, temos:

46. De acordo com a Eq. 25-27,

C

1

U

q 2

qd

2

= = = 66 , × 10−

5

J=

66J.

2C

2

A

0 A (, 300)( 8, 85 × 10

12

⋅ 500×

10

= =

− C /N m )(,

d

200 , × 10−

3

m

e, de acordo com a Eq. 25-9,

C

2

0

2 2 −3

m

2

)

= 664 , × 10

0 A (, 885× 10−

12

C

2/N⋅ m2)( 5, 00 × 10−

3

m2)

= =

= 221 , × 10

d

20 , 0×

10−

3

m

Assim, q 1 = C 1 V 1 = (6,64 × 10 −11 F)(12,0 V) = 8,00 × 10 −10 C, q 2 = C 2 V 2 = (2,21 × 10 −11 F)(12,0

V) = 2,66 × 10 −10 C e, portanto,

q tot = 1,06 × 10 −9 C = 1,06 nC.

47. A capacitância é dada por C = kC 0 = kâ 0 A/d, na qual k é a constante dielétrica, C 0 é a capacitância

sem o dielétrico, A é a área das placas e d é a distância entre as placas. O campo elétrico

na região entre as placas é dado por E = V/d, na qual V é a diferença de potencial entre as placas.

Assim, d = V/E, C = kâ 0 AE/V e

CV

A = . 0 E

A área mínima pode ser obtida fazendo o campo elétrico igual à rigidez dielétrica, o que nos dá

( 70 , × 10−

8

F )(4,0 × 103

V)

A =

= 063 , m2.

28885 , ( , × 10−

12

F/m)(18×

106

V/m)

48. O capacitor pode ser visto como dois capacitores, C 1 e C 2 ligados em paralelo, com placas

de área A/2 e distância d entre as placas, cujos dielétricos têm constantes dielétricas k 1 e k 2 .

Assim, em unidades do SI, temos:

0( A/ 2) 1 0( A/ 2)

2 0A

⎛ 1+

2

C = C1+ C2

= + =

d d d ⎝

2 ⎠

(, 885× 10−

12

C

2/N⋅ m2)( 5, 56 × 10−

4

m2)

⎛ 700 , + 1200 , ⎞

=

841 10−

12

556 , × 10−

3

2 ⎠

⎟ = , × F = 8,41 pF.

m

−11

−11

F

F


SOLUÇÕES DOS PROBLEMAS 117

49. Vamos supor que há uma carga q em uma das placas e uma carga 2q na outra placa. O

campo elétrico na parte inferior da região entre as placas é

E

1

= q

A

,

na qual A é a área das placas. O campo elétrico na parte superior da região entre as placas é

E

2

1 0

= q

A

.

Seja d/2 a espessura de cada dielétrico. Como o campo elétrico é uniforme em cada região, a

diferença de potencial entre as placas é

2 0

Ed 1 Ed 2 qd ⎡ 1 1 ⎤ qd

V = + = +

A

⎢ ⎥

⎣ ⎦

= 1+

2

2 2 20 1 2 20A

1 2

e, portanto,

C = q =

V

2 0 1 2

A

d + .

1 2

Esta expressão é igual à da capacitância equivalente de dois capacitores em série, um com um

dielétrico de constante dielétrica k 1 e outro com um dielétrico de constante dielétrica k 2 , com

área das placas A e distância d/2 entre as placas. Note também que, para k 1 = k 2 , a expressão

se reduz a C = k 1 â 0 A/d, o resultado correto para um capacitor com um dielétrico de constante

dielétrica k 1 , área das placas A e distância d entre as placas.

Para A = 7,89 × 10 24 m 2 , d = 4,62 × 10 23 m, k 1 = 11,0 e k 2 = 12,0, temos:

2885 (, × 10−

12

C

2/N⋅ m2)( 789 , × 10−

4

m2)

( 11, 0)( 120 , )

C =

×

= 173 , × 10−

11F = 17, 3pF.

462 , × 10−

3

m

11, 0+

120 ,

50. O capacitor composto descrito no enunciado é equivalente a três capacitores, com as seguintes

características:

C 1 = â 0 (A/2)k 1 /2d = â 0 Ak 1 /4d,

C 2 = â 0 (A/2)k 2 /d = â 0 Ak 2 /2d,

C 3 = â 0 Ak 3 /2d.

Note que C 2 e C 3 estão ligados em série e C 1 está ligado em paralelo com a combinação C 2 -C 3 .

Assim,

CC 2 3

C = C1

+

C + C

2 3

( )( )( )

0A1 0 Ad 2 2 3

2 0

A ⎛ 2

2 3 ⎞

= + = 1

+

4d

2 + 2 4d

⎜ + ⎠

⎟ .

2

3

2 3

Para A = 1,05 × 10 −3 m 2 , d = 3,56 × 10 −3 m, k 1 = 21,0, k 2 = 42,0 e k 3 = 58,0, temos:

(, 885× 10−

12

C

2/N⋅ m2)( 1, 05 × 10−

3

m2)

⎛ 2420 ( , )( 58, 0)

C =

21 0 +

4

4356 (, × 10−3

⎜ ,

m) ⎝ 42, 0+

580 ,

= ,55 × 10−

11 F

= 45,5 pF.

51. (a) O campo elétrico na região entre as placas é dado por E = V/d, sendo que V é a diferença

de potencial entre as placas e d é a distância entre as placas. A capacitância é dada por C =

kâ 0 A/d, na qual A é a área das placas e k é a constante dielétrica. Assim, d = kâ 0 A/C e

VC ( 50 V)( 100 × 10−

12

F)

E = =

10 , 104

.

A ×

−12

0 54885 , ( , 10 Fm( ) 100 × 10 −

= × Vm=

10 kV/m

4

m2)


118 SOLUÇÕES DOS PROBLEMAS

(b) A carga livre nas placas é q l = CV = (100 × 10 –12 F)(50 V) = 5,0 × 10 –9 C = 5,0 nC.

(c) O campo elétrico é a soma do campo produzido pela carga livre com o campo produzido

pela carga induzida. Como o campo em uma camada uniforme de carga de grandes dimensões

é q/2â 0 A, o campo entre as placas é

ql ql qi qi

E = + − − ,

2 A 2 A 2 A 2

A

0 0 0 0

na qual o primeiro termo se deve à carga livre positiva em uma das placas, o segundo à carga livre

negativa na outra placa, o terceiro à carga positiva induzida na superfície do dielétrico mais

próxima da placa negativa do capacitor e o quarto à carga negativa induzida na superfície do

dielétrico mais próxima da placa positiva do capacitor. Note que os campos produzidos pelas

cargas induzidas têm o sinal contrário ao dos campos produzidos pelas cargas livres, o que faz

com que o campo total seja menor que o campo produzido pelas cargas livres. Explicitando q i

na expressão anterior, obtemos:

q = q − AE = ×

−9 − ×

−12

×

0 50 , 10 C ( 885 , 10 F m)(

100 10

4m2)( 10 , × 104

V m)

i

l

= 41 , × 10−

9C

=

4,1 nC.

52. (a) Como o campo elétrico E 1 no espaço entre as placas do capacitor e o dielétrico é E 1 =

q/â 0 A e o campo elétrico E 2 no interior do dielétrico é E 2 = E 1 /k = q/kâ 0 A, temos:

e a capacitância é

q 0

A

C = =

V d − b b

0

( ) + = ⎛ ⎝ ⎜ ⎞

V = E d −b Eb

0 1 2

qA d b b

⎟ ⎛

⎜ − + ⎞

( ) + = (, 885× 10−

12

C /N⋅ m )( 115 ×

m m

(b) q = CV = (13,4 × 10 –12 F)(85,5 V) = 1,15 nC.

0

2 2

10−4m2)( 261 , )

= 13, 4 pF.

( 261 , )( 0, 0124 − 0, 00780 ) + ( 00 , 0780m)

(c) O módulo do campo elétrico no espaço entre as placas e o dielétrico é

E

1

q

115 , × 10−

9

C

= =

A (, 885× 10−

12

C /N⋅ m )( 115 × 1

0

(d) De acordo com a Eq. 25-34, temos:

E

2

2 2

0−

4 2

E

4

1 113 , × 10 NC

= =

= 433 , × 103

NC.

261 ,

53. (a) Antes da introdução do dielétrico, a capacitância é

C

0

= 113 , × 104

NC.

m )

0 A (, 885× 10−

12

C

2/N⋅m2)( 0, 12 m2)

= =

= 89 pF.

d

12 , × 10−

2

m

(b) Usando o mesmo raciocínio do Exemplo “Dielétrico preenchendo parcialmente o espaço

entre as placas de um capacitor”, temos:

A

C =

d − b + b

= ×

0 (, 885 10

12

C

2/N⋅m2)( 0, 12 m2)(

48 , )

= 12 ,

( ) ( 48 , )( 12 , − 040 , )( 10−

2

m) + ( 4,

10−

3

m)

(c) Antes da introdução, q = C 0 V = (89 pF)(120 V) = 11 nC.

× 10 2 pF = 0,12 nF.

(d) Como a bateria foi removida do circuito, a carga é a mesma após a introdução do dielétrico:

q = 11 nC.


SOLUÇÕES DOS PROBLEMAS 119

q

11 × 10−

0C

(e) E = =

= 10 kV/m.

A ×

−12

0 ( 885 , 10 C

2/N ⋅m2)( 0, 12 m2)

E 10 kV/m

(f) E′ = = = 21 , kV/m.

48 ,

(g) A diferença de potencial entre as placas é

V = E(d 2 b) + E9b = (10 kV/m)(0,012 m 2 0,0040 m)+ (2,1 kV/m)(0,40 × 10 –3 m) = 88 V.

(h) O trabalho necessário para introduzir o dielétrico é

W U q 2

⎛ 1 1 ⎞

= = −

C C ⎠

⎟ = ( 11 × 10−

9

C)

2

2

=− 17 , × 10−

7

J= −0,17 J.

0

2

⎛ 1

89 × 10

−12

1

F 120 × 10

54. (a) Aplicando a lei de Gauss à superfície do dielétrico, obtemos q/â 0 = kEA, o que nos dá

q

89 , × 10−

7

C

= =

×

−12

0EA (, 885 10 C /N⋅ m )( 1,

10

(b) A carga induzida é

2 2 −6 −4

−12

F ⎠

= 72 , .

Vm)( 100 × 10 m 2 )

⎛ ⎞

⎛ ⎞

q′ = q −

⎜1 1 ⎠

⎟ = ×

1

(, 89 10

7

C)

⎜1

72⎠

⎟ = 77 ,

,

× 10 − 7 C = 0,77 C.

55. (a) De acordo com a Eq. 25-17, a capacitância de um capacitor esférico na ausência de um

dielétrico é dada por

C

⎛ ab ⎞

= 4 ⎝

b−

a⎠

⎟ .

0 0

Quando o dielétrico é introduzido entre as placas, a capacitância é multiplicada por k, a constante

dielétrica da substância. Assim, temos:

C = 4

⎛ ab ⎞ 23,

5

b−

a⎠

⎟ =

899 , × 10 N⋅m

0 9 2 2

C

( 001 , 20 m)( 0, 0170 m)

×

= 0, 107 nF.

0, 0170 m−

0,

0120 m

(b) A carga da placa positiva é q = CV = (0,107 nF)(73,0 V) = 7,79 nC.

(c) Vamos chamar a carga da placa interna de 2q e a carga induzida na superfície vizinha do

dielétrico de q9. Quando o campo elétrico é dividido por k quando o dielétrico está presente,

– q + q9 = – q/k. Assim,

′ = − 1

ab ⎛ − ⎞

q q= −

=

b−

a V 23, 5 1,

00

4

( 1)

0

23,

5

⎟ ( 779 , nC) = 7, 45 nC.

56. (a) Como existe uma diferença de potencial de 10,0 V entre os terminais do capacitor C 1 , a

carga do capacitor é

q 1 = C 1 V 1 = (10,0 mF)(10,0 V) = 100 mC.

(b) O capacitor equivalente ao ramo do circuito que contém o capacitor C 2 é 10 mF/2 = 5,00 mF.

Como esse capacitor equivalente está em paralelo com um capacitor de 10,0 mF, o capacitor

equivalente do conjunto é 5,00 mF + 10,0 mF = 15,0 mF. Assim, a parte do circuito abaixo da

bateria pode ser reduzida a um capacitor de 15,0 mF em série com um capacitor de 10,0 mF.


120 SOLUÇÕES DOS PROBLEMAS

Como a diferença de potencial entre os terminais desses dois capacitores em série é 10,0 V, a

diferença de potencial entre os terminais do ramo que contém o capacitor C 2 é (10,0 V)(1/15,0

mF)/(1/10,0 mF + 1/15 mF) = 4,00 V. Como essa tensão é dividida igualmente entre o capacitor

C 2 e o capacitor em série com C 2 , a diferença de potencial entre os terminais de C 2 é 2,00 V e,

portanto,

q 2 = C 2 V 2 = (10,0 mF)(2,00 V) = 20,0 mC.

57. Os capacitores C 3 e C 4 estão em paralelo e, portanto, podem ser substituídos por um capacitor

equivalente de 15 mF + 15 mF = 30 mF. Como este capacitor equivalente está em série com

dois capacitores de mesmo valor, a tensão da fonte é distribuída igualmente pelos três capacitores

e a tensão entre os terminais do capacitor C 4 é (9,0 V)/3 = 3,0 V, o que nos dá

q 4 = C 4 V 4 = (15 mF)(3,0 V) = 45 mC.

58. (a) Como o terminal D não está ligado a nenhum componente, os capacitores 6C e 4C estão

em série e o capacitor equivalente é (6C)(4C)/(6C + 4C) = 2,4C). Este capacitor, por sua vez,

está em paralelo com o capacitor 2C, o que resulta em um capacitor equivalente de 4,4C. Finalmente,

o capacitor equivalente de 4,4C está em série com o capacitor C, o que nos dá uma

capacitância equivalente

( C)( 44 , C)

Ceq =

= 082 , C = 0, 82( 50 F)

= 41F.

C+

44 , C

(b) Agora, B é o terminal que não está ligado a nenhum componente; os capacitores 6C e 2C

estão em série e o capacitor equivalente é (6C)(2C)/(6C + 2C) = 1,5C, que, por sua vez, está em

paralelo com o capacitor 4C, o que resulta em um capacitor equivalente de 5,5C). Finalmente,

o capacitor equivalente de 5,5C está em série com o capacitor C, o que nos dá uma capacitância

equivalente

C

eq

( C)(, 55C)

= = 085 , C = 0, 85( 50 F) = 42F.

C+

55 , C

59. Os capacitores C 1 e C 2 estão em paralelo, o que também acontece com os capacitores C 3 e

C 4 ; as capacitâncias equivalentes são 6,0 mF e 3,0 mF, respectivamente. Como essas capacitâncias

equivalentes estão em série, a capacitância equivalente do circuito é (6,0 mF)(3,0 mF)/

(6,0 mF + 3,0 mF) = 2,0 mF. A carga do capacitor equivalente de 2,0 mF é (2,0 mF)(12 V) = 24

mC. Como esta carga também é a carga do capacitor equivalente de 3,0 mF (que corresponde à

associação em paralelo de C 3 e C 4 ), a tensão entre os terminais de C 3 e de C 4 é

q

V = C

= 24 C

3

= 80 , V.

F

A carga do capacitor C 4 é, portanto, (2,0 mF)(8,0 V) = 16 mC.

60. (a) De acordo com a Eq. 25-22, temos:

1

U = CV

2

1

= ( 200 × 10−

12

F)( 70 , × 103 V) 2

= 49 , × 10−

3

J = 4,9 mJ.

2 2

(b) Como a energia calculada no item (a) é muito menor que 150 mJ, uma centelha produzida

por um operário não poderia provocar a explosão.

61. Inicialmente, os capacitores C 1 , C 2 e C 3 estão ligados em série e podem ser substituídos por

um capacitor equivalente, que vamos chamar de C 123 . Resolvendo a equação

1 1 1 1 CC + CC + CC

= + + =

C C C C CCC

123 1 2 3

1 2 2 3 1 3

1 2 3

obtemos C 123 = 2,40 mF. Como V = 12,0 V, a carga do circuito é q = C 123 V = 28,8 mC.

,


SOLUÇÕES DOS PROBLEMAS 121

Na situação final, C 2 e C 4 estão em paralelo e podem ser substituídos por uma capacitância equivalente

a C 24 = 12,0 mF, que está em série com C 1 e C 3 . A capacitância equivalente do circuito

é obtida resolvendo a equação

1 1 1 1 CC + C C + CC

= + + =

C C C C CC C

1234 1 24 3

1 24 24 3 1 3

1 24 3

que nos dá C 1234 = 3,00 mF. Assim, a carga final é q = C 1234 V = 36,0 mC.

(a) A carga que passa pelo ponto P é a diferença entre a carga final e a carga inicial:

∆q = 36,0 mC − 28,8 mC = 7,20 mC.

(b) O capacitor C 24 , que usamos para substituir C 2 e C 4 , está em série com C 1 e C 3 e, portanto,

também adquire uma carga q = 36,0 mC. Assim, a tensão entre os terminais de C 24 é

V

24

q 36,

0 C

= = = 300 , V.

C 12,0 F

24

Como esta tensão é a mesma que existe entre os terminais de C 2 e de C 4 , V 4 = 3,00 V, o que nos

dá q 4 = C 4 V 4 = 18,0 mC.

(c) A bateria fornece carga apenas às placas às quais está ligada; a carga das outras placas

se deve apenas à transferência de elétrons de uma placa para outra, de acordo com a nova

distribuição de tensões pelos capacitores. Assim, a bateria não fornece carga diretamente ao

capacitor.

62. De acordo com as Eqs. 25-20 e 25-22, quando os capacitores são ligados em série, a capacitância

total, e portanto a energia armazenada, é menor que as energias que podem ser armazenadas

separadamente pelos dois capacitores. De acordo com as Eqs. 25-19 e 25-22, quando

os capacitores são ligados em paralelo, a capacitância total, e, portanto, a energia armazenada,

é maior que as energias que podem ser armazenadas separadamente pelos dois capacitores.

Assim, os dois valores do meio correspondem às energias armazenadas separadamente pelos

dois capacitores. De acordo com a Eq. 25-22, temos:

(a) 100 mJ = C 1 (10 V) 2 /2 ⇒ C 1 = 2,0 mF;

(b) 300 mJ = C 2 (10 V) 2 /2 ⇒ C 2 = 6,0 mF.

63. Inicialmente, a capacitância equivalente é C 12 = [(C 1 ) −1 + (C 2 ) −1 ] −1 = 3,0 mF, e a carga da placa

positiva dos dois capacitores é (3,0 mF)(10 V) = 30 mC. Quando a distância entre as placas

de um dos capacitores (que vamos chamar de C 1 ) é reduzida à metade, a capacitância aumenta

para 12 mF (veja a Eq. 25-9). A nova capacitância equivalente é, portanto,

C 12 = [(C 1 ) −1 + (C 2 ) −1 ] −1 = 4,0 mF

e a nova carga da placa positiva dos dois capacitores é (4,0 mF)(10 V) = 40 mC.

(a) A carga adicional transferida para os capacitores é 40 mC − 30 mC = 10 mC.

(b) Como estamos falando de dois capacitores em série, e capacitores em série armazenam

cargas iguais, a carga total armazenada nos dois capacitores é duas vezes maior que o valor

calculado no item (a), ou seja, 20 mC.

64. (a) Os capacitores C 2 , C 3 e C 4 em paralelo podem ser substituídos por um capacitor equivalente

C′ = 12 mF e os capacitores C 5 e C 6 em paralelo podem ser substituídos pelo capacitor

equivalente C = 12 mF. Isso nos dá três capacitores em série, C 1 , C9 e C, cuja capacitância

equivalente é C eq = 3 mF. Assim, a carga armazenada no sistema é q sis = C eq V bat = 36 mC.

,


122 SOLUÇÕES DOS PROBLEMAS

(b) Como q sis = q 1 , a tensão entre os terminais de C 1 é

V

1

= q1

36

C

= C

60F

= 60 , V.

,

1

A tensão aplicada à combinação em série de C9 e C é, portanto, V bat − V 1 = 6,0 V. Como C9 =

C, V9 = V = 6,0/2 = 3,0 V, que, por sua vez, é igual a V 4 , a tensão aplicada a C 4 . Assim,

q 4 = C 4 V 4 = (4,0 mF)(3,0 V) = 12 mC.

65. Podemos pensar no capacitor composto como a associação em série de dois capacitores, C 1

e C 2 , o primeiro com um material de constante dielétrica k 1 = 3,00 e o segundo com um material

de constante dielétrica k 2 = 4,00. Usando as Eqs. 25-9 e 25-27 e substituindo C 1 e C 2 por uma

capacitância equivalente, obtida com o auxílio da Eq. 25-20, temos:

C

Assim, q = C eq V = 1,06 × 10 −9 C.

eq

⎛ 1 2 ⎞ 0 A

=

F

+ ⎠

⎟ = 152 , × 10−

10

.

d

1 2

66. Antes de mais nada, precisamos obter uma expressão para a energia armazenada em um

cilindro de raio R e comprimento L cuja superfície está entre os raios das placas do capacitor

(a < R < b). A densidade de energia em qualquer ponto do interior do capacitor é dada por

u = â 0 E 2 /2, na qual E é o módulo do campo elétrico no ponto considerado. De acordo com a Eq.

25-12, se q é a carga na superfície do cilindro interno, o módulo do campo elétrico em um ponto

situado a uma distância r do eixo do cilindro é dado por

e a densidade de energia nesse ponto é

E

q

= 2 0Lr

1 q2

u= E2

0 =

2 8Lr

2 0

2 2

A energia armazenada no cilindro é a integral de volume UR =

udV. Como dV = 2prLdr,

temos:

U

R

R q2

q2

R dr q2

⎛ R⎞

=

2

rLdr = = ln .

a 8

2 0 Lr

2 2

4

L ∫a

r 4ε

L ⎝

a ⎠

Para obter uma expressão para a energia total armazenada no capacitor, substituímos R por b:

U

b =

0

q2

⎛ b⎞

ln

L ⎝

a⎠

⎟ .

4 0

.

0

Fazendo U R /U b = 1/2, temos:

R b

ln = 1 ln .

a 2 a

Tomando as exponenciais de ambos os membros da equação mostrada, obtemos:

R

a

b

= ⎛ ⎝ ⎜ ⎞

a⎠

12 /

⎟ =

b

,

a

o que nos dá R= ab .


SOLUÇÕES DOS PROBLEMAS 123

67. (a) A capacitância equivalente é C

eq

CC 1 2

=

C + C

1 2

(b) q 1 = C eq V = (2,40 mF)(200 V) = 4,80 × 10 −4 C = 0,480 mC.

(c) V 1 = q 1 /C 1 = 4,80 × 10 −4 C/6,00 mF = 80,0 V.

(d) q 2 = q 1 = 4,80 × 10 −4 C = 0,480 mC.

(e) V 2 = V – V 1 = 200 V – 80,0 V = 120 V.

68. (a) C eq = C 1 + C 2 = 6,00 mF + 4,00 mF = 10,0 mF.

(b) q 1 = C 1 V = (6,00 mF)(200 V) = 1,20 × 10 –3 C = 1,20 mC.

(c) V 1 = 200 V.

(d) q 2 = C 2 V = (4,00 mF)(200 V) = 8,00 × 10 –4 C = 0,800 mC.

(e) V 2 = V 1 = 200 V.

600 , F

4,

00F

600 , F+

4,

00 F

= 240 , F.

= ( )( )

69. De acordo com a Eq. 25-22, U = CV 2 /2. Quando a tensão aumenta de V para V + ∆V, a

energia aumenta de U para U + ∆U = C(V + ∆V) 2 /2. Dividindo ambos os membros da última

equação por ∆U, obtemos:

o que nos dá

U

CV ( + V) 2

CV ( + V)

2

⎛ V

1+ =

=

= 1+

2

2 ⎝

U U CV

V

2

,

V

V

U

= 1+ − 1= 1+ 10% − 1=

49 , %.

U

70. (a) Como o efeito da introdução da barra de cobre é diminuir a distância efetiva entre as

placas do capacitor de um valor igual à largura da barra, C9 = â 0 A/(d – b) = 0,708 pF.

(b) De acordo com a Eq. 25-22, a razão entre as energias armazenadas antes e depois da introdução

da barra é

U q C C A d b d

U′ = 2

/ 2

q C′ = ′ 0

/( − )

=

=

C Ad d − b

= 50 , 0

= 167 , .

2

/ 2

/

500 , − 2,

00

(c) O trabalho realizado quando a barra é introduzida é

0

W U U U q 2

⎛ 1 q

C C A d b d q

= = ′ − =

′ − 1

2

2

b

⎟ = ( − − ) = − =− 544 , J.

2

2

2 A

(d) O fato de que o trabalho é negativo mostra que a barra é atraída para o espaço entre as

placas.

71. (a) C9 = â 0 A/(d – b) = 0,708 pF, como no item (a) do Problema 25-70.

(b) A razão entre as energias armazenadas é

U CV

U′ = CV ′

2

0

/ 2 C 0

Ad / d − b 50 , 0−

2,

00

= =

= =

= 0, 600.

/ 2 C ′ A/

( d − b)

d 500 ,

2

0

0


124 SOLUÇÕES DOS PROBLEMAS

(c) O trabalho realizado é

W = U = U ′ − A

U = 1

C ′ − C V = ⎛

d − b − ⎞

2

0 1 1

d ⎠

⎟ V 2

0

AbV

2

( )

= = 102 , × 10 − 9

J.

2 2

2dd

( − b)

(d) No Problema 25-70, no qual o capacitor é desligado da bateria e a barra é atraída para o

espaço entre as placas, a força F de atração é dada por −dU/dx. Entretanto, a mesma relação

não pode ser usada no caso em que a bateria continua ligada ao circuito porque, nesse caso, a

força de atração não é conservativa. A distribuição de carga da barra faz com que a barra seja

atraída pela distribuição de carga das placas, o que produz um aumento da energia potencial

armazenada pela bateria no capacitor.

72. (a) A capacitância equivalente é C eq = C 1 C 2 /(C 1 + C 2 ) e a carga armazenada nos capacitores é

CCV 1 2

q= q1 = q2

= CeqV

=

C + C

1 2

( 200 , F)(8,00

F)(300V)

=

= 480 , × 10−

4 C = 0,480 mC.

200 , F+

8,

00 F

(b) A diferença de potencial é V 1 = q/C 1 = 4,80 × 10 –4 C/2,0 mF = 240 V.

(c) Como foi visto no item (a), q 2 = q 1 = 4,80 × 10 −4 C = 0,480 mC.

(d) V 2 = V – V 1 = 300 V – 240 V = 60,0 V.

Nesse caso, q1′ / C1 = q2′

/ C2

e q1′ + q2′ = 2 q. Explicitando q 2 ′ na segunda equação e substituindo

na primeira, obtemos:

2Cq

×

1 2( 200 , F)(4,80 10

4C)

(e) q1′ = =

= 192 , × 10−

4 C = 0,192 mC.

C + C 200 , F

+ 8,

00 F

1 2

q

(f) A nova diferença de potencial é ′= ′ ×

1 192 , 10

4C

V1

=

= 96,

0 V.

C 200 , F

(g) q′ = 2q− q′ = 2( 480 , × 10−

4

C) − 1, 92 × 10−

4

C= 768 , × 10− 4

C = 0,768 mC.

2 1

(h) V2′ = V1′=

96, 0 V.

(i) Nesse caso, os capacitores se descarregam e q 1 = 0.

(j) V 1 = 0,

(k) q 2 = 0,

(l) V 2 = V 1 = 0.

73. A tensão entre os terminais do capacitor 1 é

Como V 2 = V 1 , a carga do capacitor 2 é

V

1

1

= q1

30

C

= C

10F

= 30 , V.

1

q2 = C2V2 = ( 20F)( 2V) = 60C,

o que significa que a carga total armazenada nos capacitores C 1 e C 2 é 30 mC + 60 mC = 90 mC.

Nesse caso, a carga total armazenada nos capacitores C 3 e C 4 também é 90 mC. Como C 3 = C 4 ,


SOLUÇÕES DOS PROBLEMAS 125

a carga se divide igualmente entre os dois capacitores e, portanto, q 3 = q 4 = 45 mC. Assim, a

tensão entre os terminais do capacitor 3 é

o que nos dá |V A – V B | = V 1 + V 3 = 5,3 V.

V

3

= q3

45

C

= C

20F

= 23 , V,

3

74. Como C = â 0 kA/d ∝ k/d, para obter o maior valor possível de C, devemos escolher o material

com o maior valor de k/d. Para os materiais propostos no enunciado, os valores de k/d são

os seguintes: mica, 5,4/(0,0001 m) = 54.000 m −1 ; vidro, 7,0/(0,002 m) = 3500 m −1 ; parafina, 2,0/

(0,01 m) = 200 m −1 . Assim, devemos escolher a mica.

75. Não podemos usar a lei de conservação da energia porque, antes que o equilíbrio seja atingido,

parte da energia é dissipada na forma de calor e de ondas eletromagnéticas. Entretanto, a

carga é conservada. Assim, se Q é a carga armazenada inicialmente no capacitor C e q 1 e q 2 são

as cargas armazenadas nos dois capacitores depois que o sistema entra em equilíbrio,

o que nos dá C = 40 mF.

Q = q1+ q2 ⇒ C( 100 V) = C( 40 V) + ( 60 F)( 40 V),

76. Vamos chamar de V t a tensão aplicada ao conjunto de capacitores e de U t a energia total

armazenada nos capacitores. Como todos os capacitores são iguais, a tensão é dividida igualmente

entre eles, e a tensão entre os terminais de cada capacitor é V = (V t /n). Como a energia

armazenada em cada capacitor é CV 2 /2, temos:

2 2 6 2

1 ⎛

C V t ⎞

CVt

Ut

n

2 ⎝

n ⎠

⎟ = ⇒ = =

2U

t

( 2× 10−

F)( 10 V)

2( 25 × 10 − 6

J)

= 4.

77. (a) Como tanto a diferença de potencial entre as placas como a distância entre as placas são

iguais para os dois capacitores, os campos elétricos em A e em B também são iguais:

E

B

V

= EA

= = 200 , × 10 5 Vm.

d

(b) Como foi visto no item (a), E A = 2,00 × 10 5 V/m = 200 kV/m.

(c) De acordo com a Eq. 25-4,

(d) De acordo com a Eq. 25-29,

q

= = = ×

0 E A (, 885 10

12

F/m)( 2, 00 × 105

V/m)

A

= 177 , × 10−

6 Cm

2 = 177 , C/m

2 .

= E = 260 8 85 × 10−

12

200×

105

B ( , )( , F/m)( , V/m)

0

= 460 , × 10 − 6 Cm 2 = 4, 60 C/m 2 .

(e) Embora a discussão do livro (Seção 25-8) seja feita usando a hipótese de que a carga permanece

a mesma quando o dielétrico é introduzido, pode ser facilmente adaptada à situação

descrita neste problema, na qual a tensão permanece a mesma quando o dielétrico é introduzido.

O fato de que o campo elétrico é o mesmo no interior dos dois capacitores, embora a carga

do capacitor B seja maior que a do capacitor A, está de acordo com a ideia apresentada no livro

de que o campo elétrico produzido pelas cargas induzidas no dielétrico tem o sentido oposto ao

do campo elétrico produzido pelas placas do capacitor. Adaptando a Eq. 25-35 a este problema,


126 SOLUÇÕES DOS PROBLEMAS

vemos que a diferença entre as densidades de cargas livres no capacitor B e no capacitor A é

igual à densidade de carga s′ na superfície do dielétrico do capacitor B. Assim, temos:

′ = (, 177× 10 − 6) − ( 4, 60 × 10 − 6) =− 283 , × 10

− 6

Cm 2 .

78. (a) Ligue cinco capacitores em série. Assim, a capacitância equivalente é C eq = (2,0 mF)/5 =

0,40 mF e, como a diferença de potencial que cada capacitor pode suportar é 200 V, o circuito

pode suportar uma tensão de 5(200 V) = 1000 V.

(b) Uma possibilidade é montar três conjuntos iguais de capacitores em série, cada conjunto

com cinco capacitores, e ligar os três conjuntos em paralelo. Assim, a capacitância equivalente

é C eq = 3(0,40 mF) = 1,2 mF e, como a diferença de potencial que cada capacitor pode suportar

é 200 V, o circuito pode suportar uma tensão de 5(200 V) = 1000 V.


Capítulo 26

1. (a) A carga que passa por uma seção reta do fio é o produto da corrente pelo intervalo de

tempo ∆t de duração da corrente. Assim, temos:

(b) O número N é dado por

q = i∆t = (5,0 A)(240 s) = 1,2 × 10 3 C = 1,2 kC.

N = q/e = (1200 C)/(1,60 × 10 –19 C) = 7,5 × 10 21 .

2. Suponha que a carga da esfera aumenta de ∆q em um intervalo de tempo ∆t. Nesse intervalo

de tempo, o potencial da esfera aumenta de

q

V

= , 4 0r

em que r é o raio da esfera. Isso significa que ∆q = 4pâ 0 r∆V. Como ∆q = (i ent – i sai )∆t, na qual

i ent é a corrente que entra na esfera e i sai é a corrente que sai da esfera, temos:

t

=

i

q

− i

4 0rV

( 0, 10 m)( 1000

V)

= =

i − i (, 899× 109

F/m)( 1, 0000020 A−1, 0000000 A)

ent sai ent sai

= 5,

6× 10 − 3 s.

3. Se s é a densidade superficial de carga e l é a largura da correia, a corrente associada ao

movimento das cargas é i = svl, o que nos dá

i 100 × 10−

6

A

= =

= 67 , × 10−

6

Cm 2 .

vl ( 30 ms)( 50 × 10−

2

m)

4. Para expressar a densidade de corrente em unidades do SI, convertemos os diâmetros dos

fios de mils para polegadas, dividindo por 1000, e depois executamos a conversão de polegadas

para metros, multiplicando por 0,0254. Feito isso, podemos usar a relação

na qual i é a corrente e D é o diâmetro do fio.

i i 4i

J = = =

A R

D

2 2

No caso de um fio calibre 14, por exemplo, D = 64 mils = 0,0016 m e a densidade de corrente

segura é J = 4(15 A)/p(0,00163 m) 2 = 7,2 × 10 6 A/m 2 . Na verdade, este é o calibre para o qual

o valor de J é máximo. O gráfico a seguir mostra a densidade de corrente segura J, em A/m 2 ,

em função do diâmetro do fio em mils.

,


128 SOLUÇÕES DOS PROBLEMAS

5. (a) O módulo da densidade de corrente é dado por J = nqv, na qual n é o número de partículas

por unidade de volume, q é a carga das partículas e v é a velocidade das partículas. Como os

íons são positivos e duplamente carregados, a carga das partículas é 2e. Assim, temos:

J = n(2e)v = (2 × 10 14 íons/m 3 )(3,20 × 10 −19 C)(1,0 × 10 5 m/s) = 6,4 A/m 2 .

(b) Como as partículas são positivamente carregadas, a densidade de corrente tem a mesma

direção que a velocidade, ou seja, aponta para o norte.

(c) Para calcular a corrente, é preciso conhecer a área da seção reta do feixe de íons, caso em

que a equação i = JA pode ser usada.

6. (a) Como a área de um círculo é proporcional a r 2 , o eixo horizontal do gráfico da Fig. 26-23b

representa (a menos de um fator constante p) à área do fio. O fato de que o gráfico é uma linha

reta indica que a densidade de corrente J = i/A é constante. Por isso, a resposta é “sim, a densidade

de corrente é uniforme”.

(b) Como, de acordo com o gráfico da Fig. 26-23b, a corrente é 5,0 mA quando o raio é 4,00

mm 2 , temos:

i 0,

005 A

J = =

= 398 ≈ 40 , × 102

A/m2.

r

2

( 4×

10−

6

m2)

7. A área da seção reta do fio é dada por A = pr 2 , na qual r é o raio (metade do diâmetro) do fio.

Como o módulo do vetor densidade de corrente é

temos:

i

J = i

A

= r

, 2

i

r = =

J

050 , A

( 440 × 104

A/m2)

= 19 , × 10−

4

m.

O diâmetro do fio é, portanto, d = 2r = 2(1,9 × 10 –4 m) = 3,8 × 10 –4 m = 0,38 mm.

8. (a) O módulo da densidade de corrente é

i i 412 (, × 10−

10

A)

J = = =

A d

2

/ 4 ( 25 , × 10−

3m)

2

= 24 , × 10 −5

A/m 2 .

(b) A velocidade de deriva dos elétrons é

J 24 , × 10−

5

A/m2

vd = =

ne (, 847× 10 /m )( 160 , × 10

28 3 −19

= 18 , × 10−

C)

9. A largura da região considerada, ∆r = 10 mm, é tão pequena em comparação com a distância da

região ao centro do fio, r = 1,20 mm, que podemos usar a aproximação

Br2 rdr ≈ Br2r r.

Assim, a corrente que passa no anel é

i anel = 2pBr 2 ∆r = 2p(2,00 × 10 5 A/m 2 )(0,00120) 2 (10 × 10 −6 ) = 1,181 × 10 −5 A = 18,1 mA.

15

m/s.

10. Supondo que a densidade de corrente J é paralela ao fio, a Eq. 26-4 nos dá:

R

i =

∫| J | dA =

( kr

2

1

) 2rdr = k ( R4 −0,

656R4)

9R

/ 10

2

1

= (, 30× 108) {( 0, 00200 m) 4

− [( 0, 656)( 0,

00200m)] 4} = 2, 59 × 10−

3A.

2


SOLUÇÕES DOS PROBLEMAS 129

11. (a) A corrente é

i J dA J R

0

2

= a = r⋅ rdr = RJ

2

2

= ×

S R ∫

2 0 ( 340 , 10

3

m)(,

2

550×

104

A/m

2)

0

3 3

= 133 , A.

(b) A corrente é

R

⎛ r ⎞ 1

i =

JbdA =

J − rdr R J

R⎠

⎟ =

2

1

0 1 2 0 = ( 3, 40 × 10 − 3

m) 2(,

550×

104

A/m

2)

S

0

3 3

= 0,

666 A.

(c) Comparando as duas funções, vemos que J b → 0 para r → R, enquanto J a não varia com a

distância radial. Assim, J a é maior perto da superfície do fio.

12. (a) O módulo da densidade de corrente é

J = nev = (, 870× 106 m3)( 160 , × 10−

19C)( 470 × 103m/s)

= 654 , × 10−

7

A/m2 = 0, 654 A/m2.

(b) Embora a área da superfície da Terra seja aproximadamente 4 R2

T (a área da superfície de

uma esfera), a área a ser usada no cálculo de quantos prótons em um feixe aproximadamente

unidirecional (o vento solar) são recebidos pela Terra é a seção de choque da Terra, ou seja, um

“alvo” cuja área é uma circunferência de área R 2 T . Assim, temos:

i = AJ = R2J

= (, 637× 106m) 2( 6, 54 × 10−

7

A/m 2 ) = 83 , 4× 10 7 A = 83,4 MA.

T

13. Como a velocidade de deriva dos elétrons é dada por v d = J/ne = i/Ane, temos:

L

t = L LAne

v

= iAne

= i

= ( 085 , m)( 0, 21 × 10−

14

m 2 )(, 8 49 × 1028 elétrons/m 3

)( 160 , × 10−

19

C)

/

300 A

d

= 81 , × 10 2

s = 13min.

14. Como a diferença de potencial V e a corrente i estão relacionadas através da equação V =

iR, na qual R é a resistência do eletricista, a tensão fatal é

V = (50 × 10 –3 A)(2000 Ω) = 100 V.

15. A resistência da bobina é dada por R = rL/A, na qual r é a resistividade do cobre, L é o

comprimento do fio e A é a área da seção reta do fio. Como o comprimento de cada espira é

2pr, na qual r é o raio da bobina,

Se r f é o raio do fio, a área da seção reta é

L = (250)2pr = (250)(2p)(0,12 m) = 188,5 m.

A=

2

= ( 065 , × 10−

3

m) 2

= 133 , × 10−

6

m 2 .

r f

Como, de acordo com a Tabela 26-1, a resistividade do cobre é r = 1,69 × 10 −8 Ω . m, temos:

L (, 169× 10−

8 ⋅m)( 188, 5 m)

R = =

= 24 , .

A 133 , × 10−

6

m2

16. A resistência por unidade de comprimento r L e a resistividade r estão relacionadas através

de equação r L = r/A, na qual A é a área da seção reta do fio; a massa por unidade de comprimento

m L e a massa específica m estão relacionadas através da equação m L = m/A.


130 SOLUÇÕES DOS PROBLEMAS

(a) No caso do cobre,

J = i/A = ir L /r = (60,0 A)(0,150 Ω/km)/(1,69 × 10 –8 Ω· m) = 5,32 × 10 5 A/m 2 .

(b) No caso do cobre,

m L = m/A = mr/r L = (8960 kg/m 3 )(1,69 × 10 –8 Ω· m)/(0,150 Ω/km) = 1,01 kg/m.

(c) No caso do alumínio,

J = ir L /r = (60,0 A)(0,150 Ω/km)/(2,75 × 10 –8 Ω· m) = 3,27 × 10 5 A/m 2 .

(d) No caso do alumínio,

m L = mr/r L = (2700 kg/m 3 )(2,75 × 10 –8 Ω· m)/(0,150 Ω/km) = 0,495 kg/m.

17. Como a condutividade s é o recíproco da resistividade, temos:

1 L L Li (, 1 0 m)( 4,0 A)

RA ViA / VA ( 2,0 V)(,0 1 × 10−

m

= = = ( )

= =

6 2

18. (a) i = V/R = 23,0 V/(15,0 × 10 –3 Ω) = 1,53 × 10 3 A = 1,63 kA.

(b) Como a área da seção reta do fio é A = pr 2 = pD 2 /4, temos:

= 20 , × 106 −

1⋅

m−

1.

)

i 4i

4(, 153×

10−

3

A)

J = = =

A D2

( 6,00 × 10−

m)

3 2

= 541 , × 107 A/m2

= 54, 1 MA/m 2 .

(c) A resistividade é

RA ( 15, 0× 10−

3

) ( 6,

00 × 10−

3m)

= =

L

4400 ( , m)

2

= 10, 6× 10− 8 ⋅m.

(d) O material é a platina.

19. De acordo com a Eq. 26-16, a resistência do fio é dada por R = rL/A, na qual r é a resistividade

do material, L é o comprimento do fio e A é a área da seção reta do fio. Neste caso,

e

A= r2 = ( 050 , × 10−

3m) 2

= 7,

85 × 10−

7m 2

RA ( 50 × 10−

3

)( 785 , × 10−

7

m2)

= =

= 20 , × 10

L

20 , m

−8

⋅ m.

20. Vamos chamar o diâmetro do fio de D. Como R ∝ L/A (Eq. 26-16) e A = pD 2 /4 ∝ D 2 , a

resistência do segundo fio é

R R A 1 L

2 = ⎛ ⎝ ⎜ ⎞ ⎛

A ⎠

L

2

2

1

R

D 1

⎟ = ⎛ ⎝ ⎜ ⎞

D ⎠

2

2

⎛ L2

⎝ L

1

⎟ = ( ) 2 ⎛ ⎝ ⎜ ⎞

R 2

1

⎟ = 2R.

2

21. A resistência quando a lâmpada está acesa é R = V/i = (2,9 V)/(0,30 A) = 9,67 Ω. Como

R – R 0 = R 0 a (T – T 0 ), temos:

1 ⎛ R ⎞

T = T + −

R ⎠

⎟ = + ⎛ 1

0 1 20 C

45 , × 10

0

−3

⎞ ⎛ 96 , 7 ⎞

K ⎠

⎟ − 1 18 , 10 3

11 , ⎠

⎟ = × C .

Como uma variação de temperatura em graus Celsius é igual a uma variação de temperatura

em kelvins, o valor de a usado nos cálculos é compatível com as outras unidades envolvidas.

O valor de a para o tungstênio foi obtido na Tabela 26-1.


SOLUÇÕES DOS PROBLEMAS 131

22. Seja r o raio da linha da pipa e seja e a espessura da camada de água. A área da seção reta

da camada de água é

A= [ ( r+ t) 2 − r

2 ]= [( 250 , × 10−

3 m) 2 − ( 2,

00 × 10−

3 m)] 2 = 707 , × 10−

6 m 2 .

De acordo com a Eq. 26-16, a resistência do fio molhado é

e a corrente é

i

L ( 150 ⋅ m)( 800 m)

R = =

= 1,

698 × 10

A 707 , × 10−

6

m2

V

= =

R

160 , × 10

1,698 × 10

8

10

10

V

= 942 , × 10−

3

A = 9,42 mA.

23. De acordo com a Eq. 26-10, J = E/r, na qual J é a densidade de corrente, E é o campo

elétrico (uniforme) no interior do fio e r é a resistividade do material do fio. Como o campo

elétrico é dado por E = V/L, na qual V é a diferença de potencial entre as extremidades do fio e

L é o comprimento do fio, J = V/Lr e

V 115 V

= =

= 82 , × 10−

4

⋅ m.

LJ ( 10 m)(, 14×

104

A m2)

24. (a) Como o material é o mesmo, a resistividade r é a mesma, o que significa, de acordo com

a Eq. 26-11, que os campos elétricos nos diferentes trechos são diretamente proporcionais às

densidades de corrente. Assim, de acordo com o gráfico da Fig. 26-24a, J 1 /2,5 = J 2 /4 = J 3 /1,5.

Como as barras estão ligadas em série, a corrente é a mesma nas três barras e, portanto, J 1 A 1 =

J 2 A 2 = J 3 A 3 . Como A ∝ r 2 , temos:

25 , r = 4r = 15 , r .

1 2 2 2 3 2

Para r 3 = 2 mm, a relação 25 , r = 15 , r nos dá r 1 = 1,55 mm.

1 2 3 2

(b) A relação 4r 2

2

= 1,5r 3

2

nos dá r 2 = 1,22 mm.

25. Como a densidade do material não muda, o volume permanece o mesmo. Se L 0 é o comprimento

original, L é o novo comprimento, A 0 é a área da seção reta original e A é a área da nova

seção reta, L 0 A 0 = LA e A = L 0 A 0 /L = L 0 A 0 /3L 0 = A 0 /3. A nova resistência é

L

3L0

L0

R = = = 9 = 9R0

,

A A / 3 A

na qual R 0 é a resistência original. Para R 0 = 6,0 Ω, R = 9(6,0 Ω) = 54 Ω.

0

26. O valor absoluto da inclinação das retas do gráfico da Fig. 26-25b é igual ao valor absoluto

do campo elétrico nos trechos correspondentes da placa. Aplicando as Eqs. 26-5 e 26-13 aos

três trechos da placa resistiva, temos:

J 1 = i/A = s 1 E 1 = s 1 (0,50 × 10 3 V/m)

J 2 = i/A = s 2 E 2 = s 2 (4,0 × 10 3 V/m)

J 3 = i/A = s 3 E 3 = s 3 (1,0 × 10 3 V/m).

Note que J 1 = J 2 = J 3 , já que os valores de i e A são os mesmos nos três trechos. Como s 3 = 3,00 ×

10 7 (Ω . m) −1 , temos:

(a) s 1 = 2s 3 = 2 (3,00 × 10 7 (Ω . m) −1 = 6,00 ×10 7 (Ω . m) −1 .

(b) s 2 = s 3 /4 = (3,00 × 10 7 Ω −1 . m −1 )/4 = 7,50 × 10 6 (Ω . m) −1 .

0


132 SOLUÇÕES DOS PROBLEMAS

27. A resistência do condutor A é dada por

R

A

= L

r

, 2

na qual r A é o raio do condutor. Se r ext é o diâmetro externo do condutor B e r int é o diâmetro

interno, a área da seção reta é ( r2 ext − r2

int ) e a resistência é

A razão pedida é

R

B =

A

L

( r − r ) .

2 2

ext

int

R

R

A

B

r2 − r2

ext int (, 1 0mm) − ( 0, 50 mm)

= =

r

2

( 050 , mm)

2

A

2 2

= 30 , .

28. De acordo com as Eqs. 26-8 e 26-16, V = iR = irL/A. De acordo com a Tabela 26-1, a resistividade

do cobre é 1,69 × 10 −8 Ω . m. De acordo com o gráfico da Fig. 26-26, para L = x s , a

queda de tensão é V = V s , o que nos dá

AV

i = s rVs

x

=

2

x

= ( 0, 002 m)( 2

12 × 10−

6

V)

= ≈

(, 169 × 10−

8

0, 0029 A 30 , mA.

⋅m)( 30 , m)

29. A resistência do fio de cobre é

s

s

L

(, 169× 10−

8

⋅m)( 0, 020 m)

R = =

= 2, 69 × 10 − 5 .

A ( 20 , × 10−

3m)

2

Para uma diferença de potencial V = 3,00 nV, a corrente que atravessa o fio é

i

V

= =

R

300 , × 10

2,69 × 10

−9

−5

V

= 1,

115 × 10

A carga que passa por uma seção reta do fio em 3,00 ms é

Q

= it

= (, 1 115 × 10 − 4

A)(3,00 × 10 − 3

s) = 335 , × 10

− 7

C.

30. De acordo com as informações do enunciado, o diâmetro de um fio calibre 22 é 1/4 do diâmetro

de um fio calibre 10. Assim, como R = rL/A, a resistência de 25 pés de um fio calibre 22 é

31. (a) A corrente em cada fio é

(b) A diferença de potencial é

(c) A resistência é

−4

A.

R = (1,00 Ω)(25 pés/1000 pés)(4) 2 = 0,40 Ω.

i = 0,750 A/125 = 6,00 × 10 –3 A.

V = iR = (6,00 × 10 –3 A)(2,65 × 10 –6 Ω) = 1,59 × 10 –8 V.

R total = 2,65 × 10 –6 Ω/125 = 2,12 × 10 –8 Ω.

32. De acordo com as Eqs. 26-7 e 26-13, J = s E = (n + + n – )ev d .

(a) O módulo da densidade de corrente é

J = s E = [2,70 × 10 –14 (Ω· m) −1 ](120 V/m) = 3,24 × 10 –12 A/m 2 = 3,24 pA/m 2 .

(b) A velocidade de deriva é

v

d =

E

=

( n + n ) e

+ −

[ 270 , × 10−

14

( ⋅m)

−1]( 120 V m)

620 + 550 íons cm3 160 , 10 − 19

C

[( ) ] ×

( ) =

173 , cm s.


SOLUÇÕES DOS PROBLEMAS 133

33. (a) i = V/R = 35,8 V/935 Ω = 3,83 × 10 –2 A.

(b) J = i/A = (3,83 × 10 –2 A)/(3,50 × 10 –4 m 2 ) = 109 A/m 2 .

(c) v d = J/ne = (109 A/m 2 )/[(5,33 × 10 22 /m 3 ) (1,60 × 10 –19 C)] = 1,28 × 10 –2 m/s.

(d) E = V/L = 35,8 V/0,158 m = 227 V/m.

34. A concentração de elétrons de condução no cobre é n = 8,49 × 10 28 /m 3 . O campo elétrico

no fio 2 é (10,0 mV)/(2,00 m) = 5,00 mV/m. Como r= 1,69 × 10 −8 Ω· m para o cobre (veja a

Tabela 26-1), a Eq. 26-10 nos dá uma densidade de corrente J 2 = (5,00 mV/m)/(1,69 × 10 −8 Ω·

m) = 296 A/m 2 . Como a corrente é a mesma nos fios 1 e 2, temos, de acordo com a Eq. 26-5,

JA= JA ⇒ J ( 4R2

) = J ( R2),

1 1 2 2 1

o que nos dá J 1 = 74 A/m 2 . Assim, de acordo com a Eq. 26-20,

J1 vd = = 544 , × 10−

9

m/s.

ne

35. (a) A Fig. 26-29 mostra a corrente i entrando no tronco de cone pela base menor e saindo

pela base maior; vamos escolher este sentido como sentido positivo do eixo x. Como a densidade

de corrente J é uniforme, J(x) = i/A, na qual A = pr 2 é a área da seção reta do cone. Como,

de acordo com a Eq. 26-11, E = rJ, temos:

i

Ex ( ) = .

r

Integrando E(x), podemos determinar a diferença de potencial V entre as bases do tronco de

cone e calcular a resistência usando a relação R = V/i (Eq. 26-8). Para isso, porém, é preciso

conhecer como r varia com x.

Como o raio do tronco de cone varia linearmente com x, sabemos que r = c 1 + c 2 x, na qual c 1 e

c 2 são constantes. Tomando como origem o centro da base menor do tronco de cone, r = a para

x = 0 e, portanto, c 1 = a. Como r = b para x = L, b = a + c 2 L, o que nos dá c 2 = (b − a)L. Assim,

temos:

2

⎛ b−

a⎞

r = a+

x

L ⎠

⎟ .

Substituindo r por esse valor na expressão de E(x), obtemos:

−2

i

Ex ( ) = ⎛ b a

a + −

L

x ⎞

.

A diferença de potencial entre as bases do tronco de cone é

e a resistência é

L

L i b a

V Edx a

L x dx i L

=− =− + − −2

⎛ ⎞ ⎛

∫ ⎮ ⎝

⎟ =

0 ⌡

b − a a b a

+ −

L

x ⎞

0

i

L ⎛ 1 1⎞

i

L b− a iL

=

b−

a⎝

a b⎠

⎟ =

=

b−

a ab ab

2

−1

L

R

V L

(731 ⋅ m)(1,94 × 10−

2

m)

= = =

= 981 , × 105

=

981 k.

i ab

(2,00

× 10−

3

m)( 230 , × 10−

3

m)

Note que, se b = a, R = rL/pa 2 = rL/A, na qual A = pa 2 é a área da seção reta do cilindro.

0


134 SOLUÇÕES DOS PROBLEMAS

36. Supondo que a corrente se espalha uniformemente no hemisfério, a densidade de corrente

a uma distância r do local onde caiu o raio é J = I/2pr 2 . De acordo com a Eq. 26-10, o campo

elétrico a essa distância é

aI

E = aJ

=

2r

, 2

na qual r a é a resistividade da água. A diferença de potencial entre um ponto a uma distância D

do local onde caiu o raio e um ponto a uma distância D + ∆r é

+ D+

r

D r

aI

V

Edr

r dr aI

=− =− ⌠ ⎛ 1 1 ⎞ aI

r

=

D ⌡ 2

2

2 ⎝

D+

r

D⎠

⎟ =−

2

DD ( + r)

e, portanto, a corrente que atravessa o corpo do nadador é

Substituindo por valores numéricos, obtemos

D

| V

| aI

r

i = =

R 2 R DD ( + r) .

( 30, 0

⋅ m)( 7, 80 × 104

A)

070 , m

i =

= 522 , × 10−

2 A = 52mA.

2 ( 4,

00 × 103)

( 350 , m)( 35, 0 m+

0, 70 m)

37. De acordo com as Eqs. 26-23 e 26-24, r ∝ τ –1 ∝ v ef ; essas relações são discutidas no Exemplo

“Tempo livre médio e livre caminho médio”. Como, de acordo com a Eq. 19-31, vef ∝ T,

∝ T .

38. A inclinação do gráfico da Fig. 26-31b é P = (2,50 × 10 −3 J)/(5,00 s) = 5,0 ×10 −4 W. Como,

de acordo com a Eq. 26-28, P = V 2 /R, temos:

V = PR = (, 50× 10−

4

W)( 20 ) = 010 , V.

39. De acordo com a Eq. 26-26, a potência térmica gerada é

P = iV = ( 10, 0 A) ( 120 V) = 120 , kW

e o tempo necessário para cozinhar três salsichas é

40. R = P/i 2 = (100 W)/(3,00 A) 2 = 11,1 Ω.

3

t = × 600 , × 103

J

= 150 s.

120 , × 103

W

41. (a) De acordo com a Eq. 26-28, a taxa de conversão de energia elétrica em energia térmica

é P = V 2 /R, na qual V é a diferença de potencial aplicada ao aquecedor e R é a resistência do

aquecedor. Assim,

( 120 V)

2

P = = 10 , × 103

W = 10 , kW.

14

(b) O custo é (1,0 kW)(5,0 h)($ 0,05/kW . h) = $ 0,25.

42. (a) Como, na Fig. 26-32, a corrente convencional circula no sentido horário, o campo elétrico

aponta para baixo, o que significa que os elétrons se movem para cima.

(b) De acordo com a Eq. 24-8, W = −qV = eV = 12 eV (ou, em joules, W = 12 × 1,6 × 10 −19 C =

1,9 × 10 −18 J).

(c) Como quase toda a energia dos elétrons é dissipada em forma de calor, a resposta é a mesma

do item (b): 12 eV.


SOLUÇÕES DOS PROBLEMAS 135

43. Como, de acordo com a Eq. 26-28, P = V 2 /R, P ∝ V 2 . Assim, a potência dissipada no segundo

caso é

2

P = ⎛ ⎞

⎝ ⎜

150 , V

⎟ ( 0, 540 W) = 0,

135 W.

3,00 V

44. Como, de acordo com a Eq. 26-26, P = iV, a carga é

q = it = Pt/V = (7,0 W) (5,0 h) (3600 s/h)/9,0 V = 1,4 × 10 4 C = 14 kC.

45. (a) De acordo com a Eq. 26-26, a potência dissipada, a corrente do aquecedor e a tensão

aplicada ao aquecedor estão relacionadas através da equação P = iV. Assim,

P 1250 W

i = = = 10,

9 A.

V 115 V

(b) De acordo com a Eq. 26-8, V = iR, na qual R é a resistência do aquecedor. Assim,

R

V 115 V

= = = 10, 6 .

i 10,9 A

(c) A energia térmica E produzida pelo aquecedor em 1,0 h é

E = Pt = ( 1250 W)(3600 s) = 450 , × 10 6 J = 4,50 MJ.

46. (a) De acordo com a Tabela 26-1 e a Eq. 26-10, temos:

E = J = ×

, ⎞

(, 169 10

8

200 A

⋅m)

200 , × 10 ⎠

⎟ = 1, 69 × 10 − 2 V/m = 16,9 mV/m.

−6 m2

(b) De acordo com a Tabela 26-1 e a Eq. 26-16,

L

R = = ×

,

(, 169 10

8

400 m

⋅m)

A

200 , × 10−

m

6 2

= 0,

0338 .

A taxa de geração de energia térmica é dada pela Eq. 26-27:

P = i 2 R = (2,00 A) 2 (0,0338 Ω) = 0,135 W.

A energia térmica gerada em 30 min é dada por

E = (0,135 J/s)(180 s) = 243 J.

47. (a) Como, de acordo com as Eqs. 26-28 e 26-16, P = V 2 /R = AV 2 /rL, temos:

(b) Como L ∝ V 2 , o novo comprimento é

48. A massa de água envolvida é

AV

2

( 260 , × 10−

6

m2)( 750 , V)

2

L = =

P

(, 500× 10−

7

⋅m)

(500 W)

2 2

= 585 , m.

⎛ ′ ⎞

⎛ ⎞

L′ = L

V 100 V

⎟ = (, 585m)

⎟ = 104 , m.

V

75,0 V

m = AL = ( 1000 kg/m )( 15 × 10−

5

m )( 012 , m) = 0,

018

e a energia necessária para vaporizar a água é

3 2

kg

Q = Lm = ( 2256 kJ / kg)( 0, 018 kg) = 406 , × 10 4 J.

A energia térmica produzida pela passagem da corrente elétrica através da água é dada por:

Q = Pt = I Rt

2

.


136 SOLUÇÕES DOS PROBLEMAS

Como a resistência da massa de água envolvida é

( )( )

aL

150 ⋅ m 0,

120 m

R = =

A 15 × 10−

5

m2

a corrente necessária para vaporizar a água é

= 12 , × 105

,

Q

I = Rt

=

406 , × 104

J

(, 12× 105 )( 20 . × 10−

3

s)

= 13,

0 A.

49. (a) O custo pedido é

(100 W)(24 h/dia)(31dias/mês)($ 0,06/kW . h) = $ 4,46.

(b) R = V 2 /P = (120 V) 2 /100 W = 144 Ω.

(c) i = P/V = 100 W/120 V = 0,833 A.

50. As inclinações das retas da Fig. 26-33b nos dão P 1 = (40 mJ)/(5 s) = 8 mW e P 2 = (20 mJ)/

(5 s) = 4 mW. De acordo com a lei de conservação da energia, a potência da bateria é

P bat = P 1 + P 2 = 8 mW + 4 mW = 12 mW.

51. (a) De acordo com a Eq. 26-16,

R

C

LC

= C

= ×

−6

10 , m

( 20 , 10 ⋅m)

r

2

(0, 00050 m)

C

2

= 255 ,

e, de acordo com a Eq. 26-8,

| V1− V2 | = VC

= iRC

= ( 20 , A)( 255 , ) = 51 , V.

(b) Analogamente,

R

D

LD

= D

= ×

−6

10 , m

(, 10 10 ⋅m)

r

2

(0, 00025 m)

D

2

= 509 ,

e

| V2 − V3 | = VD

= iRD

= ( 20 , A)( 509 , ) = 102 , V ≈10

V.

(c) De acordo com a Eq. 26-27,

(d) Analogamente,

P

P

C

D

= i2R

= 10 W.

C

= i2R

= 20 W.

D

52. Supondo que a corrente é longitudinal, a Eq. 26-4 nos dá

R

i = JdA = ar

2

∫ ∫

2 1

rdr = a R4 1

= 275×

10

10 4

0

2

2 ( , A/m ) ( )(, 300× 10 − 3

m) 4 = 3,

50 A.

A taxa de geração de energia térmica é dada pela Eq. 26-26: P = iV = (3,50 A)(60 V) = 210 W.

A energia térmica gerada em 1 h é

Q = P t = ( 210 W)( 3600 s) = 756 , × 10 5 J = 756 kJ.

53. (a) De acordo com a Eq. 26-28, R = V 2 /P = (120 V) 2 /500 W = 28,8 Ω.


SOLUÇÕES DOS PROBLEMAS 137

(b) De acordo com a Eq. 26-26,

i

n = P

e

= eV

= 500 W

= 260 , × 1019

s−1 .

(1,60 × 10−

19

C)(120 V)

54. De acordo com a Eq. 26-28, para que a potência dissipada seja 200 W, devemos ter

mas, para isso, é preciso que

Assim,

R = (5,0 V) 2 /(200 W) = 0,125 Ω,

500 , xdx = 0, 125 .

L 2

0

L

(, 500) = 0, 125 ⇒ L = 0, 224 m.

2

55. Seja R Q a resistência na temperatura mais alta (800°C) e R F a resistência na temperatura

mais baixa (200°C). De acordo com a Eq. 26-28, como a diferença de potencial é a mesma nos

dois casos, a potência dissipada na temperatura mais baixa é P L = V 2 /R L e a potência dissipada

na temperatura mais alta é P Q = V 2 /R Q , o que nos dá P F = (R Q /R F )P Q . Como

na qual ∆T = T L – T Q , temos:

P

F

RF = RQ +RQ

T,

RQ

R R T P PQ

500 W

=

Q = = = 660 W.

+ 1 + T

1 + ( 40 , × 10− 4 K

− 1 )( − 600 K)

Q

Q

56. (a) A corrente é

V V Vd

2

(1,20 V)[(0,0400 polegada)(2,54 × 10−

m/polegada)]

i = = = =

R LA

/ 4L

4169 (, × 10−

8 ⋅m)(33,0m)

= 174 ,

A.

(b) A densidade de corrente é

i 4i

4(, 174 A)

J = = =

A d

2

[(0, 0400 polegada)(2,54 × 10−

m/polegada)]

= 215 , × 106 A/m2

= 2, 15 MA/m2.

(c) E = V/L = 1,20 V/33,0 m = 3,63 × 10 –2 V/m = 36,3 mV/m.

(d) P = Vi = (1,20 V)(1,74 A) = 2,09 W.

2 2

2 2

57. De acordo com a Eq. 26-26, i = P/V = 2,00 A. De acordo com a Eq. 26-1, como a corrente

é constante,

∆q = i∆t = 2,88 × 10 4 C.

58. Vamos usar o índice c para indicar a barra de cobre e o índice a para indicar a barra de

alumínio.

(a) A resistência da barra de alumínio é

L ( 275 , × 10−

8

⋅m)( 13 , m)

R = a

=

= 13 , × 10−

3 .

A (, 52×

10−

3m)

2


138 SOLUÇÕES DOS PROBLEMAS

(b) Fazendo R = r c L/(pd 2 /4) e explicitando d, o diâmetro da barra de cobre, obtemos:

59. (a) Como

4cL

4(, 169× 10−

8

⋅m)( 1, 3 m)

d = =

= 46 , × 10 − 3 m.

R

( 1,3×

10 −3 )

×

×

RA R( d2 ) (,

3

) ( ,

3

/ 4 109 10 5 50 10 m)

2

/ 4

= = =

= 162 , × 10 − 8 ⋅ m,

L L

160 , m

o fio é feito de prata.

(b) A resistência do disco é

L 4L

4(, 162× 10−

8 ⋅ m)(1,00 × 10−

3m)

R = = =

= 516 , × 10−

8 .

A d

2

(2, 00 × 10 −2 m) 2

60. (a) A corrente elétrica pode ser considerada uma vazão de cargas elétricas. Como vimos no

Capítulo 14, a vazão é o produto da área da seção reta do fluido em movimento pela velocidade

média das partículas do fluido. Assim, i = rAv, na qual r é a carga por unidade de volume. Se

a seção reta é circular, i = rpR 2 v.

(b) Como um coulomb por segundo corresponde a um ampère, temos:

i = (, 11× 10 − 3C/m3) ( 0, 050 m)(, 2

20m/s) = 17 , × 10−

5A = 17 A.

(c) O movimento das cargas não é na mesma direção que a da diferença de potencial calculada

no Problema 70 do Capítulo 24. Basta pensar (por analogia) na Eq. 7-48; o produto escalar na

equação P = F⋅v

deixa claro que P = 0 se F ⊥ v. Isto sugere que uma diferença de potencial

radial e um movimento de cargas longitudinal não podem se combinar para produzir uma transferência

de energia na forma de uma centelha.

(d) Supondo que existe uma tensão igual à calculada no Problema 70 do Capítulo 24, com a

orientação adequada para permitir que a energia seja transferida para uma centelha, podemos

usar o resultado desse problema na Eq. 26-26:

P = iV = (, 17× 10−

5A)( 78 , × 104V) = 13 , W.

(e) Se a centelha durou 0,20 s, a energia transferida foi (1,3 W)(0,20 s) = 0,27 J.

(f) Como o resultado do item (e) é maior que a energia necessária para produzir uma centelha

(0,15 J), concluímos que é provável que a centelha tenha acontecido na saída do cano, ou seja,

na entrada do silo.

61. (a) A carga que atinge a superfície em um intervalo de tempo ∆t é dada por ∆q = i ∆t, na

qual i é a corrente. Como cada partícula possui uma carga 2e, o número de partículas que atingem

a superfície é

q

it

( 025 , × 10−

6

A)( 3, 0s)

N = = =

= 23 , × 10 12 .

2e

2e

216 (, × 10−

19C)

(b) Seja N′ o número de partículas em um segmento do feixe de comprimento L. Todas essas

partículas passam pela seção reta do feixe na extremidade do segmento em um intervalo de

tempo ∆t = L/v, na qual v é a velocidade das partículas. Como a corrente i é a carga que passa

pela seção reta por unidade de tempo,

2eN

′ 2eN ′ v

i = = ,

t

L


SOLUÇÕES DOS PROBLEMAS 139

o que nos dá N′ = iL/2ev. Para calcular a velocidade das partículas, partimos do fato de que a

energia cinética de uma partícula é

K = 20 MeV = ( 20 × 106eV)(, 160× 10−

19J/eV) = 3, 2×

10−

1 2

J.

Como K = mv 2 /2, a velocidade é v = 2 K m. Como a massa de uma partícula alfa

é aproximadamente 4 vezes maior que a massa de um próton, m ≈ 4(1,67 × 10 –27 kg) = 6,68 ×

10 –27 kg, o que nos dá

v =

232 (, × 10−

12

J)

6,68 × 10−

27

kg

= 31 , × 107

m/s

e

( )( × )

(

C) ( × ) = ×

×

iL 025 , 10

6

20 10

2

m

N ′ = =

2ev 2160 , × 10−

19

31 , 107

m/s

50 , 103.

(c) De acordo com a lei de conservação da energia, a soma da energia potencial inicial com a

energia cinética inicial é igual à soma da energia potencial final com a energia cinética final.

Sabemos que a energia potencial inicial é U i = q∆V = 2e∆V, na qual ∆V é a diferença de potencial

que queremos calcular, a energia cinética inicial é K i = 0, a energia potencial final U f é zero

e a energia cinética final é K f = 20 MeV. Assim,

U i = 2e∆V = U f + K f − K i = 0 + 20 MeV − 0 ⇒ ∆V = (20 MeV)/2e = 10 MV.

62. De acordo com a Eq. 26-28,

R

V 2

( 200 V)

2

= = = 13,

3 .

P 3000 W

63. Combinando a Eq. 26-28 com a Eq. 26-16, é fácil mostrar que a potência é inversamente

proporcional ao comprimento (quando a tensão permanece constante, como neste caso). Assim,

como o novo comprimento é 7/8 do comprimento original, a nova potência é

8

P = 20 = 24

7 ( , kW)

, kW.

64. (a) Como P = i 2 R = J 2 A 2 R, a densidade de corrente é

1 P 1 P P

10 , W

J = = = =

A R A LA

/ LA

( 3,5 × 10−

5

⋅ m)( 20 , × 10−

m)( 50 , × 10−

m)

= 13 , × 105A/m2.

(b) Como P = iV = JAV, temos:

P

V = P

AJ

= r J

=

10 , W

=

2

(, 50× 10−

3m)(, 2

13×

105A/m2)

65. Podemos usar a relação P = i 2 R = i 2 rL/A, que nos dá L/A = P/i 2 r.

2 3 2

94 , × 10 − 2 V = 94mV.

(a) Chamando os novos valores de seção reta e comprimento de A′ e L′, respectivamente, temos:

L′

′ = ⎛ ⎞

⎝ ⎜ P 30 ⎛ P ⎞ 30

⎟ =

⎟ =

A i2

42 i2

novo antigo

16

L

A

L

= 1, 875 .

A


140 SOLUÇÕES DOS PROBLEMAS

Como a densidade do fio não mudou, L′A′ = LA, o que nos dá A′ = LA/L′. Substituindo A′ por

LA/L′ na equação apresentada, obtemos

( L )

2

L

′ = 1, 875L2

⇒ L′ = 1, 875L = 137 , L ⇒ ′ = 137 , .

L

(b) Substituindo L′ por LA/A′ na equação do item (a), obtemos

A2

( )

2

A A A

A′ = ⇒ A′ = = ⇒ ′ = 0, 730.

1, 875 1, 875 137 , A

66. P iV ( 10 A)(

12 V)

= = = 020 , hp.

080 , ( 080 , )( 746W/hp)

67. (a) Como P = V 2 /R ∝ V 2 , ∆P ∝ ∆V 2 ≈ 2V ∆V e, portanto, a queda percentual é

P

V

110 − 115

= 2 = 2 =− 086 , =−8, 6%

P V 115

(b) Uma redução de V causa uma diminuição de P, o que, por sua vez, diminui a temperatura

do resistor. Com isso, a resistência R do resistor diminui. Como P ∝ R –1 , uma diminuição de R

resulta em um aumento de P, que compensa parcialmente a redução de P causada pela redução

de V. Assim, a redução real de P é menor que a redução calculada sem levar em conta a variação

de temperatura do resistor.

68. De acordo com a Eq. 26-17, r – r 0 = ra(T – T 0 ). Explicitando T e supondo que r/r 0 = R/

R 0 , obtemos:

1 ⎛ ⎞

T = T0

+ −

⎜ 1

⎟ = 20 + 1

°C

43 , × 10

69. De acordo com a Eq. 26-28, temos:

0

K

−3 −1

P

V 2

( 90 V)

2

= = = 20,

3 W

R 400

⎛ 58

50 1 ⎞

⎟ = 57 °C.

e a energia consumida é (20,3 W)(2,00 × 3600 s) = 1,46 × 10 5 J = 146 kJ.

70. (a) A diferença de potencial entre as extremidades da lagarta é

L ( 12 A)(, 169× 10−

8

⋅ m)( 4, 0×

10−

2m)

V = iR= i

=

= 38 , × 10

A

(

2, 6×

10−

3m)

2

(b) Como a lagarta está se movendo no sentido da deriva dos elétrons, que é contrário ao sentido

da corrente, a cauda da lagarta é negativa em relação à cabeça.

(c) Como a lagarta se move com a mesma velocidade que a velocidade de deriva dos elétrons

no fio, temos:

L

t = lAne Ld ne

v

= i

=

2

i

= (, 10× 10−

2m)( 52 , × 10−

3

m)(,

2

849× 1028 m−3)(, 1 60 × 10−

19

C)

4

412 ( A)

d

= 240 s=

4 min.

71. (a) Fazendo r = 2r 0 na Eq. 26-17, na qual r 0 é a resistividade à temperatura T 0 , temos:

( )

− = 2 − = T − T ,

0 0 0 0 0

−4

V.


SOLUÇÕES DOS PROBLEMAS 141

Explicitando a temperatura T, obtemos:

1

1

T = T 0 + = 20 ° C +

≈ 250 ° C.

43 , × 10−

3 K−

1

Na Fig. 26-10, tomando uma ordenada igual ao dobro da ordenada para T = 20 + 273 = 293 K,

que é 1,69 × 10 −8 Ω . m, obtemos r ≈ 3,4 × 10 −8 Ω . m. A temperatura correspondente é ≈ 520 K =

247 o C, um valor bem próximo do que foi calculado antes.

(b) Sim; como a Eq. 26-17 envolve a resistividade, e não a resistência, a ìtemperatura para o dobro

da resistênciaî não depende de fatores geométricos como a forma e o tamanho da amostra.

72. De acordo com a Eq. 26-16,

L (, 300× 10−

7 ⋅ m)( 100 , × 103

m)

R = =

=

A

56,

10−

4

m2

0, 536 .

73. A potência fornecida ao líquido na forma de calor é P = iV = (5,2 A)(12 V) = 62,4 W. Isso

significa que uma energia térmica de 62,4 J é fornecida ao líquido por segundo. Assim, de

acordo com a Eq. 18-16, o calor de vaporização do líquido é

L

Q

= =

m

62,

4 J

= 30 , × 10

21 × 10−

6

kg

74. De acordo com a Eq. 26-7, temos:

| J | 20 , × 106

A/m2

vd = =

ne (, 849× 1028

/m )( 1,

6× 10−

3 19

6

J/kg.

= 147× 10−

C)

,

4

m/s .

A esta velocidade média, o tempo necessário para que o elétron percorra uma distância L = 5,0

m é

L 50 , m

t = =

= 34 , × 104

s.

147 , × 10−

4

m/s

v d

75. A potência do tubo é o produto da corrente pela diferença de potencial:

76. (a) A corrente é dada por

P = iV = ( 70 , × 10−

3

A)(80× 103

V) = 560 W.

i = (3,1 × 10 18 + 1,1 × 10 18 )e A = (4,2 × 10 18 )(1,6 × 10 −19 ) A = 0,67 A.

(b) De acordo com a Eq. 26-11, como o campo elétrico aponta do eletrodo positivo para o eletrodo

negativo, o sentido da densidade de corrente J também é do eletrodo positivo para o

eletrodo negativo.


Capítulo 27

1. (a) Seja i a corrente no circuito e vamos tomar como positivo o sentido para a esquerda em

R 1 . De acordo com a regra das malhas, e 1 – iR 2 – iR 1 – e 2 = 0. Explicitando i, temos:

1−

2

12 V−

60 , V

i = =

= 050 , A.

R + R 4,0 +

80 ,

1 2

Como o valor calculado é positivo, o sentido da corrente é o sentido anti-horário.

De acordo com a Eq. 26-27, se i é a corrente em um resistor R, a potência dissipada pelo resistor

é dada por P = i 2 R.

(b) P R1 = i 2 R 1 = (0,50 A) 2 (4,0 Ω) = 1,0 W.

(c) P R2 = i 2 R 2 = (0,50 A) 2 (8,0 Ω) = 2,0 W.

De acordo com a Eq. 26-26, se i é a corrente em uma fonte de fem â, P = iâ é a potência fornecida

pela fonte se a corrente e a fem têm o mesmo sentido, e é a potência absorvida pela fonte,

se a corrente e a fem têm sentidos opostos.

(d) P â1 = ie 1 = (0,50 A)(12 V) = 6,0 W.

(e) P â2 = ie 2 = (0,50 A)(6,0 V) = 3,0 W.

(f) Como, no caso da fonte 1, a corrente tem o mesmo sentido que a fem, a fonte 1 está fornecendo

energia ao circuito.

(g) Como, no caso da fonte 2, a corrente e a fem têm sentidos opostos, a fonte 2 está recebendo

energia do circuito.

2. A corrente no circuito é

Como V Q + 150 V – (2,0 Ω)i = V P ,

i = (150 V 2 50 V)/(3,0 Ω + 2,0 Ω) = 20 A.

V Q = 100 V + (2,0 Ω)(20 A) –150 V = –10 V.

3. (a) A diferença de potencial é V = â + ir = 12 V + (50 A)(0,040 Ω) = 14 V.

(b) P = i 2 r = (50 A) 2 (0,040 Ω) = 1,0×10 2 W.

(c) P9 = iV = (50 A)(12 V) = 6,0×10 2 W.

(d) V = e – ir = 12 V – (50 A)(0,040 Ω) = 10 V.

(e) P r = i 2 r =(50 A) 2 (0,040 Ω) = 1,0×10 2 W.

4. (a) Como, de acordo com a regra das malhas, a queda de tensão no ramo superior deve ser 12

V, a queda de tensão no resistor 3 é 5,0 V. Isso significa que a corrente no ramo superior é i =

(5,0 V)/(200 Ω) = 25 mA. Nesse caso, a resistência do resistor 1 é (2,0 V)/i = 80 Ω.


SOLUÇÕES DOS PROBLEMAS 143

(b) A resistência do resistor 2 é (5,00 V)/(25 mA) = 200 Ω.

5. A energia química da bateria é reduzida de ∆E = qe, na qual q é a carga que passa pela bateria

em um intervalo de tempo ∆t = 6,0 min e â é a fem da bateria. Se i é a corrente, q = i∆t e

∆E = ie∆t = (5,0 A)(6,0 V) (6,0 min) (60 s/min) = 1,1 × 10 4 J = 11 kJ.

Note que foi necessário converter o tempo de minutos para segundos.

6. (a) O custo é (100 W · 8,0 h/2,0 W · h) ($0,80) = $3,2 ×10 2 .

(b) O custo é (100 W · 8,0 h/10 3 W · h) ($0,06) = $0,048.

7. (a) A energia química consumida pela bateria é

(b) A energia dissipada pelo fio é

U = t

Pt = 2

r + R

= ( 20 , V)(, 2 20min)(

60s/min)

= 80 J.

1,0 + 5,

0

2 2

⎛ ⎞ ⎛

U′ = i2

Rt =

+ ⎠

⎟ =

r R Rt 20 , V

1,0 +

50 , ⎠

(c) A energia dissipada pela bateria é U − U′ = 80 J − 67 J = 13 J.

( 50 , )( 20 , min)( 60 s/min) = 67 J.

8. Se P é a potência fornecida pela bateria e ∆t é um intervalo de tempo, a energia fornecida no

intervalo de tempo ∆t é ∆E = P∆t. Se q é a carga que passa pela bateria no intervalo de tempo

∆t e â é a fem da bateria, ∆E = qe. Igualando as duas expressões de ∆E e explicitando ∆t, obtemos

q ( 120 A⋅

h) ( 12,

0 V)

t = =

= 14,

4 h.

P 100 W

9. (a) O trabalho W realizado pela fonte é igual à variação de energia potencial:

W = q∆V = eV = e(12,0 V) = 12,0 eV.

(b) P = iV = neV = (3,40 × 10 18 /s)(1,60 × 10 –19 C)(12,0 V) = 6,53 W.

10. (a) De acordo com a regra das malhas, i = (e 2 – e 1 )/(r 1 + r 2 + R). Explicitando R, obtemos:

2 − 1

30 , V−

20 , V

R = −r1− r2 =

−30 , −30

, = 99 , × 10 2 .

i

1,0 × 10−

3

A

(b) P = i 2 R = (1,0 × 10 –3 A) 2 (9,9 × 10 2 Ω) = 9,9 × 10 –4 W.

11. (a) se i é a corrente e ∆V é a diferença de potencial, a potência absorvida é dada por P =

i∆V. Assim,

P

V = i

= 50 W

10

= 50 V.

, A

Como existe uma dissipação de energia entre o ponto A e o ponto B, o ponto A está a um potencial

mais elevado que o ponto B, ou seja, V A – V B = 50 V.

(b) A diferença de potencial entre os pontos A e B é V A – V B = +iR + e, na qual e é a fem do

dispositivo X. Assim,

e = V A – V B – iR = 50 V – (1,0 A)(2,0 Ω) = 48 V.


144 SOLUÇÕES DOS PROBLEMAS

(c) Como o valor de e é positivo, o terminal positivo está do lado esquerdo e, portanto, o ponto

B está ligado ao terminal negativo.

12. (a) Para cada fio, R fio = rL/A, na qual A = pr 2 . Assim, temos:

R fio = (1,69 × 10 −8 Ω . m)(0,200 m)/p(0,00100 m) 2 = 0,0011 Ω.

A carga resistiva total da fonte é, portanto,

A corrente do circuito é, portanto,

R tot = 2R fio + R =2(0,0011 Ω)+6,00 Ω=6,0022 Ω.

12,

0 V

i = = = 1,

9993 A

R 6,0022

e a diferença de potencial entre as extremidades do resistor é

tot

V = iR = (1,9993 A)(6,00 Ω) = 11,996 V ≈ 12,0 V.

(b) A diferença de potencial entre as extremidades de um dos fios é

V fio = iR fio = (1,9993 A)(0,0011 Ω) = 2,15 mV.

(c) P R = i 2 R = (1,9993 A) 2 (6,00 Ω) = 23,98 W ≈ 24,0 W.

(d) P fio = i 2 R fio = (1,9993 A) 2 (0,0011 Ω) = 4,396 mW ≈ 4,40 mW.

13. (a) Se L é o comprimento do cabo e a é a resistência do cabo por unidade de comprimento,

a resistência medida na extremidade leste é

e a resistência medida na extremidade oeste é

Assim,

(b) Temos também:

R 1 = 100 Ω = 2a(L – x) + R

R 2 = 2ax + R.

R2 − R1

L 200 −

100 10 km

x = + =

+ = 69 , km.

4

2 413 km 2

( )

R R 1+

=

R 2 100 +

200

− L

=

2

2

13 km 10 km 20 .

− ( )( ) =

14. (a) Vamos chamar de V 1 e V 2 as fem das fontes. De acordo com a regra das malhas,

V2 + V1

V 2 2 ir 2 + V 1 2 ir 1 2 iR = 0 ⇒ i = .

r + r + R

1 2

A diferença de potencial entre os terminais da fonte 1 é V 1T = V 1 − ir 1 e a diferença de potencial

entre os terminais da fonte 2 é V 2T = V 2 − ir 2 , na qual r 1 e r 2 são as resistências internas das fontes

1 e 2, respectivamente. Assim,

V 1T = V 1 2 r 1( V 2 + V 1)

, V 2T = V 2 2 r 1( V 2 + V 1) .

r + r + R

r + r + R

1 2

1 2

De acordo com o enunciado, V 1 = V 2 = 1,20 V. De acordo com o gráfico da Fig. 27-32b, V 2T =

0 e V 1T = 0,40 V para R = 0,10 Ω. Substituindo esses valores nas equações anteriores, obtemos

um sistema de duas equações com duas incógnitas, r 1 e r 2 . Resolvendo esse sistema, obtemos

r 1 = 0,20 Ω.

(b) A solução do sistema de equações também nos dá r 2 = 0,30 Ω.


SOLUÇÕES DOS PROBLEMAS 145

15. Vamos chamar de V a fem da fonte. Nesse caso, V = iR = i9(R + R9), na qual i = 5,0 A, i9 =

4,0 A e R’ = 2,0 Ω. Explicitando R, obtemos:

iR

R = ′ ′

i− i′ = ( 40 , A)( 20 , )

= 80 , .

50 , A−

40 , A

16. (a) Seja e a fem da célula solar e seja V a diferença de potencial entre os terminais da célula.

Nesse caso,

Substituindo por valores numéricos, temos:

V = − V

ir = −⎛ ⎝ ⎜ ⎞

R⎠

⎟ r .

010 , V

010 , V = − ⎛ ⎞

⎝ ⎜ 500 ⎠

⎟ r

015 , V

015 , V = − ⎛ ⎞

.

⎝ ⎜ 1000 ⎠

⎟ r

Resolvendo o sistema de equações anterior, obtemos:

(a) r = 1,0 ×10 3 Ω = 1,0 kΩ.

(b) e = 0,30 V.

(c) A eficiência h é

V2 / R

015 , V

1000 (, 50cm

)( 20 , 10

= =

P ( )

2 ×

fornecida

= 23 , × 10−

3

= 023 , %.

W/cm )

−3 2

17. Para obter a solução mais geral possível, vamos chamar de e 1 e e 2 as fem das fontes, embora

tenham o mesmo valor. Como as fontes estão em série com a mesma polaridade, as fem se somam

e a fem total é e 1 + e 2 . A resistência total do circuito é R total = R + r 1 + r 2 .

(a) A corrente no circuito é

1+

2

i = .

r + r + R

1 2

Como a fonte 1 possui uma resistência interna maior, ela é a que pode apresentar uma diferença

de potencial zero entre os terminais. Fazendo e 1 = ir 1 , obtemos:

r − r

R =

21 12

Note que, como e 1 = e 2 , R = r 1 – r 2 .

1

( 12, 0V)( 0, 016 ) − ( 12, 0V)( 0,

012 )

=

= 0, 004 .

12,

0 V

(b) Como foi visto no item (a), isso acontece com a fonte 1.

18. De acordo com as Eqs. 27-18, 27-19 e 27-20, temos:

i

1

=

1( R2 + R3) −2R3

( 40 , V)(10 + 50 , ) − (, 10V)(5,0

)

=

= 0,

275 A,

RR + RR + RR ( 10 )( 10 ) + ( 10 )(, 50) + ( 10 )( 50 , )

1 2 2 3 1 3

i

2

=

1R3 − 2( R1+

R2

)

RR + R R + R R

1 2 2

3 1 3

( 40 , V)(5,0 ) − ( 10 , V)(10 +

5,0 )

=

= 0,

025 A,

( 10 )( 10 ) + ( 10 )( 50 , ) + ( 10 )(, 50)

i = i 2 − i 1 = 0, 025A− 0, 275A = −0,

250A.

3


146 SOLUÇÕES DOS PROBLEMAS

A diferença de potencial V d – V c pode ser calculada de várias formas. Vamos dar dois exemplos:

a partir de V d – i 2 R 2 = V c , obtemos

a partir de V d + i 3 R 3 + e 2 = V c , obtemos

V d – V c = i 2 R 2 = (0,0250 A)(10 Ω) = +0,25 V;

V d – V c = i 3 R 3 – e 2 = – (– 0,250 A)(5,0 Ω) – 1,0 V = +0,25 V.

19. (a) Como R eq < R, os dois resistores (R = 12,0 Ω e R x ) devem ser ligados em paralelo:

Explicitando R x , obtemos:

R

RR x

Req = 300 , =

R+

R

x =

R R

eq

R−

R

eq

x

Rx

( 12, 0 )

=

.

12,

0 + R

(, 300)( 120 , )

=

− 3,

00 .

( 12, 0−

3, 00 )

(b) Como foi visto no item (a), as duas resistências devem ser ligadas em paralelo.

20. Sejam as resistências dos dois resistores R 1 e R 2 , com R 1 < R 2 . De acordo com o enunciado,

RR 1 2

R + R

1 2

= 30 ,

R 1 + R 2 = 16 Ω.

Resolvendo o sistema de equações anterior, obtemos R 1 = 4,0 Ω e R 2 = 12 Ω.

(a) A menor resistência é R 1 = 4,0 Ω.

(b) A maior resistência é R 2 = 12 Ω.

21. A diferença de potencial entre os terminais dos resistores é V = 25,0 V. Como os resistores

são iguais, a corrente em cada um é i = V/R = (25,0 V)/(18,0 Ω) = 1,39 A e a corrente na fonte

é i total = 4(1,39 A) = 5,56 A.

Também podemos resolver o problema usando o conceito de resistência equivalente. A resistência

equivalente de quatro resistores iguais em paralelo é

1 1 4

=

R

∑ = .

R R

eq

Quando uma diferença de potencial de 25,0 V é aplicada ao resistor equivalente, a corrente é

igual à corrente total nos quatro resistores em paralelo. Assim,

i

total

V 4V

4( 25, 0 V)

= = = = 556 , A.

R R 18,

0

eq

22. (a) R eq (FH) = (10,0 Ω)(10,0 Ω)(5,00 Ω)/[(10,0 Ω)(10,0 Ω) + 2(10,0 Ω)(5,00 Ω)] =

2,50 Ω.

(b) R eq (FG) = (5,00 Ω) R/(R + 5,00 Ω), na qual

R = 5,00 Ω + (5,00 Ω)(10,0 Ω)/(5,00 Ω + 10,0 Ω) = 8,33 Ω.

Assim, R eq (FG) = (5,00 Ω)(8,33 Ω)/(5,00 Ω + 8,33 Ω) = 3,13 Ω.

x


SOLUÇÕES DOS PROBLEMAS 147

23. Vamos chamar de i 1 a corrente em R 1 e tomar o sentido para a direita como positivo. Vamos

chamar de i 2 a corrente em R 2 e tomar o sentido para cima como positivo.

(a) Aplicando a regra das malhas à malha inferior, obtemos

2 − iR 1 1 = 0,

e, portanto,

i

1

2 50 , V

= = = 0,

050 A =

R 100

1

50mA.

(b) Aplicando a regra das malhas à malha superior, obtemos

− −

− iR = ,

1 2 3 2 2 0

e, portanto,

i

2

1−2 − 3 60 , V −5,0 V−4,

0 V

=

=

=−0,

060 A,

R

50

2

o que nos dá | i 2 | = 0,

060 A = 60mA. O sinal negativo indica que o sentido da corrente em R 2

é para baixo.

(c) Se V b é o potencial no ponto b, o potencial no ponto a é V a = V b + e 3 + e 2 e, portanto,

V a – V b = e 3 + e 2 = 4,0 V + 5,0 V = 9,0 V.

24. Os dois resistores em paralelo, R 1 e R 2 , são equivalentes a

1 1 1

RR 1 2

= + ⇒ R12

= .

R R R

R + R

12

1 2

1 2

Como o resistor equivalente aos resistores R 1 e R 2 está em série com o resistor R 3 , a resistência

dos três resistores é

( 400 , )( 4, 00 )

Req = R3 + R12 = 250 , +

=

400 , +

4,

00 450 , .

25. Seja r a resistência de um dos fios. Como os fios são todos iguais e estão em paralelo, temos:

1 9

= ,

R r

o que nos dá R = r/9. Temos ainda r = 4l/ d2, na qual r é a resistividade do cobre, e

R= 4l/ D2. Assim,

4l

4l

= ⇒ D = 3d.

D2 9

d2

26. A parte de R 0 ligada em paralelo com R é dada por R 1 = R 0 x/L, na qual L = 10 cm. A diferença

de potencial entre os terminais de R é V R = eR'/R eq , na qual R9 = RR 1 /(R + R 1 ) e

Assim,

P

na qual x está em cm.

R

R eq = R 0 (1 – x/L) + R9.

V

2

R 1 ⎡ RR1 ( R+

R1)

= =

R R

⎣ R0( 1− x L) + RR1 ( R+

R1

) ⎦

⎥ = 100R( x R0 )

2

( 100 RR0

+ 10x−

x )

2

2 2

,


148 SOLUÇÕES DOS PROBLEMAS

O gráfico da potência dissipada no resistor R em função de x para e = 50 V, R = 2000 Ω e R 0 =

100 Ω aparece na figura a seguir.

27. Como as diferenças de potencial são as mesmas para as duas trajetórias, V 1 = V 2 , na qual

V 1 é a diferença de potencial associada à corrente que chega ao solo passando pelo corpo da

pessoa e V 2 é a diferença de potencial associada à corrente que chega ao solo sem passar pelo

corpo da pessoa, e, portanto, i 1 R 1 = i 2 R 2 . Como, de acordo com a Eq. 26-16, R = rL/A, na qual

r é a resistividade do ar, temos:

id 1 = ih 2 ⇒ i2 = i1( d / h).

Para d/h = 0,400 e I = i 1 + i 2 = 5000 A, obtemos i 1 = 3571 A e i 2 = 1429 A. Assim, a corrente

que atravessa a pessoa é i 1 = 3571 A ≈ 3,6 × 10 3 A.

28. A reta 1 tem uma inclinação R 1 = 6,0 kΩ, a reta 2 tem uma inclinação R 2 = 4,0 kΩ e a reta 3

tem uma inclinação R 3 = 2,0 kΩ. A resistência equivalente de R 1 e R 2 em paralelo é R 12 = R 1 R 2 /

(R 1 + R 2 ) = 2,4 kΩ. Como essa resistência está em série com R 3 , a resistência equivalente do

conjunto é

R123 = R12 + R3 = 24 , k+ 20 , k=

44 , k.

A corrente que atravessa a bateria é, portanto, i = â/R 123 = (6 V)(4,4 kΩ) e a queda de tensão em

R 3 é (6 V)(2 kΩ)/(4,4 kΩ) = 2,73 V. Subtraindo este valor da tensão da bateria (por causa da

regra das malhas), obtemos a tensão entre os terminais de R 2 . A lei de Ohm nos dá a corrente

em R 2 : (6 V – 2,73 V)/(4 kΩ) = 0,82 mA.

29. (a) A resistência equivalente dos três resistores iguais R 2 = 18 Ω é R = (18 Ω)/3 = 6,0 Ω,

que, em série com o resistor R 1 = 6,0 Ω, nos dá uma resistência equivalente em série com a

bateria R9 = R 1 + R = 12 Ω. Assim, a corrente em R9 é (12 V)/R9 = 1,0 A, que também é a corrente

que atravessa R. Como essa corrente se divide igualmente pelos três resistores de 18 Ω,

i 1 = 0,333 A.

(b) O sentido da corrente i 1 é para a direita.

(c) De acordo com a Eq. 26-27, P = i 2 R9 = (1,0 A) 2 (12 Ω) = 12 W. Assim, em 60 s, a energia

dissipada é (12 J/s)(60 s) = 720 J.

30. Usando a regra das junções (i 3 = i 1 + i 2 ), obtemos duas equações de malha:

10,0 V 2 i 1 R 1 2 (i 1 + i 2 ) R 3 = 0

5,00 V 2 i 2 R 2 2 (i 1 + i 2 ) R 3 = 0.

(a) Resolvendo o sistema de equações anterior, obtemos i 1 = 1,25 A e i 2 = 0.

(b) i 3 = i 1 + i 2 = 1,25 A.


SOLUÇÕES DOS PROBLEMAS 149

31. (a) Chamando de R a resistência dos resistores, a resistência equivalente dos dois resistores

da direita é R9 = R/2 = 1,0 Ω e a resistência equivalente dos dois resistores do canto superior esquerdo

é R = 2R = 4,0 Ω. Com isso, a resistência equivalente do conjunto de cinco resistores é

R+ R′ + R′′ = 70 , .

De acordo com a regra das malhas, a queda de tensão no conjunto é 12 V − 5,0 V = 7,0 V, e,

portanto, a corrente é (7,0 V)/(7,0 Ω) = 1,0 A, no sentido horário. Assim, a queda de tensão em

R9 é (1,0 A)(1,0 Ω) = 1,0 V, o que significa que a diferença de potencial entre a terra e V 1 é 12

V – 1 V = 11 V. Levando em conta a polaridade da fonte e 2 , concluímos que V 1 = −11 V.

(b) A queda de tensão em R é (1,0 A)(4,0 Ω) = 4,0 V, o que significa que a diferença de potencial

entre a terra e V 2 é 5,0 + 4,0 = 9,0 V. Levando em conta a polaridade da fonte e 1 , concluímos

que V 2 = –9,0 V. Podemos verificar que o resultado está correto notando que a queda de tensão

em R, (1,0 A)(2,0 Ω) = 2,0 V, é igual a V 2 − V 1 .

32. (a) Aplicando a regra das malhas à malha da esquerda, obtemos e 2 + i 1 R 1 2 e 1 = 0. Como

a fem e 1 é mantida constante enquanto e 2 e i 1 variam, vemos que esta expressão, para grandes

valores de e 2 , nos dá valores negativos para i 1 . Isso significa que a reta tracejada da Fig. 27-43b

corresponde a i 1 , ou seja, a corrente na fonte 1. Como, de acordo com essa reta, i 1 é zero para

e 2 = 6 V, a regra das malhas nos dá, para este valor de i 1 , e 1 = e 2 = 6,0 V.

(b) De acordo com a reta tracejada da Fig. 27-43b, i 1 = 0,20 A para e 2 = 2,0 V. Aplicando a regra

das malhas à malha da esquerda e usando o valor de e 1 obtido no item (a), obtemos R 1 = 20 Ω.

(c) Aplicando a regra das malhas à malha da direita, obtemos

e 1 2 i 1 R 1 = i 1 R 2 .

No ponto em que a reta que corresponde a i 2 cruza o eixo horizontal (ou seja, no ponto e 2 = 4

V, i 2 = 0), i 1 = 0,1 A. Isso nos dá

(, 60V) − ( 01 , A)( 20 )

R 2 =

= 40 .

01 , A

33. Note que V 4 , a queda de tensão em R 4 , é a soma das quedas de tensão em R 5 e R 6 :

V 4 = i 6 (R 5 +R 6 ) = (1,40 A)(8,00 Ω + 4,00 Ω) = 16,8 V.

Isso significa que a corrente em R 4 é dada por i 4 = V 4 /R 4 = 16,8 V/(16,0 Ω) = 1,05 A.

De acordo com a regra dos nós, a corrente em R 2 é

e, portanto, a queda de tensão em R 2 é

i 2 = i 4 + i 6 = 1,05 A + 1,40 A = 2,45 A

V 2 = (2,00 Ω)(2,45 A) = 4,90 V.

De acordo com a regra das malhas, a queda de tensão em R 3 é V 3 = V 2 + V 4 = 21,7 V e, portanto,

a corrente em R 3 é i 3 = V 3 /(2,00 Ω) = 10,85 A.

Assim, de acordo com a regra dos nós, a corrente em R 1 é

i 1 = i 2 + i 3 = 2,45 A + 10,85 A = 13,3 A,

o que significa que a queda de tensão em R 1 é V 1 = (13,3 A)(2,00 Ω) = 26,6 V e, portanto, de

acordo com a regra das malhas,

e = V 1 + V 3 = 26,6 V + 21,7 V = 48,3 V.


150 SOLUÇÕES DOS PROBLEMAS

34. (a) De acordo com a regra das malhas, a diferença de potencial V 1 não varia quando a chave

é fechada. O objetivo deste item é verificar se o aluno apreendeu corretamente o conceito de

tensão. Alguns estudantes confundem os conceitos de tensão e corrente e pensam que a tensão é

dividida entre dois resistores em paralelo, o que seria difícil de conciliar com a resposta correta.

(b) A regra das malhas continua válida, é claro, mas, neste caso, de acordo com a regra dos nós

e a lei de Ohm, as quedas de tensão em R 1 e R 3 , que eram iguais antes do fechamento da chave,

passam a ser diferentes. Como uma corrente maior atravessa a bateria, a queda de tensão em R 3

aumenta. Como, de acordo com a regra das malhas, a soma das quedas de tensão em R 3 e em

R 1 é igual à tensão da bateria, isso significa que a queda de tensão em R 1 diminui. Como R 1 e

R 3 têm o mesmo valor, quando a chave estava aberta, a queda de tensão em R 1 era (12 V)/2 =

6,0 V. De acordo com a Eq. 27-24, com a chave fechada, a resistência equivalente de R 1 e R 2 é

3,0 Ω, o que significa que a resistência total entre os terminais da bateria é 6,0 Ω + 3,0 Ω = 9,0

Ω. A corrente é, portanto, (12,0 V)/(9,0 Ω) = 1,33 A, o que significa que a queda de tensão em

R 3 é (1,33 A)(6,0 Ω) = 8,0 V. Nesse caso, de acordo com a regra das malhas, a queda de tensão

em R 1 é 12 V 2 8,0 V = 4,0 V. Assim, a variação da diferença de potencial V 1 quando a chave

é fechada é 4,0 V − 6,0 V = −2,0 V.

35. (a) A simetria do problema permite usar i 2 como a corrente nos dois resistores R 2 e i 1 como a

corrente nos dois resistores R 1 . Aplicando a regra das malhas às malhas ACD e ABCD, obtemos

o seguinte sistema de equações:

−iR

− iR = 0

2 2 1 1

−2iR −( i − i ) R = 0.

1 1 1 2 3

Resolvendo o sistema de equações, obtemos i 1 = 0,002625 A e i 2 = 0,00225 A. Assim, V A 2 V B =

i 1 R 1 = 5,25 V.

(b) De acordo com a regra dos nós, i 3 = i 1 2 i 2 = 0,000375 A. Assim, V B 2 V C = i 3 R 3 = 1,50 V.

(c) V C 2 V D = i 1 R 1 = 5,25 V.

(d) V A 2 V C = i 2 R 2 = 6,75 V.

36. (a) Aplicando a regra das malhas à malha da esquerda e à malha da direita, obtemos o seguinte

sistema de equações:

−iR − ( i + i ) R = 0

1 2 2 2 3 1

−iR − ( i + i ) R = 0 ,

2 3 3 2 3 1

no qual tomamos o sentido horário da corrente i 2 como positivo e o sentido anti-horário da corrente

i 3 como positivo. Resolvendo o sistema de equações, obtemos i 2 = 0,0109 A e i 3 = 0,0273

A. De acordo com a regra dos nós, i 1 = i 2 + i 3 = 0,0382 A.

(b) De acordo com o item (a), o sentido da corrente i 1 é para baixo.

(c) De acordo com o item (a), i 2 = 0,0109 A.

(d) De acordo com o item (a), o sentido da corrente i 2 é para a direita.

(e) De acordo com o item (a), i 3 = 0,0273 A.

(f) De acordo com o item (a), o sentido da corrente i 3 é para a esquerda.


SOLUÇÕES DOS PROBLEMAS 151

(g) O potencial elétrico no ponto A é igual à queda de tensão no resistor R 1 : V A = (0,0382 A)

(100 Ω) = +3,82 V.

37. A queda de tensão em R 3 é V 3 = eR9/(R9 + R 1 ), na qual R9 = (R 2 R 3 )/(R 2 + R 3 ). Assim,

V3 2 2

2

1 ⎛ R′

⎞ 1 ⎛ ⎞ ( )

3 = =

R3 R3 ⎝

R′ + R1

⎟ =

R3 ⎝

1+ R1/ R′

⎠ ⎟ = + +

−2

2

⎡ 200 , 5,

00 R3

⎢1

R3 ⎣⎢

( 500 , )

R3

⎥⎦

2

=

f ( R3

)

P

( )

Para maximizar P 3 , precisamos minimizar f(R 3 ). Derivando f(R 3 ) e igualando o resultado a zero,

obtemos

o que nos dá

( 3 ) 400 , 2

49

=− + = 0

3 R3 2 25

df R

dR

( 400 , )( 25)

= =

49

R 3

2

,

1,43 .

38. (a) Como a queda de tensão em R 3 é V 3 = iR 3 = (6,0 A)(6,0 Ω) = 36 V, a queda de tensão

em R 1 é

(V A – V B ) – V 3 = 78 − 36 = 42 V,

o que significa que a corrente em R 1 é i 1 = (42 V)/(2,0 Ω) = 21 A. Nesse caso, de acordo com a

regra dos nós, a corrente em R 2 é

i 2 = i 1 − i = 21 A − 6,0 A = 15 A.

De acordo com a Eq. 26-27, a potência total dissipada pelos resistores é

i 1 2 (2,0 Ω) + i 22 (4,0 Ω) + i 2 (6,0 Ω) = 1998 W ≈ 2,0 kW.

Por outro lado, a potência fornecida a esta parte do circuito é P A = i A (V A − V B ) = i 1 (V A − V B ) = (21

A)(78 V) = 1638 W. Assim, o elemento representado como “?” está fornecendo energia.

(b) A potência fornecida pelo elemento desconhecido é

(1998 − 1638)W = 3,6×10 2 W.

39. (a) Como as fontes são iguais e estão ligadas em paralelo, a diferença de potencial é a

mesma entre os terminais das duas fontes. Isso significa que a corrente é igual nas duas fontes.

Vamos chamar de i essa corrente e considerar o sentido da direita para a esquerda como positivo.

De acordo com a regra dos nós, a corrente no resistor R é 2i e o sentido da corrente é da

esquerda para a direita. Aplicando a regra das malhas à malha formada por uma das fontes e o

resistor R, temos:

A potência dissipada no resistor R é

− ir − 2iR = 0 ⇒ i = r + 2 R

.

R

P = ( 2 i)

2

4

2

R =

( r+

2R) . 2


152 SOLUÇÕES DOS PROBLEMAS

Para determinar o valor de R para o qual a potência é máxima, derivamos a equação anterior em

relação a R e igualamos o resultado a zero:

dP 42

162R

4 r R

= − =

2 ( − 2 )

= 0,

dR ( r+

2R) 3

( r+

2R)

3

( r+

2R)

3

o que nos dá R = r/2. Para r = 0,300 Ω, obtemos R = 0,150 Ω.

(b) Fazendo R = r/2 na equação P = 4e 2 R/(r + 2R) 2 , obtemos

P

max

42( r / 2)

V

=

= 2 ( 12, 0 )

=

2

= 240 W.

[ r+

2( r / 2)]

2

2r

20 ( ,300 )

40. (a) Como as fontes são iguais e estão ligadas em paralelo, a diferença de potencial é a

mesma entre os terminais das duas fontes. Isso significa que a corrente é igual nas duas fontes.

Vamos chamar de i essa corrente e considerar o sentido da direita para a esquerda como positivo.

De acordo com a regra dos nós, a corrente no resistor R é i R = 2i e o sentido da corrente é

da esquerda para a direita. Aplicando a regra das malhas à malha formada por uma das fontes

e o resistor R, temos:

2

2120 ( , V)

−ir − 2iR = 0 ⇒ iR

= 2i

= =

= 24,

0 A.

r + 2R

0, 200 + 20 ( , 400 )

(b) De acordo com a regra das malhas, quando as fontes estão ligadas em série,

o que nos dá

i

R =

2e−i R r – i R r – i R R = 0,

2 2120 ( , V)

=

= 30,

0 A.

2r+

R 20200 ( , ) + 0,

400

(c) No caso da ligação em série, como mostram os resultados dos itens (a) e (b).

(d) Se R = r/2,00 e as fontes estão ligadas em paralelo,

i R = 2 r + R

= 2120 ( , V)

= 60,

0 A.

2 0, 200 +

20100 ( , )

(e) Se R = r/2,00 e as fontes estão ligadas em série,

i

R =

2 2120 ( , V)

=

= 48,

0 A.

2r+

R 20200 ( , ) + 0,

100

(f) No caso de ligação em paralelo, como mostram os resultados dos itens (d) e (e).

41. Vamos calcular primeiro as correntes. Seja i 1 a corrente em R 1 , tomando como positivo o

sentido da esquerda para a direita; seja i 2 a corrente em R 2 , tomando como positivo o sentido da

direita para a esquerda; seja i 3 a corrente em R 3 , tomando como positivo o sentido de baixo para

cima. De acordo com a regra dos nós, temos:

i1+ i2 + i3 = 0 .

Aplicando a regra das malhas à malha da esquerda, obtemos

1 − iR 1 1 + iR 3 3 = 0

e aplicando a regra das malhas à malha da direita, obtemos

2 − iR 2 2 + iR 3 3 = 0.


SOLUÇÕES DOS PROBLEMAS 153

A primeira equação nos dá i 3 = 2i 2 2 i 1 . Substituindo nas outras duas equações, obtemos

1 −iR 1 1 −iR 2 3 − iR 1 3 = 0

e

2 −iR 2 2 −iR 2 3 − iR 1 3 = 0.

Resolvendo esse sistema de equações, obtemos

i

1

1( R2 + R3) −2R3

(, 300 V)( 2,

00+ 5, 00 ) −(, 100 V)( 5, 00 )

=

=

RR + RR + RR ( 400 , )( 2, 00 ) + ( 4,

00 )( 500 , ) + ( 2, 00 )( 500 , )

1 2 1 3 2 3

= 0,

421 A.

i

2

=

2( R1+ R3) −1R3

(, 100 V)( 4,

00+ 5, 00 ) −(, 300 V)( 5, 00 )

=

RR + RR + RR ( 400 , )( 2, 00 ) + ( 4,

00 )( 500 , ) + ( 2, 00 )( 500 , )

1 2 1 3 2 3

i

3

=−0,

158 A.

2R1+

1R2

(, 100 V)( 4, 00 ) + (, 300 V)( 2, 00 )

=−

=−

RR + RR + RR ( 400 , )( 2, 00 ) + ( 400 , )( 5,

00) + ( 200 , )(, 5 00 )

1 2 1 3 2 3

=−0,

263 A.

O sinal positivo de i 1 indica que o sentido da corrente em R 1 é da esquerda para a direita. O

sinal negativo de i 2 indica que o sentido da corrente em R 2 é da esquerda para a direita. O sinal

negativo de i 3 indica que o sentido da corrente em R 3 é de cima para baixo.

(a) A potência dissipada em R 1 é

P = i R = ( 0, 421A)(, 2

400) = 0,

709 W.

1 1 2 1

(b) A potência dissipada em R 2 é

P

= i R = ( − 0, 158 A)(, 2

200) = 0,

0499 W ≈ 0,050 W.

2 2 2 2

(c) A potência dissipada em R 3 é

P

= i R = ( − 0, 263 A)(, 2

500) = 0,

346 W.

3 3 2 3

(d) A potência fornecida pela fonte 1 é i 3 e 1 = (0,421 A)(3,00 V) = 1,26 W.

(e) A potência “fornecida” pela fonte 2 é i 2 e 2 = (–0,158 A)(1,00 V) = –0,158 W. O sinal negativo

indica que a fonte 2 absorve energia do circuito.

42. A resistência equivalente do circuito da Fig. 27-52 é

R R R ⎛ n + 1⎞

eq = + = R

n ⎝

n ⎠

⎟ .

A corrente da fonte é

Vfonte

n V

in = =

R n + 1 R

eq

fonte

.

Se houvesse n +1 resistores em paralelo,

Vfonte

n + 1 V

in+ 1 = =

R n + 2 R

eq

fonte .


154 SOLUÇÕES DOS PROBLEMAS

Para um aumento relativo de 1,25% = 0,0125 = 1/80, devemos ter

i

− i

i

n+ 1 n + 1

o que nos dá a equação do segundo grau

n

in

( n+ 1) /( n+

2)

1

= − 1 =

− 1 = ,

i n/

( n+

1)

80

n

n 2 + 2n 2 80 = (n + 10)(n 2 8) = 0.

A única solução que tem significado físico é a solução positiva, n = 8. Isso significa que existem

oito resistores em paralelo na Fig. 27-52.

43. Suponha que os resistores sejam divididos em grupos de n resistores, com os resistores de

cada grupo ligados em série, e que m desses grupos sejam ligados em paralelo. Se R é a resistência

de cada resistor, a resistência equivalente de um dos grupos é nR e a resistência equivalente

R eq do conjunto de m grupos satisfaz a equação

m

1 1 m

=

R

∑ = .

nR nR

eq

1

Como, de acordo com o enunciado, R eq = 10 Ω = R, devemos ter n = m. De acordo com a Eq.

27-16, como, por simetria, a corrente é a mesma em todos os resistores e existem (n)(m) = n 2

resistores, a potência máxima que pode ser dissipada pelo conjunto é P total = n 2 P, na qual P =

1,0 W é a potência máxima que pode ser dissipada por um dos resistores. Como devemos ter

P total ≥ 5,0 W = 5,0P, n 2 deve ser maior ou igual a 5,0. Como n é um número inteiro, o menor

valor possível de n é 3. Isso significa que o número mínimo de resistores é n 2 = 9.

44. (a) Como os resistores R 2 , R 3 e R 4 estão em paralelo, a Eq. 27-24 nos dá uma resistência

equivalente

RRR 2 3 4

R =

RR + RR + RR

2 3 2 4 3 4

= 18, 8 .

( 50, 0)( 500 , )( 75,

0 )

=

( 50, 0)( 500 , ) + ( 50, 0)( 750 , ) + ( 50, 0)( 75,

0 )

Assim, considerando a contribuição do resistor R 1 , a resistência equivalente do circuito é R eq =

R 1 + R = 100 Ω + 18,8 Ω = 118,8 Ω≈ 119 Ω.

(b) i 1 = e/R eq = 6,0 V/(118,8 Ω) = 5,05 × 10 –2 A = 50,5 mA.

(c) i 2 = (e – V 1 )/R 2 = (e – i 1 R 1 )/R 2 = [6,0 V – (5,05 × 10 –2 A)(100 Ω)]/50 Ω

= 1,90 × 10 –2 A = 19,0 mA.

(d) i 3 = (e – V 1 )/R 3 = i 2 R 2 /R 3 = (1,90 × 10 –2 A)(50,0 Ω/50,0 Ω)

= 1,90 × 10 –2 A = 19,0 mA.

(e) i 4 = i 1 – i 2 – i 3 = 5,05 × 10 –2 A – 2(1,90 × 10 –2 A) = 1,25 × 10 –2 A = 12,5 mA.

45. (a) Note que existem dois resistores R 1 em série em cada ramo do circuito, que contribuem

com uma resistência total 2R 1 para o ramo correspondente. Como e 2 = e 3 e R 2 = 2R 1 , as correntes

em e 2 e e 3 são iguais: i 2 = i 3 = i. Assim, a corrente em e 1 é i 1 = 2i. Nesse caso, V b – V a = e 2 – iR 2 =

e 1 + (2R 1 )(2i) e, portanto,

2 − 1

i =

4R

+ R

1 2

Assim, a corrente em e 1 é i 1 = 2i = 0,67 A.

40 , V−

20 , V

=

= 033 , A.

4(1,0 ) + 20 ,


SOLUÇÕES DOS PROBLEMAS 155

(b) O sentido de i 1 é para baixo.

(c) A corrente em e 2 é i 2 = 0,33 A.

(d) O sentido de i 2 é para cima.

(e) A corrente em e 3 é i 3 = i 2 = 0,33 A.

(f) O sentido de i 3 é para cima.

(g) V a – V b = –iR 2 + e 2 = –(0,333 A)(2,0 Ω) + 4,0 V = 3,3 V.

46. (a) Quando R 3 = 0, toda a corrente passa por R 1 e R 3 . Como o valor dessa corrente, de acordo

com o gráfico da Fig. 27-55b, é 6 mA, a lei de Ohm nos dá

R 1 = (12 V)/(0,006 A) = 2,0 ×10 3 Ω = 2,0 kΩ.

(b) Quando R 3 = ∞, toda a corrente passa por R 1 e R 2 . Como o valor dessa corrente, de acordo

com o enunciado, é 2,0 mA, a lei de Ohm nos dá

R 2 = (12 V)/(0,002 A) 2 R 1 = 4,0 ×10 3 Ω = 4,0 kΩ.

47. Como o fio de cobre e a capa de alumínio estão ligados em paralelo, estão submetidos à

mesma diferença de potencial. Como a diferença de potencial é igual ao produto da corrente

pela resistência, i C R C = i A R A , na qual i C é a corrente no cobre, i A é a corrente no alumínio, R C é a

resistência do cobre e R A é a resistência do alumínio. A resistência dos componentes é dada por

R = rL/A, na qual r é a resistividade, L é o comprimento e A é a área da seção reta. A resistência

do fio de cobre é R C = r C L/pa 2 e a resistência da capa de alumínio é R A = r A L/p(b 2 – a 2 ). Substituindo

essas expressões na relação i C R C = i A R A e cancelando os fatores comuns, obtemos

i

a

i

=

b − a

C C A A

2 2 2

Fazendo i A = i − i C , na qual i é a corrente total, obtemos:

.

Fazendo i C = i − i A , obtemos:

i

i

C

A

a2Ai

=

.

( b2 − a2) + a2

( b2 − a2)

C

i

=

.

( b2 − a2)

+ a2

C

C

A

A

O denominador é o mesmo nos dois casos:

[ ] × ⋅

( b 2 − a 2 ) C

+ a

2 A

= ( 0, 380 × 10−

3 m) 2 − ( 0, 250 × 10−

3 m)

2 (, 169 10−

8 m)

+ ( 0, 250 × 10−

3m)(,

2

275×

10−

8

⋅ m)

Assim,

= 310 , × 10−

15 ⋅ m

3 .

(a)

(b)

( 0, 250 × 10−

3m)(, 2

275× 10−

8

⋅ m)( 2, 00 A)

i C =

= 111 , A.

310 , × 10−

15 ⋅ m3

[( 0, 380 × 10 − 3

m) 2

− ( 0, 250 × 10 − 3

m) 2] (, 169×

10

− 8

⋅ m)( 200 , A)

i A =

= 0,

893 A.

310 , × 10−

15

⋅m3


156 SOLUÇÕES DOS PROBLEMAS

(c) Considere o fio de cobre. Se V é a diferença de potencial, V = i C R C = i C r C L/pa 2 , o que nos

aV

L =

2

= ( π)( 0, 250 10

3m)( 2

12, 0 V)

126

(, 111 A)(

169 , × 10 −

= m.

8 ⋅m)

i C

C

×

48. (a) De acordo com a Eq. 26-28, P = e 2 /R eq , na qual

( 12, 0)( 4, 00 )

R

Req = 700 , +

.

( 12, 0)( 4, 0) + ( 12,

0) R+

( 4, 00 )

R

Fazendo P = 60,0 W e e = 24,0 V, obtemos R = 19,5 Ω.

(b) Como P ∝ 1/R eq , o valor de R que maximiza P é o valor que minimiza R eq , ou seja, R = 0.

(c) Como P ∝ 1/R eq , o valor de R que minimiza P é o valor que maximiza R eq , ou seja, R = ∞.

(d) Como R eq, min = 7,00 Ω, P max = e 2 /R eq, min = (24,0 V) 2 /7,00 Ω = 82,3 W.

(e) Como R eq, max = 7,00 Ω + (12,0 Ω)(4,00 Ω)/(12,0 Ω + 4,00 Ω) = 10,0 Ω,

49. (a) A corrente em R 1 é dada por

i

1

P min = e 2 /R eq, max = (24,0 V) 2 /10,0 Ω = 57,6 W.

50 , V

=

=

= 114 , A.

R + R R /( R + R ) 2,0 +

( 40 , )( 60 , )

/( 40 , +

60 , )

1 2 3 2 3

Assim,

i

3

V1

iR 1 1 50 114 2 0

= −

= − , V−

( , A)( , )

=

= 0, 45 A.

R R

60 ,

3

3

(b) Para descrever a nova situação, basta permutar os índices 1 e 3 na equação anterior, o que

nos dá

i

3

50 , V

=

=

R + R R /( R + R ) 6,0 20 , 40 , / 2, 0+

4,

0

3 2 1 2 1

+ ( )( )

0,

6818

( ) = A.

Assim,

50 , V−

( 0, 6818 A)( 6,0 )

i 1 =

= 045 , A,

20 ,

o mesmo valor do item (a).

50. Como, de acordo com o enunciado, a resistência do amperímetro é desprezível, a queda

de tensão no amperímetro é nula e, portanto, as correntes nos dois resistores de baixo têm o

mesmo valor, que vamos chamar de i. Nesse caso, a corrente da fonte é 2i. Como a resistência

equivalente do circuito é

R

eq =

( 2R)( R) ( R)( R)

+ =

2R+

R R+

R

7

6

R,

temos:

3

2i

= ⇒ i = = = .

R 2R 2( 7R 6)

7R

eq eq /


SOLUÇÕES DOS PROBLEMAS 157

Aplicando a regra das malhas à malha da esquerda, obtemos:

−i R − iR = ⇒ i = − iR

2R( 2 ) 0 2R

.

2R

Fazendo i = 3e/7R, obtemos i 2R = 2e/7R. Como a corrente no amperímetro é a diferença entre

i 2R e i, temos:

3 2 iamp

1

iamp

= i− i2R

= − = ⇒ = = 0, 143.

7R 7R 7R

/

R 7

51. Como a corrente no amperímetro é i, a leitura do voltímetro é

V9 = V + i R A = i (R + R A ),

o que nos dá R = V′/i − R A = R9 – R A , na qual R′ = V′/i é a resistência aparente. A corrente da

fonte é dada por i F = e/(R eq + R 0 ), na qual

1 1 1 RV

( R+

RA) ( 300 )( 85, 0+

3, 00 )

= + ⇒ Req

=

=

= 68, 0 .

R R R + R

R + R+

R 300 + 85, 0+

3,

00

eq

V

A

V

A

A leitura do voltímetro é

V′ = i R =

F

eq

R

R

eq

eq

+ R

0

( 12, 0 V )(68,0 )

=

= 4,86 V.

68,0 + 100

(a) A leitura do amperímetro é

V ′

i =

R+

R A

4,86 V

=

= 0, 0552 A = 55,2 mA.

85,0 +

300 ,

(b) Como foi visto no item anterior, a leitura do voltímetro é V′ = 4,86 V.

(c) R′ = V′/i = 4,86 V/(0,0552 A) = 88,0 Ω.

(d) Como R = R′ − R A , se R A diminui, a diferença entre R′ e R diminui.

52. (a) Como i = e/(r + R ext ) e i max = e/r, R ext = r(i max /i – 1), na qual r = 1,50 V/1,00 mA =

1,50 × 10 3 Ω. Assim,

R ext = (, 15× 103)( 10100 / , − 1) = 1, 35 × 104=

13,

5 k.

(b) R ext = (, 15× 103)( 10500 / , − 1) = 1, 5× 103=

1, 50 k

.

(c) R ext = (, 15× 10 3

)( 10900 / . − 1) = 167 .

(d) Como r = 20,0 Ω + R, R = 1,50 × 10 3 Ω – 20,0 Ω = 1,48 × 10 3 Ω=1,48 kΩ .

53. A corrente em R 2 é i. Vamos chamar de i 1 a corrente em R 1 e tomar o sentido para baixo

como positivo. De acordo com a regra dos nós, a corrente no voltímetro é i – i 1 . Aplicando a

regra das malhas à malha da esquerda, temos:

−iR2 −iR 1 1 − ir = 0.

Aplicando a regra das malhas à malha da direita, temos:

A segunda equação nos dá

( ) = .

iR − i−i R V

1 1 1 0

R1

+ R

i =

R

V

V

i1.


158 SOLUÇÕES DOS PROBLEMAS

Substituindo na primeira equação, obtemos

( R2 + r)( R1+

RV

)

i + Ri =

R

V

1 1 1 0

,

o que nos dá

i

1

RV

=

( R + r)( R + R ) + RR

2 1 V 1 V

.

A leitura do voltímetro é

iR

1 1

RV

R1

=

( R + r)( R + R ) + RR

2 1 V 1 V

(, 30V)( 50 , × 10

=

3 )( 250 )

( 300 + 100 )( 250 + 50 , × 10 3 ) + ( 250 )(

50 , × 103

)

= 112 , V.

A corrente na ausência do voltímetro pode ser obtida tomando o limite da expressão anterior

quando R V → ∞, o que nos dá

iR

1 1

=

R1

30 250

R + R + r

= (, V)( )

=

250 + 300 +

100 115 , V.

1 2

O erro percentual é, portanto, (1,12 – 1,15)/(1,15) = –0,030 = –3,0%.

54. (a) e = V + ir = 12 V + (10,0 A) (0,0500 Ω) = 12,5 V.

(b) e = V9 + (i motor + 8,00 A)r, na qual

Assim,

i

motor

V9 = i9 A R faróis = (8,00 A) (12,0 V/10 A) = 9,60 V.

V

V V

= − ′ 12, 5 − 9,

60

− 800 , A =

− 800 , A

r

0,

0500

= 50, 0 A.

55. Seja i 1 a corrente em R 1 e R 2 , considerada positiva se o sentido é para a direita em R 1 . Seja

i 2 a corrente em R s e R x , considerada positiva se o sentido é para a direita em R s . A regra das

malhas nos dá (R 1 + R 2 )i 1 2 (R x + R s )i 2 = 0. Como o potencial é o mesmo nos pontos a e b,

i 1 R 1 = i 2 R s , o que nos dá i 2 = i 1 R 1 /R s . Substituindo na primeira equação, obtemos

( R R ) i ( R R ) R 1

.

R i R RR 2 s

1+ 2 1 = x + s 1 ⇒ x =

R

56. As correntes em R e R V são i e i9 2 i, respectivamente. Como V = iR = (i9 2 i)R V , temos,

dividindo ambos os membros por V, 1 = (i9 /V 2 i/V)R V = (1/R9 2 1/R)R V . Assim,

A resistência equivalente do circuito é

1 1 1

RRV

= − ⇒ R′ =

R R ′ R

R+

R

V

RRV

Req = RA

+ R + R′ = RA

+ R +

R+

R

s

0 0 .

V

V

.

1


SOLUÇÕES DOS PROBLEMAS 159

(a) A leitura do amperímetro é

i′ = =

R R + R + R R ( R+

R )

eq

(b) A leitura do voltímetro é

A 0 V V

12,

0 V

=

3,00 + 100 +

( 300)( 850 , ) 300 +

85,

0

= 709 , × 10−

2 A.

( )

V = e – i' (R A + R 0 ) = 12,0 V – (0,0709 A) (103,00 Ω) = 4,70 V.

(c) A resistência aparente é R9 = V/i9 = 4,70 V/(7,09 × 10 –2 A) = 66,3 Ω.

(d) Se R V aumenta, a diferença entre R e R′ diminui.

57. Vamos chamar de V a fem da fonte. Nesse caso, a condição de que a diferença de potencial

entre os terminais do resistor seja igual à diferença de potencial entre os terminais do capacitor

pode ser escrita na forma iR = V cap , o que, de acordo com as Eqs. 27-34 e 27-35, nos dá

Ve −t /RC = V(1 − e −t/RC ) ⇒ t = RC ln 2 = 0,208 ms.

58. (a) t = RC = (1,40 × 10 6 Ω)(1,80 × 10 –6 F) = 2,52 s.

(b) q o = eC = (12,0 V)(1,80 m F) = 21,6 mC.

(c) De acordo com a Eq. 27-33, q = q 0 (1 – e –t/RC ), o que nos dá

⎛ q0

t = RC ln

q − q⎠

0

⎛ 21,6C

252 , sln

340 , s.

21,6 C 16,

0 C⎠

⎟ =

⎟ = ( ) −

59. Enquanto o capacitor está sendo carregado, a carga da placa positiva é dada por

( )

q= C

1 −e−

t

,

na qual C é a capacitância, e é a fem aplicada e t = RC é a constante de tempo. A carga final é

q f = Ce. No instante em que q = 0,99q f = 0,99Ce,

099 , = 1−e−t

⇒ e−t/

= 001 , .

Tomando o logaritmo natural de ambos os membros, obtemos

t/t = – ln 0,01 = 4,61

=

60. (a) De acordo com a Eq. 27-39, q q0e t / , o que nos dá t = t ln (q 0 /q), na qual t = RC é a

constante de tempo. Assim,

(b) t

2/

3

t

13 /

⎛ q0

⎞ 3

=

041 ,

2q

3⎠

⎟ = ⎛ ⎞

ln

ln

2⎠

⎟ =

/

q

t2/

3

= ⎛ 0 ⎞

ln

3 11 ,

q 3⎠

⎟ = ln

/

= ⇒

= 1,1.

0

0

t1/

3

= 0,41.

61. (a) A diferença de potencial entre os terminais do capacitor é V(t) = e(1 − e −t/RC ). Como, para

t = 1,30 ms, V(t) = 5,00 V, 5,00 V = (12,0 V)(1 – e –1,30 ms/RC ), o que nos dá

t = (1,30 m s)/ln(12/7) = 2,41 ms.

(b) A capacitância é C = t/R = (2,41 ms)/(15,0 kΩ) = 161 pF.


160 SOLUÇÕES DOS PROBLEMAS

62. O tempo necessário para que a diferença de potencial entre os terminais do capacitor atinja

o valor V L é dado por VL

= ( 1 −e

−tRC ). Para que a lâmpada pisque duas vezes por segundo,

esse tempo deve ser igual a 0,500 s. Assim,

t

R =

C [ − V L ] = 0,

500s

ln ( ) ( 0, 150 × 10−

6

F)ln 95, 0 V ( 95, 0V−

720 , V)

= 235 , × 10 6

[ ]

63. No instante t = 0, o capacitor está totalmente descarregado e se comporta como um curtocircuito.

Seja i 1 a corrente em R 1 , considerada positiva se o sentido for para a direita. Seja i 2

a corrente em R 2 , considerada positiva se o sentido for para baixo. Seja i 3 a corrente em R 3 ,

considerada positiva se o sentido for para baixo. De acordo com a regra dos nós, i 1 = i 2 + i 3 .

Aplicando a regra das malhas à malha da esquerda, obtemos

−iR

− iR =

1 1 2 2 0,

e aplicando a regra das malhas à malha da direita, obtemos

iR 2 2 − iR 3 3 = 0.

Como as resistências são todas iguais, podemos substituir R 1 , R 2 e R 3 por R, o que nos dá o

seguinte sistema de equações:

Resolvendo o sistema de equações, obtemos:

(a) i

(b) i

(c) i

1

2

i 1 = i 2 + i 3

−iR− iR=

1 2 0

i2 − i3 = 0.

2 212 (, × 103

V)

= =

= 11 , × 10−

3

A = 1,1mA.

3R

3073 ( , × 106

)

12 , × 103

V

= =

= 55 , × 10−

4

A = 0,55 mA.

3R

3073 ( , × 106

)

= i = 55 , × 10−

4

A = 0,55 mA.

3 2

(d) Para t → ∞, o capacitor está totalmente carregado e se comporta como um circuito aberto.

Assim, i 1 = i 2 , e a regra das malhas nos dá

(e) i

12 , × 103V

−iR 1 1− iR 1 2 = 0 ⇒ i1

= =

= 8, 2× 10 − 4 A = 0,82 mA.

2R

2073 ( , × 106)

= i = 82 , × 10−

4

A = 0,82 mA.

2 1

(f) Como foi visto no item anterior, i 3 = 0.

Em um instante genérico, as equações obtidas, aplicando ao circuito a regra dos nós e a regra

das malhas, são:

i 1 = i 2 + i 3

−iR− iR=

1 2 0

q

− − iR+ iR=

C

3 2 0.


SOLUÇÕES DOS PROBLEMAS 161

Substituindo i 1 por i 2 + i 3 na segunda equação, obtemos e – 2i 2 R – i 3 R = 0, o que nos dá i 2 =

(e – i 3 R)/2R. Substituindo na terceira equação, obtemos

Substituindo i 3 por dq/dt, temos:

–(q/C) – (i 3 R) + (â/2) – (i 3 R/2) = 0.

3Rdq

q

+ = .

2 dt C 2

Como a equação anterior é a equação de um circuito RC série com uma constante de tempo t =

3RC/2 e uma fem aplicada e/2, a solução é

A corrente no ramo do capacitor é

A corrente no ramo central é

e a queda de tensão em R 2 é

C

q = −e−

( t RC )

2 1 2 3

.

dq

i3() t = =

dt R e −2 t 3 RC .

3

i

i2()= t − = −

R R R e −

= 3 −e

2 2 2 6 6R

( )

3 2t 3RC −2t 3RC

V2 () t = iR 2 =

( e

2 t 3 RC

6 3 − −

).

(g) Para t= 0, e−2 t 3 RC = 1e V

3 2

2 = 3= (, 1 2× 10 V) 3= 40 , × 10 V.

(h) Para t → ∞, e −2t

3RC

→ 0 e V = 2= (, 1 2× 20 3 V) 2= 60 , × 10

2 V.

2

(i) A figura a seguir mostra um gráfico de V 2 em função do tempo.

64. (a) A diferença de potencial V entre as placas de um capacitor está relacionada à carga q

da placa positiva através da equação V = q/C, na qual C é a capacitância. Como a carga de um

capacitor que está se descarregando é dada por q = q 0 e –t/t , isto significa que V = V e−

0

t /

, na qual

V 0 é a diferença de potencial inicial. Dividindo ambos os membros por V 0 e tomando o logaritmo

natural, obtemos:

t

ln( VV)

10,

0s

ln (, 100V)( 100V)

=− =−

[ ]

=

(b) No instante t = 17,0 s, t/t = (17,0 s)/(2,17 s) = 7,83 e, portanto,

0

217 , s.

V = V e−t

= ( 100V ) e− 783 ,

= 396 , × 10−

2V = 39,6 mV .

0


162 SOLUÇÕES DOS PROBLEMAS

65. No regime estacionário, a tensão entre os terminais do capacitor é igual à queda de tensão

em R 2 :

V0 = R2

R + R

1 2

⎛ 20,

0 V ⎞

= ( 15, 0 k)

10,0 k+

15,

0 k⎠

⎟ = 12, 0 V.

Multiplicando a Eq. 27-39 pela capacitância, obtemos V = V 0 e 2t/RC como a equação que descreve

a tensão entre os terminais do capacitor (e entre os terminais de R 2 ) depois que a chave é

aberta. Assim, para t = 0,00400 s, temos:

V = e− × −

( 12) , ( . )( , )

= 616 ,

0 004 15 000 04 10 6 V.

Assim, de acordo com a lei de Ohm, a corrente em R 2 é 6,16/15.000 = 411 mA.

66. Para resolver o problema, aplicamos a Eq. 27-39 aos dois capacitores, levamos em conta o

fato de que a razão entre as cargas é 1,5 e explicitamos o tempo t. Como as constantes de tempo

dos dois circuitos são

= RC = ( 20, 0)( 5, 00 × 10−

6

F) = 100 , × 10−

4

s

1 1 1

temos:

=

= ( 10, 0)( 8, 00 × 10 F) = 800 , × 10 s,

2 R2C − 6 −5

2

ln( 3/ 2) ln( 32 / )

t = =

− − − 125 , × 10 s−

− 1,

00 × 10

2 1 1 1 4 1

s

4 −1

= 162 , × 10−

4s = 162 s.

67. A diferença de potencial entre as placas do capacitor varia com o tempo de acordo com a

equação V() t = Ve−

t /

0 RC . Para V = V 0 /4 e t = 2,0 s, obtemos

t

R = C V V

= 20 , s

= 72 , × 105

= 07 , 2M.

ln( ) ( 2,0 × 10−

6

Fln4 )

0

68. (a) Como a energia inicial armazenada no capacitor é UC = q2 0 / 2C, na qual C é a capacitância

e q 0 é a carga inicial de uma das placas, temos:

q

= 2CU C = 2(, 10× 10 − F)( 050 , J) = 1,

10−

C.

0

6 3

(b) A variação da carga com o tempo é dada por q= q e−

0

t , na qual t é a constante de tempo.

Derivando essa expressão em relação ao tempo, obtemos

dq q0

i =− = e

−t

dt

o que mostra que a corrente inicial é i 0 = q 0 /t. Como a constante de tempo é

obtemos:

(c) Fazendo q

t = RC = (1,0 × 10 −6 F)(1,0 × 10 6 Ω) = 1,0 s,

10 , × 10

=

10 , s

−3

i 0

,

C

= 10×

10

= q e−

0

t

na relação V C = q/C, obtemos

V

C

A

,

−3

.

q

C e ⎛

t

×

−3

0

=

10 , 10 C⎞

=

e −t

10 , s

× ⎠

⎟ = (, 10× 10 3 V) e−

t .

1,0 10−

6

F

(d) Fazendo i = ( q e−

0 )

t

na relação V R = iR, obtemos

V

R

qR e

t

×

−3 ×

6

0

=

(, 10 10 C)( 10 , 10 )

=

e

−t

10 , s

= (, 10× 10 3 V) e−

t .

10 , s


SOLUÇÕES DOS PROBLEMAS 163

(e) Fazendo i = ( q e−

0 )

t

na relação P = i 2 R, obtemos

P = qR e t ×

0 2 3 2

−2

×

6

(, 10 10 C)(, 10 10 )

=

2

(, 10s)

2 e

69. (a) A carga da placa positiva do capacitor é dada por

( )

q= C

1 −e−

t

,

, s

= e

− t

W .

−2t

1 0 2

na qual C é a capacitância, e é a fem da fonte e t é a constante de tempo. O valor de t é

t = RC = (3,00 × 10 6 Ω)(1,00 × 10 –6 F) = 3,00 s.

Para t = 1,00 s, t/t = (1,00 s)/(3,00 s) = 0,333 e a taxa de aumento de carga do capacitor é

dq

dt

C

= e

t

×

(, 100 10

6

F)( 4, 00 V)

=

e

300 , s

= 955 , × 10 C s = 0,955 C/s.

−033

, 3 −7

(b) A energia armazenada no capacitor é dada por U C = q 2 /2C e a taxa de variação da energia

é

dU C q dq

= .

dt C dt

Como

temos:

q= C

( 1− e−t

) = (, 1 00 × 10− 6)( 400 , V)( 1− e−

0,

333)

= 113 , × 10 − 6 C,

dU C q dq ⎛ 113 , × 10

= =

dt C dt ⎝

100 , × 10

−6

−6

C⎞

⎟ (, 955× 10−

7Cs) = 1, 08 × 10−

6

W = 1,08 W.

F

(c) A taxa com a qual a energia é dissipada no resistor é dada por P = i 2 R. Como a corrente é

9,55 × 10 –7 A,

P = (, 955× 10 −7

A) 2 ( 3, 00 × 10 6 ) = 274 , × 10−

6 W = 2,74 W.

(d) A taxa com a qual a energia é fornecida pela fonte é

i = (, 955× 10 − 7A)( 4, 00 V) = 382 , × 10−

6W = 3,82 W.

Como a energia fornecida pela fonte é armazenada no capacitor ou dissipada no resistor, o valor

obtido no item (d) é igual à soma dos valores obtidos nos itens (b) e (c): 3,82 mW = 1,08 mW +

2,74 mW.

70. (a) Por simetria, sabemos que as correntes no ramo superior e no ramo central do circuito

têm o mesmo valor, que vamos chamar de i. Isto significa que a corrente no resistor R do ramo

inferior é i R = 2i. Assim, chamando de r a resistência interna das fontes e de e a fem das fontes

e aplicando a regra das malhas à malha externa do circuito, obtemos

o que nos dá i = 3,0 e i R = 2i = 6,0 A.

3( −ir) − ( 2iR

) = 0,

(b) A diferença de potencial entre os terminais de uma das fontes é e – ir = 8,0 V.

(c) De acordo com a Eq. 27-17, P f = ie = (3)(20) = 60 W.

(d) De acordo com a Eq. 26-27, P r = i 2 r = 36 W.

71. (a) Com a chave S 1 fechada e as chaves S 2 e S 3 abertas,

i a = e/2R 1 = 120 V/40,0 Ω = 3,00 A.


164 SOLUÇÕES DOS PROBLEMAS

(b) Com as chaves S 1 e S 2 fechadas e a chave S 3 aberta, temos:

R eq = R 1 + R 1 (R 1 + R 2 ) /(2R 1 + R 2 ) = 20,0 Ω + (20,0 Ω) × (30,0 Ω)/(50,0 Ω) = 32,0 Ω,

o que nos dá

i a = e/R eq = 120 V/32,0 Ω = 3,75 A.

(c) Com as três chaves fechadas, R eq = R 1 + R 1 R9/(R 1 + R9), na qual

o que nos dá

e, portanto,

R9 = R 2 + R 1 (R 1 + R 2 )/(2R 1 + R 2 ) = 22,0 Ω,

R eq = 20,0 Ω + (20,0 Ω) (22,0 Ω)/(20,0 Ω + 22,0 Ω) = 30,5 Ω,

i a = e/R eq = 120 V/30,5 Ω = 3,94 A.

72. (a) A resistência equivalente dos resistores R 1 , R 2 , R 3 e R 4 é dada por

RR 1 2

Req = R12 + R34

=

R + R

1 2

RR 3 4

+

R + R

3 4

Como a fem da fonte está aplicada aos terminais de R eq , temos:

= 70 , + 30 , =

10 .

i 2 = e/R eq = (30,0 V)/(10 Ω) = 3,0 A.

(b) A resistência equivalente dos resistores R 5 , R 6 e R 7 é

RR 5 6

Req

′ = R56 + R7

=

R + R

5 6

(6,0 )(2,0 )

+ R7

=

+ 15 , =

30 , .

6,0 + 2,

0

Como a fem da fonte está aplicada aos terminais de R eq ′ , temos:

i 4 = e/ R eq ′ = (30,0 V)/(3,0 Ω) = 10 A.

(c) De acordo com a regra dos nós, i 1 = i 2 + i 4 = 13 A.

(d) Por simetria, i 3 = i 2 /2 = 1,5 A.

(e) Aplicando a regra das malhas à malha que contém a fonte e os resistores R 6 e R 7 , temos:

o que nos dá i 5 = 7,5 A.

30V 2 i 4 (1,5 Ω) 2 i 5 (2,0 Ω) = 0,

73. (a) O módulo da densidade de corrente no fio A (e também no fio B) é

i V

4V

4( 60, 0 V)

JA = = =

=

A ( R + R ) A ( R + R ) D2 ( 012 , 7+ 0, 729 )( 260 , × 10−

m)

1 2 1 2

= 132 , × 10 Am .

7 2

3 2

(b) V

A =

VR1

R + R

1 2

( 60, 0V)( 0, 127 )

=

=

( 0, 127 +

0, 729 )

890 , V .

(c)

A

RA A RD

A ( 0, 127 )( 260 , × 10−

m)

= = =

L 4L

44 ( 00 , m)

A

A

2 3 2

= 169 , × 10 − 8 ⋅ m.

De acordo com a Tabela 26-1, o fio A é feito de cobre.

(d) J

B

= J = 132 , × 10 7 Am

2 .

A

(e) V B = V 2 V A = 60,0 V 2 8,9 V = 51,1 V.


SOLUÇÕES DOS PROBLEMAS 165

(f)

B

RB

A RD

B ( 0, 729 )( 260 , × 10−

m)

= = =

L 4L

44 ( 00 , m)

B

B

2 3 2

= 968 , × 10 − 8 ⋅ m. .

De acordo com a Tabela 26-1, o fio B é feito de ferro.

74. O resistor do lado esquerdo da letra i está acima de três outros resistores; juntos, esses resistores

são equivalentes a um resistor de resistência R = 10 Ω, que conduz uma corrente i. Como

se estivéssemos procurando a saída de um labirinto, podemos encontrar um percurso entre as

extremidades de R que passa apenas por fontes (10, no total). Como 7 dessas fontes têm uma

polaridade e as outras 3 têm a polaridade oposta, a fem aplicada a R é e = 40 V.

(a) A corrente é i = e/R = 4,0 A.

(b) O sentido da corrente é de baixo para cima.

75. (a) No processo descrito no enunciado, a carga é constante. Assim,

1

= = ⇒ = = ( ) ⎛ ⎝ ⎜ ⎞

q C V C V V V C 1 1 2 2 2 1

C

2

200

150

⎟ = 30 , × 10 3 V = 3,0 kV.

10

(b) Multiplicando a Eq. 27-39 pela capacitância, obtemos V = V 0 e 2t/RC como a equação que

descreve a tensão entre os terminais do capacitor. Assim,

V

V = V e−tRC

⎛ 0 ⎞

⇒ t = RC

V ⎠

⎟ = ( ×

9

) ×

−1

0

ln 300 10 10 10

2 ⎛ 3000⎞

( F)

ln

100 ⎠

⎟ ,

o que nos dá t = 10 s. Este é um intervalo de tempo maior que o que as pessoas levam para fazer

algo como manusear um equipamento eletrônico depois de se levantarem.

(c) Nesse caso, temos que obter o valor de R na equação V = V e−

0 tRC para os novos valores

V 0 = 1400 V e t = 0,30 s. O resultado é o seguinte:

t

R =

Cln

V V

030 , s

( ) = ( 10 × 10 ( ) =

− 12

F)ln

1400 100

0

11 , × 10

10

= 11 G .

76. (a) Podemos reduzir o par de resistores em paralelo na parte de baixo do circuito a um único

resistor R′ =1,00 Ω e combinar esse resistor com um resistor em série para obter um resistor

equivalente R′′ = 2,00 Ω + 1,00 Ω = 3,00 Ω. A corrente em R′′ é a corrente i 1 que precisamos

calcular. Aplicando a regra das malhas a uma malha que inclui R′′ e as três fontes e supondo

que o sentido da corrente i 1 é da direita para a esquerda, obtemos:

o que nos dá i 1 = 5,00 A.

5,00 V + 20,0 V −10,0 V − i 1 R = 0,

(b) Como o valor obtido para i 1 no item (a) foi positivo, o sentido da corrente é o que foi escolhido

inicialmente, ou seja, da direita para a esquerda.

(c) Como o sentido da corrente da fonte 1 é do terminal negativo para o terminal positivo, a

fonte 1 está fornecendo energia.

(d) A potência fornecida pela fonte 1 é P 1 = (5,00 A)(20,0 V) = 100 W.

(e) Reduzindo os resistores que estão em paralelo com a fonte e 2 a um único resistor R9 = 1,00

Ω, através do qual passa uma corrente i9= (10,0 V)//(1,00 Ω) = 10,0 A, de cima para baixo,

vemos que, de acordo com a regra dos nós, a corrente na fonte e 2 é i = i9 − i 1 = 5,00 A para

cima, ou seja, do terminal negativo para o terminal positivo. Isso significa que a fonte 2 está

fornecendo energia.


166 SOLUÇÕES DOS PROBLEMAS

(f) De acordo com a Eq. 27-17, P 2 = (5,00 A)(10,00 V) = 50,0 W.

(g) O conjunto de resistores em paralelo com a fonte â 3 pode ser reduzido a um único resistor

R = 0,800 Ω (associando primeiro dois resistores em série e depois associando o resistor

equivalente a dois resistores em paralelo), através do qual passa uma corrente i = (5,00 V)/

(0,800 Ω) = 6,25 A de cima para baixo. De acordo com a regra dos nós, a corrente na fonte e 3

é i = i + i 1 = 11,25 A para cima, ou seja, do terminal negativo para o terminal positivo. Isso

significa que a fonte 3 está fornecendo energia.

(h) De acordo com a Eq. 27-17, P 3 = (11,25 A)(5 V) = 56,3 W.

77. Vamos usar o índice s para indicar silício, o índice f para indicar ferro e chamar de T 0 a

temperatura de referência. As resistências dos dois resistores são dadas por

( ) = ( ) + ( − )

( )

Rs T Rs T0 ⎡⎣ 1 s T T0 ⎤ ⎦ , Rf ( T) = Rf ( T0

) ⎡⎣ 1+

f

T − T

Como os resistores estão ligados em série,

RT ( ) = Rs( T) + Rf ( T) = Rs( T0) ⎡⎣ 1+ s( T −T0)

⎤ ⎦ + Rf

( T0

) ⎡⎣ + f T −T

R T R T ⎡⎣ R T R T 0 f ⎤ ⎦ T − T 0 .

= ( ) + ( ) + ( ) +

s 0 f 0 s 0 s f

( )

( )

⎤ ⎦

0 .

( )

1 0

Para que R(T) não dependa da temperatura e seja igual a 1000 Ω, devemos ter:

R s (T 0 )a s + R f (T 0 )a f = 0

R s (T 0 ) + R f (T 0 ) = 1000 Ω.

Resolvendo o sistema de equação anterior, obtemos:

⎤ ⎦

(a) R

s

R

f

( T0

) =

f

s

( 1000 )(, 65×

10−

3

K−

1)

=

= 85, 0 .

(, 65×

10− 3

K

−1) −( − 70 × 10− 3

K−

1)

(b) R i (T 0 ) = 1000 Ω – 85,0 Ω = 915 Ω.

Nota: Só é possível construir um resistor desse tipo usando materiais, como o ferro e o silício,

cujos coeficientes de temperatura da resistividade têm sinais opostos. Mesmo assim, a variação

da resistência com a temperatura, embora pequena, não é exatamente zero, já que o próprio

coeficiente de temperatura da resistividade varia com a temperatura, e a variação é diferente

em diferentes materiais. É por isso que o enunciado do problema se refere a “um resistor cuja

resistência varia muito pouco com a temperatura” e não a “um resistor cuja resistência não varia

com a temperatura”.

78. Como a corrente no amperímetro é i A = e/(r + R 1 + R 2 + R A ) e a corrente em R 1 e R 2 sem o

amperímetro é i = e/(r + R 1 + R 2 ), o erro percentual é

i

i

i iA

r R R

= − + 1+

2

= 1−

i r+ R + R + R

= 090 , %.

RA

010 ,

= =

r + R + R + R 20 , + 50 , + 40 , +

010 ,

1 2 A 1 2

79. (a) Como, de acordo com a Eq. 27-34, i(t) = (e/R)e –t/RC , a energia total fornecida pela fonte é

U = idt = e−tRC

∫ 2

dt = C = UC

R ∫

2

2 ,

0

0

e, de acordo com a Eq. 25-22, U C = Ce 2 /2, temos:

U

UC = . 2

A


SOLUÇÕES DOS PROBLEMAS 167

(b) Integrando o produto i 2 R, temos:

U

R

U

= i2

2

Rdt = e−

2tRC

1

dt = C

2

=

0 R ∫

.

0 2 2

80. Como, no regime estacionário, a corrente nos capacitores é zero, a corrente é a mesma nos

três resistores. De acordo com a regra das malhas,

20,0 V = (5,00 Ω)i + (10,0 Ω)i + (15,0 Ω)i,

o que nos dá i = 2/3 A. Isso significa que a queda de tensão em R 1 é (5,00 Ω)(2/3 A) = 10/3 V,

que é também a tensão V 1 entre os terminais do capacitor C 1 . De acordo com a Eq. 25-22, a

energia armazenada no capacitor C 1 é

2

1

U1 CV 1 1 2 1

6

2 2 500 10 ⎛ 10 ⎞

= = (, ×

F) 278

⎜ V

3 ⎠

⎟ = , × 10−

5 J.

A queda de tensão em R 2 é (10,0 Ω)(2/3 A) = 20/3 V, que é também a tensão V 2 entre os terminais

do capacitor C 2 . Assim,

2

1

U2 C2V2 2 1

6

2 2 10 0 10 ⎛ 20 ⎞

= = ( , ×

F) 222

⎜ V

3 ⎠

⎟ = , × 10−

5 J.

A energia total armazenada nos capacitores é U 1 + U 2 = 2,50 × 10 −4 J = 250 mJ.

81. A queda de tensão em R 2 é

V

R2

12 40

= iR =

=

( V )( , )

R + R + R 30 , + 40 , +

50 , = 40 , V.

2 2

1 2 3

82. Como V a – e 1 = V c – ir 1 – iR e i = (e 1 – e 2 )/(R + r 1 + r 2 ), temos:

⎛ 1−

2

Va

− Vc

= 1− ir ( 1+ R) = 1

r R

R+ r + r ⎠

⎟ ( 1 + )

1 2

⎛ 44 , V−

21 , V ⎞

= 44 , V −

+ + ⎠

⎟ ( 23 , + 55 , )

55 , 18 , 23 ,

= 25 , V.

83. A diferença de potencial entre os terminais do capacitor é

t

Vt () = Ve−t/

RC

0 ⇒ R =

.

Cln

V V

10,

0 s

(a) Para t min = 10,0 ms, R min

0, 220 F

ln 5000800 , ,

= ( ) ( )

=

( )

t

(b) Para t max = 6,00 ms, V() t = Ve−t/

RC

0 ⇒ R =

.

Cln

V V

0

( )

0

24, 8 .

84. (a) Quando R boia = 140 Ω, i = 12 V/(10 Ω + 140 Ω) = 8,0 × 10 −2 A = 80 mA.

(b) Quando R boia = (140 Ω + 20 Ω)/2 = 80 Ω, i = 12 V/(10 Ω + 80 Ω) = 0,13 A.

(c) Quando R boia = 20 Ω,i = 12 V/(10 Ω + 20 Ω) = 0,40 A.


168 SOLUÇÕES DOS PROBLEMAS

85. Como a resistência interna da bateria é r = (12 V – 11,4 V)/50 A = 0,012 Ω< 0,020 Ω, a

bateria está em boas condições. Por outro lado, a resistência do cabo é R = 3,0 V/50 A = 0,060

Ω > 0,040 Ω, o que mostra que o componente defeituoso é o cabo.

86. Quando os resistores são ligados em série, a potência dissipada é

P s = e 2 /(R 1 + R 2 ).

Quando os resistores são ligados em paralelo, a potência dissipada é

P p = e 2 (R 1 + R 2 )/R 1 R 2 .

Fazendo P p /P s = 5, obtemos (R 1 + R 2 ) 2 /R 1 R 2 = 5, o que nos dá a equação do segundo grau

cujas soluções, para R 1 = 100 Ω, são

R − 3R R + R = 0,

2 2 1 2 1

300 ± 90. 000 −40.

000

R 2 =

2

300 ± 224

= .

2

(a) A menor solução é R 2 = (300 − 224)/2 = 38 Ω.

(b) A maior solução é R 2 = (300 + 224)/2 = 262 Ω.

87. Quando a chave S permanece aberta por um longo tempo, a carga do capacitor C é q i = e 2 C.

Quando a chave S permanece fechada por um longo tempo, a corrente i em R 1 e R 2 é

i = (e 2 – e 1 )/(R 1 + R 2 ) = (3,0 V – 1,0 V)/(0,20 Ω + 0,40 Ω) = 3,33 A.

A diferença de potencial V entre as placas do capacitor é, portanto,

V = e 2 – iR 2 = 3,0 V – (3,33 A) (0,40 Ω) = 1,67 V.

Como a carga final do capacitor C é q f = VC, a variação da carga do capacitor é

∆q = q f – q i = (V – e 2 )C = (1,67 V – 3,0 V) (10 m F) = –13 m C.

88. De acordo com a regra das malhas e a regra dos nós, temos:

20,

0−iR

− iR = 0

1 1 3 3

20,

0−iR

−iR

− 50=

0

1 1 2 2

i + i = i

2 3 1

Fazendo i 1 = 0, R 1 = 10,0 Ω e R 2 = 20,0 Ω nas equações anteriores, obtemos:

i

1

40 − 3R

=

20 + 3R

3

3

40

= 0 ⇒ R3

= = 13, 3 .

3

89. Os dois resistores de baixo estão ligados em paralelo e equivalem a uma resistência de 2,0R.

Essa resistência está em série com uma resistência R do lado direito, o que resulta em uma

resistência equivalente R9 = 3,0R. Os resistores do canto superior esquerdo estão ligados em

série e equivalem a uma resistência R = 6,0R. Finalmente, as resistências R9 e R estão ligadas

em paralelo, o que nos dá uma resistência equivalente total

R

eq =

RR ′ ′′

R

R′ + R′′ = 20 , = 20 .

90. (a) De acordo com as Eqs. 26-27 e 27-4, a potência é dada por

R

P = i2

2

R =

( R+

r)

2


SOLUÇÕES DOS PROBLEMAS 169

Derivando a potência em relação a R e igualando o resultado a zero, obtemos:

cuja solução é R = r.

dP

dR

=

d

dR

⎡ 2R

⎣( R+

r)

(b) Para R = r, a potência dissipada no resistor externo é

P

max

2

⎤ r R

= 2( − )

= 0,

( R+

r)

3

2R

2

=

= .

( R+

r)

2

4r

R=

r

91. (a) Aplicando a regra das malhas à malha da esquerda, obtemos:

(b) O sentido de i 1 é para baixo.

i

1

12,

0 V

= = = 300 , A.

R 400 ,

(c) Aplicando a regra das malhas à malha central, obtemos:

+ + + − + ⎛ i ⎞

( iR) ( iR) −

2 0

⎜ R

2 ⎠

⎟ + ( − i R) = .

2 1 2

2

Usando o resultado do item (a), obtemos i 2 = 1,60 A.

(d) O sentido de i 2 é para baixo.

(e) Como o sentido das duas correntes é para baixo, o sentido da corrente na fonte 1 é do terminal

negativo para o terminal positivo e, portanto, a fonte 1 está fornecendo energia.

(f) De acordo com a regra dos nós, a corrente na fonte 1 é 3,00 A + 1,60 A = 4,60 A; de acordo

com a Eq. 27-17, P = (4,60 A)(12,0 V) = 55,2 W.

(g) Como o sentido da corrente na fonte 2 é do terminal negativo para o terminal positivo, a

fonte 2 está fornecendo energia.

(h) De acordo com a Eq. 27-17, P = i 2 (4,00 V) = 6,40 W.

92. A resistência equivalente de R 3 e R 4 em série é R 34 = 4,0 Ω e a resistência equivalente de R 1

e R 2 em paralelo é R 12 = 2,0 Ω. Como a queda de tensão em R 34 é igual à queda de tensão em

R 12 ,

De acordo com a regra dos nós,

Combinando as duas equações, obtemos:

1

V34 = V12 ⇒ i34R34 = i12R12 ⇒ i34 = i12.

2

I = i 12 + i 34 = 6,00 A.

2i 12 + i 12 = 12,00 A ⇒ i 12 = 4,00 A.

Como a corrente i 12 se divide igualmente entre os resistores R 1 e R 2 ,

i 1 = i 12 /2 = 2,00 A.

93. (a) Como P = V 2 /R, V = PR = ( 10 W)( 010 , )

= 1,

0V.


170 SOLUÇÕES DOS PROBLEMAS

(b) Como i = V/R = (e – V)/r, temos:

⎛ − V ⎞

r = R

V ⎠

⎟ = ( 010 , )

⎛ 15 , V−

10 , V⎞

10 ⎠

⎟ = 0,

050 .

, V

94. (a) R eq (AB) = 20,0 Ω/3 = 6,67 Ω (três resistores de 20,0 Ω em paralelo).

(b) R eq (AC) = 20,0 Ω/3 = 6,67 Ω (três resistores de 20,0 Ω em paralelo).

(c) R eq (BC) = 0 (os pontos B e C estão ligados por um fio condutor).

95. A potência máxima que pode ser dissipada é (120 V)(15 A) = 1800 W. Como 1800 W/500

W = 3,6, o número máximo de lâmpadas de 500 W é 3.

96. Vamos chamar de V a fem da fonte. De acordo com a Eq. 27-30,

V

i = q

R

− RC

= 12 V

− 8×

10−

6

C

= 25 , A.

4 ( 4)(

10−

6

F)

97. Quando as fontes estão ligadas em paralelo, a fem total é e,a resistência equivalente é

R paralelo = R + r/N e a corrente é

i

paralelo

N

= =

=

.

R R+

rN NR + r

paralelo /

Quando as fontes estão ligadas em série, a fem total é Ne, a resistência equivalente é R série = R +

Nr e a corrente é

i

série

= N

N

R

=

.

R+

Nr

série

Comparando as duas expressões, vemos que, para R = r,

i

paralelo

N

= isérie

=

( N + 1) r

.

98. Com R 2 e R 3 em paralelo associadas com R 1 em série, a resistência equivalente do circuito é

RR 2 3

Req = R1

+

R + R

2 3

RR + RR + RR

=

R + R

1 2 1 3 2 3

2 3

e a corrente é

i = =

R

eq

( R2 + R3)

.

RR + RR + RR

1 2 1 3 2 3

A potência fornecida pela fonte é

P = i

=

( R + R )

2

2 3

.

RR + RR + RR

1 2 1 3 2 3

(a) Para determinar o valor de R 3 que maximiza P, derivamos P em relação a R 3 . Depois de

algumas transformações algébricas, obtemos

dP

dR

3

R2 2

=−

2

( RR + RR + RR) .

1 2 1 3 2 3 2

Como a derivada é negativa para todos os valores positivos de R 3 , P é máxima para R 3 = 0.


SOLUÇÕES DOS PROBLEMAS 171

(b) Fazendo R 3 = 0, obtemos

( 12,

0 V)

2

P = = = 14, 4 W.

R 10,0

2 1

99. (a) Como o capacitor está inicialmente descarregado, ele se comporta inicialmente como

um curto-circuito e, portanto, a tensão inicial é zero entre os terminais do resistor R 2 e 30 V

entre os terminais do resistor R 1 . Assim, de acordo com a lei de Ohm, i 10 = (30 V)/(20 kΩ) =

1,5 × 10 –3 A = 1,5 mA.

(b) Como a tensão inicial entre os terminais do resistor R 2 é 0, i 20 = 0.

(c) Depois de transcorrido um longo tempo, o capacitor passa a se comportar como um circuito

aberto e os resistores R 1 e R 2 passam a se comportar como dois resistores em série, com uma

resistência equivalente R eq = R 1 + R 2 = 20 kΩ + 10 kΩ = 30 kΩ. Assim, a corrente no circuito,

que é igual à corrente no resistor 2, é

30 V

i =

= 10× 10−

3

A = 10mA

30 × 103

, , .


Capítulo 28

1. (a) De acordo com a Eq. 28-3,

FB

650 , × 10−

17

N

v = =

= 400 , × 105

m/s = 400 km/s.

eB sen

(, 160× 10−

19C)( 2,

60 × 10−

3T)sen 23,

(b) A energia cinética do próton é

1

K = mv2 1

= (, 167× 10−

27kg)( 4, 00 × 105ms) 2

= 134 , × 10 −16

J,

2 2

que é equivalente a K = (1,34 × 10 2 16 J)/(1,60 × 10 2 19 J/eV) = 835 eV.

2. A força associada ao campo magnético deve apontar na direção ĵ para equilibrar a força da

gravidade,

que aponta na direção − ĵ. Para isso, de acordo com a regra da mão direita, o campo

B deve apontar na direção − ˆk. O módulo |B z | do campo é dado pela Eq. 28-3, com f = 90°.

Assim, temos:

mg

B= Bz

= − ⎛ ⎞

⎝ ⎜ ×

ˆ ˆ ⎡ (, 10 10

2

kg)( 98 , m/s

k

qv ⎠

⎟ k =−

2 ) ⎤ ˆ

( 0,

061

(, 80× 10 − 3

)( 20 , × 104

)

⎥ k =− T)ˆ k =−61 ( mTk. )ˆ

C m/s ⎦

3. (a) A força que age sobre o elétron é

FB = qv × B= qv ( ˆ

xi+ vy ˆ) j × ( B ˆ

xi + Byj) = qvB ( x y −vB

y x ) k ˆ

=( − 16 , × 10−

19C) ( 20 , × 106 m s)( −015

, T)

− (, 30×

106

ms)( 0, 030 T)

= (, 62× 10−

14

N) k. ˆ

[ ]

(b) O cálculo é semelhante ao do item (a); a única coisa que muda é o sinal da carga elétrica.

Assim, a força que age sobre o próton é

F B =− (, 62× 10−

14 N) k. ˆ

4. (a) De acordo com a Eq. 28-3,

F B = |q| vB sen f = (+ 3,2 × 10 –19 C) (550 m/s) (0,045 T) (sen 52°) = 6,2 × 10 –18 N.

(b) A aceleração é

a = F B /m = (6,2 × 10 – 18 N) / (6,6 × 10 – 27 kg) = 9,5 × 10 8 m/s 2 .

(c) Como F B é perpendicular a v, não exerce trabalho sobre a partícula. Assim, de acordo com

o teorema do trabalho e energia cinética, a energia cinética da partícula permanece constante, o

que significa que a velocidade também permanece constante.

5. De acordo com as Eqs. 3-30 e Eq. 28-2,

F = q( vB x y −vB y x) kˆ

= q⎡⎣

vx( 3Bx) − vyBx⎤ ˆ ⎦ k

Como, nesse instante, a força é ( 64 , × 10− 19 Nk, ) ˆ temos:

Fz

64 , × 10−

19

N

q( 3vx − vy)

Bx = Fz ⇒ Bx

=

=

=−20

, T.

q( 3v − v ) ( −1, 6× 10− 19

C)[ 3( 20 , m/s) −40

, m]

x

y


SOLUÇÕES DOS PROBLEMAS 173

6. A força magnética a que o próton está submetido é

F = qv × B

na qual q = +e . De acordo com a Eq. 3-30, temos, em unidades do SI:

( 4× 10−

17)ˆ i+ ( 2× 10−

17)ˆ j= e[( 003 , ) v y + 40]ˆ i + ( 20−0, 03v )ˆ j− ( 002 , v + 0, 01v

)ˆ] k

Igualando as componentes correspondentes, obtemos:

x x y

(a) v

(b) v

x =

y =

20e

− 2×

10 − 20(, 16× 10 − ×

=

− ) 2 10

003 , e 0,03(, 16×

10−

19)

17 19 17

40e

− 4×

10 − 40(, 16× 10 − ×

=

− ) 4 10

003 , e 0,03(, 16×

10−

19)

7. Como

F = q E+ v × B m e a

E

ma e

= + B×

v

q

17 19 17

( ) = , temos:

=− 35 , × 103

m/s = −3,5 km/s.

= 70 , × 103

m/s = 7,0 km/s.

(, 911× 10−

31

)( 2, 00 × 1012 2

kg ms)

ˆi

=

− 160 , × 10 − 19C

= ( −11, 4V/m)i ˆ − (, 6 00 V/m)j ˆ + ( 480 , V/m) kVm ˆ) .

8. Fazendo F = q( E + v× B

) = 0, obtemos

+ ( ) × ( ) + ( )

vBsen = E.

400Ti ˆ ⎡ , km s ˆ

12 0 j 150 , kmskˆ

Para resolver o problema, temos que conhecer o ângulo da velocidade do elétron com o plano

formado pelos campos elétrico e magnético. Supondo que o ângulo é 90 o , sen f = sen 90 o = 1 e

v

E

= =

B

150 , × 103

V/m

= 375 , × 103

m/s = 3,75 km/s.

0,400 T

9. Desprezando a força da gravidade, o fato de que a trajetória do elétron na região entre

as placas é retilínea significa que a força a que o elétron está submetido é nula. Assim,

F q( E v B) 0 . Note que

v ⊥ B e, portanto,

v × B = vB. Assim, temos:

B = E E

v

= 2Km /

=

e

100 V/ ( 20 × 10−

3

m)

= 267 , × 10−

4

T.

210 (, × 103

V)( 1, 60 × 10−

19

C)/(, 911×

10−

31

kg)

Na notação dos vetores unitários, B =− ( 267 , × 10−

4

T)kˆ = −( 0, 267 mTk ) ˆ.

10. (a) A força que age sobre o próton é

F = FE

+ FB

= qE+ qv × B= (, 160× 10−

19 C ) ⎡

( 4, 00 Vmˆ ) k+(2000 msj )ˆ × ( − 2,50 × 10 − 3Ti

)ˆ ⎤

= (, 144×

10−18 N) k. ˆ

(b) Nesse caso, temos:

F = F + F = qE+ qv × B

E

B

19

C ( V m) + ( ) × ( − )

= (, 160× 10−

) ⎡

−4,

00

= (, 160× 10−

19 N) k. ˆ

kˆ 2000 msˆj 2,50 mT ˆi


174 SOLUÇÕES DOS PROBLEMAS

(c) Nesse caso, temos:

F = F

+ F

= qE+ qv × B

E

B

= (, 160× 10 − ) ⎡( 4,

00 )

19 C ⎣

V m ˆ i+ 2000 ms ˆ j 2,50 mT ˆ i⎤

= (, 641× 10−

19 N) ˆ i+(8,01 × 10−19N) k. ˆ

( ) × ( − )

11. Como a força total F = q( E + v×

B

) é nula, o campo elétrico E é perpendicular ao campo

magnético B e à velocidade v da partícula. Como o campo magnético é perpendicular à velocidade,

o módulo de

v × B é vB e, para que a força total seja nula, o módulo do campo elétrico

deve ser E = vB. Como a partícula tem carga e e é acelerada por uma diferença de potencial V,

mv 2 /2 = eV e v = 2 eVm / . Assim,

2eV

E = B = (, 12T)

m

2160 (, × 10−

19

C)( 10 × 103

V)

= 68 , × 105

Vm=

068 , MV/m.

(, 999 × 10−

27

kg)

12. (a) Uma importante diferença entre a força associada ao campo elétrico ( F

= qE

) e a força

associada ao campo magnético (

F = qv × B) é que, enquanto a primeira não depende da velocidade,

a segunda se anula quando a velocidade é zero. No gráfico da Fig. 28-32, para v = 0,

situação em que a única força é a produzida pelo campo elétrico, a componente y da força é

–2,0 × 10 –19 N. Como, de acordo com o enunciado, o campo elétrico é paralelo ao eixo y, isso

significa que o módulo do campo elétrico é

E

F tot, y 20 , × 10

= =

|| q 16 , × 10

−19

−19

N

= 125 , N/C = 1,

25 V/m.

C

(b) O gráfico da Fig. 28-32 mostra que a força total é zero quando a velocidade do elétron é 50

m/s. De acordo com a Eq. 28-7, isso significa que B = E/v = (1,25 V/m)/(50 m/s) = 2,50 × 10 −2

T = 25,0 mT.

Para que

FE = qv × Be F

qE

E = se cancelem, é preciso que o vetor

v × Btenha o sentido oposto

ao do vetor E, que, de acordo com o enunciado, aponta no sentido positivo do eixo y. Como

o vetor velocidade aponta no sentido positivo do eixo x, concluímos, usando a regra da mão

direita, que o campo magnético aponta no sentido positivo do eixo z. Assim, na notação dos

vetores unitários, B = ( 25, 0mTk. ) ˆ

13. De acordo com a Eq. 28-12, temos:

V

iB

= =

nle

( 23 A)( 0,65 T)

(, 847×

1028 m3)( 150 m)( 1,

10

−19

= 74 , × 10−

6V = 7,4 V.

C)

14. Uma carga livre q que se move no interior da fita com velocidade v está sujeita a uma força

F = q( E+ v × B). Igualando a força a zero e usando a relação entre campo elétrico e diferença

de potencial, temos:

E

v = =

B

V − V d

x y xy

B

(, 390×

10−

9

V)

=

(, 120×

10−

3

T)( 0,

850 × 10

− 2

= 0, 382 ms.

m)

15. (a) Estamos interessados em calcular o campo eletrostático que é estabelecido quando

as cargas se separam por ação do campo magnético. Uma vez estabelecido o equilíbrio, a

Eq. 28-10 nos dá

| E| = v| B | = ( 20, 0 m/s)( 0, 030 T) = 0,

600 V/m.


SOLUÇÕES DOS PROBLEMAS 175

O sentido do campo elétrico é o indicado na Fig. 28-8, ou seja, o sentido oposto ao do produto

vetorial

v × B; assim,

E =− ( 0, 600 V/m) k ˆ = ( −600

mV/m)ˆ

k.

(b) De acordo com a Eq. 28-9,

V = Ed = ( 0, 600 V/m)(2,00 m) = 120 , V.

16. Como a diferença de potencial é zero quando o objeto se desloca paralelamente ao eixo x,

sabemos que o campo B aponta nessa direção. Combinando as Eqs. 28-7 e 28-9, obtemos

V

d = V

E

= vB

na qual E, v e B são módulos de vetores mutuamente perpendiculares. Assim, quando a velocidade

é paralela ao eixo y, como sabemos que o campo magnético é paralelo ao eixo x, o campo

elétrico (e, portanto, o vetor d) é paralelo ao eixo z e temos:

0,

012 V

d = d z = = 020 , m.

(3,0 m/s)(0,020 T)

Por outro lado, quando a velocidade é paralela ao eixo z, o campo elétrico é paralelo ao eixo y

e temos:

0,

018 V

d = d y = = 030 , m.

(3,0 m/s)(0,020 T)

Assim, as respostas são:

(a) d x = 25 cm (valor a que chegamos por exclusão, já que conhecemos os valores de d y e d z ).

(b) d y = 30 cm.

(c) d z = 20 cm.

17. (a) De acordo com a Eq. 28-16, temos:

rqB 2eB

2450 ( , × 10−

2m)( 160 , × 10−

19

C )(, 120T)

v = = =

= 260 , × 106

ms.

m 400 , u ( 400 , u)( 166 , × 10−

27

kgu)

(b) O período de revolução é:

2r

2( 450 , × 10−

2

m)

T = =

= 109 , × 10

v 260 , × 106

m/s

(c) A energia cinética da partícula alfa é:

−7

s = 0, 109 s.

1

×

×

K = m v2

( 400 , u)( 166 , 10

27

kgu)( 260 , 106

ms)

=

2

2

2160 (, × 10−

19

JeV)

= 140× 10 =

,

5

eV 0,140 MeV.

(d) ∆V = K/q = 1,40 × 10 5 eV/2e = 7,00 × 10 4 V = 70,0 keV.

18. Com o campo B apontando para fora do papel, usamos a regra da mão direita para determinar

o sentido da força no ponto indicado na Fig. 28-35. Se a partícula fosse positiva, a força

apontaria para a esquerda, o que não estaria de acordo com a figura, que mostra a trajetória se

encurvando para a direita. Assim, a partícula é um elétron.


176 SOLUÇÕES DOS PROBLEMAS

(a) De acordo com a Eq. 28-3, temos:

F

v = eB

=

320 , × 10−

15

N

sen

(, 160× 10−

19

)( 4,

00 × 10−

(b) De acordo com a Eq. 28-16,

r

mv

= =

eB

(c) De acordo com a Eq. 28-17,

C

3

= 500×

10

T)(sen 90o)

,

6

ms.

(, 911× 10−

31

kg)( 4, 99 × 106

m/s)

= 0, 00710 m = 710 , mm.

(, 160×

10−

19

C)( 400 , × 10−

3

T)

2r

2( 710 , × 10−

3

m)

T = =

= 892 , × 10

v 500 , × 106

m/s

−9

s = 8,92 ns.

19. Seja j a razão m/|q| que estamos interessados em calcular. De acordo com a Eq. 28-17, T =

2pj/B. Como o eixo horizontal do gráfico da Fig. 28-36 é o recíproco do campo magnético

(1/B), a inclinação da reta mostrada no gráfico é igual a 2pj. Essa inclinação pode ser estimada

em (37,5 × 10 −9 s)/(5,0 T −1 ) = 7,5 × 10 −9 T . s, o que nos dá

m 75 , × 10

−9

T⋅s

= =

= 12 , × 10−

9

| q | 2

kg/C.

20. Combinando a Eq. 28-16 com a lei de conservação da energia, que, neste caso, nos dá a

relação eV = m e v 2 2, obtemos a relação

me

r =

eB

2eV

,

m

e

segundo a qual a inclinação do gráfico de r em função de V da Fig. 28-37 é igual a 2m eB2

e / .

Essa inclinação pode ser estimada em (2,5 × 10 −3 m)/(50,0 V 1/2 ) = 5 × 10 −5 m/V 1/2 . Nesse caso,

temos:

B =

2me

( 5×

10−

5)

2e

=

2911 (, × 10−

31)

( 25 × 10−

10)(, 160×

10

−19

)

= 67 , × 10−

2

T.

21. (a) Como K = m e v 2 /2, temos:

2K

2(, 120× 103 eV)( 160 , × 10−

19

eV J)

v = =

911 , × 10−

31

kg

m e

= 205 , × 10 7 ms.

(b) Como r = m e v/qB, temos:

B

mv e (, 911× 10−

31

kg)( 2, 05 × 107

ms)

= =

= 467 , × 10−

4

T = 467 T.

qr (, 160×

10−

19

C)( 25, 0×

10−

2

m)

(c) A frequência de revolução é

f

= v

r

= 207 , × 107

ms

= 131 , × 107

Hz = 13,1 MHz.

2

2( 250 , × 10−

2

m)

(d) O período do movimento é

1 1

T = =

f 131 , × 10

7

= 763 , × 10−

8

s=

763 , ns.

Hz

22. De acordo com a Eq. 28-16, o raio da trajetória circular é

mv

r = =

qB

2mK

qB


SOLUÇÕES DOS PROBLEMAS 177

na qual K = mv 2 /2 é a energia cinética da partícula. Assim, temos:

rqB

K = ( ) 2

q2

2m

m

.

(a) K = ( q q )

2( m m ) K = ( 2) 2( 1 4) K = K = 1,

0MeV.

p p p p p

(b) K = ( q q )

2( m m ) K = ()( 1

2

1 2) K = 1, 0 MeV 2=

050 , MeV.

d d p p d p p

23. De acordo com a Eq. 28-16, temos:

B

mv e (, 911× 10−

31kg)( 1, 30 × 106

ms)

= =

= 211 , × 10−

5

T = 21,1 T.

er (, 160×

10−

19C)( 0, 350 m)

24. (a) O processo de aceleração pode ser visto como a conversão de uma energia potencial eV

em energia cinética. Como o elétron parte do repouso, m e v 2 /2 = eV e

2eV

2(, 160×

10−

19C)( 350 V)

v = =

911 , × 10−

31kg

m e

= 1,

11 × 10 7 ms.

(b) De acordo com a Eq. 28-16,

mv e (, 911× 10−

31kg)( 111 , × 107

ms)

r = =

= 316 , × 10−

4

m = 0,316 mm.

eB (, 160×

10−

19C)( 200 × 10−

3T)

25. (a) A frequência de revolução é

f

= Bq

= ( 35, 0× 10−

6

T)( 160 , × 10−

19

C)

= 978 , × 105Hz

= 0,978 MHz.

2

2(,

911 × 10−

31

kg)

m e

(b) De acordo com a Eq. 28-16, temos:

mv e mK e

×

2 2911 (, 10

31

kg)( 100 eV)( 160 , × 10−

r = = =

qB qB

(, 160× 10−

19

C)( 350 , × 10−

6

T)

19

JeV)

= 0, 964 m = 96,4 cm.

26. De acordo com a Fig. 28-38, no ponto em que a partícula penetra na região onde existe

campo, o vetor velocidade aponta para baixo. Como o campo magnético aponta para fora do

papel, o vetor

v × B aponta para a esquerda. Como a partícula é desviada para a esquerda pela

força magnética, isso significa que a carga da partícula é positiva, ou seja, que a partícula é um

próton.

(a) De acordo com a Eq. 28-17,

2m

2(, 167×

10−

27

kg)

B = =

eT (, 160×

10−

19

C)( 2)(

130×

10

− 9

= 0, 252 T.

s)

(b) Como o período T não depende da energia cinética, permanece o mesmo:

T = 130 ns.

27. (a) Explicitando B na equação m = B 2 qx 2 /8V (veja o Exemplo “Movimento circular uniforme

de uma partícula carregada em um campo magnético”), obtemos:

8Vm

8( 100 × 103V)(, 392×

10−

25

kg)

B = =

= 0, 495T

= 495 mT.

qx2

(, 320×

10−

19

C)( 200 , m)

2


178 SOLUÇÕES DOS PROBLEMAS

(b) Seja N o número de íons que são separados pelo aparelho por unidade de tempo. A corrente

é i = qN e a massa que é separada por unidade de tempo é dada por M = mN, na qual m é a

massa de um íon. Se o aparelho é usado para separar 100 mg de material por hora,

Como N = M/m, temos:

i

qM

= =

m

100 × 10−

6

kg

M =

= 278 , × 10−

8

kg s.

3600s

(, 320× 10−

19

C)( 2, 78 × 10−

8

kgs)

= 227 , × 10−

2 A = 22,7 mA.

392 , × 10−

25

kg

(c) Como cada íon deposita uma energia qV no reservatório, a energia depositada em um intervalo

de tempo ∆t é dada por

iqV

E = NqV t

= t = iV t= ( 227 , × 10−

2

A)( 100 × 103

V)(

3600 s)

q

= 817 , × 106

J=

817 , MJ.

28. Como F = mv 2 /r e K = mv 2 /2, temos:

K Fr (, 160× 10−

17

= =

N )( 261 , × 10−

6

m )

= 209 , × 10−

22

J.

2

2

29. A Fig. 28-11 pode facilitar a compreensão deste problema. De acordo com a Eq. 28-17, a

distância percorrida paralelamente a B é d = vT = v 2 m / eB Assim,

v

||

|| || ||( e ).

deB || (, 600× 10 m)( , × )( ,

= =

− 6

160 10−

19

C 0300

T)

= 50, 3 km/s.

2

2 (, 911 × 10−

31

kg)

m e

Como a força magnética é F

e

= eBv⊥ ,

F 200 , × 10−

15

N

v⊥ = =

= 41,

7km/s.

eB (, 160×

10−

19

C)( 0, 300 T)

v= v⊥ 2 + v

2 = 65, 3 km/s.

||

30. Como, de acordo com a Eq. 28-17, T = 2pm e /eB, o tempo total é

t

tot

T T me

= ⎛ tac

⎝ ⎜ ⎞

⎟ + + ⎛ ⎝ ⎜ ⎞ ⎛ 1 1 ⎞

⎟ = +

2 2 e ⎝

B B ⎠

⎟ + t ac.

1 2 1 2

O tempo que o elétron passa no espaço entre as regiões onde existe campo magnético (sendo

acelerado de acordo com a Eq. 2-15) deve ser calculado separadamente. Fazendo v 0 = 2K 0 / m e

e a = e∆V/m e d na Eq. 2-15, na qual K 0 é a energia cinética inicial do elétron e d é a distância

entre as regiões onde existe campo magnético, temos:

1

K

d v t at d

m t e V

= ac + ac ⇒ = ac + ⎛ ⎞

2

2 0 1

0

⎝ ⎜

2

2 md⎠

⎟ t

o que nos dá t ac ≈ 6 ns. Assim, temos:

me

⎛ 1 1 ⎞

ttot

= +

e ⎝

B B ⎠

⎟ + = (,

911× 10−

31

kg) ⎛ 1 1 ⎞

60 , ns

+

60 ,

(, 16×

10

19

) ⎝

0, 010 0,

020 ⎠

⎟ + ns

C T T

= 8, 7ns.

1 2

e

e

2

ac,


SOLUÇÕES DOS PROBLEMAS 179

31. As duas partículas se movem em trajetórias circulares, uma no sentido horário e outra no

sentido anti-horário, e colidem após descreverem meia circunferência. Assim, de acordo com a

Eq. 28-17, o tempo pedido é dado por

T m

t = =

Bq

= (, 911×

10−

31

kg)

2 (, 353× 10−

3

T)( 1,

60 × 10

−19

= 507 , × 10−

9

s = 5,07 ns.

C)

32. Como o elétron se move com velocidade constante v || na direção de B enquanto descreve

um movimento circular uniforme de frequência f = eB/2pm e na direção perpendicular a B, a

distância d é dada por

v|| ( vcos ) 2me

2( 15 , × 107

ms)( 9,

11 × 10−

31

kg)(cos 10°

)

d = v||

T = = =

= 053m , .

f eB

(, 160× 10−

19

C)( 1,

10−

3

T)

33. (a) se v é a velocidade escalar do pósitron, v sen f é a componente da velocidade no plano

perpendicular ao campo magnético, na qual f é o ângulo entre a velocidade e o campo magnético.

De acordo com a segunda lei de Newton, eBv sen f = m e (v sen f) 2 /r, na qual r é o raio da

órbita. Assim, r = (m e v/eB) sen f e o período é dado por

2r

2me

2( 9, 11 × 10−

31

kg)

T = = =

= 358 , × 10−

10

s = 0,358 ns.

v sen

eB (, 160×

10−

19

C)( 0, 100 T)

(b) O passo p é a distância percorrida na direção do campo magnético em um intervalo de

tempo igual a um período: p = vT cos f. A velocidade do pósitron pode ser calculada a partir

da energia cinética:

2K

2( 200 , × 103 eV)( 1, 60 × 10−

19

JeV)

v = =

911 , × 10−

31

kg

m e

= 265 , × 10 7 ms.

Assim,

p = ( 265 , × 107ms)( 3, 58 × 10 − 10s )cos 89° = 166 , × 10−

4

m = 0,166 mm.

(c) O raio da trajetória helicoidal é

R

mv e sen ( 911 , × 10−

31

kg)( 2, 65 × 107

ms)sen89

= =

= 151 , × 10−

3

m = 1,51 mm .

eB

(, 160×

10−

19

C)( 0, 100 T)

34. (a) De acordo com as Eqs. 3-20 e 3-23, temos:

v⋅ B= vBcos = vB + vB + vB.

Como

x x y y z z

v = 202 + 302 + 502 = 3800,

B = 202 + 502 + 302 = 3800,

vB x x + vB y y + vB z z = ( 20)( 20) + ( 50)( 30) − ( 30)( 50)

= 400,

temos:

vB + +

= cos− 1 x x vB y y vB z z

= cos− 1

400

= cos

−1(

0, 105) = 84o.

vB

3800

(b) Não, a velocidade escalar não varia com o tempo. O que varia com o tempo é apenas a

direção da velocidade.

(c) Não, o ângulo f não varia com o tempo, como se pode ver na Fig. 28-11.


180 SOLUÇÕES DOS PROBLEMAS

(d) Como

temos:

v⊥ = vsen = 3800 sen 84o

= ( 61, 64)( 0, 994) = 61,

63 m/s,

mv ×

⊥ (, 911 10

31

kg)( 6163 , m/s)

r = =

57 ,

eB (, 16×

10−

19

C)( 61, 64 × 10 −

= nm.

3

T)

35. (a) De acordo com a lei de conservação da energia, a energia cinética aumenta de ∆K = eV =

200 eV a cada passagem.

(b) Multiplicando o resultado do item (a) por 100, obtemos ∆K = 100(200 eV) = 20,0 keV.

(c) Expressando a velocidade em termos da energia cinética e usando a Eq. 28-16, obtemos:

mp

r =

eB

2n( 200 eV) ,

m

p

na qual n é o número de passagens. Assim, o raio é proporcional a

definido no enunciado é dado por

n e o aumento percentual

aumento percentual =

101 − 100

100

10, 0499 − 10, 00 00

=

= 0, 00499 = 0, 499%.

10,

0000

36. (a) O módulo do campo magnético para que haja ressonância é

2 fmp

2(12, 0× 106 Hz)( 1, 67 × 10

B = =

− 27

kg)

= 0, 787 T.

q

160 , × 10−19

C

(b) A energia cinética dos prótons que saem do cíclotron é

1

K = mv2 1

= m Rf

2

1

= ×

−27 2

2

2

2

( ) 167 10 4 053

2 (, kg ) ( , 0 m)( 120 , × 10 Hz)

= 133 , × 10 − 12

J= 8,

34 × 106eV

= 8,34 MeV.

(c) A nova frequência é

2 6 2

f

= qB

= (, 160×

10−

19

C)( 157 , T)

= 239 , × 10 7 Hz = 23,9 MHz.

2

2(,

167 × 10−

27

kg)

m p

(d) A nova energia cinética é dada por

1

K = mv2 1

1

= m( 2Rf

)

2

= (, 167× 10−

27

kg) 42

( 053 , 0 m)(, 2 39 × 10 Hz)

2 2

2

= 5, 3069 × 10 − 12

J = 332 , × 107eV.

2 7 2

37. A distância pedida é aproximadamente igual ao número de revoluções vezes a circunferência

da órbita correspondente à energia média. Trata-se de uma aproximação razoável, já que

o dêuteron recebe a mesma energia a cada revolução e o período não depende da energia. O

dêuteron é acelerado duas vezes em cada revolução e a cada vez recebe uma energia de 80 ×

10 3 eV. Como a energia final é 16,6 MeV, o número de revoluções é

16,

106

eV

n =

= 104.

280 ( × 103eV)


SOLUÇÕES DOS PROBLEMAS 181

A energia média durante o processo de aceleração é 16,6/2 = 8,3 MeV. O raio da órbita é dado

por

mv m K Km × ×

2 2 283 (, 10 6 eV)( 160 , 10

19 JeV)( 334 , × 10−

27

kg)

r = = = =

eB eB m eB

(, 160×

10−

19

C)( 157 , T)

= 03 , 75m.

A distância total percorrida é, aproximadamente,

2prn = (2p)(0,375)(104) = 2,4 × 10 2 m.

38. (a) De acordo com as Eqs. 28-18 e 28-23, temos:

f

osc

eB (, 160×

10−

19

C)( 1, 20 T)

= =

= 183 , × 10 7 Hz = 18,3 MHz.

2

2

1 67 × 10−

kg)

m p

(,

27

(b) Como r = m v qB= 2 m k qB, temos:

p

P

( rqB) 2

[( 0, 500m)(, 160× 10−

19C)( 1, 20T)]

2

K = =

= 172 , × 107eV

= 17,2 MeV.

2 2167 (, × 10−

27

kg)( 160 , × 10−

19

JeV)

m p

39. (a) O módulo da força que o campo magnético da Terra exerce sobre a linha é dado por F B =

iLB sen f, na qual i é a corrente na linha, L é o comprimento da linha, B é o módulo do campo

magnético e f é o ângulo entre a corrente e o campo. Assim,

F B = ( 5000 A)( 100 m)( 60, 0× 10−

6

T)sen 70°

= 282 , N.

(b) Aplicando a regra da mão direita ao produto vetorial F iL B

B = × , constatamos que a força

é horizontal e aponta para oeste.

40. A força magnética exercida pelo campo sobre o fio é

FB = iBL sen = ( 13, 0 A)(, 1 50 T)( 180 , m )(sen 350 , ° ) = 20, 1 N.

41. (a) A força que o campo magnético exerce sobre o fio aponta para cima e tem um módulo

igual à força gravitacional mg a que o fio está submetido. Como o campo e a corrente são

mutuamente perpendiculares, o módulo da força magnética é dado por F B = iLB, na qual L é o

comprimento do fio. Assim,

mg

iLB= mg ⇒ i = = ( 0 , 0130 kg )( 98 , ms2

) = 0,

467 A = 467 mA.

LB ( 0, 620 m)( 0,

440 T)

(b) Aplicando a regra da mão direita, constatamos que o sentido da corrente é da esquerda para

a direita.

42. (a) Por simetria, concluímos que a componente x da força que o campo magnético exerce

sobre o fio é zero. De acordo com a regra da mão direita, um campo na direção ˆk produz nas

duas partes do fio uma componente y da força que aponta na direção − ĵ e cujo módulo é

| Fy | = il | B

|sen 30° = ( 20 , A)( 20 , m)( 40 , T )sen 30° = 8N.

Assim, a força total que o campo exerce sobre o fio é ( −16ˆj) N.

(b) Nesse caso, a força que o campo exerce sobre o lado esquerdo do fio aponta no sentido

− ˆk e a força que o campo exerce sobre o lado direito do fio aponta no sentido + ˆk. Como, por

simetria, as duas forças são iguais, a força total é 0.


182 SOLUÇÕES DOS PROBLEMAS

43. Vamos escolher um sistema de coordenadas tal que o cateto de comprimento l y = 50 cm

coincide com o semieixo y positivo e o cateto de comprimento l x = 120 cm coincide com o

semieixo x positivo. O ângulo que a hipotenusa faz com o cateto que coincide com semieixo x

positivo é

u = tan –1 (50/120) = 22,6°.

Medindo o ângulo no sentido anti-horário a partir do semieixo x positivo, o ângulo da hipotenusa

é 180° – 22,6° = +157,4°. Vamos supor que o sentido da corrente na bobina triangular é o

sentido anti-horário do ponto de vista de um observador situado no semieixo z positivo. Como

o campo magnético é paralelo à corrente na hipotenusa, temos:

B

B

x

y

= Bcos = 0, 0750 cos 157, 4o

=−0, 0692 T,

= Bsen

= 0, 0750 sen 157, 4o = 0,

0288 T.

(a) Como o campo magnético é paralelo à corrente na hipotenusa, a força exercida sobre a

hipotenusa é zero.

(b) No caso do cateto de 50 cm, a componente B x do campo magnético exerce uma força il

y B x

ˆk

e a força exercida pela componente B y é zero. O módulo da força é, portanto,

( 400 , A)( 0, 500m)( 0, 0692T) = 0,

138 N.

(c) No caso do cateto de 120 cm, a componente B y do campo magnético exerce uma força

il

B ˆk e a força exercida pela componente Bx é zero. O módulo da força é, portanto,

x

y

( 400 , A)( 1, 20m)( 0, 0288T) = 0,

138 N.

(d) A força total é

il

B k ˆ + il

B k ˆ = 0 ,

y x x y

já que B x < 0 e B y > 0. Se tivéssemos suposto que o sentido da corrente na espira era o sentido

horário, teríamos obtido B x > 0 e B y < 0, mas a força total continuaria a ser zero.

44. Considere um segmento infinitesimal do anel, de comprimento ds. Como o campo magnético

é perpendicular ao segmento, ele exerce sobre o segmento uma força de módulo dF = iB

ds. A componente horizontal da força tem valor absoluto

dFh = ( iB cos )

ds

e aponta para o centro do anel. A componente vertical tem valor absoluto

dFy = ( iBsen )

ds

e aponta para cima. A força total é a soma das forças que agem sobre todos os segmentos do

anel. Por simetria, a componente horizontal da força total é zero. A componente vertical é

Fv = iBsen ds = 2aiBsen = 2( 0, 018 m)( 46 , × 10−

3 A)( 34 , × 10−

3

T)sen

20°

= 60 , × 10−

7

N = 0,60 N.

Note que foi possível deixar i, B e sen u de fora do sinal de integral porque i, B e u têm o mesmo

valor para todos os segmentos do anel.


SOLUÇÕES DOS PROBLEMAS 183

45. A força que o campo magnético exerce sobre o fio é

F = iL× B= iLˆ i × ( B ˆ j + B k ˆ) = iL ( − B ˆ j + B k ˆ)

B y z z y

= ( 0, 500A)( 0, 500m)[ − ( 0, 0100Tj )ˆ + ( 0, 00300Tk

) ˆ ]

= ( − 250 , × 10−

3ˆ j+ 0, 750 × 10−

3kˆ)

N

= ( −250

, mN)ˆ

j + ( 0,

750 mN) k. ˆ

46. (a) Como a força que o campo magnético exerce sobre o fio é F B = idB, temos:

Ft B idBt (, 913× 10−

3A)( 2, 56 × 10−

2m)(,

5 63 × 10−

2T)( 0, 0611 s)

v = at = = =

m m

241 , × 10−

5

kg

= 334 , × 10−

2m/s

= 3,34 cm/s.

(b) O sentido é para a esquerda.

47. (a) A força do campo magnético deve ter uma componente horizontal para vencer a força de

atrito, mas também pode ter uma componente vertical para reduzir a força normal e, portanto,

a força de atrito. As forças que agem sobre a barra são: F, a força do campo magnético; mg, a

força da gravidade; F N , a força normal exercida pelos trilhos; f , a força de atrito. Vamos supor,

sem perda de generalidade, que a barra está na iminência de se mover para leste, o que significa

que a força f aponta para leste e tem o valor máximo m s F N . Isso significa também que F possui

uma componente F x para leste e, além disso, pode possuir uma componente F y para cima. Vamos

supor também que o sentido da corrente é para o norte. Nesse caso, de acordo com a regra

da mão direita, uma componente de B para baixo, B b , produz uma força F x para leste, enquanto

uma componente para oeste, B o , produz uma força F y para cima. Essas forças são:

F = iLB , F = iLB .

x b y o

Igualando a zero a soma das forças verticais, obtemos

FN = mg− Fy = mg − iLBo

,

o que nos dá

( )

f = f = mg − iLB

s, max s o .

Como a barra está na iminência de se mover, igualamos também a zero a soma das forças horizontais:

( )

F − f = 0 ⇒ iLB = mg−

iLB .

x b s o

O passo seguinte consiste em determinar o ângulo do campo aplicado com a vertical para que

o módulo do campo seja mínimo. Como as componentes do campo são dadas por B o = B senu

e B b = B cosu, temos:

smg

iLBcos = s

( mg−iLB sen )

⇒ B =

iL (cos+ sen) .

Derivando em relação a u a expressão para o campo magnético obtida e igualando o resultado

a zero, temos:

dB smgiL( scos−

sen )

=

= 0,

d

[ iL(cos+

sen )] 2

s

s


184 SOLUÇÕES DOS PROBLEMAS

o que nos dá

Assim,

= tan

−1( ) = tan

− 1

( 060 , ) = 31 .

s °

06010 , ( , kg)(, 9 8 ms)

=

010 ,

( 50 A)(, 10m)(cos 31° + 060 , sen 31° )

= T.

B min

2

(b) Como foi visto no item anterior, u = 31 o .

48. Como dF = idL× B, na qual dL = dx

î e B= B ˆ i+

B ˆ j, temos:

B

x f

x f

FB

= idL × B= idxˆ i × ( B ˆ

x i + By ˆ) j = i∫

Bydxkˆ

xi

30 ,

= ( −50 , A) ⎡

( 80 , xdx)( m⋅

mT) ⎤ ˆ

⎣⎢

2

k = ( − 035 , kˆ) N .

10 ,

⎦⎥

49. O campo magnético aplicado tem duas componentes, B x e B z . Considerando os diferentes

segmentos da bobina retangular, observamos que, de acordo com a Eq. 28-26, a força exercida

pelo campo é diferente de zero apenas para a componente de B perpendicular a cada segmento;

observamos também que a força associada a um único fio deve ser multiplicada por N, na

qual N é o número de espiras. Como estamos interessados em calcular o torque em relação à

dobradiça, podemos ignorar a força que age sobre o segmento que coincide com o eixo y. As

forças que o campo magnético exerce sobre os segmentos paralelos ao eixo x, causadas pela

componente B z , são paralelas ao eixo y e, portanto, não produzem torque em relação à dobradiça.

Concluímos, portanto, que o torque resulta unicamente da força que o campo exerce sobre

o segmento paralelo ao eixo y. Além disso, como a componente B z exerce sobre este segmento

uma força paralela ao eixo x, não contribui para o torque. Por outro lado, a componente B x produz

uma força na direção z que é igual a NiLB x , na qual N é o número de espiras, i é a corrente,

L é o comprimento do segmento e B x = B cos u é a componente x do campo aplicado (o ângulo

u está definido na Fig. 28-44). Como a linha de ação desta força é perpendicular ao plano da

bobina, temos:

= ( NiLBx )( x) = NiLxB cos = ( 20)( 010 , A)( 0, 10 m)(

0, 050 m)( 050 , T)cos30°

= 0,

0043 N⋅m.

Como

= r × F, o torque aponta no sentido negativo do eixo y. Assim, na notação dos vetores

unitários, o torque é | Fy | = il | B

|sen 30° = ( 20 , A)( 20 , m)( 40 , T )sen 30° = 8N.

50. Como = | × B | = B = i r

2 B e i = qf = qv/2pr, temos:

max

max

max

= ⎛ ⎝ ⎜ qv ⎞

⎟ r2

1

B=

qvrB

2 r 2

1

= (, ×

C)

2 160 10 19

(2,19 × 106 m/s)( 529 , × 10−

11

m)( 7, 10 × 10−

3

T)

= 65 , 8× 10− 26 N⋅m.

51. As forças que agem sobre o cilindro são a força da gravidade mg, que é vertical e passa

pelo centro de massa do cilindro, a força normal do plano inclinado F N , que é perpendicular

ao plano inclinado e passa pelo centro de massa do cilindro, e a força de atrito f, que é paralela

ao plano inclinado e passa pela superfície do cilindro. Vamos tomar o eixo x paralelo ao plano

x

y

xi


SOLUÇÕES DOS PROBLEMAS 185

inclinado e considerar o sentido para baixo como positivo. Nesse caso, aplicando a segunda lei

de Newton às componentes das forças envolvidas em relação ao eixo x, temos:

na qual a é a aceleração do cilindro.

mgsen − f = ma,

O passo seguinte consiste em calcular o torque em relação ao eixo do cilindro. De acordo com

a Eq. 28-37, o campo magnético produz um torque de módulo mB senu, na qual m é o momento

dipolar do cilindro, e a força de atrito produz um torque de módulo fr, na qual r é o raio do

cilindro. De acordo com a segunda lei de Newton para rotações, temos:

fr − Bsen = I,

na qual I é o momento de inércia do cilindro e a é a aceleração angular do cilindro.

Como estamos interessados em calcular a menor corrente para a qual o cilindro não entra em movimento,

fazemos a = 0 na primeira equação e a = 0 na segunda, o que nos dá mgr = B. Como

a bobina é retangular, com dois lados de comprimento L e dois lados de comprimento 2r, na

qual r é o raio do cilindro, a área da bobina é A = 2rL e o momento dipolar é = NiA=

Ni( 2 rL).

Assim, mgr = 2 NirLB e

mg ( 0, 250 kg)( 98 , ms2)

i = =

= 245 , A.

2NLB

2100 ( , )( 0, 100m)(

0, 500T)

52. Para resolver este problema, basta saber que, entre os retângulos de mesmo perímetro, o

retângulo de maior área é um retângulo de quatro lados iguais, ou seja, um quadrado. De acordo

com o enunciado, o valor máximo do comprimento de um dos lados é x = 4 cm. Este valor

corresponde ao caso em que dois lados paralelos do retângulo têm comprimento desprezível,

o que nos leva à conclusão de que o comprimento total do fio é 8 cm. Assim, no caso de um

quadrado, o comprimento dos lados é 8/4 = 2 cm e a área é A = (0,020 m) 2 = 0,00040 m 2 . De

acordo com as Eqs. 28-35 e 28-37, temos:

i =

NA

=

NAB

= 480 , × 10−

8

N⋅m

()( 1 4, 0× 10−

4

m 2 )( 4,

0 × 10

−2

= 0, 0030 A = 30 , mA.

T)

53. Vamos substituir a espira de forma arbitrária por um conjunto de espiras longas, finas,

aproximadamente retangulares, muito próximas umas das outras, que sejam quase equivalentes

à espira de forma arbitrária. Cada uma dessas espiras conduz uma corrente i no mesmo sentido

que a espira original. O módulo do torque exercido pela enésima espira, de área ∆A n , é dado

por n

= NiBsen An. Assim, para todo o conjunto,

= ∑ n

= NiB∑

An

= NiABsen .

n

n

54. (a) Como o ganho de energia cinética, quando o dipolo passa de uma orientação definida

por um ângulo u para a orientação na qual o momento dipolar está alinhado com o campo magnético,

é igual à perda de energia potencial, temos:

o que nos dá

K = U − U =−Bcos −( −B

cos 0° ),

i

f

⎛ ⎞

= cos−

1

K

⎜ ⎠

⎟ = ⎡

cos−

1

− 0,

00080 J ⎤

1 ⎢1

⎥ = 77°

.

B ⎣ ( 0,

020 J/T)( 0,

052 T)

(b) Como estamos supondo que não há dissipação de energia no processo, o ângulo para o qual

o dipolo volta a entrar momentamente em repouso é igual ao ângulo inicial, u = 77°.


186 SOLUÇÕES DOS PROBLEMAS

55. (a) O módulo do vetor momento magnético é

n

( )

= iA n n = ri 1 2 1 + ri

2 2 2

2

2 = ( 700 , A) ⎡( 0, 200 m) + 030 , 0m ⎤

⎦ = 2, 86 A ⋅ m 2 .

(b) Nesse caso,

ri

2 2 2 ri

1 2 1 ( 700 , A) ⎡

0, 300m 0,

200m

2 2

= − = ( ) − ( )

56. (a) = NAi = r 2 i = ( 0,150 m) 2 ( 260 , A) = 0 , 184 A⋅

m 2 .

(b) = × B = Bsen = ( 0 , 184 A ⋅ m

2 )( 12 , 0T

)sen 410 , ° = 1 ,45N⋅

m.

⎦ = 110 , A⋅m2.

57. (a) O módulo do momento dipolar magnético é dado por m = NiA, na qual N é o número de

espiras, i é a corrente e A é a área da bobina. Neste caso, como as espiras são circulares, a área

da bobina é A = pr 2 , na qual r é o raio das espiras, e

i =

N r

= 230 , A⋅

m2

( 160)( )( 0, 0190m)

2 2

= 12,

7A.

(b) O torque é máximo quando o momento dipolar magnético é perpendicular ao campo (o que

significa que o plano da bobina é paralelo ao campo). O valor do torque máximo é

max

= B = ( 230 , A⋅ m2)( 350 , × 10 − 3T) = 805 , × 10−

2

N⋅

m = 0, 0805 N⋅m.

58. Como m = NiA = ipr 2 , temos:

800 , × 1022

JT

i = =

= 208 , × 109

A = 2,08 GA.

r2

( 3500 × 10 3 m)

2

59. (a) Como a área da bobina é A = (30 cm)(40 cm)/2 = 6,0 × 10 2 cm 2 ,

(b) O torque sobre a bobina é

= iA = (, 50A)( 60 , × 10 − 2m2) = 030 , A⋅

m2.

= Bsen = ( 030 , A⋅ m

2 )( 80× 10 3 T)sen 90° = 2,

4× 10−

2N

⋅ m = 0,

024 N ⋅ m.

60. Vamos fazer a = 30,0 cm, b = 20,0 cm e c = 10,0 cm. Seguindo a sugestão do enunciado,

escrevemos

= 1+ 2 = iab( − k ˆ) + iac (ˆ) j = ia ( cˆ j − b k ˆ) = ( 5 , 00 A)( 0 , 300 m) ⎡( 0 , 100 m) ˆ j− ( 0 , 200 m)

= ( 01 , 50ˆ j −0, 300 k ˆ) A ⋅ m

2 .

61. A energia potencial magnética do sistema é dada por U =− ⋅ B

, na qual é o momento

dipolar magnético da bobina e B é o campo magnético. O módulo de é m = NiA, na qual i é

a corrente na bobina, N é o número de espiras e A é a área da bobina. Por outro lado, o torque

que age sobre a bobina é dado pelo produto vetorial

= × B.

(a) De acordo com a regra da mão direita, o momento dipolar magnético aponta no sentido

negativo do eixo y. Assim, temos:

= ( NiA)( − ˆ) j =− ( 3)( 2, 00 A)( 400 , × 10 −3

m2)ˆ

j= −( 0, 0240 A⋅

m2)ˆ

j.

A energia potencial correspondente é

U =−⋅ B

= − B = −− ( 0, 0240 A⋅m 2

)( − 3,00 × 10−

3 T)

=− 720 , × 10−

5

J= −720

, µ J.

y

y


SOLUÇÕES DOS PROBLEMAS 187

(b) Como ˆ j⋅ ˆ i = 0, ˆj× ˆj= 0 ej ˆ× kˆ = ˆi,

o torque que age sobre a bobina é

= × B= B ˆ i−

B kˆ

y z y x

= ( −0,0240 A⋅m 2

)( −4,00

× 10−

3

T)i ˆ −( −0,0240 A⋅ m

2)(2,00 × 10−

3

T)kˆ

= (, 9 60 × 10−

5

N⋅ m)i ˆ + ( 480 , × 10−

5

N⋅ m)kˆ = ( 960 , ˆi + 48, 0k) ˆ N⋅

m.

62. Observando o ponto do gráfico da Fig. 28-50b para i 2 = 0 (que corresponde a uma situação

na qual o momento magnético da bobina 2 é zero), concluímos que o momento magnético da

bobina 1 é m 1 = 2,0 × 10 25 A . m 2 . Observando o ponto no qual a reta cruza o eixo horizontal

(que é o ponto i 2 = 5,0 mA), concluímos (já que, para este valor da corrente, os dois momentos

magnéticos se cancelam) que o módulo do momento magnético da bobina 2 é m 2 = 2,0 × 10 25

A . m 2 para i 2 = 5,0 mA, o que, de acordo com a Eq. 28-35, nos dá

N A

2 2

5

2 20 , × 10−

A⋅m

= =

i 0,

0050 A

2

2

,

−3

2.

= 40×

10

Se o sentido da corrente na bobina 2 for invertido e a corrente da bobina 2 for i 2 = 7,0 mA, o

momento total será

m = m 1 + m 2 = (2,0 × 10 25 A . m 2 ) + (N 2 A 2 i 2 )

= (2,0 × 10 25 A . m 2 ) + (4,0 × 10 23 m 2 )(0,0070 A)

= 4,8 × 10 –5 A . m 2 .

63. O momento magnético é = ( 060 , ˆ i − 0 , 80 ˆ) j , na qual

m = iA = ipr 2 = (0,20 A)p(0,080 m) 2 = 4,02 × 10 –4 A·m 2

(a) O torque é

= × B = ( 060 , ˆ i − 0 , 80 ˆ) j × ( 025 , ˆ i + 0 , 30k

ˆ)

= ⎡

( 060 , )( 0, 30)(ˆ i × k ˆ) − ( 080 , )( 0, 25)(ˆ j× ˆ) i − ( 0, 80)( 030 , )(ˆ j×

k ˆ) ⎤

= ( 402 , × 10 − 4) ⎡− 0, 18ˆ

j + 0 , 20k

ˆ − 024 , ˆ i⎤

=− (, 97× 10

4

N⋅m)ˆ i − ( 72 , × 10

− −4 −4

m

N⋅ m)ˆ j+ (, 80× 10 N⋅m)kˆ.

(b) A energia potencial magnética da espira é

U =−⋅ B

= −( 060 , ˆ i−0, 80ˆ) j ⋅ (, 025ˆi+0,30k) ˆ =− ( 060 , )( 0, 25) =−015

,

= ( − 015 , )( 4, 02 × 10−

4 ) =− 60 , × 10−

4 J.

64. Como, de acordo com a Eq. 28-39, U =−⋅ B

= −Bcos

, no ponto f= 0, que corresponde

ao ponto mais baixo do gráfico da Fig. 28-51, no qual a energia potencial é U 0 = −mB =

−5,0 × 10 –4 J, a energia mecânica é

K 0 + U 0 = 6,7 × 10 −4 J + (−5,0 × 10 −4 J) = 1,7 × 10 −4 J.

No ponto de retorno, K = 0 e, portanto, de acordo com a lei de conservação da energia, U ret =

1,7 × 10 −4 J. Assim, o ângulo correspondente ao ponto de retorno é

= ⎛ ⎞

⎜ ⎠

⎟ = − ×

cos−

1

Uret

cos−

1

17 , 10

B ⎝

50 , × 10

−4

−4

J ⎞

110

J⎠

⎟ = °


188 SOLUÇÕES DOS PROBLEMAS

65. Se um fio de comprimento L é usado para fazer N espiras, a circunferência de cada espira é L/N, o

raio de cada espira é R = L/2pN, e a área de cada espira é A= R2 2

= ( L 2N) = L2 4 N2.

(a) Para que o torque seja máximo, o plano das espiras deve ser paralelo ao campo magnético, o

que faz com que o momento dipolar magnético da bobina seja perpendicular ao campo. Assim,

o ângulo é 90 o .

(b) Com o plano das espiras paralelo ao campo magnético, o módulo do torque é

⎛ ⎞

= NiAB = ( Ni ) 2

⎟ =

LN B iL2

B

4 N

.

2

4

De acordo com a equação anterior, quanto menor o número N de espiras, maior o torque. Assim,

o torque é máximo para N = 1.

(c) O módulo do torque máximo é

iL

= 2 B ( 451 , × 10−

×

=

3 A)(0,250 m) (5,71 10

3 T

4

4

2 )

66. A equação de movimento do próton é

F = qv × B= q v ˆi+ v ˆj+

v kˆ Bˆi qB v ˆj v kˆ

= 128 , × 10 − 7 N⋅

m.

( x y z ) × = ( z − y )

Assim,

⎡⎛

dvx ⎞

= =

⎟ + ⎛ ⎝ ⎜ ⎞

ma m ˆ

dvy ˆ ⎛ dvz

⎞ ⎤

p p ⎢ i

⎟ j+

dt dt ⎝

dt

⎟ kˆ ⎥ .

dv

dt

x

dvy

dvz

= 0, = vz

, =−vy,

dt dt

na qual ω = eB/m. A solução é v x = v 0x , v y = v 0y cos ωt e v z = –v 0y sen ωt. Assim, temos:

vt () = v ˆ

0xi+ v0ycos( t)ˆ j − v0

y( sen t)ˆ

k.

67. (a) Podemos usar a equação

= × B, na qual aponta para a parede, já que o sentido da

corrente é o sentido horário. Como B aponta na direção de 13 horas (ou 5 minutos), a regra da

mão direita mostra que aponta na direção de 16 horas (ou 20 minutos). Assim, o intervalo de

tempo é 20 minutos.

(b) O módulo do torque é

= | × B | = B sen 90 ° = NiAB = Nir

2 B = 6 ( 2 , 0 A)( 0 , 1 5m)( 2

70×

10−

3T)

= 59 , × 10−

2

N⋅

m.

68. O vetor unitário associado a um comprimento infinitesimal dl do fio é − ĵ. A força que o

campo magnético exerce sobre esse elemento, em unidades do SI, é dada por

dF = idl( − ˆ) j × ( 03 , yˆ i+0,4 yˆ).

j

Como ˆ j× ˆ i = − k ˆ e ˆ j× ˆ j= 0, temos:

dF = 03 , iy dlkˆ = (, 600× 10−

4 N m2) ydl

k. ˆ

Integrando o elemento de força para todo o fio, obtemos:

F = dF = ×

(, 600 10 ) ˆ 0,25

4

N/m2

k∫

ydy = (, 6 00 × 10

(, 188 10 N)kˆ ( 18,8 N)k.

ˆ

= ×

−5

=

0

−4

N/m2) k ˆ

0,25

2

2


SOLUÇÕES DOS PROBLEMAS 189

69. Como m = B 2 qx 2 /8V, ∆m = (B 2 q/8V)(2x∆x), na qual x = 8VmBq

2 , que podemos substituir

na expressão de ∆m para obter

m

= ⎛ Bq

2

mV

V Bq x B mq ⎝ ⎜ ⎞

⎟ 2 8 =

8

V x .

2

2

Assim, a distância entre os pontos em que os íons atingem o detector é

m

x

=

B

2V

mq

( 37 u− 35 u)(, 166× 10−

27

kg u)

=

050 , T

27 ( , 3×

103

V)

( 36 u)(, 166× 10−

27

kgu)( 1, 60 × 10−

19C)

= 82 , × 10 − 3 m = 8,2 mm.

70. (a) Igualando o módulo da força elétrica, F E = eE, ao módulo da força magnética, F B = evB

sen f, obtemos B = E/(v sen f). Isso mostra que o campo é mínimo quando sen f é máximo, o

que acontece para f = 90°. A velocidade pode ser calculada a partir da energia cinética usando

a relação K = mv 2 /2:

2K

2( 25 , × 103eV)( 160 , × 10−

19

JeV)

v = =

911 , × 10−

31kg

m e

= 296 , × 10 7 ms.

Assim,

B

E 10 × 103

Vm

= =

= 34 , × 10−

4

T = 0,34 mT.

v 296 , × 107

ms

A direção do campo magnético deve ser perpendicular à direção do campo elétrico (− ĵ) e à

direção da velocidade do elétron (+î). Como a força elétrica F e E

E = ( − ) aponta na direção + ĵ,

a força magnética

FB = ( − e) v × B aponta na direção − ĵ. Assim, a direção do campo magnético

é − ˆk. Na notação dos vetores unitários, B = ( −034mT)k.

, ˆ

71. O período de revolução do íon de iodo monoionizado é T = 2pr/v = 2pm/Be, o que nos dá

m = BeT n

= ( 45, 0× 10− 3T)( 160 , × 10− 19C)(,

129×

10−

3s)

= 127 u.

2

( 2 )( 7)(, 166×

10−

27

kg u)

72. (a) A única componente de B que exerce uma força sobre os elétrons é a componente perpendicular

a v, a velocidade dos elétrons. É mais eficiente, portanto, orientar o campo magnético

perpendicularmente ao plano do papel. Nesse caso, a força que o campo magnético exerce

sobre os elétrons é F B = evB e a aceleração dos elétrons é a = v 2 /r. De acordo com a segunda lei

de Newton, evB = m e v 2 /r e, portanto, o raio da trajetória dos elétrons é r = m e v/eB. Se a energia

dos elétrons é K = m e v 2 /2, a velocidade é v = 2 K m e . Assim,

me

2K

2mK

e

r = = .

eB m eB

2 2

Como esta distância deve ser menor que d, a condição pedida é

2mK

e

B ≥ .

ed

2 2

e

2mK

e

eB

2 2

≤ d, o que nos dá

(b) Para que os elétrons descrevam a trajetória mostrada na Fig. 28-52, o campo magnético

deve apontar para fora do papel.


190 SOLUÇÕES DOS PROBLEMAS

73. Como o elétron está se movendo paralelamente à componente horizontal do campo magnético

da Terra, a força magnética experimentada pelo elétron se deve apenas à componente

vertical do campo. O módulo da força que age sobre o elétron é dado por F = evB, na qual B é

a componente vertical do campo magnético da Terra. Nesse caso, de acordo com a segunda lei

de Newton, a aceleração do elétron é a = evB/m e .

(a) A velocidade do elétron pode ser calculada a partir da relação K = mv 2 /2:

2K

2( 12, 0× 103eV)( 160 , × 10−

19

JeV)

v = =

911 , × 10−

31kg

m e

= 649 , × 10 7 ms.

Assim,

a

evB

= =

m e

(, 160 × 10−

19C)( 6, 49 × 107m s)( 55,

10−

6T)

627 , 1014 2

ms 6, 3 1014 2

= × ≈ × ms.

911 , × 10−

31kg

(b) Supondo que o elétron continua a se mover paralelamente ao campo magnético da Terra, a

trajetória do elétron é um arco de circunferência. O raio da circunferência é

R

v 2

(, 649×

107 m/s)

2

= =

a 627 , × 1014

m/s2

= 672 , m.

A linha tracejada mostra a trajetória do elétron. Seja h a distância a que o elétron se encontra do

eixo x depois de percorrer uma distância d na direção do eixo. Como d = R sen u, temos:

h= R( 1− cos ) = R 1− 1−

sen

( )

= R 1− 1−

( d / R) 2

.

2

( )

Fazendo R = 6,72 m e d = 0,20 m na expressão anterior, obtemos h = 3,0 mm.

74. Fazendo B x = B y = B 1 e B z = B 2 e usando a Eq. 28-2 (

F = qv × B), obtemos, em unidades

do SI,

( ) + ( − ) + ( − )

4 ˆ i− 20 ˆ j+ 12k ˆ = 2⎡

4B2 −6B ˆ 1 i 6B1 2B ˆ 2 j 2B1

4B

1

o que nos dá B 1 = 23 e B 2 = 24. Assim,

B = ( − 30 , ˆ i − 30 , ˆ j − 40 , k ˆ) T.

75. De acordo com a Eq. 28-16, o raio da trajetória circular é

kˆ ⎤

,

mv

r = =

qB

2mK

qB


SOLUÇÕES DOS PROBLEMAS 191

na qual K = mv 2 /2 é a energia cinética da partícula. De acordo com a equação anterior,

r mK qB.

(a) r r

d

p

= mK d d

qp

e

mK q

= 20 , u

10 e

= 2 ≈ 1, 4.

, u

p

p

d

(b) r r

= mK qp

e

mK q

= 40 , u

10 2e

= 10 , .

, u

p p p

76. De acordo com a Eq. 28-16, a razão entre a carga e a massa é q/m = v/B′r. Como, de acordo

com a Eq. 28-7, a velocidade dos íons é dada por v = E/B, temos:

q

m

E / B E

= = .

Br ′ BB′

r

77. De acordo com a Eq. 28-7,

| E| = v| B | =500 Vm.

Para que a força elétrica e a força magnética se cancelem mutuamente, o campo elétrico

deve apontar no sentido negativo do eixo y. Assim, na notação dos vetores unitários,

E = ( −500 V/m)j. ˆ

78. (a) De acordo com EC

= nevd.

No caso do efeito Hall, a Eq. 28-10 nos dá E = v d B. Dividindo uma equação pela outra, obtemos

E

E

C

B

=

ne .

(b) Usando o valor da resistividade do cobre dado na Tabela 26-1, obtemos

E

E

c

B

065 , T

= =

= 284 , × 10−

3.

ne

(, 847× 1028 m3)( 1, 60 × 10−

19C)(,

1 69 × 10−

8 ⋅m)

79. (a) Como K = qV e q a = 2q p , K p /K a = 0,50.

(b) Como K = qV e q a = 2q d , K d /K a = 0,50.

(c) Como r = 2 mK qB∝

mK q, temos:

r

d

mK d d

qr p p ( 200 , u)

K p

= =

mK q

K r p = 10 2 cm = 14cm.

(, 100u)

p

p

d

p

(d) No caso de uma partícula alfa, temos:

r

mK

qr p p

= =

mK q

p

p

( 400 , u)

K

erp

(, 100u)( K 2)

2e = 10 2cm = 14cm.

80. (a) A força é máxima quando a velocidade é perpendicular ao campo magnético. Nesse

caso, de acordo com a Eq. 28-3,

F B,max = |q| vB sen (90°) = evB = (1,60 × 10 – 19 C) (7,20 × 10 6 m/s) (83,0 × 10 – 3 T)

= 9,56 × 10 – 14 N.


192 SOLUÇÕES DOS PROBLEMAS

(b) A força é mínima quando a velocidade é paralela ao campo. Nesse caso, de acordo com a

Eq. 28-3,

F B,min = |q| vB sen (0) = 0.

(c) Como, de acordo com a segunda lei de Newton, a = F B /m e = |q| vB sen u /m e , o ângulo entre

v e B é

= sen

⎛ ma⎞

⎜ ⎟

⎝ ⎠

= −

(, ×

−31

e 911 10 kg)( 4,

90 1014 2

× ms)

sen ⎢

qvB 160× 10−

16

7 20 × 106

⎣(, C)( , m s)( 83, 0×

10

−1 1

81. A contribuição do campo magnético para a força é dada pela Eq. 28-2,

FB = qv × B= q⎡( 17. 000ˆi × Bx ˆ) i + ( − 11 . 000ˆj×

B ˆ

xi+ ( 7000kˆ × B ⎤

x

ˆ) i

= q( −220kˆ − 140ˆ) j N ,

e a contribuição do campo elétrico para a força é dada pela Eq. 23-1,

F = qE ˆ j = q ( 300 ˆ) j N .

Para q = 5,0 × 10 –6 C, a força total que age sobre a partícula é

F = F + F = (, 50× 10−

6

C)( 160ˆj−

220kˆ)

82. (a) De acordo com a Eq. 28-10,

B

E

E

y

= ( 0,

00080 ˆ j− 0 , 0011k)N ˆ = ( 080 , ˆ j−

11 , k)mN. ˆ

E V

v d = B

= dB

= 10 × 10−

6

V

= 67 , × 10−

4

m/s = 0,67 mm/s.

(, 10×

10−

2

m)( 15 , T)

(b) De acordo com a Eq. 28-12,

−3

⎥ = 0, 267

T)

° .

Bi

n = Bi

V e

= i

Ed e

= vde

=

30 , A

l l l (, 67× 10−

4 m/s)( 00 , 10 m)( 10 × 10−

6

m)( 16 , × 1019

C)

= 28 , × 1029 m−

3.

d

(c) Em vez de usar um desenho, vamos descrever a situação em termos das direções horizontais

norte, sul, leste e oeste e das direções verticais para cima e para baixo. Vamos supor que o

campo B aponta para cima e que o plano da fita está na horizontal, com a maior dimensão na

direção norte-sul. Vamos supor ainda que o sentido da corrente é do sul para o norte. De acordo

com a regra da mão direita, os elétrons de condução experimentam uma força para oeste, o que

estabelece uma diferença de potencial de Hall entre as bordas da fita, com a borda leste mais

positiva que a borda oeste.

83. De acordo com a regra da mão direita, o produto

v × B aponta na direção −k.

De acordo

com a Eq. 28-2 ( F = qv × B)

, para que a força aponte na direção + ˆk, a carga deve ser negativa.

De acordo com a Eq. 28-3, | F | = | q| v| B|sen e, portanto,

| F |

048 , N

| q | = =

= 0, 040 C,

v| B|sen

( 4000 m/s)( 0, 0050 T)sen

35°

o que nos dá q = 240 mC.

84. De acordo com a Eq. 28-2, temos:

F

1

= (, )

( − , ) x dx(ˆ × ˆ) ⎡

300 0 600

2

= −180 ,

1 3

A T m2

⎛ ⎞ ⎤

i j ⎢

0 600

0

3 ⎠

⎟ A⋅T⋅m⎥

kˆ = ( − , N)k. ˆ


SOLUÇÕES DOS PROBLEMAS 193

85. (a) De acordo com as Eqs. 3-30 e 28-2, temos, em unidades do SI,

F = qv × B= ( + e) ⎡( vyBz − vzBy) ˆ+ ( vzBx −vxBz) ˆ

i j+

vxBy − vyBx

{[

= (, 160× 10−

19 ) ( 4)( 0, 008)

− ()( 6 −0 , 004 )]ˆ i

( )

+ [( −6)( 0, 002) −( −2)( 0, 008)]ˆ

j + [( −2)( −0, 004) −( 4)( 0, 002)]ˆ

k

= (, 128× 10−

21 ) ˆ i+ (, 641×

10−

22)ˆ

j

= ( 12, 8ˆ i+ 6, 41ˆ)

j × 10−

22

N

(b) De acordo com a própria definição de produto vetorial, o ângulo entre v e F é 90°.

(c) De acordo com a Eq. 3-20,

⎛ ⋅ ⎞

=

⎟ = ⎛

cos − v B

cos

| v || B|

1 1

68

− ⎞

56 84 ⎠

⎟ = 173°.

86. (a) Como B = B x

ˆ i = ( 6× 10−

5

T)i ˆ,

v × B= −vB

y x

ˆk e a força magnética que age sobre o elétron

é F = ( −e)( −vB

k ˆ) . Assim, de acordo com a Eq. 28-16,

B y x

mv e y (, 911× 10−

31

kg)( 4×

104

m/s)

r = =

= 0,

0038m.

eB (, 16×

10−

19 C)( 6×

10−

5

T)

x

(b) O tempo necessário para uma revolução é T = 2pr/v y = 0,60 ms; durante esse tempo, o deslocamento

do elétron da direção do eixo x (que é o passo da trajetória helicoidal) é ∆x = v x T =

(32 × 10 3 m/s)(0,60 × 10 –6 m/s) = 0,019 m = 19 mm.

(c) Para um observador situado no semieixo x negativo, quando o elétron penetra na região na

qual existe campo com uma velocidade v y positiva (que, para o observador, seria “para cima”),

é submetido a uma força na direção do semieixo z positivo (que, para o observador, seria “para

a direita”). Assim, para um observador situado atrás do elétron, o elétron se move no sentido

horário.

}


Capítulo 29

1. (a) De acordo com a Eq. 29-4,

0i

( 4

× 10 −7 T⋅m A)( 100 A)

B = =

= 33 , × 10− 6

T=

3, 3T.

2r

2

( 6,10 m)

(b) Como o valor obtido no item (a) é comparável com a componente horizontal do campo

magnético da Terra, a resposta é sim.

2. De acordo com a Eq. 29-1, o valor de dB é máximo (no que diz respeito ao ângulo u) para

u = 90º e assume o valor

dB

ids

= 0

4

R2

max .

De acordo com a Fig. 29-34b, dB max = 60 × 10 −12 T. Explicitando i na equação anterior, obtemos:

RdB

i = 4

2

ds

Substituindo i pelo seu valor na Eq. 29-4, obtemos:

0

max .

2RdB

2 0 025 60 × 10−

12

max ( , m)( T)

B = =

= 30 , × 10−

6

T=

30 , T.

ds (, 100×

10−

6

m)

3. (a) De acordo com a Eq. 29-4, o valor absoluto da corrente é dado por

2 rB 2 39×

10 − 6

( 0,080 m)( T)

i = =

= 16 A.

4

× 10 −7 T⋅m A

0

(b) Para produzir um campo magnético que aponte para o sul, de modo a cancelar o campo

magnético da Terra, o sentido da corrente deve ser de oeste para leste.

4. Como o campo magnético no ponto C produzido pelos trechos retilíneos do fio é zero (veja o

Exemplo “Campo magnético no centro de um arco de circunferência percorrido por corrente”)

e, além disso, por simetria, os campos produzidos pelos dois arcos de circunferência se cancelam,

B C = 0.

5. (a) Podemos calcular o módulo do campo total no ponto a somando os campos produzidos

por dois fios semi-infinitos (Eq. 29-7) com o campo produzido por um fio em forma de semicircunferência

(Eq. 29-9 com f = p rad):

i i i

Ba = ⎛ ⎝ ⎜ ⎞

⎛ ⎞

2 0

R⎠

⎟ + 0

= 0 1 1 (4

× 10 − 7

T ⋅m/A)(10 A) ⎛ 1 1⎞

+

R R ⎝

4 2 ⎠ ⎟ =

+

4

2

2⎠

2(0,0050 m)

= 1, 0× 10 − 3 T = 1,0 mT.

(b) O sentido do campo é para fora do papel, como mostra a Fig. 29-6c.


SOLUÇÕES DOS PROBLEMAS 195

(c) De acordo com o enunciado, o ponto b está tão afastado do trecho curvo do fio que o campo

produzido por esse trecho pode ser desprezado. Assim, de acordo com a Eq. 29-4,

i i

Bb = ⎛ ⎝ ⎜ 0 ⎞ 0

( 4

× 10 ⋅

2

R⎠

⎟ = =

− 7T m/A)(10 A)

= 80 , × 10−

4

T=

080 , mT.

2 π R (0,0050 m)

(d) O sentido do campo é para fora do papel.

6. Tomando o eixo x como horizontal e o eixo y como vertical na Fig. 29-37, o vetor r que liga

um segmento ds do fio ao ponto P é dado por r =− s ˆ i+

R ˆ

j. Como ds = ds î, | ds × r | = Rds .

Assim, como r = s2 + R 2

, a Eq. 29-3 nos dá

0

iR ds

dB =

4 ( s + R )

2 2 3/

2

(a) Como a variável s aparece apenas no denominador, o elemento que mais contribui para o

campo B é o elemento situado em s = 0.

(b) O valor de dB max , obtido fazendo s = 0 na equação anterior, é

dB

ids

= 0

4

R2

max .

Assim, a condição de que o campo produzido pelo elemento seja responsável por 10% da maior

contribuição pode ser expressa através da equação

Explicitando s na equação anterior, obtemos

0

iR ds dBmax

0ids

dB =

= = .

4

( s2 + R2)

3/

2

10 40

R2

s = R 1023

/ − 1 = ( 2 , 00 cm )( 191 , ) = 3 , 82 cm .

7. (a) O campo magnético no ponto P produzido pelos trechos retilíneos do fio é zero (veja o

Exemplo “Campo magnético no centro de um arco de circunferência percorrido por corrente”).

De acordo com a Eq. 29-9 (com f = u) e a regra da mão direita, o campo criado no ponto P pelo

arco de raio b é 0i

4b, para fora do papel, e o campo criado pelo arco de raio a é 0i 4a,

para dentro do papel. Assim, o campo total no ponto P é

i ⎛

B = −

⎝ b a⎠ =

0 1 1 (4

10

7

T⋅

m A)(0,411 A)(74⋅

/180 ) ⎛ 1 1 ⎞

4

4

0,107 m 0,135 m⎠

= 1,02 10− 7

T = 0,102 T.

(b) O sentido é para fora do papel.

8. (a) O campo magnético no ponto C produzido pelos trechos retilíneos do fio é zero (veja o

Exemplo “Campo magnético no centro de um arco de circunferência percorrido por corrente”).

De acordo com a Eq. 29-9 (com f = p) e a regra da mão direita, o campo criado no ponto C

pelo arco de raio R 1 é 0i

4

R 1, para dentro do papel, e o campo criado pelo arco de raio R 2

é i

4

R , para fora do papel. Assim, o campo total no ponto C é

0 2

i ⎛ ⎞

B = −

R R ⎠

⎟ = ×

7

0 1 1 ( 4 10 T⋅mA)(0,281A) ⎛ 1 1 ⎞

4 1 2

4

⎜ −

⎝ 0,0315 m 0,0780 m

= 167 , × 10−

6

T = 1,67 T.

(b) O sentido é para dentro do papel.

.


196 SOLUÇÕES DOS PROBLEMAS

9. (a) Para que os campos magnéticos criados pelas duas correntes não se cancelem, as correntes

devem ter sentidos opostos.

(b) Como, em um ponto a meio caminho entre os dois fios, o campo criado pelas duas correntes

tem o mesmo módulo, m 0 i/2pr, o módulo do campo total é B = m 0 i/pr e, portanto,

rB

( 0,040 m)( 300 × 10−

6

T)

i = =

= 30 A.

4

× 10−

7

T⋅m A

0

10. (a) O campo magnético no ponto C produzido pelos trechos retilíneos do fio é zero (veja o

Exemplo “Campo magnético no centro de um arco de circunferência percorrido por corrente”).

De acordo com a Eq. 29-9 (com f = p) e a regra da mão direita, o campo criado no ponto C

pelo arco é i

R. Assim, o módulo do campo magnético é

0 4

i ×

0

( 4

10

7

T⋅m A)(0,0348 A)

B = =

= 1,

18 × 10 − 7 T = 0,118 T.

4R

400926 ( , m)

(b) De acordo com a regra da mão direita, o campo aponta para dentro do papel.

11. (a) BP 1

= 01 i / 2r1

, na qual i 1 = 6,5 A e r 1 = d 1 + d 2 = 0,75 cm + 1,5 cm = 2,25 cm;

B = i / 2r

, na qual r 2 = d 2 = 1,5 cm. Fazendo B P1 = B P2 , obtemos

P 2 02 2

i

r2

15

= i

⎛ 65

43

⎝ ⎜ ⎞

r ⎠

⎟ = ( , )⎛ ⎞

⎝ ⎜ , cm

A

⎟ = , A.

2,25 cm

2 1

1

(b) De acordo com a regra da mão direita, o sentido da corrente no fio 2 deve ser para fora do

papel.

12. (a) Como as correntes têm o mesmo sentido, a única região na qual os campos podem se

cancelar é a região entre os fios. Assim, se o ponto em que isso acontece está a uma distância

r do fio que conduz uma corrente i 1 , então está a uma distância d 2 r do fio que conduz uma

corrente 3,00i e, portanto,

0i

0( 3i)

d 16,

0 cm

=

⇒ r = = = 40 , cm.

2r

2

( d − r)

4 4

(b) Se as duas correntes são multiplicadas por dois, o ponto em que o campo magnético é zero

permanece onde está.

13. Vamos tomar o eixo x coincidindo com o fio, com a origem no ponto médio do fio, e supor

que o sentido da corrente é o sentido positivo do eixo x. Todos os segmentos do fio produzem

campos magnéticos no ponto P 1 orientados para fora do papel. De acordo com a lei de Biot-Savart,

o módulo do campo produzido por um segmento infinitesimal do fio no ponto P 1 é dado por

i

dB = 0 sen

dx,

4

r

2

na qual u (o ângulo entre o segmento e a reta que liga o segmento a P 1 ) e r (o comprimento da

reta) são funções de x. Substituindo r por x2 + R2, sen u por Rr= R x2 + R2 e integrando

de x = 2L/2 a x = L/2, obtemos:

L / 2

0iR

dx iR

B = ⌠

0

1

=

⌡ x2 + R2 32

4 ( ) 4

R ( x

− L / 2

( 4 × 10−

7

T⋅m A)

0,

0582

A

=

2 0,

131 m

= 503 , × 10−

8 T = 5,03 nT.

2 2

x

+ R )

( )

( ) +

L 2

2 12 −L

2

0,

180m

( 0, 180m) 40131 ( , m)

2 2

0i

L

=

2

R L + 4R

2 2


SOLUÇÕES DOS PROBLEMAS 197

14. Usando a Eq. 29-6 com um limite superior finito, L/2, obtemos:

L / 2

0i

Rds i s

B = ⌠

0

=

2

⌡ s2 + R2 3 2

0 ( )

/

2

R

⎣( s + R )

2 2 1/

2

L / 2

⎤ 0i

⎥ =

⎦ 2

R

0

L/

2

( L/

2)

+ R

2 2

.

O problema nos pede para determinar o valor de L/R para o qual a seguinte relação é satisfeita:

B∞−

B

B

= 001 , ,

na qual

i

i

B∞ = 0

e B =

0

2

R 2

R

L/

2

( L/

2)

+ R

2 2

.

A solução obtida, depois de algumas manipulações algébricas, é

L

R =

200

201

14, 1.

15. (a) O campo magnético no ponto P produzido pelos trechos retilíneos do fio é zero (veja o

Exemplo “Campo magnético no centro de um arco de circunferência percorrido por corrente”).

A contribuição dos trechos curvos pode ser calculada usando a Eq. 29-9. Usando o vetor unitário

ˆk para representar a direção para fora do papel, temos:

0( 040 , A)( rad)

0

080 2

B =

ˆ ( , A )( / 3rad)

k −

kˆ =− (, 17× 10−

6 T) k, ˆ

4

( 0, 050 m)

4

( 0, 040 m)

o que nos dá | B | = 17 , × 10−

6 T = 1,7 T.

(b) A orientação do campo magnético é − ˆk, ou seja, para dentro do papel.

(c) Invertendo o sentido de i 1 , temos:

0( 040 , A)( rad)

0

080 2

B =−

ˆ ( , A)(

/ 3rad)

k −

kˆ =− (, 67× 10−

6 T) k, ˆ

4

( 0, 050 m)

4

( 0, 040 m)

o que nos dá | B | = 67 , × 10−

6 T = 6,7 T.

0i

Rds i s

(d) A orientação do campo magnético é B = ⌠

0

=

2

⌡ s2 + R2 3 2

0 ( )

/

2

R

2

⎣( s + R )

⎤ 0i

L/

2

⎥ =

. ou seja, para dentro do papel.

2 ( 2)

2 2

⎦ R L/

+ R

L / 2

16. Usando a lei dos cossenos e a condição de que B = 100 nT, obtemos

=

⎛ B + B − B ⎞

−2

⎟ = 144°,

BB

cos−

1 12 2 2 2

na qual a Eq. 29-10 foi usada para determinar B 1 (168 nT) e B 2 (151 nT).

1 2

2 2 1/

2

L / 2

⎥ =

17. Vamos tomar o eixo x coincidindo com o fio, com a origem na extremidade direita, e supor

que o sentido positivo é o sentido da corrente. Todos os segmentos do fio produzem campos

magnéticos no ponto P 2 que apontam para fora do papel. De acordo com a lei de Biot-Savart, o

módulo do campo produzido no ponto P 2 por um segmento infinitesimal dx é dado por

i

dB = 0 sen

dx

4

r

2

0

+


198 SOLUÇÕES DOS PROBLEMAS

na qual u é o ângulo entre o segmento e a reta que liga o segmento a P 2 , e r é o comprimento

da reta. Substituindo r por x2 + R2, sen u por Rr= R x2 + R2 e integrando de x = –L até

x = 0, obtemos

0

0iR

dx iR x

B = ⌠

0

1

=

4

⌡ ( x2 + R2) 32

4

R2 ( x2 + R2) 12

− L

0

= 0i

L

− L 4

R L + R

2 2

( 4

× 10

7

⋅ 0 693

=

− T m A)( , A)

4

0,

251 m

= 132 , × 10−7 T = 132 nT.

0,

136 m

( ) +

( 0, 136 m) ( 0, 251 m)

2 2

18. No primeiro caso temos B pequeno + B grande = 47,25 mT; no segundo, B pequeno – B grande = 15,75 mT.

(Nota: Os nomes “pequeno” e “grande” se referem ao tamanho dos arcos e não ao valor dos

campos magnéticos; na verdade, B pequeno > B grande !)

Dividindo uma das equações pela outra e cancelando fatores comuns (veja a Eq. 29-9), obtemos

( 1/ rpequeno) + ( 1/

rgrande

) pequeno / grande

( 1/ r ) − ( 1/

r )

= 1 + ( r r )

1 − ( r / r nde ) = 3,

pequeno

grande

pequeno

o que nos dá r pequeno = r grande /2. Como r grande = 4,00 cm, temos:

gra

r pequeno = (4,00 cm)/2 = 2,00 cm.

19. De acordo com a Eq. 29-4, a contribuição do primeiro fio para o campo total é

B

1

01

i 4 × 10−

7

= ˆ ( T ⋅m/A)(30 A)

k =

kˆ = (, 30× 10−

6 T) k ˆ.

2r

2 (2,0 m)

1

Como a distância entre o segundo fio e o ponto de interesse é r 2 = 4 m − 2 m = 2 m, a contribuição

do segundo fio para o campo total é

B

2

02

i 4 × 10−

7

= ˆ ( T ⋅m/A)(40 A)

i =

ˆ i = ( 40 , × 10−

6 T)ˆ.

i

2r

2 (2,0 m)

2

O módulo do campo total é, portanto,

| B tot | = (, 30× 10− 6

T) 2

+ ( 40 , × 10− 6

T) 2

= 50 , × 10−

6

T = 5,0 T.

20. (a) A contribuição do fio retilíneo para o campo magnético no ponto C é

B

C1

0i

= 2

R

e a contribuição do fio circular é

B

C2

0i

= .

2R

Assim,

0i

⎛ 1⎞

( 4

× 10 ⋅ 5

BC = BC1+ BC

2 = +

R ⎝

⎜1

⎟ =

−7 T m A)(,

78 × 10−

3

A)

⎛ 1 ⎞

1+

253 10

2

2

⎟ = , ×

( 0, 0189 m)

De acordo com a regra da mão direita, B C aponta para fora do papel, ou seja, no sentido positivo

do eixo z. Assim, na notação dos vetores unitários,

B C = ( 253 , × 10−

7 Tk ) ˆ = (253 nT)k ˆ

−7

T.


SOLUÇÕES DOS PROBLEMAS 199

(b) Nesse caso, B

⊥ B

e, portanto,

C1 C2

i

×

−7

⋅ ×

BC = B2

C + B2 0

1 ( 4

10 T m A)(,

5 78 10−

3

A)

1

1 C2

= 1+ =

1+

2R

2

2( 0,0189 m)

2

= 202 , × 10

−7

T

e B C faz um ângulo com o plano do papel dado por

⎛ ⎞

tan−

1

BC

1

tan

, .

⎟ = 1 ⎛ 1 ⎞

⎟ = 17 66°

B

C2

Na notação dos vetores unitários,

B C = 202 , × 10−

7 T (cos 1766 , ° ˆ i + sen 1766 , ° k ˆ) = ( 1 , 92 × 10

−7Ti

)ˆ + (, 612 × 10

−8T)kˆ

= ( 192 nT)ˆ i + ( 61, 2 nT) k ˆ.

21. Por simetria, e de acordo com a regra da mão direita, o campo magnético total aponta para

a direita e é dado por

na qual r = d2 2 + d1 2 / 4 e

= tan

⎛ d ⎞

⎟ = tan

d / 2

−1 2

1

0i

| Btot | = 2 sen

2 r

−1

⎡ 400 , m ⎤

⎣(,

600 m)/ 2

= ⎛ ⎞

tan

−1 4

⎟ = 53,

1°.

3

Assim,

0i

( 4

× 10 T⋅m A)( ,

| Btot

| =

sen

=

−7 4 00

A)

sen 53,

d + d /

(, 500 m)

2 2 1 2 4

= 2,56 10 −7

T = 256 nT.

22. O fato de que B y = 0 para x = 10 cm no gráfico da Fig. 29-49b significa que as correntes têm

sentidos opostos. Assim, de acordo com a Eq. 29-4,

B

y =

01 i 02 i 02

i

− =

2

( L+

x)

2

x 2

4

L+ x − 1⎞

x ⎠

Para maximizar B y , derivamos a expressão anterior em relação a x e igualamos o resultado a

zero, o que nos dá:

dB

dx

y =

02

i ⎡ 4 1 ⎤

⎢−

+

x Lx L

⎣ L+

x x

= 0 ⇒ 3

2 − 2 − 2

= 0.

2 ( )

2 2

A única raiz positiva da equação anterior é x = L, para a qual B y = m o i 2 /2pL. Para determinar o

valor de L, fazemos x = 10 cm na expressão de B y e igualamos o resultado a zero, o que nos dá:

B

y =

02

i

2

(a) A componente B y é máxima para x = L = 30 cm.

(b) Para i 2 = 0,003 A, temos:

4 1 ⎞

L

L +

⎟ = 0

10 10

⇒ = 30 cm.

cm cm

i ×

02 ( 4

10

7

H/m)( 0, 003 A)

By = =

= 20 , × 10−

9

T=

20 , nT.

2

L 2

( 0, 3 m)


200 SOLUÇÕES DOS PROBLEMAS

(c) e (d) A Fig. 29-49b mostra que em pontos muito próximos do fio 2, nos quais a contribuição

do fio 2 é muito maior que a do fio 1, B y aponta no sentido negativo do eixo 2y. De acordo com

a regra da mão direita, isso indica que o sentido da corrente no fio 2 é para dentro do papel.

Como sabemos que as correntes têm sentidos opostos, isso indica também que o sentido da

corrente no fio 1 é para fora do papel.

23. De acordo com a Eq. 20-4, o campo magnético na posição do próton mostrada na Fig. 29-50

é B = ( i/ d)ˆ

k. Assim, de acordo com a Eq. 28-2,

0 2

( )

F = iq

ev × B = 0

2

d v × k ˆ .

Como, de acordo com o enunciado, v

= v( − ˆ) j , na qual v é o módulo da velocidade, temos:

F

0iqv

iqv

= ⎡ − × ⎤

d ⎣ ⎦ =− 0

d

=− ×

( ˆ) ˆ ˆ (4

j k i

2

2

= ( − 7,75 × 10−

23 N)i. ˆ

10 − 7 − 19

T⋅ m A)(0,350A)(1,60 × 10 C)( 200 m/s)

ˆi

2 (0,0289 m)

24. Inicialmente, B tot,y = 0 e B tot,x = B 2 + B 4 = 2(m o i/2pd). Para obter a rotação de 30º descrita no

enunciado, devemos ter

i

Btot, y = Btot, x tan( ) ⇒ B′ − B = ⎛ t

⎝ ⎜ 0

30°

1 3 2

d ⎠

⎟ an( 30° ),

2

na qual B 3 = m o i/2pd e B′ = i/ d′

. Como tan(30º) = 1/ 3, isso nos dá

1 0 2

3

d′ = d = 0, 464d.

3+

2

(a) Para d = 15,0 cm, obtemos d′ = 7,0 cm. Examinando a geometria do problema, concluímos

que é preciso deslocar o fio 1 para x = −7,0 cm.

(b) Para que o campo B volte à orientação inicial, basta restabelecer a simetria inicial, deslocando

o fio 3 para x = +7,0 cm.

25. De acordo com a Eq. 29-7, a contribuição da corrente em cada fio semi-infinito para o

campo magnético no centro da circunferência é B reto = m 0 i/4pR e, em ambos os casos, o campo

aponta para fora do papel. De acordo com a Eq. 29-9, a contribuição da corrente no arco

de circunferência para o campo magnético no centro da circunferência é B arco = m 0 iu/4pR e o

campo aponta para dentro do papel. Igualando a zero o campo magnético total no centro da

circunferência, temos:

o que nos dá u = 2,00 rad.

i i i

B= 2 B − B = 2 ⎛ ⎝ ⎜ 0 ⎞

R⎠

⎟ − 0

reto arco

=

0 ( 200 , − ) = 0,

4 4

R 4 R

26. De acordo com o teorema de Pitágoras, temos a relação

B2

i i

B1 2 B2 2 01

02

= + = ⎛ ⎝ ⎜ ⎞

R ⎠

⎟ + ⎛ ⎝ ⎜ ⎞

2 R⎠

4

que, interpretada como a equação de uma reta de B 2 em função de i 22 , permite identificar o primeiro

termo (1,0 × 10 −10 T 2 ) como o “ponto de interseção com o eixo y” e o coeficiente de i 2

2

no

segundo termo (5 × 10 −10 B 2 /A 2 ) como “inclinação”. A segunda observação nos dá:

0

R =

2

10−

10

2

4

× 10−

7

H/m

=

= 89 , mm.

2

2 24 × 10−

5

B/A

2 2 ( , B/ A)

2


SOLUÇÕES DOS PROBLEMAS 201

A segunda observação nos dá:

4

R 1, 0×

10−

10

T2

4

( 0, 0089 m)( 10 , × 10−

5

T)

=

=

= 18 , rad.

i

( 4 × 107

H/m)( 0, 50 A)

01

27. Podemos usar a Eq. 29-4 para relacionar os módulos dos campos magnéticos B 1 e B 2 às

correntes i 1 e i 2 . Como os campos são mutuamente perpendiculares, o ângulo que o campo total

faz com o eixo x é dado por

u = tan −1 (B 2 /B 1 ) = tan −1 (i 2 /i 1 ) = 53,13º.

Uma vez obtida a rotação descrita no problema, o ângulo final é u′ = 53,13º – 20º = 33,13º.

Assim, o novo valor da corrente i 1 deve ser i 2 /tanu′ = 61,3 mA.

28. De acordo com as Eqs. 29-9 e 29-4 e tomando o sentido para fora do papel na Fig. 29-55a

como positivo, o campo total é

01 i 02

i

B = −

4 R 2

( R/

2) .

Examinando o gráfico da Fig. 29-55b, vemos que B = 0 para i 2 = 0,5 A, o que nos dá, igualando

a zero a expressão anterior,

f = 4(i 2 /i 1 ) = 4(0,5/2) = 1,00 rad

29. Cada fio produz um campo no centro do quadrado de módulo B= 0i/ a

2. Os campos

produzidos pelos fios situados no vértice superior esquerdo e no vértice inferior direito do quadrado

apontam na direção do vértice superior direito; os campos produzidos pelos fios situados

no vértice superior direito e no vértice inferior esquerdo apontam na direção do vértice superior

esquerdo. As componentes horizontais dos campos se cancelam e a soma das componentes

verticais é

B

tot

i

i × T⋅m A

= 4 0

2

24 ( 10−7

0

)( 20 A)

cos 45° = =

= 80 , × 10−

5 T.

a

2 a

( 0, 20 m)

Como o campo total aponta para cima, no sentido positivo do eixo y, temos, na notação dos

vetores unitários, B tot = (, 80× 10−

5 T)j ˆ=

(80 T)j.

ˆ

A figura a seguir mostra o campo total e as contribuições dos quatro fios. Os sentidos dos

campos podem ser determinados usando a regra da mão direita.

30. De acordo com o gráfico da Fig. 29-57c, quando a componente y do campo magnético produzido

pelo fio 1 é zero (o que, de acordo com a regra da mão direita, acontece quando o ângulo

que o fio 1 faz com o eixo x é u = 90º), a componente y do campo magnético total é zero. Isto

significa que a posição do fio 2 é u = 90º ou u = −90º.


202 SOLUÇÕES DOS PROBLEMAS

(a) Vamos supor que o fio 2 está na posição u = −90º (ou seja, na extremidade inferior do cilindro),

já que, se estivesse na parte superior do cilindro, seria um obstáculo para o movimento do

fio 1, que é necessário para levantar os gráficos das Figs. 29-57b e 29-57c.

(b) De acordo com o gráfico da Fig. 29-57b, quando a componente x do campo magnético

produzido pelo fio 1 é zero (o que, de acordo com a regra da mão direita, acontece quando o

ângulo que o fio 1 faz com o eixo x é u = 0 o ), a componente x do campo magnético total é 2,0

mT, e quando a componente x do campo magnético produzido pelo fio 1 é máxima (o que, de

acordo com a regra da mão direita, acontece quando o ângulo que o fio 1 faz com o eixo x é u =

90 o ), a componente x do campo magnético total é 6,0 mT. Isso significa que B 1x = 6,0 mT − 2,0

mT = 4,0 mT, o que, de acordo com a Eq. 29-4, nos dá

i

1

2

RB

6

1 x 2 (0,200 m)(4,0 × 10−

T)

= =

=

4

× 10−

7T

⋅ m/A

0

(c) O fato de que, na Fig. 29-57b, B 1x aumenta quando u 1 varia de 0 o até 90º significa que o

sentido da corrente no fio 1 é para fora do papel.

(d) Como foi visto no item (b), a componente x do campo produzido pelo fio 2 é B 2x = 2,0 mT.

Assim, de acordo com a Eq. 29-4, temos:

i

2

2

RB

6

2 x 2( 0,200 m(2,0 ) × 10−

T)

= =

=

4

× 10−

7T

⋅ m/A

0

(e) De acordo com a regra da mão direita, o sentido da corrente no fio 2 é para dentro do papel.

31. (a) O campo magnético no ponto P produzido pelos segmentos do fio colineares com P é

zero (veja o Exemplo “Campo magnético no centro de um arco de circunferência percorrido

por corrente”). Vamos usar o resultado do Problema 29-17 para calcular as contribuições dos

outros segmentos para o campo no ponto P, levando em conta o fato de que o campo magnético

produzido pelo ponto P aponta para dentro do papel nos dois segmentos de comprimento a que

não são colineares com P e aponta para fora do papel nos dois segmentos de comprimento 2a.

O resultado é o seguinte:

i

BP = ⎛ ⎝ ⎜ 2 ⎞

2

8

a ⎠

⎡ 2

i ⎤

2 ⎢ ⎥ =

⎣8

2a

⎟ − ( )

2

i

=

8

a

0 0 0

= 196 , × 10−

5

T ≈ 2,0 × 10 −5

T=

20 T.

(b) O sentido é para dentro do papel.

32. De acordo com a Eq. 29-9, o campo inicial é

0i

0i

Bi = + .

4

R 4r

40 ,

20 ,

A.

A.

2( 4

× 10−

7

T⋅m A)( 13 A)

8

0,

047 m

( )

Quando a espira menor está na posição final, o teorema de Pitágoras nos dá

B2 i

B2 i

f z B2 0

0

= + y = ⎛ ⎝ ⎜ ⎞

R ⎠

⎟ + ⎛ ⎝ ⎜ ⎞

4 r ⎠

4

Elevando B i ao quadrado e dividindo por B f2 , obtemos

2

2

.

2

⎛ B ⎞

i [( 1/ R) + ( 1/

r)]

⎝ B

⎟ =

f ⎠ ( 1/ R) + ( 1/

r)

2

2 2

1± 2−

⇒ r = R

2

− 1

2


SOLUÇÕES DOS PROBLEMAS 203

na qual j = B i /B f . Observando o gráfico da Fig. 29-59c, chegamos à conclusão de que B i /B f =

(12,0 mT)/(10,0 mT) = 1,2, o que nos dá

1+ 1, 2 2−12

,

r = R

12 ,

2

− 1

= 23 , cm ou 43,

1 cm.

Como sabemos que r < R, a única resposta aceitável é r = 2,3 cm.

33. Considere um segmento infinitesimal da fita de largura dx situado a uma distância x do ponto

P. A corrente no segmento é di = i dx/w e sua contribuição para o campo B P no ponto P é

Assim,

B

P

0di

0idx

dBP = = .

2

x 2

xw

i d w

0 dx i ⎛ w⎞

=

∫dBP

= = +

w∫ + 0

ln

d x w ⎝

⎜1

d ⎠

2

2

(4

× 10−7 T⋅ m A)( 4, 61 × 10−

6

A) ⎛ 00 , 491⎞

=

ln 1+

2

( 0, 0491 m)

0,

0216⎠

= 223 , × 10− 11 T = 22,3 pT.

Como o campo B

P aponta para cima, este resultado nos dá, na notação dos vetores unitários,

B P = ( 223 , × 10−

11 Tj. )ˆ

Nota: Para d >> w, usando a expansão

o campo magnético se torna

que é o campo produzido por um fio fino.

ln( 1+ x) = x− x 2 / 2+

...,

i w i w i

BP = 0 ⎛ ⎞

ln +

w ⎝

⎜1

d ⎠

⎟ ≈ 0 ⋅ =

0 ,

2

2

w d 2

d

34. De acordo com a regra da mão direita, o campo produzido pela corrente no fio 1, calculado

na origem das coordenadas, aponta no sentido positivo do eixo y. O módulo B 1 do campo é dado

pela Eq. 29-4. Usando relações trigonométricas e a regra da mão direita, é fácil demonstrar que

o campo produzido pelo fio 2, quando situado na posição especificada pelo ângulo u 2 na Fig.

29-61, tem componentes

B = B sen , B = −B

cos ,

2x

2 2 2y

2 2

na qual o valor de B 2 é dado pela Eq. 29-4. Assim, de acordo com o teorema de Pitágoras, o

quadrado do módulo do campo total na origem é dado por

B2

= ( B sen ) + ( B − B cos ) = B + B −2BB

cos .

2 2 2 1 2 2 2 1 2 2 2 1 2

2

Como

B

1

01

i

02

i

= = 60 nT, B2

= = 40 nT e B = 80, 0 nT,

2πR

2πR

temos:

⎛ B + B − B ⎞

cos

1

14 1

⎟ = cos

( − / ) = 04°.

1 1 2 2 2 2

2 =

2BB

1 2


204 SOLUÇÕES DOS PROBLEMAS

35. A Eq. 29-13 pode ser usada para calcular o módulo da força entre os fios, e calcular a componente

x corresponde a multiplicar o módulo por cos f = d 2 / d1 2 + d2 2 . Assim, a componente

x da força por unidade de comprimento é

F

L

x =

iid ×

012 2 ( 4

10 T⋅m/A)(4,00 × 10−

3

A)( 680 , × 10−

3

A)(0,050 m)

=

2

( d + d )

2 [(0,0240 m) 2 + (0,050 m)

2]

1 2 2 2 7

= 884 , × 10−

11 N/m = 88,4 pN/m.

36. De acordo com a Eq. 29-13,

(a) A força magnética a que está submetido o fio 1 é

F

1

0il

2 ⎛ 1 1 1 1 ⎞ 25

il

= + + +

2

2 ⎝

d 2d 3d 4d⎠

⎟ ĵ = 0 ˆ 25( 4

× 10 T m A)(, A)( , m)

j =

−7 ⋅ 3 00

2

10 0 ˆj

24d

24(,

800×

10−

2

m)

= ( 469 , × 10−

4

N) ˆj = (469 N) ˆj.

(b) A força magnética a que está submetido o fio 2 é

F

(c) Por simetria, F 3 = 0.

(d) Por simetria, F

2

0il

2 ⎛ 1 1 ⎞ 5 0il

= +

2

2 ⎝

2d

3d⎠

ˆ

j= ˆj = (1,88 × 10−4 N) ˆj = (188N) ˆj.

12

d

=− F

= ( −188 N) ˆ j.

4 2

(e) Por simetria, F

F

5 =− 1 = ( −469

, N) ˆj.

37. Usamos a Eq. 29-13 e a composição de forças: F F F F

4 = 14 + 24 + 34. Para u = 45°, a situação

é a mostrada na figura ao lado.

As componentes de F 4 são

e

0i

i

F4x

F43 F

2 0 2 cos45° 3

=− − 42 cos = − −

=−

0i

2

2

a 2 2a

4a

0i

i

i

F4y

F41 F

2 0 2 sen 45° 0 = − 2

42 sen = −

=

2

a 2 2a

4a .


SOLUÇÕES DOS PROBLEMAS 205

Assim,

( ) = −

F = F + F

⎡ ⎛ ⎝

⎣⎢

4 4 2 x 4 2 12 0 2 2

y ⎢

3

i ⎞ 0i

2

4 a ⎠

⎟ + ⎛ ⎞

4a

⎦⎥

2 12 0 2

=

10

i

4a

=

10( 4

× 10 −7 T⋅m A)(

7,50 A)

4 0,135 m

( )

2

= 132 , × 10−

4

N/m

e o ângulo que F 4 faz com o semieixo x positivo é

⎛ F ⎞

=

⎟ = ⎛ ⎝

⎜ − ⎞

tan−

1 4 y

tan

−1 1

⎟ = 162°

.

F

3

4x

Na notação dos vetores unitários, temos:

F 1 = (, 132 × 10 24 N/m)[cos162° ˆi+ sen162°

ˆ j] = ( −1, 25 × 10 24 N/m) ˆ i+ ( 417 , × 10

25

N/m) ˆj

= ( −125

N/m)

ˆ i+ ( 41, 7 N/m) ˆ. j

38. (a) O fato de que o gráfico da Fig. 29-64b passa pelo zero significa que as correntes nos

fios 1 e 3 exercem forças em sentidos opostos sobre o fio 2. Como sabemos que o sentido da

corrente no fio 3 é para fora do papel, isso significa que o sentido da corrente 1 também é para

fora do papel. Quando o fio 3 está a uma grande distância do fio 2, o único campo a que o fio 2

está submetido é o produzido pela corrente no fio 1; neste caso, de acordo com o gráfico da Fig.

29-64b, a força é negativa. Isto significa que o fio 2 é atraído pelo fio 1, o que indica, de acordo

com a discussão da Seção 29-2), que o sentido da corrente no fio 2 é o mesmo da corrente no fio

1, ou seja, para fora do papel. De acordo com o enunciado, com o fio 3 a uma distância infinita

do fio 2, a força por unidade de comprimento é −0,627 mN/m, o que nos permite escrever, de

acordo com a Eq. 29-13,

F

12

012 ii

= = 627 , × 10−

7

N/m.

2

d

Quando o fio 3 está no ponto x = 0,04 m, a força é nula e, portanto,

F

23

023

ii 012

ii d 004 , m 004 , m

= = F12

= ⇒ = = = 016 , m/A.

2

( 0, 04)

2

d i i 0,

250 A

Substituindo d/i 1 pelo seu valor na equação anterior, obtemos:

2

(, 6 27 × 10 N/m)( 016 , m/A)

=

= 050 , A.

4

× 10−

7

H/m

−7

i 2

(b) O sentido de i 2 é para fora do papel.

39. Como o sentido de todas as correntes, exceto a corrente i 2 , é para dentro do papel, o fio 3 é

atraído por todas as correntes, exceto a corrente 2. Assim, de acordo com a Eq. 29-13, temos:

| F | 03 i ⎛ i1 i2 i4 i5

= − + + +

L ⎝

d d d d ⎠

2

2 2

1

( 4

× 10

=

− 7

H/m)( 0, 250 A) ⎡ 200 , A 400 , A 4,

00 A 200 , A ⎤

− + +

2

+

205 ( , m)

05 , m 05 , m 205 ( , m)

=

= 800 , × 10−

7 N/m = 800 nN/m.

3


206 SOLUÇÕES DOS PROBLEMAS

40. Por simetria, apenas as forças (ou suas componentes) ao longo das diagonais contribuem

para a força total. Fazendo u = 45° e usando a Eq. 29-13, obtemos:

0i

F1 = | F12 + F13 + F14 | = 2F12cos

+ F

2

13 = 2 ⎛ ⎞ 0i

⎛ ⎞

⎝ 2 a

⎟ cos 45 + 2 3 0i

° =

2

2 2πa

2 2

a

3 ( 4 × 10−7

T⋅m A)( 15, 0 A)

=

2 2

(, 850×

10−

2m)

2

= 112 , × 10

−3

N/m.

A força F 1 aponta na direção r ˆ = (ˆ i−

ˆ j)/ 2. Na notação dos vetores unitários, temos:

(, 112 × 10

F 1 =

2

−3

N/m) (ˆ i − ˆ j) = ( 794 , × 10−4

N/m)i ˆ + ( − 794 , × 10 −4 N/m)j ˆ =

= ( 0, 794 mN/m)ˆ i+ ( −0,

794 mN/m)ˆ

j.

41. Os módulos das forças exercidas sobre os lados da espira paralelos ao fio longo podem ser

calculados usando a Eq. 29-13, mas as forças exercidas sobre os lados perpendiculares teriam

que ser calculadas através de integrais do tipo

F =

a+

b

a

012

ii

2

y dy .

Entretanto, por simetria, as forças exercidas sobre os lados perpendiculares ao fio longo se

cancelam. No caso dos lados paralelos, temos:

012 ii L ⎛ 1 1 ⎞ 012

iib

F = −

a a + d ⎠

⎟ =

2

2

aa+

b

( )

( 4 × 10−

7

T ⋅ m/A)( 30, 0 A)( 200 , A)( 800 , cm)( 300 × 10−

2m)

=

= 320 , × 10−

2 1,

00 cm + 8,00

cm

( )

e F aponta na direção do fio. Assim, na notação dos vetores unitários,

F = (, 320× 10−

3 N) ˆ j = (3,20 mN) ˆ j

42. Como a área envolvida pela integral de linha é A = (4d)(3d)/2 = 6d 2 , temos:

B⋅ ds = i = jA = ( 4

× 10−

7

T⋅m A)( 15A/m 2 )() 6 ( 020 , m) 2

= 4,

5× 10−

6

T⋅

m.

c

0 0

43. Vamos usar a Eq. 29-20, B= 0ir/ 2a2, para calcular o campo magnético no interior do

fio (r < a), e a Eq. 29-17, B= 0i/ 2r, para calcular o campo magnético do lado de fora do

fio (r > a).

(a) Para r = 0, B = 0.

(b) Para r = 0,0100 m,

ir ×

0 ( 4

10

7

T ⋅m/A)( 170 A)( 0, 0100 m)

B = =

= 850 , × 10−

4

T = 0,850 mT.

2

a2

2

( 0, 0200 m)

2

(c) Para r = a = 0,0200 m,

ir ×

0 ( 4

10

7

T ⋅m/A)( 170 A)( 0, 0200 m)

B = =

= 170 , × 10−

3

T = 1,70 mT.

2

a2

2

( 0, 0200 m)

2

(d) Para r = 0,0400 m,

i ×

0 ( 4

10

7

T ⋅m/A)( 170 A)

B = =

= 8,

50 × 10 − 4 T = 0,850 mT.

2r

2

( 0, 0400 m)

3

N,


44. Vamos usar a lei de Ampère,

B⋅ ds = i 0 , na qual a integral é calculada ao longo de uma

curva fechada e a corrente é a corrente total no interior da curva.

(a) No caso da curva 1, o resultado é

B ds

7

⋅ = 0( − 50 , A+ 30 , A) = ( 4

× 10−

T ⋅m/A)( −2,

0 A)

1

=− 25 , × 10 − 6

T⋅ m =−25

, T⋅

m.

(b) No caso da curva 2, temos:

B ds

7

⋅ = 0( −50 , A−50 , A− 30 , A) = ( 4

× 10−

T ⋅m/A)( −13, 0 A)

2

=− 16 , × 10−

5

T⋅ m =−16

T⋅

m.

45. (a) Como dois dos fios envolvidos pela curva conduzem corrente para fora do papel e um

fio conduz corrente para dentro do papel, a corrente total envolvida pela curva é 2,0 A, para fora

do papel. Como a curva é percorrida no sentido horário, de acordo com a regra da mão direita

associada à lei de Ampère, uma corrente para dentro do papel é positiva e uma corrente para

fora do papel é negativa. Assim,

∫ B ⋅ ds = − i = − ×

0 ( 4

10

7

T ⋅ m/A)( 2, 0 A) = − 2,

10− 6

T⋅ m= −25

, T⋅m.

(b) Como a corrente total no interior da curva é zero,

∫ B⋅ ds = i = 0 0

env .

46. Observando a curva de perto, vemos que apenas as correntes 1, 3, 6 e 7 são envolvidas.

Assim, levando em conta o sentido dessas correntes, temos:

∫ B ⋅ ds = i − i + i + i = i = ×

0( 7 6 3 ) 50

5( 4

10

7

T⋅

m/A)( 450 , × 10−

3

A)

47. Para r ≤ a,

Br

(a) Para r = 0, B = 0.

=+ 283 , × 10−

8

T⋅ m = +28,3 nT ⋅m.

i

2r

(b) Para r = a/2, temos:

2r

r

r

0

J r 2

rdr J

2

0 env 0

( ) = = ( ) =

0

⎛ r ⎞ Jr

⎝ a⎠

⎟ 2rdr

=

3a

0 0

∫ 2

0 0

J ( a/ 2) 2

0 0 ( 4 × 10−

7

T⋅m/A)( 310 A/m )

Ba ( / 2)

= =

2 (, 31×

10−

m/ 2)

3a

331 (, × 10−

3

m)

(c) Para r = a, temos:

= 10 , × 10−

7T

= 0,10 T.

Ja ( ×

⋅ )( )(, ×

0 0 4

10

7

T m/A 310 A/m 31 10

Ba ( ) = =

2 3 m)

3

3

= 40× 10 =

,

−7

T 0,40 T.

.

3 2

SOLUÇÕES DOS PROBLEMAS 207


208 SOLUÇÕES DOS PROBLEMAS

48. (a) Por simetria, o campo magnético no eixo do cano se deve apenas ao fio, e o módulo

desse campo é

0ifio

0ifio

BC = = .

2( 3R)

6

R

Como o campo produzido pelo fio no ponto P é maior que o campo produzido pelo fio no eixo

do cano, para que o campo total no ponto P seja igual ao campo no eixo do cano é preciso que

o campo produzido pelo cano no ponto P tenha o sentido oposto ao do campo produzido pelo

fio. Assim,

0ifio

0i

BP = BP, fio − BP,

cano = −

2

R 2

( 2R) .

Fazendo B C = 2B P , obtemos i fio = 3i/8 = 3(8,00 × 10 −3 A)/8 = 3,00 × 10 −3 A = 3 mA.

(b) O sentido é para dentro do papel.

49. (a) De acordo com a Eq. 29-24,

iN ×

0 ( 4

10

7

T ⋅m/A)( 0, 800 A)( 500)

B = =

= 533 , × 10−

4 T = 533 T.

2r

2

( 0,

150

m)

(b) De acordo com a Eq. 29-24,

iN ×

0 ( 4

10

7

T ⋅m/A)( 0, 800 A)( 500)

B = =

= 400 , × 10−

4 T = 400 T.

2r

2

0,

200

m

( )

50. Seria possível, embora muito trabalhoso, usar a Eq. 29-26 para calcular as contribuições

para o campo das 1200 espiras e depois somá-las, mas é muito mais fácil recorrer à Eq. 29-23,

segundo a qual

⎛ N ⎞

B= in=

i

⎟ = ×

−7

1200

0 0 ( 4 10 T ⋅ m/A)(, 3 60 A)

l

( 0, 950 m)

= 0, 00571 T=

571 , mT.

51. Seria possível, embora muito trabalhoso, usar a Eq. 29-26 para calcular as contribuições

para o campo das 200 espiras e depois somá-las, mas é muito mais fácil recorrer à Eq. 29-23,

segundo a qual

⎛ N ⎞

B= in=

i

⎟ = ×

−7

200

0 0 ( 4 10 T ⋅ m/A)( 0, 30 A)

l

025 , m

= 30 , × 10−

4

T=

030 , mT.

52. Como, de acordo com a Eq. 29-23, B = m 0 in = m 0 iN/l, N = Bl/m 0 i e o comprimento L do fio

é dado por

2rBl 2

( 260 , × 10−

2m)( 230 , × 10−

3T)(

130 , m)

L = 2rN

= =

= 108 m.

i 2(4 × 10−

7

T⋅m/A)( 18, 0 A)

53. Como o raio da órbita do elétron é

temos:

0

mv

r = mv

eB

= e 0 ni

,

mv

i = e nr

=

(, 911× 10−

31

kg)( 0, 0460)(,

300×

108

ms)

0 (, 160× 10−

19

C)( 4 × 10−

7

T⋅

mA)( 100 00100 , m)( 2,

30 × 10

− 2

= 0, 272 A.

m)


SOLUÇÕES DOS PROBLEMAS 209

54. De acordo com a Eq. 28-17 e supondo que o solenoide é ideal, o período T do movimento

do elétron é dado por

2m

2m

2

mL

T = = = ,

eB e

in e

iN

0 0

na qual m é a massa do elétron, L é o comprimento do solenoide, i é a corrente do solenoide e

N é o número de espiras do solenoide.

Por outro lado, o tempo que o elétron leva para atravessar o solenoide é

L L L

t = = = ,

v|| v cos 30o

0,

866v

na qual v || é a componente da velocidade paralela ao eixo do solenoide. Assim, o número de

revoluções é

t

n = L e iN

T

=

v mL

= ×

×

0 (, 16 10

19

C)(

4

10

7

H/m)( 40 , A)( 8000)

= 16 , × 10 6 .

0,

866 2

2 ( 0, 866)( 800 m/s)( 911 , × 10− 3 1

kg)

55. (a) Vamos chamar os campos produzidos pelo solenoide e pelo fio no ponto P de B s e B f ,

respectivamente. Como B s está alinhado com o eixo do solenoide e B f é perpendicular ao eixo

do solenoide, os dois campos são mutuamente perpendiculares. Assim, para que o campo resultante

faça um ângulo de 45° com a direção do eixo do solenoide, devemos ter B s = B f . Nesse

caso,

0i

f

Bs = 0isn= Bf

= ,

2

d

na qual d é a distância entre o eixo e o ponto P, o que nos dá

i

d = f

in

=

600 , A

=

2

2( 200 , × 10−

3

A)( 10 espiras cm)

477 , cm.

(b) O módulo do campo magnético é

s

B= 2B s = 2( 4 × 10−

7T⋅ m A)( 200 , × 10−

3A)(

10 espiras 0,0100

m)

= 355 , × 10−

5 T = 35,5 T.

56. De acordo com a Eq. 29-26, temos:

B

P =

2 iR2

0 N 80Ni

84 ( 10

= =

2 R2 + ( R/

2)

2 32 5 5R

[ ]

= 878 , × 10−

6 T=

8,78 T.

×

−7

T ⋅ m/A)( 200)( 0, 0122 A)

5 5 025 , m

( )

57. (a) De acordo com a Eq. 28-35, o módulo do momento dipolar magnético é dado por m =

NiA, na qual N é o número de espiras, i é a corrente e A é a área. Como A = pR 2 , na qual R é o

raio das espiras, temos:

= NiR 2 = ( 300)( 40 , A) ( 0, 025m) 2 = 24 , A⋅m

2 .

(b) O campo magnético no eixo de um dipolo é dado pela Eq. 29-27:

B = 0

.

2

z3


210 SOLUÇÕES DOS PROBLEMAS

Explicitando z, obtemos:

z = ⎛ 0

⎝ 2

B⎠

13 7 2

⎛ ( 4

× 10−

T⋅m A)( 2, 36 A⋅

m ) ⎞

=

46

2

(, 5 0×

10

6

⎟ = cm.

T)

13

58. (a) Para uma espira, de acordo com a Eq. 29-10, B = m 0 i/2R, e, portanto, B ∝ i/R. Como a

bobina b tem duas espiras,

B

B

b

a

2iRb

2Ra

= = =

iR R

a

b

40 , .

(b) A razão entre os momentos dipolares das duas bobinas é

b

a

2iAb

2R2

b

= = = ⎛ iAa

R ⎝ ⎜ ⎞

2 1 2

2 ⎠

a 2

1

⎟ = = 050 , .

2

59. De acordo com a Eq. 28-35, o módulo do momento dipolar magnético é dado por m = NiA,

na qual N é o número de espiras, i é a corrente e A é a área. Como A = pR 2 , na qual R é o raio

das espiras, temos:

= ( 200)( 030 , A) ( 0, 050 m) 2

= 0, 47 A⋅

m2.

60. De acordo com a Eq. 29-26, a componente y do campo é

B

y =

iR2

iR2

01

2( R2

+ z ) 2( R2

+ z )

02

1 2 3 / 2 2 2 3 / 2

na qual z 1 = L (veja a Fig. 29-73a) e z 2 = y porque o eixo das espiras é chamado de y em vez de

z. O fato de que os campos produzidos pelas duas espiras têm sinais opostos se deve à observação

de que o campo mostrado na Fig. 29-73b se anula para um valor finito de y, o que seria

impossível se os dois campos tivessem o mesmo sinal (fisicamente, isto significa que as duas

correntes circulam em sentidos opostos).

(a) Quando y → ∞, apenas o primeiro termo contribui para a componente y do campo magnético;

como sabemos que, neste caso, B y = 7,2 × 10 −6 T, obtemos

,

i

1

2By( R2 + L2) 32 /

272 ( , × 10−

6

T)[( 0, 04 m )

2

+ ( 003 , m)]

=

=

R2

( 4 × 10−

7

T ⋅m/A)( 0, 04 m)

2

0

2 3/

2

≈ 090 , A.

(b) Como, de acordo com a Fig. 29-73b, B y = 0 para y = 6 cm, temos:

o que nos dá

i

2

01

iR2

02

iR2

=

2( R2 + L2) 3 2

2( R + y )

/ 2 2 3/

2

( R2 + y2)

32 /

[( 004 , m) 2

+ ( 0, 06 m)

=

i

R2 + L2 32 1 =

2 ]

3 / 2

( 090 , A) = 2, 7 A.

( )

/

[( 004 , m) 2

+ ( 0, 03 m)]

2 32 /

61. Vamos usar o índice 1, para indicar a espira, e o índice 2, para indicar a bobina.

(a) De acordo com a Eq. 29-10, temos:

B

1

01

i ( 4

× 10−

7T⋅m A)( 15A)

= =

= 79 , × 1

2R

2012 ( , m)

1

,

T 79T.

0 − 5 =


SOLUÇÕES DOS PROBLEMAS 211

(b) De acordo com a Eq. 28-37, temos:

= | × B | = B sen 90°

= NiAB = Nir B

2 1 2 1 22 2 1 222 2 1

= ( 50)(, 13A)( 082 , × 10−

2

m) 2( 7, 9×

10−

5

T)

= 11 , × 10−

6

N⋅

m.

62. (a) De acordo com a Eq. 29-9, com f = p rad, temos:

0i

0i

0i

⎛ 1 1⎞

4

10

B = + = +

a b ⎝

a b⎠

⎟ =

4

4

4

= 49 , 7× 10 − 7 T = 0,497 T.

m/A) A ⎛ 1 1 ⎞

+

4 ⎝

0, 0572 m 0,

0936 m⎠

( ×

−7

T⋅ ( 0,

0562 )

(b) De acordo com a regra da mão direita, o campo B aponta para dentro do papel no ponto P

(veja a Fig. 29-6c).

(c) De acordo com a Eq. 28-35, como a área envolvida é A = (pa 2 + pb 2 )/2, o módulo do momento

magnético da espira é

i

( , )

| | = ( a2 + b2 0 0562A

) = [( 0 , 0572m )

2

+ ( 00 , 936m)]

2

2

2

= 106 , × 10−

3A⋅ m2

= 1, 06 mA ⋅ m2.

(d) O sentido de é o mesmo de B, ou seja, para dentro do papel.

63. Imaginando que os segmentos bg e cf (que, de acordo com a figura, não conduzem corrente)

conduzem duas correntes de mesmo valor absoluto (i) e sinais opostos, que se cancelam

mutuamente, podemos considerar o circuito uma combinação de três espiras quadradas que

conduzem uma corrente i, como sugere o enunciado do problema.

(a) O momento dipolar magnético do circuito abcdefgha é

= + + = (

2)(ˆ j− ˆ i+ ˆ) i = ia 2 ˆj

bcfgb abgha cdefc ia

2 2

= ( )( ) = × ⋅ =

60 , A 010 , m ˆ j ( 6,0 10− A m 2 )ˆ j ( 0, 060 A⋅

m2) ˆ. j

(b) Como a distância entre o ponto e o cubo é muito maior que a aresta do cubo, podemos usar

a aproximação dipolar. Para (x, y, z) = (0, 5,0 m, 0), a Eq. 29-27 nos dá

(, 126 10

6

0 ×

T ⋅ m/A)(6,0 × 10−

2m2⋅

A)j ˆ

B( 0, 5,

0m,0) ≈ =

2

y3

2(5,0

m)

3

= (, 96× 10−

11

T) ˆ j=

( 96 pT) ĵ.

64. (a) Os segmentos retilíneos não contribuem para o campo magnético no ponto P, e a contribuição

dos segmentos circulares é dada pela Eq. 29-9. Usando o vetor unitário k para indicar a

direção “para fora do papel”, temos:

0( 0, 200 A )( 7/ 4 rad)

0

02

B P =

ˆ ( , 00 A )( 7

/ 4 rad)

k −

kˆ =− 275 , × 10−

8 kˆ T,

4

( 4, 00 m)

4( 2, 00 m)

o que nos dá | B | = 275 , × 10−

8

T=

275 , nT.

(b) O sentido é − ˆk, ou seja, para dentro do papel.


212 SOLUÇÕES DOS PROBLEMAS

65. De acordo com a Eq. 29-20,

2

R2

| B| 2

(, 800× 10−

3

m)(, 2

1 00 × 10−

4

T)

r = =

= =

i ( 4 × 10−

7

0, 00128 m 128 , mm.

T ⋅m/A)( 25, 0 A)

0

66. (a) De acordo com a Eq. 29-4, temos:

01

i i

Btot = B + B =− kˆ

02

1 2 − kˆ

2r

2r

1

( 4

× 10−

6 00

=−

7 T ⋅ m/A)( , A)

4 × 10

7 T ⋅m/A

kˆ ( )( 10, 0 A)

2

( 100 , cm)

2

(, 5 0 cm)

= ( − 52, 0× 10− 6

T) k ˆ = ( − 520 , T) k. ˆ

(b) Nesse caso, r 1 < y < r 2 . Fazendo

2

0i1

0i2

=

2

( r − y) 2

( y−

r ) ,

1

2

obtemos

ir

y =

i

+ ir

+ i

21 12

2 1

( 10, 0 A)( 100 , cm) + (, 600 A)( 5,

00 cm)

=

= 813 , cm.

( 10, 0 A) + ( 6, 00 A)

(c) Nesse caso, y > r 2 . Fazendo

0

iA

0

iB

=

2

( y−

r ) 2

( y−

r ) ,

1

2

obtemos

ir

y =

i

− ir

− i

21 12

2 1

( 10, 0 A)( 100 , cm) − (, 600 A)( 5,

00 cm)

=

= 17, 5 cm.

( 10, 0 A) − ( 6, 00 A)

67. Vamos chamar de a o comprimento do lado do quadrado. Na solução do Problema 13 foi

visto que o campo magnético produzido a uma distância R do centro de um fio de comprimento

L é dado por

0i

L

B =

2

R L + 4R

2 2

Como o centro do quadrado está a uma distância a/2 de quatro fios de comprimento a, temos:

i

a

Bcentro = ⎛ ⎝ ⎜ ⎞ ⎡

0

4

a ⎠

⎟ ⎢ 2 ( 2 )

⎣⎢

a + 4( a 2)

.

2 2

⎤ 2 2

⎥ =

0i

.

⎦⎥

a

Por outro lado, de acordo com a Eq. 29-10, o campo magnético no centro de um fio circular de

raio R é m 0 i/2R. Assim, o problema pede para mostrar que

2 2

a

i i 4 2 1

> ⇒ > .

2R a R

0 0

Como os dois fios têm o mesmo comprimento, o perímetro do quadrado de lado a é igual ao

perímetro da circunferência de raio R, ou seja,

R

4a= 2

R ⇒ a = .

2


SOLUÇÕES DOS PROBLEMAS 213

Assim, devemos provar que

4 2 8 2 1

a = R > ,

2

R

o que pode ser feito através de um simples cálculo numérico: 8 2/p 2 ≈ 1,15 > 1.

68. Vamos supor que o sentido da corrente é o sentido positivo do eixo x e que o elétron está em

um ponto P situado a uma distância r acima do fio. De acordo com a regra da mão direita, se a

direção “para cima” é o sentido positivo do eixo y, o campo produzido pela corrente no ponto P

aponta no sentido positivo do eixo z. Combinando a Eq. 29-4 com a Eq. 28-2, obtemos

e i

F =− 0

r v

(

2

× k). ˆ

(a) Se o elétron está se movendo para baixo, em direção ao fio, a velocidade do elétron é

v =−v

ĵ e, portanto, e iv F = − 0 ( − ˆ) i = ( 32 , × 10−

16 N)i, ˆ

2r

o que nos dá | F | = 320 , × 10−

16 N.

(b) Neste caso, a velocidade do elétron é v

= vî e, portanto,

e iv

F = − 0 ( − ˆ) j = ( 32 , × 10−

16 N)j, ˆ

2r

o que nos dá | F | = 320 , × 10−

16 N.

(c) Neste caso, a velocidade do elétron é v

= v ˆk ou

v =−vk e, nos dois casos,

F ∝ k ˆ × k ˆ = 0.

69. (a) De acordo com a regra da mão direita, o campo magnético B 1 produzido no ponto a pelo

fio 1 (o fio do vértice inferior esquerdo) está no plano xy e faz um ângulo f = 150° com o semieixo

x positivo; o campo B 2 produzido no ponto a pelo fio 2 (o fio do vértice inferior direito)

também está no plano xy e faz um ângulo f = 210° com o semieixo x positivo. Por simetria,

as componentes y dos dois campos se cancelam e as componentes x se somam, produzindo um

campo resultante que, de acordo com a Eq. 29-4, é dado por

i

B= B + B = ⎛ ⎝ ⎜ 0

1 2 2 1500

l ⎠

⎟ = − 346×

10

2 cos ˆ i ( ,

−5

T) ˆi.

Para cancelar este campo, a corrente do fio b deve ter o sentido para dentro do papel (ou seja, o

sentido − ˆk) e um valor absoluto que, de acordo com a Eq. 29-4, é dado por

2r

ib = B = 346×

10−

5

2

( 0, 087 m)

(, T)

= 15 A,

4

× 10−

7T ⋅m/A

0

na qual r = l 32 / é a distância entre o ponto b e o ponto a.

(b) Como foi dito no item anterior, o sentido do fio b é para dentro da página, ou seja, o sentido

−z.

70. Os segmentos retilíneos não contribuem para o campo B e a contribuição dos arcos de circunferência

é dada pela Eq. 29-9. Chamando de ˆk a direção para fora do papel, temos:

0i(

rad) i

B = ˆ 0 ( 2

+

4( 4, 00 m)

k / rad) 0 2

4( 2,

00 m k ˆ i(

/ rad)

− k ˆ = (1,57 × 10−

7

Tk, ) ˆ

) 4( 4, 00 m)

o que nos dá | B | = 157 , × 10−

7

T=

157 nT.


214 SOLUÇÕES DOS PROBLEMAS

71. Chamando de R o raio do fio, uma corrente i produz um campo magnético

na superfície do fio.

i ×

0 ( 4

10

7T ⋅m/A)(50 A)

B = =

= 7,

7× 10 − 3 T = 7,7 mT.

2

R 2

( 0, 0013 m)

72. (a) O módulo do campo magnético do lado de fora do cilindro é dado por

i

r B ×

−3

0 env 2 | | 2 (, 500 10 m)(1, 0×

10−

6T)

B = ⇒ ienv

= =

= 25 × 10−

3

A = 25 mA.

2

r

4

× 10−

7

T ⋅m/A

0

Como a corrente do cilindro é 30 mA, a corrente do fio é 5,0 mA, no sentido contrário.

(b) O sentido da corrente no fio é para baixo.

73. (a) O campo magnético em um ponto do interior do furo pode ser considerado como a soma

dos campos produzidos por duas correntes: a corrente produzida por um cilindro sem o furo e

uma corrente, no sentido contrário, produzida por um cilindro de dimensões iguais às do furo.

O campo produzido no interior de um cilindro sem o furo a uma distância r do eixo do cilindro

é dado por

ir

B = 0

,

2 R2

na qual R é o raio do cilindro. No caso do cilindro que estamos considerando, a densidade de

corrente é

a corrente no cilindro sem o furo é

i i

J = =

A ( a − b ) , 2 2

ia2

I1

= JA= Ja2

=

a − b

2 2

e o módulo do campo produzido em um ponto no interior do cilindro, a uma distância r 1 do

eixo, é

B

1

0Ir

1 1 0ir1a

2 0ir2

= =

=

2

a2

2

a2( a2 − b2) 2

( a2

− b 2 ) .

A corrente em um cilindro com as mesmas dimensões que o furo é

I

2

ib2

= Jb2

=

a − b

2 2

e o módulo do campo produzido em um ponto no interior do cilindro, a uma distância r 2 do

eixo, é

B

2

0Ir

2 2 0ir2b

2 0ir2

= =

=

2

b2

2

b2( a2 − b2) 2

( a2

− b 2 ) .

No centro do furo, o campo B 2 é zero e o campo nesse ponto é o mesmo que em um cilindro sem

o furo. Fazendo r 1 = d na expressão de B 1 , obtemos o campo no centro do furo:

0id

( 4

10

7

T m/A) 5, 25 A ( 0,

0200

m)

B =

=

= 153 , × 10− 5

T=

15,3T.

2

( a2 − b2)

2[( 0, 0400 m) 2

− ( 0, 0150 m)]

2

× ⋅ ( )

Se o sentido da corrente na Fig. 29-79 é para fora do papel, o campo aponta para cima.


SOLUÇÕES DOS PROBLEMAS 215

(b) Para b = 0, a expressão anterior se torna

id

B = 0

,

2a

2

que é a expressão correta para o campo no interior de um cilindro sem um furo, de raio a, a uma

distância d do eixo.

Para d = 0, a expressão anterior nos dá B = 0, que é a expressão correta para o campo no eixo

de uma casca cilíndrica que conduz uma corrente uniforme.

Nota: Podemos usar a lei de Ampère para mostrar que o campo magnético no interior do furo é

uniforme. Considere uma trajetória retangular com dois lados compridos (1 e 2, de comprimento

L), e 2 lados curtos (de comprimento menor que b). Se o lado 1 coincide com o eixo do furo,

o lado dois é paralelo ao eixo do furo. Para assegurar que os lados curtos não contribuem para a

integral da lei de Ampère, podemos supor que o comprimento L é muito grande (maior até que

o comprimento do cilindro) ou argumentar que o campo B faz um ângulo muito próximo de 90°

com os lados curtos. Seja como for, a integral da lei de Ampère se reduz a

B⋅ ds = 0 ienv

retângulo

B⋅ ds +

B⋅ ds =

lado1 lado 2

( Blado1−

Blado2) L = 0

0i

no furo

na qual B lado 1 é o campo calculado no item (a). Isto mostra que o campo em um ponto fora do

eixo do furo (pelo qual passa o lado 2 da trajetória de integração) é igual ao campo no centro

do furo, o que significa que o campo é uniforme no interior do furo.

74. De acordo com a Eq. 29-4,

2

RB 2

( 0,880 m)( 730 , × 10−

6

T)

i = =

=

4

× 10−

7 T⋅m A

0

75. De acordo com a lei de Biot-Savart,

0

is

× rˆ

i s × r

B( x, yz , ) =

=

0

.

4

r

2

4

r3

Para s

= sĵ e r = xˆi+ yˆj+

zk, ˆ temos:

s × r = ( sˆ j) × ( x ˆ i+ y ˆ j+ zk) ˆ = sz ( ˆ i−

xk

ˆ),

32, 1A.

na qual foram usadas as relações ˆ j× ˆ i = − k, ˆ ˆ j× ˆ j= 0 e ˆ j× k ˆ = ˆ i. Assim, a equação anterior se

torna

i s( z x

Bxyz ( , , )

ˆ ˆ)

0 i−

k

=

4(

x + y + z )

(a) O campo no ponto (x = 0, y = 0, z = 5,0 m) é

B 0050 , , , m

( ) =

2 2 2 3 2

( 4 × 10−

7

T ⋅ m/A)( 2, 0 A)( 3,

10−

2

m)( 50 , m)

ˆ

/

02 2

4 0 5,

0 m

3 2 i

⎡ 2

+ +( ) ⎤

= ( 24 , × 10− 10

T)i ˆ=

(0,24 ˆi) nT.

(b) O campo no ponto (x = 0, y = 6,0 m, z = 0) é B = 0.

.


216 SOLUÇÕES DOS PROBLEMAS

(c) O campo no ponto (x = 7 m, y = 7 m, z = 0) é

B 70 , m, 7,0 m, 0

( ) =

( 4 × 10−

7

T ⋅ m/A)( 2, 0A)

(, 3 0×

10− 2

m) ( −70

, m)

4

2

⎡⎣ 7,0 m + 70m

2

+ 02 ⎤ 3 /

( ) ( , )

2 ⎦

= ( − 43 , × 10−

11T) kˆ =−( 43 k)pT. ˆ

(d) O campo no ponto (x = 23 m, y = 24 m, z = 0) é

B −30

, m, −4,0 m, 0

( ) =

( 4 × 10−

7

T ⋅ m/A)( 2, 0A)

(, 3 0 × 10−

2

m) (, 30m)

4 −

2

+ − 40

2

+ 02 ⎡⎣ ( ) ( , m)

⎤ 3 /

3,0m

2

= (, 14× 10−

10 T) k=(0,14 ˆ k) ˆ nT.

Nota: Nos eixos x e z, a expressão de B pode ser simplificada para

i s

B x , , 0

i s

00

ˆ B 00z

x

, , 0

( ) =− k, ( ) = ˆ i.

4

2

4

z2

O campo magnético no eixo y é zero porque, como a corrente é paralela ao eixo y, ds × rˆ = 0.

76. (a) Com as correntes paralelas, a aplicação da regra da mão direita mostra que as componentes

verticais se cancelam e as componentes horizontais se somam. O resultado é o seguinte:

i

B =− ⎛ ⎝ ⎜ 0

2

r ⎠

⎟ 45 0 = − 4 00 × 10−

4

0

2 cos , ˆ i ( , T)i ˆ = ( −400 T) ˆ i

na qual r = d/ 2 é a distância entre os fios e o ponto P.

(b) Com as correntes antiparalelas, a aplicação da regra da mão direita mostra que as componentes

horizontais se cancelam e as componentes verticais se somam. O resultado é o seguinte:

i

B = ⎛ ⎝ ⎜ 0

2

r ⎠

⎟ 45 0 = 4 00 × 10 − 4

0

=

2 sen , ˆ j ( , T)j ˆ (400 T) ˆ j.

77. Vamos chamar de ponto C o centro da circunferência. Como foi visto no Exemplo “Campo

magnético no centro de um arco de circunferência percorrido por corrente”, o campo magnético

no ponto C produzido pelos trechos retilíneos do fio cujo prolongamento passa por C é zero.

De acordo com a Eq. 29-9 (com f = p/2 rad) e a regra da mão direita, a contribuição dos dois

arcos de circunferência para o campo magnético no ponto C é

0i( 2) 0i( 2)

− = 0.

4

R 4

R

Assim, as únicas contribuições diferentes de zero são as dos dois segmentos retilíneos que não

são colineares com C. Trata-se de dois fios semi-infinitos, um a uma distância vertical R acima

de C e o outro a uma distância horizontal R à esquerda de C. Os campos produzidos pelos dois

segmentos apontam para fora do papel (veja a Fig. 29-6c). Como os módulos das duas contribuições

(dados pela Eq. 29-7) se somam, o resultado é

i i

B = 2 ⎛ ⎝ ⎜ 0 ⎞

R⎠

⎟ = 0

4 2 R

.

o mesmo de um único fio muito longo (veja a Eq. 29-4). Para que esse fio produzisse um campo

com o mesmo sentido (para fora do papel) com uma corrente da direita para a esquerda, teria

que estar acima do ponto considerado (veja novamente a Fig. 29-6c).


SOLUÇÕES DOS PROBLEMAS 217

78. Os pontos em que o campo é zero estão em uma reta paralela ao fio, a uma distância r tal

que B fio = m 0 i/2p = B ext , o que nos dá

0i

( 4

× 10−

7

T⋅m A)( 100 A)

r = =

= 40 , × 10−

3 m = 4,0 mm .

2

B 2

( 50 , × 10−

3

T)

ext

79. (a) O campo nessa região se deve apenas ao fio. De acordo com a Eq. 29-17, temos:

i f ×

0 ( 4

10

7

T ⋅m/A)( 24 A)

B = =

= 4,

8× 10 − 3 T = 4,8 mT.

2r

2

( 0, 0010 m)

(b) Nesse caso, o campo é a soma da contribuição do fio, dada pela Eq. 29-17, com a contribuição

de parte do condutor, dada pela Eq. 29-20, modificada para levar em conta o fato de que o

condutor é oco:

0i

f 0ienv

0i

f 0ic

⎛ r

B = − = −

2r

2r

2r

2r

⎜ R

− R

− R

2 2

int

2 2

ext int

⎧ ×

m −

= , ×

−3

⎡ (, 30 10

3

)

2

( 20 , × 10−

3

m)

2

⎤⎫

16 10 T ⎨1

− ⎢

( 40 , × 10−

3

)

2

− ( 20 , × 10−

3

)

2

⎩⎪ ⎣ m m ⎦

= 93 , × 10−

4

T=

093 , mT.

(c) Do lado de fora do condutor, os dois campos se cancelam e B = 0.

80. Vamos chamar de ponto 1 o ponto mais próximo do fio e de ponto 2 o ponto mais distante.

Como B 2 < B 1 , sabemos que o ponto 2 está do lado de fora do fio. Assim, de acordo com a Eq.

29-20, o campo no ponto 2 é dado por:

B

2

0i

2

rB

3

2 2 2( 10 × 10 020×

10

= ⇒ i = =

− )( ,

2

r

4 × 10−

7

T ⋅m/A

2

De acordo com a Eq. 29-17, o campo no ponto 1 é dado por

o que nos dá

12 /

7

0

i

B = ⎛ ⎝ ⎜ 0

R ⎠

r 2 1,

2

ir

R = ⎛ ⎝ ⎜ ⎞ ×

0 1 ⎡( 4

10 T ⋅m/A)( 10 A )( 4,

0 × 10

B ⎠

⎟ =

2

⎣ 2

( 0, 28 × 10−

3

T)

m

−3

−3

T)

= 10 A.

12 /

m)

⎥ = 53 , × 10−

3

m = 5, 3mm.

81. A “corrente por unidade de largura” de que fala o enunciado pode ser vista como a densidade

de corrente multiplicada pela espessura ∆y da placa: l = J∆y. A lei de Ampère é frequentemente

expressa em termos do vetor densidade de corrente, da seguinte forma:

B ⋅ ds =

J ⋅ dA

0 ,

na qual a integral de superfície do segundo membro se estende à região envolvida pela integral

de linha do primeiro membro (e J aponta no sentido positivo do eixo z, para fora do papel). Se

J é uniforme, como neste problema, o segundo membro se reduz a m 0 JA = m 0 J∆y∆x = m 0 l∆x.


218 SOLUÇÕES DOS PROBLEMAS

(a) A Fig. 29-83 mostra corretamente as componentes horizontais de B nos pontos P e P9, mas

a questão é a seguinte: será que o campo B pode ter uma componente vertical?

Vamos nos concentrar no ponto P. Suponha que o campo magnético não seja paralelo à placa,

como na figura da esquerda. Se invertermos o sentido da corrente, o campo também mudará

de sentido, como na figura do meio. Se fizermos a placa girar 180 o em torno de uma reta perpendicular

à placa, o campo também sofrerá uma rotação de 180 o e passará a apontar para o

lado oposto, como na figura da direita. Entretanto, com a rotação, a distribuição de corrente

passou a ser exatamente a mesma que a inicial, responsável pelo campo mostrado na figura da

esquerda. Comparando as figuras da direita e da esquerda, vemos que, para que sejam iguais, é

preciso que o campo seja paralelo à placa. Isso significa que o campo no ponto P é horizontal,

como na Fig. 29-83.

(b) Para calcular a integral de linha da lei de Ampère, vamos usar uma trajetória retangular, de

largura ∆x, com os lados horizontais passando pelos pontos P e P’, e altura dy > ∆y. Como o

campo B é horizontal, os lados verticais não contribuem para a integral, e a lei de Ampère nos dá

1

2Bx = 0 x ⇒ B=

. 0

2

82. Podemos aplicar a Eq. 29-17 aos dois fios, com r = R 2 + ( d / 2)

2 (pelo teorema de Pitágoras).

As componentes verticais dos campos se cancelam e as componentes horizontais se

somam, apontando no sentido positivo do eixo x. O resultado final é

i d

id

B = ⎛ ⎝ ⎜ 0 ⎞

r ⎠

⎟ ⎛ ⎝ ⎜

/ 2⎞

0

2

r ⎠

⎟ =

= 125 , × 10−

6 T,

2 2 ⎡

R2 2

+ ( d/ 2)

⎤ ⎦

o que nos dá, na notação dos vetores unitários, B = (, 125 × 10

− 6

T) ˆi = (1,25 T) ˆ. i

83. Podemos dividir o quadrado da Fig. 29-85 nos segmentos numerados de 1 a 8 na figura a

seguir, à esquerda, todos os quais podem ser considerados variações da situação mostrada na

figura da direita.

Como, de acordo com o resultado do Problema 29-17, o campo magnético em um ponto P 2 ,

como o mostrado na figura da direita, é dado por

B

0i

=

R

L

,

L + R

P 2 4 2 2


SOLUÇÕES DOS PROBLEMAS 219

os campos magnéticos produzidos pelos 8 segmentos são

B

2

i

= BP

= =

8

( a 4)

P1 8

2

i

,

2

a

0 0

B

20i

= BP

= =

8

( 3a

4)

P4 5

20i

,

6

a

B

B

0i

3a

4

= BP

=

4 a 4 ( 3a

4) 2

( a 4

P2 7

( ) ⋅ [ + ]

3

i

,

10a

0

) 2 12 =

0i

a 4

0i

= BP

= ⋅

4 3a

4 a 4

2

+ 3a

4

2 12 =

( ) ( ) ( ) 3 10a .

P3 6

Somando todas as contribuições, obtemos:

B

P

8

[ ]

i ⎛

= ∑ BPn

( 0

2 2 3 1

− ˆk) =− 2 + + +

a

⎜ 2 6 10 3 10 ⎠ ⎟ kˆ

n=

1

24 ( × 10−7

T⋅m A)( 10 A)

⎛ 2

=−

+

( 8, 0×

10−2

m)

⎜ 2

2

6

3 1 ⎞

+ + ˆ

10 3 10 ⎠

⎟ k

= ( − 20 , × 10−

4

Tk ) ˆ = ( −020

, mT)

ˆk,

na qual ˆk é um vetor unitário que aponta para fora do papel.

Nota: se o ponto P está no centro do quadrado, a contribuição de todos os segmentos é a mesma,

e o campo total é

B = B = B

=

P1 P2 P8

20i

4 a

,

2 2

Bcentro = 8BP1

=

a

84. (a) Nesse caso, as correntes nos três fios são paralelas e todos os fios se atraem. Assim, o fio

“de cima” é atraído “para baixo” em direção dos outros dois por uma força de módulo

0(, 30m)( 50 , A)(, 32A)

0(, 30m)( 5,

0A)( 5, 0 A)

F = +

= 17 , × 10−4

N = 017 , mN.

2

( 0, 10 m)

2

( 0, 20 m)

(b) Nesse caso, como o fio “de cima” é repelido pelo fio do meio e atraído pelo fio “de baixo”,

o módulo da força resultante é

( )( ) −

(, 30m) 50 , A 32 , A

F =

2

( 0, 10 m)

0 0

0

i

.

( )( ) = × =

(, 30m) 50 , A 50 , A

2(

0, 20 m)

21 , 10−

5 N

0,021 mN.

85. (a) De acordo com a lei de Ampère, no caso de uma trajetória circular de raio r tal que

b < r < a, temos:

B ds rB i i r2 − b2

⋅ = 2 = 0 = ( )

env 0

( a2 − b2) .

Assim,

0i

⎛ r

B =

2 ( a2 − b2)

− b ⎞

r ⎠

⎟ .

2 2


220 SOLUÇÕES DOS PROBLEMAS

(b) Para r = a, o módulo do campo magnético é

i a2 − b2

0 ⎛ ⎞ i

B =

a − b ⎝

a ⎠

⎟ = 0

,

2 (

2 2)

2

a

o que está de acordo com a Eq. 29-17.

Para r = b, B = 0.

Para b = 0,

i r

2

0 0ir

B = = ,

2

a2

r 2

a2

o que está de acordo com a Eq. 29-20.

(c) A figura a seguir mostra o gráfico pedido.

86. Vamos chamar o lado de comprimento L de lado longo e o lado de comprimento W de lado

curto. O centro está a uma distância W/2 do ponto médio dos lados longos e a uma distância L/2

do ponto médio dos lados curtos. Tratando cada lado como um segmento como o do Problema

29-17, obtemos:

0i

L

0i

W

B = 2 + 2 2 ( W 2 ) L2 + 4( W 2) 2 2 ( L 2 ) W + 4( L 2)

2 2

2

2

+

2 12

= 0 i ( L W )

/

.

LW

87. (a) De acordo com a Eq. 29-20, para r < c,

(b) De acordo com a Eq. 29-17, para c < r < b,

ir

B = 0

.

2c

2

i

B = 0

2 r .

(c) De acordo com o resultado do Problema 29-79, para b < r < a, temos:

i i r2 − b2

⎛ ⎞ i a r

B = −

r r ⎝

a − b ⎠

⎟ =

2

2

0 0

0 ⎛ ⎞

2

2

2 2

2r

a2 − b2⎠

⎟ .

(d) Do lado de fora do cabo coaxial, a corrente total envolvida por uma amperiana é zero e,

portanto, para r > a, B = 0.


SOLUÇÕES DOS PROBLEMAS 221

(e) Vamos testar as expressões para três casos especiais. Fazendo r = c nas expressões dos itens

(a) e (b), obtemos o mesmo resultado, B = m 0 i/2pc. Fazendo r = b nas expressões dos itens (b) e

(c), obtemos a mesma expressão, B = m 0 i/2pb. Finalmente, fazendo r = a na expressão do item

(c), obtemos o mesmo valor do item (d), B = 0.

(f) A figura a seguir mostra o gráfico pedido.

88. (a) Considere um segmento do projétil entre y e y + dy. Podemos usar a Eq. 29-7 para

calcular o campo magnético produzido pelos trilhos, considerados como fios semi-infinitos,

chamando o trilho de cima de 1 e o trilho de baixo de 2, e a Eq. 29-12 para calcular a força

magnética que age sobre o segmento. A corrente no trilho 1 é no sentido +î e a corrente no

trilho 2 é no sentido −î. Na região entre os fios, os campos têm o mesmo sentido, o sentido − ˆk

(para dentro do papel), e a força que age sobre o segmento do projétil é

dF = dF + dF = idy( − ˆ) j × B + dy( − ˆ) j × B = i B + B ˆi

dy

1 2 1 2 [ 1 2 ]

⎡ 0i

0i

= i

+ ˆ

dy

⎣ 4 ( 2R+ w−

y)

4 y

⎥ i .

A força que age sobre o projétil é, portanto,

R+

w

F dF i 20

⌠ ⎛ 1

= =

R+ w− y + 1⎞

∫ ⎮

y⎠

⎟ dy 0i

î =

2 w

1

⌡ 2

2 ln ⎛ ⎞

+ ˆ

R⎠

⎟ i.

(b) Como, de acordo com o teorema do trabalho e energia,

1

K = mv2

2

= W =∫F⋅ ds = FL,

a velocidade final do projétil é

12 /

W

i w

v f = ⎛ ⎝ ⎜

2 ext ⎞ ⎡ 2 0 ⎛ ⎞

m ⎠

⎟ = 2

⎢ ln +

m ⎝

⎜1

R⎠

⎣ 2

L ⎤

R

f

ext

×

−7 ⋅ ×

3 2

⎧24 ( 10 T m/A)( 450 10 A) ln 1+

(, 1 2cm)/(6,7cm) ( 40 , m)

= ⎨

2

( 10×

10−

3

kg)

= 2, 3× 10 3 m/s = 2,3 km/s.

12 /

[ ]

89. De acordo com o resultado do Problema 29-13, o campo a uma distância R do ponto médio

de um segmento de fio de comprimento L é dado por

0i

L

B =

.

2

R L2 + 4R2

12 /


222 SOLUÇÕES DOS PROBLEMAS

Como, neste problema, o centro da espira está a uma distância d/2 de quatro segmentos de fio

de comprimento a, temos:

i

a

B = 4 ⎡ ⎣ ⎢ ⎤ ⎡

0

a

⎥ ⎢

2

( / 2) ⎦ ⎣⎢

a + 4( a/ 2)

2 2

⎦⎥ = 2 20i

.

a

90. (a) O módulo do campo magnético no eixo de uma bobina circular, a uma distância z do

centro da bobina, é dado pela Eq. 29-26:

N iR2

B = 0

2( R + z )

2 2 32 /

na qual N é o número de espiras, i é a corrente e R é o raio da bobina. As duas bobinas têm o

mesmo número de espiras, o mesmo raio e conduzem correntes iguais. Os campos produzidos

pelas correntes têm o mesmo sentido na região entre as bobinas. Vamos colocar a origem das

coordenadas no centro da bobina da esquerda e o eixo x na reta que liga os centros das bobinas.

Para calcular o campo produzido pela bobina da esquerda, fazemos z = x na equação anterior.

O ponto escolhido está a uma distância s − x do centro da bobina da direita, na qual s é a distância

entre os centros das bobinas. Para calcular o campo produzido pela bobina da direita nesse

ponto, fazemos z = s 2 x na equação anterior. Isso nos dá um campo total

A derivada do campo em relação a x é

B N iR 2

= 0 ⎡ 1 1

+

2

⎣( R + x ) ( R + x − 2sx + s )

dB

dx

2 2 32 / 2 2 2 3 / 2

N iR2

x

x s

=− 0 ⎡ 3 3( − )

+

2

( R2 + x2)

52

R2 + x2

( − 2sx

+

,

.

/ s2 5 / 2

No ponto x = s/2 (a meio caminho entre as bobinas), o resultado é

dB

dx

s/ 2

N

iR2

0 ⎡ 3s/

2

=−

2

⎣( R + s / 4)

independentemente do valor de s.

(b) A derivada segunda é

No ponto x = s/2,

d2B

dx2

s / 2

( R

+ s

2 2 52 / 2 2

)

3s

/ 2

/ 4 − s + s )

⎥ .

2 2 52 /

d2B

N

iR2

x2

0 ⎡ 3 15

=

dx2

2

⎢−

+

R2 + x2 5 2

R2 + x2 7 2

⎣ ( )

/

( )

/

3

15( x−

s)

2

+

( R2 + x2 − 2sx + s2)

5/

2

( R2 + x2 − 2sx + s

2)

N

iR2

0 ⎡ 6

=

2

⎢−

⎣ ( R + s / 4)

2 2 5/

2

30s2

/ 4

+

( R2

+ s / 4)

2 7/

2

7/

2

⎥ 0,

=

⎥ .

=

N

2 2 2 2

0R − 6( R + s / 4) + 30s

/ 4

s2 R2

N iR2

2

3

( R2

+ s2 7 2 0

/ 4) ⎥

=

( R + s / 4)

/ 2 2 7/

2

,

que se anula para s = R.

91. Como estamos interessados em calcular o campo em pontos P cuja posição é especificada

por uma coordenada x, situados em uma reta perpendicular ao plano da espira, vamos supor

que a espira quadrada está no plano yz, com o centro na origem. De acordo com o teorema de


SOLUÇÕES DOS PROBLEMAS 223

Pitágoras, como a origem está a uma distância a/2 dos lados da espira, a distância do ponto P

aos lados do quadrado é

x 2 + ( a/ 2) 2 = x 2 + a

2 / 4.

De acordo com o resultado do Problema 29-13, o campo a uma distância R do ponto médio de

um segmento de fio de comprimento L é dado por

0i

L

B =

2

R L + 4R

2 2

Como, neste problema, o ponto P está a uma distância x2 + a 2

/ 4 de quatro segmentos de fio

de comprimento a, temos, para cada fio,

0i

B′ =

a

4x + a 4x + 2a

2 2 2 2 .

Por simetria, é fácil mostrar que apenas as componentes x dos componentes dos campos produzidos

pelos quatro segmentos contribuem para o campo total (as componentes y e z se cancelam

aos pares). De acordo com o teorema de Pitágoras, o valor da componente x é

B′ =

x

x

a/

2

+ a

a

=

/ 4 4x + a B .

2 2 2 2

O campo criado pelos quatro segmentos é, portanto,

4

i

Bx ( )= 4Bx′ =

que é a expressão pedida.

Para x = 0, a expressão anterior nos dá

a

0 0

4x + a 4x + 2a

4x

+ a

2 2 2 2 2 2

que é a expressão obtida no Problema 29-89.

Note que, para x >> a, temos:

i 4a2

0 2 20i

B( 0) = = ,

a2 2a2

a

i a

Bx ( ) 0 4

2

ia2

0 0

≈ = =

8x

2

x 2

x

,

3

3 3

a

.

i 4a2

=

( 4x + a )( 4x + 2a

)

2 2 2 2 12 /

na qual m = iA = ia 2 é o momento dipolar magnético da espira quadrada. Esta expressão é a

mesma da Eq. 29-77.

92. Como, neste caso, o comprimento do toroide é aproximadamente igual a 2pr, temos:

⎛ N ⎞

B=

0i

ni

r ⎠

⎟ = 0

.

2

Este resultado é razoável, já que, nesse caso, cada trecho do toroide se comporta como uma

parte de um solenoide longo.

,

93. De acordo com a lei de Ampère,

∫ B⋅ ds = i env ,

na qual i env é a corrente total envolvida pela amperiana. Para a trajetória tracejada da Fig. 29-89,

i env = 0, já que a corrente que entra pelo lado de cima é igual à corrente que sai pelo lado de bai-


224 SOLUÇÕES DOS PROBLEMAS

xo. A integral

B⋅

ds é zero no lado esquerdo, no lado de cima e no lado de baixo do percurso:

no lado direito, porque o campo é zero; no lado de cima e no lado de baixo, porque o campo é

perpendicular a ds

. Se l é o comprimento do lado esquerdo, a integral completa é

∫ B ⋅ ds = Bl,

na qual B é o módulo do campo do lado esquerdo da trajetória. Como B e l são diferentes de

zero, a lei de Ampère não é respeitada, pois o lado esquerdo é diferente de zero e o lado direito

é igual a zero. A causa da aparente contradição é o fato de que as linhas de campo magnético

mostradas na Fig. 29-89 não estão corretas. Na verdade, as linhas de campo se encurvam para

fora nas bordas da região onde existe campo magnético e a concentração das linhas diminui

gradualmente, e não de forma abrupta, como na figura.


Capítulo 30

1. Como a rotação da espira não faz variar o fluxo F B = BA cos u, a força eletromotriz induzida

é zero.

2. De acordo com a lei de Faraday, a fem induzida é

d =− =− ( ) B d BA

=− B dA =− B d ( π r 2)

=−2π

rB dr

dt dt dt dt

dt

=−2π( 0, 12 m)( 0, 800 T)( −0, 750 m/s)

= 0,

452 V.

3. Como a fem induzida é

=− N d ⎛

=−NA dB ⎞

=− NA d ni =−N nA di

B

di

( µ 0 ) µ 0 =−Nµ 0n( πr2)

dt ⎝ dt ⎠ dt

dt

dt

=− ( 120)( 4π

× 10 −7 T⋅m A)(22.000 m ) π 0,

016 m

= 016 , V,

a lei de Ohm nos dá

15 , A

0,

025 s⎠

( ) ⎛ ⎝ ⎜ ⎞

1 2

i = | |

R

= 0,

016 V

,

= 0,

030 A

53

= 30mA.

4. De acordo com a Eq. 30-4, e = −dF B /dt = −pr 2 dB/dt.

(a) Para 0 < t < 2,0 s,

dB

dt

e =− πr

=− π ( 012 , m)

2 2

(b) Para 2,0 s < t < 4,0 s, e ∝ dB/dt = 0.

(c) Para 4,0 s < t < 6,0 s,

e =− πr

dB =−

dt

π ( 012 , m)

2 2

⎛ 05 , T ⎞

⎝ 20 − 00

=− 1, 1× 10 − 2 V = −11

mV.

, s , s

⎛ −05

, T ⎞

⎝ 60 − 40

= 1, 1× 10 − 2 V = 11mV.

, s , s

5. Como o campo magnético produzido pelo fio aponta para fora do papel no lado superior da

espira e aponta para dentro do papel no lado inferior da espira, o fluxo total através da espira é

zero e, portanto, a corrente induzida na espira é zero.

6. De acordo com o gráfico da Fig. 30-35b, i = 1,5 mA no instante t = 0, ou seja, sem campo

aplicado, o que significa que a resistência do circuito é

600 , × 10

R =

15 , × 10−

−6

3

V

A

= 0, 0040 .


226 SOLUÇÕES DOS PROBLEMAS

No intervalo 10 s < t < 20 s, temos:

e, portanto,

induzida

V

fonte

+ e

R

fonte

induzida

=

0,

00050

= ( 0, 00050 A) R− V = ( 0, 00050 A)( 00 , 040 ) − 600 , × 10

=− 40 , × 10−

6

V.

De acordo com a lei de Faraday,

A

−6

V

induzida

dB

induzida

=− =− A dB

4, 0×

10

=−Aa

⇒ a = − =

dt dt

A 50 , × 10−

−6

V

m

4 2

= 80 , × 10−

3

T/s.

7. (a) O valor absoluto da fem é

d e = B d

= (, 60t2 + 70 , t) = 12t

+ 70 , = 12( 20 , ) + 70 , = 31mV.

dt dt

(b) De acordo com a lei de Lenz (veja, em especial, a Fig. 30-5a), a corrente circula na espira

no sentido horário. Isso significa que o sentido da corrente no resistor R é da direita para a

esquerda.

8. A resistência da espira é

L

R = = ×

( )

(, 169 10 8 0,10 m

⋅m)

= 11 , × 10−

3 .

A

( 2,5×

10 −3 m )

2

/ 4

Como i = |e|/R = |dF B /dt|/R = (pr 2 /R)|dB/dt|, temos:

dB

dt

= iR

r

= ( 10 A)(, 11×

10−

3

)

= 14 ,

2

( 0, 05 m)

2

Ts.

9. A amplitude da fem induzida na espira é

m = Aµ ni ω = (, 68× 10−

6m2)( 4π

× 10 −7 T⋅

mA)( 85.

400 m−

1)( 128 , A)( 212 rad/s)

0 0

= 198 , × 10−

4

V.

10. (a) Como o fluxo magnético F B através da espira é dado por

temos:

B B r 2

= 2 45 =

r 2

cos

o

B ,

2

2

dB

=− =−

dt

d

dt

= 51 , × 10−

2 V.

⎛ πrB 2

⎟ =− πr2

⎛ B⎞

π 37 , × 10

⎟ =−

2 2 t

2

−2

2

( m) − ×

0 76 10−

3

T⎞

45 , × 10−

3s

(a) O sentido da fem induzida é o sentido horário, do ponto de vista do sentido de incidência

de B.

11. (a) Convém chamar atenção para o fato de que o resultado, que está expresso em termos de

sen(2p ft), poderia, em vez disso, estar expresso em termos de cos(2pft) ou mesmo de cos(2pft +

f), em que f é uma constante de fase. A posição angular u da bobina é medida em relação a

uma reta ou plano de referência, e, de acordo com a escolha da referência, o fluxo magnético

pode ser escrito como BA cosu, BA senu ou BA cos(u + f). Para a referência que foi escolhida,


SOLUÇÕES DOS PROBLEMAS 227

F B = BA cosu. Como a bobina está girando com velocidade angular constante, u aumenta linearmente

com o tempo. Assim, u = 2pft, em que u é o ângulo em radianos e 2pf a velocidade

angular. Como a área de uma bobina retangular é A = ab, a lei de Faraday nos dá

d( BA cosθ) =− N =− NBA d cos( 2π

f ) = 2π

fNabBsen(

2π ft),

dt

dt

que é a equação que queríamos demonstrar. No enunciado, a equação também é escrita de outra

forma, e 0 sen(2pft), para deixar claro que a fem induzida é senoidal e tem uma amplitude

e 0 = 2pf NabB.

(b) Como

temos:

e 0 = 150 V = 2pf NabB,

150V

150 V

Nab = = = 0, 796 m 2

.

2

fB 2( 600 , s−

1)( 0, 500 T)

12. Para que seja induzida uma fem, o campo magnético deve ter uma componente perpendicular

à espira e deve variar com o tempo.

(a) Para B

= ( 400 , × 10−

2 T/m) yk, ˆ dB/dt = 0 e, portanto, e = 0.

(b) Nenhum.

(c) Para B

= (, 600× 10−

2 T/s) tk,

ˆ

d =− =− A dB

B

=− ( 0, 400 m×

0, 250 m)( 0, 0600 T/s ) =−600 , mV,

dt dt

o que nos dá |e| = 6,00 mV.

(d) Horário.

(e) Para B

= (, 800× 10−

2 T/m⋅s) yt k, ˆ

A fem induzida é

0,

250 y2

B = ( 0, 400)( 0, 0800t) ∫

ydy = ( 0, 032)

0 2

o que nos dá |e| = 1,00 mV.

(f) Anti-horário.

(g) B = 0 ⇒ = 0.

(h) Nenhum.

(i) B = 0 ⇒ = 0.

(j) Nenhum.

B

0250 ,

d

=− =− 100 , × 10−

3

V = −1,

00 mV,

dt

0

= 100× 10−

,

3t.


228 SOLUÇÕES DOS PROBLEMAS

13. A carga é

1

A

qt () [ B( ) B( t)] [

R

R B ( ) B ( t 120 , × 10−

3m

= 0 − = 0 − )] =

13,

0

= 2,95 × 10

2C=

29,

5 mC

.

2

[, 160 T −( −1,60 T)]

14. De acordo com a Fig. 30-40b, o valor de dB/dt [a inclinação da reta que representa a função

B(t)] é 0,003 T/s. Assim, a lei de Faraday nos dá

d B dBA ( )

=− =− =− A dB =− (, 80× 10−

4

m 2 )( 000 , 3T/s) = 2, 4× 10−

8 V.

dt dt dt

De acordo com a Fig. 30-40c, o valor da corrente i = dq/dt [a inclinação da reta que representa

a função q(t)] é 0,002 A. Assim, a lei de Ohm nos dá

×

| | A| dBdt / | (, 80 10

4

m2)( 0,

0030 T/s)

R = = =

= 0, 0012 =

12 , m.

i i

0,0020 A

15. (a) Seja L o comprimento do lado da espira. Nesse caso, o fluxo magnético através do circuito

é B = LB

2 / 2 e a fem induzida é

i

2

B

d L dB

=− =− .

dt 2 dt

Como B = 0,042 2 0,870t, dB/dt = 20,870 T/s e

i = ( 200 , m ) 2

( 0,

870 T/s) =1,74 V.

2

Como o campo magnético aponta para fora do papel e está diminuindo, a fem induzida tem a

mesma polaridade que a fem da fonte, e a fem total é

e + e i = 20,0 V + 1,74 V = 21,7 V.

(b) O sentido da corrente é o sentido anti-horário.

16. (a) Escolhendo o sinal positivo para o fluxo de B 1 e B 2 , a fem induzida é

1 2 3

=− = + +

∑ d B

A dB dB dB

dt ⎝ dt dt dt ⎠

= ( 010 , m)( 0,

20 m)( 20 , × 10− 6

T/s + 10 , × 10− 6

T/s− 50 , × 10−

6

T/s)

=

− 40 , × 10−

8 V.

Assim, de acordo com a lei de Ohm, o valor absoluto da corrente é

| | ,

R = 40×

10

50 , × 10

−8

−3

V

= 80 , × 10−

6

A=

80 , µ A.

(b) De acordo com a lei de Lenz, o sentido da corrente induzida é o sentido anti-horário.

17. O campo no centro da espira maior pode ser calculado usando a Eq. 29-10, B = m 0 i/2R,

na qual R é o raio da espira. Assim, para i(t) = i 0 + kt, na qual i 0 = 200 A e k = (–200 A – 200

A)/1,00 s = – 400 A/s, temos:

i ( ×

00 4 10

7

H/m)( 200 A)

(a) B( t= 0)

= =

= 1,

26 × 10 − 4 T.

2R

2100 (, m)


SOLUÇÕES DOS PROBLEMAS 229

( 4 10−

7H/m) 200 A 400 A/s 0,

500 s

(b) B( t= 0, 500 s)

=

⎡⎣ ⎤ ⎦ = 0.

2100 (, m)

× −( )( )

( 4 10−

7

H/m) ⎡200 A 400 A/s 100 , s

(c) B( t= 100 , s)

=

⎣ ⎤ ⎦ =− 126 , × 10−

4 T,

2100 (, m)

× −( )( )

o que nos dá | Bt= ( 100 , s)| = 1,

26 × 10−

4 T.

(d) Sim, como indica a diferença entre os sinais de B(t) nos itens (a) e (c).

(e) Seja a a área da espira menor. Nesse caso, B = Ba e a lei de Faraday nos dá

dB

dBa ( )

=− =− =− =− ⎛ ⎝ ⎜ ⎞

a dB B

a

dt dt dt t

=−( 200 , × 10

−4

= 504 , × 10−

8 V.

⎛ − 126× 10−

4

− ×

m2

, T 1,26 10

4

T

)

100 , s ⎠

18. (a) A “altura” do triângulo formado pelos trilhos e pela barra no instante t é igual à distância

percorrida pela barra até esse instante: d = vt, na qual v é a velocidade da barra. A “base” do

triângulo (distância entre os pontos de interseção da barra com os trilhos) é 2d. Assim, a área

do triângulo é

1

1

A= ( base)(altura) = ( vt vt = v t

2

2 2 )( )

2 2.

Como o campo é uniforme, o fluxo, em unidades do SI, é

B = BA = (0,350)(5,20) 2 t 2 = 9,464t 2 .

No instante t = 3,00 s, B = (9,464)(9,00) = 85,2 Wb.

(b) De acordo com a lei de Faraday, a fem, em unidades do SI, é dada por

d dt

2

= B

= 9, 464 = 18, 93t.

dt dt

No instante t = 3,00 s, e = (18,93)(3,00) = 56,8 V.

(c) O cálculo do item (b) mostra que n = 1.

19. De acordo com a lei de Faraday,

o que nos dá

=− N dBA ( cos θ) =− NBA d cos( 2π

ft )

= NBA2π

f sen( 2π ft),

dt

dt

max = 2π

fNAB = 2π( 16, 7 rev s)( 100 espiras)( 015 , m 2 )( 35 , T) = 550 , × 10 3 V = 5,5 kV.

20. Como 1 gauss = 10 24 T, a carga que atravessa o medidor é

N

qt

R BA BA 2 cos 20°

() = [ cos 20° −( − cos 20°

)] =

NBAR

2( 1000)( 0, 590 × 10 −

(cos 20 )

=

4 T) (0,100 m)

2

°

= 155 , × 10−

5 C .

85,0 + 140

Note que o eixo da bobina faz um ângulo de 20°, e não 70°, com o campo magnético da Terra.


230 SOLUÇÕES DOS PROBLEMAS

21. (a) A frequência é

( 40 rev/s)(2

rad/rev)

f = = = 40 Hz.

2

2

(b) Em primeiro lugar, definimos um ângulo em relação ao plano da Fig. 30-44, tal que o fio

semicircular se encontra na posição u = 0 no instante inicial e um quarto de período de revolução

mais tarde se encontra na posição u = p/2, com o ponto médio a uma distância a acima

do plano da figura. Nesse instante, a área envolvida pelo circuito está reduzida a um retângulo,

cuja área vamos chamar de A 0 . Como a área de um semicírculo é pa 2 /2, a área envolvida pelo

circuito em função de u é dada por

a

A= A0

+

2

2

cos

na qual u = 2pft, se tomarmos t = 0 como o instante em que o fio semicircular se encontra na

posição u = 0. Como o campo magnético é constante e uniforme, a lei de Faraday nos dá

[ ] =−

dB

+

=− =− B dA =−B d A 0 ( π a / 2)cosθ π

B

a

dt dt

dt

2

A amplitude da fem induzida é, portanto,

2 2

m = Bπ2a2f

= ( 0, 020 T) π2( 0, 020 m) 2( 40 s−

1) = 32 , × 10 3 V

22. De acordo com a lei de Faraday,

dcos( 2π

ft)

= Bπ2a2f sen( 2π

ft).

dt

− =

3,2 mV.

d dBA ( cos φ)

d

=− =− = BA sen φ φ = ( 020 , T)( 0,

15m 2)sen( π / 2)( 060 , s−

1)

dt dt

dt

= 0, 018 V = 18 mV.

23. (a) Na região onde se encontra a espira menor, o campo magnético produzido pela espira

maior pode ser considerado uniforme e igual ao valor do campo no centro da espira menor, que,

de acordo com a Eq. 29-26, com z = x >> R, é dado por

iR

B = 0

2x3

na qual o sentido do eixo x é para cima na Fig. 30-45. O fluxo do campo magnético através da

espira menor é aproximadamente igual ao produto deste campo pela área da espira menor:

B

2

î

= 0

ir R

2x3

(b) De acordo com a lei de Faraday, a fem induzida é

2 2

dB

=− =− ⎛ ⎝ ⎜ πµ ir2R2

0 ⎞ d ⎛ 1 ⎞

dt

dt ⎝ x ⎠ =− πµ 0ir2

⎛ R

2

3

2

.

2

⎛ ⎝

3 dx ir2Rv

2

⎞ 3 0

x4

dt ⎠ = πµ .

2x4

(c) Quando a espira menor se afasta da espira maior, o fluxo do campo magnético através da

espira menor diminui e temos uma situação semelhante à da Fig. 30-5b. De acordo com a lei de

Lenz, o sentido da corrente induzida deve ser tal que produza um campo magnético orientado

no mesmo sentido que o campo magnético produzido pela espira maior, de modo a se opor

à diminuição do fluxo. Assim, o sentido da corrente é o sentido anti-horário quando a espira

maior é vista de cima, o mesmo sentido da corrente i na Fig. 30-45.

24. (a) Como B = Bî, apenas a área “projetadaî no plano yz contribui para o fluxo. Esta área

“projetada” corresponde a um quarto de circunferência. Assim, o fluxo magnético B através

da espira é

B =

B ⋅ dA 1

= r2B

4


SOLUÇÕES DOS PROBLEMAS 231

e, portanto,

dB

d ⎛ 1

| | = = rB

2 ⎞ πr2

dB 1

π = = π(0,10 m)

dt dt ⎝ 4 ⎠

2 (, 30×

10−

3 T/s)

4 dt 4

= × =

2,4 10− 5

V 24µ

V.

(b) De acordo com a lei de Lenz, o sentido da corrente no segmento bc é de c para b (a situação

é análoga à da Fig. 30-5a).

25. (a) Vamos chamar de L o comprimento dos fios e supor que o eixo central de um dos fios

passa pela origem do sistema de coordenadas e o outro pelo ponto x = D, para o qual D é a

distância entre os fios. Como, por simetria, os campos magnéticos produzidos em pontos no

intervalo 0 < D/2 < x são iguais aos campos magnéticos produzidos em pontos no intervalo

D/2 < x < D, podemos escrever:

D 2

d 2

B

0

0

∫ ∫ ∫

D 2

= 2 BdA= 2 BLdx+

2 BLdx

na qual d é o diâmetro dos fios. Vamos usar R = d/2 e r em vez de x nos cálculos a seguir.

Temos:

d 2

B

L

R

i

R r i

=

⌠ ⎡ 0

0

⎤ ⌠

2 ⎮ ⎢ +

dr

D r

⎥ + 2

⌡ 2

2

2

( − ) ⎦ ⌡

0

D / 2

0

⎡ 0i

0i

⎢ +

dr

⎣ 2r

2( D− r)

0i ⎡ ⎛ D−

R⎞

⎤ i D R

= 1−2ln

2

⎢ ⎝

D ⎠

⎟ ⎥

+ 0

⎛ − ⎞

ln

R ⎠

= 023 , × 10−

5

T⋅

m+ 108 , × 10−

5

T⋅

m

= 13 , × 10−

5

T⋅ m = 13 Wb/m.

(b) Como, de acordo com os resultados do item (a), o fluxo por metro que corresponde ao interior

dos fios é 0,23 × 10 –5 T·m, a porcentagem que está no interior do fluxo que está no interior

dos fios é

023 , × 10−

5

T⋅m

= 017 , = 17%.

13 , × 10−

5

T⋅m

(c) Nesse caso, os campos magnéticos produzidos em pontos no intervalo 0 < D/2 < x são

iguais, em valor absoluto, aos campos magnéticos produzidos em pontos no intervalo D/2 < x <

D, mas têm o sentido oposto e, portanto, o fluxo total (e, em consequência, o fluxo por metro)

é igual a 0.

26. (a) Para começar, observamos que, em uma parte da região envolvida pela espira, os fluxos

do campo magnético se cancelam. De acordo com a regra da mão direita, o campo magnético

produzido pela corrente no fio retilíneo longo na parte da espira acima do fio aponta para fora

do papel e o campo produzido na parte da espira abaixo do fio aponta para dentro do papel.

Como a altura da parte da espira acima do fio é b 2 a, o fluxo em uma parte da espira abaixo

do fio, de altura b 2 a, tem o mesmo valor absoluto e o sinal oposto ao do fluxo acima do fio e

os dois fluxos se cancelam. Assim, o fluxo através da espira é dado por:

= BdA = ⌠⎮

B

⌡b−

a

a

⎛ 0i

⎞ 0ib

a

bdr

r ⎠

⎟ ( ) =

2π 2π ln ⎛ ⎞

b − ⎠

a .


232 SOLUÇÕES DOS PROBLEMAS

Nesse caso, a lei de Faraday nos dá

d B d ⎡ µ ⎛

=− =−

⎞ ⎤

0 ib a

dt dt ⎣ ⎝ b−

a⎠

=− µ 0 b ⎛ a

ln

ln

⎞ di

⎝ b−

a⎠

dt

µ b ⎛ a d

=− ln

⎞ ⎛ 9

t

⎝ b−

a⎠

dt ⎝ 2

0 2

= − µ ( − ) 0b 9t 10 ⎛ ⎞

ln a

⎝ b−

a⎠

.

Para a = 0,120 m, b = 0,160 m e t = 3,00 s, temos:

[ ]

( 4π

× 10−

7)( 0, 16) 93 ( ) −10

=

− 10t

⎛ 012 , ⎞

ln

016 , − 0,

12⎠

⎟ = 598 , × 10−

7 V = 0,598 µ V.

(b) Como di/dt > 0 no instante t = 3 s, a situação é análoga à da Fig. 30-5c. Assim, de acordo

com a lei de Lenz, a fem induzida produz uma corrente no sentido anti-horário.

27. (a) Considere uma fita de largura infinitesimal dy e espessura l = 0,020 m. Se a fita está

localizada na altura y, o fluxo magnético através da fita é

e o fluxo total através da espira é

d = BdA =( 4t 2 y)( ldy)

B

Assim, de acordo com a lei de Faraday,

B

l

dB

4t2yl

dy 2t2l3

0

= = ( ) =

d = B

= 4tl 3 = 4( 25 , s)( 0, 020m) 3 = 80 , × 10−

5 V = 80 µV.

dt

(b) De acordo com a lei de Lenz, o sentido da força eletromotriz induzida é o sentido horário.

28. (a) O campo produzido pelo fio é dado pela Eq. 29-17. Para calcular o fluxo, podemos usar

a Eq. 30-1:

(b) Para calcular a corrente induzida na espira, calculamos a fem induzida, usando a lei de

Faraday e levando em conta o fato de que dr/dt = v, e dividimos o resultado pela resistência da

espira, o que nos dá

.

0ia

d r b

iabv

i 2 ln

⎛ /2⎞

0

R 2

R dt ⎝ r2b/2⎠ 2 2

2

Rr [ 2 ( b / 2) ]

7

( 4

10 2 23

Tm / A)( 4, 7A)( 0,

022m)( 0, 0080m)(,

3210

m/s

24

2

2 ( 4, 010 )[ 2(

0, 0080m

]

25

10 , 10 A

10 A.

29. (a) De acordo com a Eq. 30-8,

= BLv = ( 0, 350 T)(0,250 m)(0,55 m/s) = 0,

0481 V.

(b) De acordo com a lei de Ohm, temos:

0,

0481 V

i = = 0, 00267 A=

267 , mA.

18,

0


SOLUÇÕES DOS PROBLEMAS 233

(c) De acordo com a Eq. 26-27, P = i 2 R = 0,000129 W = 0,129 mW.

30. De acordo com a lei de Faraday, a fem induzida é dada por

d B dBA ( )

= = =

dt dt

A dB

dt

Como, de acordo com a Eq. 29-23, o campo no interior do solenoide é dado por B = m o ni (e é

zero do lado de fora do solenoide, o que significa que A = A solenoide ), temos:

A dB

dt

A

d

dt

µ ni µ nA

= = ( ) =

solenoide 0 solenoide 0 solenoide

.

di solenoide

dt

na qual, de acordo com a Fig. 30-51b, di solenoide /dt = (1,00 A)/(2,0 s) = 0,5 A/s. Para n = 8000

espiras/s e A solenoide = p(0,02) 2 (note que o raio da espira não aparece nos cálculos, que envolvem

apenas no raio do solenoide), obtemos e = 6,3 mV. De acordo com a Eq. 26-28, a taxa de

conversão de energia elétrica em energia térmica é dada por e 2 /R, enquanto, de acordo com a

Fig. 30-51c, é dada por dE t /dt = (80,0 nJ)/(2,0 s) = 40,0 nJ/s. Assim, temos:

R = 2 = (, 63×

10−

6 V)

2

= 10 , m

dE / dt 40, 0×

10−

9

J/s)

t

31. De acordo com a Eq. 26-28, a taxa de geração de energia térmica é P = e 2 /R. De acordo com

a Eq. 26-16, a resistência é dada por R = ρL/A, na qual ρ é a resistividade do material, L é o

comprimento do fio e A é a área da seção reta do fio. A área envolvida pela espira é

A

env

Como, de acordo com a lei de Faraday,

2 2

.

L L

= respira

2 = ⎛ ⎝ ⎜ ⎞

⎟ = 2 4

,

temos:

d dB L2

= B

dB

= Aenv

=

dt dt 4π dt

,

L dBdt d L dB

P = 2 (

= 2 / 4π) 2 ( / )

2 2 3

=

R ρL

/( πd2

/ 4)

64πρ ⎝ dt ⎠

= 368 , × 10−

6

W = 3,68 µ W.

2 3 2 3

(, 100×

10−

m)(, 0 500 m)

=

64 π(1,69

× 10−

8 ⋅ m)

32. Como, neste caso, |∆B| = B, a energia térmica produzida é

t

1 dB

Pt

t = = ⎛ ⎞ 1

− t

A

B R R⎝

dt ⎠

⎟ = ⎛ ⎞

R ⎝

t

2 2

( 200 , × 10 m )( 170 , × 10 T)

=

(, 5 21 × 10−

6)( 296 , × 10−

3s)

= 750 , × 10

− 4 2 2 −6 2

−10

J=750 pJ.

2 2 2

AB

t

=

Rt

( 0,

0100 T/s)

33. (a) Vamos chamar de x a distância entre a barra e a extremidade direita dos trilhos. De acordo

com a Eq. 29-17, o campo produzido pelo fio em um ponto do espaço é B = m 0 i/2pr, na qual

r é a distância entre o ponto e o fio. Considere uma tira horizontal infinitesimal de comprimento

x e largura dr, situada a uma distância r do fio. O fluxo através da tira é

d i

B = BdA = 0

2 r xdr .

2


234 SOLUÇÕES DOS PROBLEMAS

De acordo com a Eq. 30-1, o fluxo total através da espira formada pela barra e pelos trilhos é

B

a+

L

0ix

dr 0

ix a L

= ⌠

⎛ + ⎞

= ln

⌡ r ⎝

a ⎠

⎟ .

2

2

De acordo com a lei de Faraday, a fem induzida na espira é

d B µ ⎛ +

= =

0 idx a L⎞

⎝ ⎠ = µ iv ⎛ a+

L

ln

0 ln

dt 2π

dt a 2π

⎝ a ⎠

a

( 4π

× 10−

7T ⋅ m/A)( 100A)(, 500m/s) ⎛ 100 , cm + 10,0cm ⎞

=

ln

100 , cm ⎠

= 240 , × 10 4 V = 240 V.

µ

240 , × 10−

4

V

(b) De acordo com a ii = =

= 600 , × 10−

4

A = 0, 600 mA.

R 0,

400

Como o fluxo está aumentando, o campo magnético produzido pela corrente induzida aponta

para dentro do papel na região envolvida pela barra e pelos trilhos e, portanto, a corrente tem

o sentido horário.

(c) A potência dissipada na espira é dada por

P = i2R

= (, 600× 10−

4

A)(, 2

0 400 ) = 144 , × 10−

7

W = 0,

144 W.

i

(d) Para que a barra se mova com velocidade constante, a resultante das forças que agem sobre

a barra deve ser nula. Para isso, a força externa aplicada à barra deve ser igual, em módulo, à

força magnética e deve ter o sentido oposto. O módulo da força magnética exercida sobre um

segmento infinitesimal da barra de comprimento dr, situado a uma distância r do fio, é

dF

Integrando força acima para toda a barra, temos:

F

B

a+

L

B

= ii

iBdr = 0 i

2 r dr .

0ii

i dr ii i a L

= ⌠ 0

⎛ + ⎞

= ln

⌡ r ⎝

a ⎠

2

2

a

( 4

× 10 ⋅ × +

=

− 7T m/A)( 600 , 10−

4

A)( 100 A) ⎛ 100 , cm 10,0cm

ln

2

100 , cm ⎠

= 287 , × 10−

8 N.

Como o campo produzido pelo fio aponta para fora do papel na região onde a barra está se

movendo e o sentido da corrente na barra é para cima, a força associada ao campo magnético

aponta para a direita e, portanto, a força externa aplicada deve apontar para a esquerda.

(e) De acordo com a Eq. 7-48, a taxa com a qual a força externa realiza trabalho sobre a espira é

P = Fv = (2,87 × 10 –8 N)(5,00 m/s) = 1,44 × 10 –7 W = 0,144 mW.

Como toda a energia fornecida pela força externa é convertida em energia térmica, este valor é

igual ao da potência dissipada na espira, calculado no item (c).

34. Como F tot = BiL – mg = 0, temos:

mg | | 1 dB

B dA

i = = = = =

BL R R dt R dt

o que nos dá v t = mgR/B 2 L 2 .

BvtL

R

,


SOLUÇÕES DOS PROBLEMAS 235

35. (a) De acordo com a Eq. 30-8,

= BLv = (, 12T)( 010 , m)(5,0 m/s) = 0,60 V.

(b) De acordo com a lei de Lenz, o sentido da fem induzida é o sentido horário. Isso significa

que, na barra, o sentido da fem é para cima.

(c) De acordo com a lei de Ohm, a corrente induzida é i = 0,60 V/0,40 Ω = 1,5 A.

(d) O sentido da corrente é o sentido horário.

(e) De acordo com a Eq. 26-27, P = i 2 R = 0,90 W.

(f) De acordo com a Eq. 28-2, a força que o campo magnético exerce sobre a barra aponta para

a direita e tem um módulo

F = iLB = (, 15A)( 010 , m)(1,2 T) = 0,

18 N.

Para manter a barra em movimento com velocidade constante, é preciso aplicar uma força de

mesmo módulo no sentido da direita para a esquerda. A resposta é, portanto,

F ext = 0,18 N.

(g) De acordo com a Eq. 7-48, a taxa com a qual a força realiza trabalho sobre a barra é dada por

P = Fv = (0,18 N)(5,0 m/s) = 0,90 W.

Como toda a energia fornecida pela força externa é convertida em energia térmica, este valor

é igual ao da taxa com a qual a energia é dissipada na barra em forma de calor, calculado na

item (e).

36. (a) No caso da trajetória 1, temos:

E ds dB1

d

BA A dB 1

⋅ = − = ( 1 1) = 1 = r

1 dt dt

dt

dB

dt

1 2 1

= ( 0, 200m)( 2

− 850 , × 10−

3T/s)

=− 107 , × 10−

3

V= −107

, mV.

(b) No caso da trajetória 2, temos:

E ds dB

⋅ = − r

dB 2

= 2 2 2

= ( 0, 300 m)( 2

−85

, 0×

10

2 dt dt

=− 240 , × 10−

3V

= −2,

40 mV.

(c) No caso da trajetória 3, temos:

E

ds E ds E ds

⋅ = ⋅ − ⋅ = − 107 , × 10−

3V−( −2,

10

3 1

= 133 , × 10−

3

V = 133 , mV.

2

−3

T/s)

37. (a) Como o ponto está dentro do solenoide, devemos usar a Eq. 30-25. O módulo do campo

elétrico induzido é

dB

E = 1

dt r = 1

(, 65 × 10−

3

T/s)( 0, 0220 m) = 715 , × 10−

5

V/m = 71,5 V/m.

2 2

(b) Como o ponto está fora do solenoide, devemos usar a Eq. 30-27. O módulo do campo elétrico

induzido é

−3

V)

dB

E = 1 R2

dt r

= 1

× −

2 2 65 10 0 0600

(,

3

) ( , m

T/s

)2

( 0,

0820

m)

= 143 , × 10−

4 V/m = 143V/m.


236 SOLUÇÕES DOS PROBLEMAS

38. A mudança brusca de inclinação do gráfico da Fig. 30-55 mostra que o raio da região circular

é 2,0 cm. De acordo com a Eq. 30-20, para valores de r menores que este valor,

E ds E r B

dBA ( )

⋅ = ( 2

) = = = A

ddt

dB = ra

2

,

dt dt

o que nos dá E/r = a/2. E/r é a inclinação da parte retilínea do gráfico, cujo valor é (300 × 10 −6

N/C)/(2,00 × 10 −3 m) = 0,015 m. Assim, a = 2E/r = 0,030 T/s.

39. O campo magnético B pode ser escrito na forma

( ) = + ( + )

Bt B B sen t

,

0 1 0

na qual B 0 = (30,0 T + 29,6 T)/2 = 29,8 T e B 1 = (30,0 T 2 29,6 T)/2 = 0,200 T. Nesse caso, de

acordo com a Eq. 30-25,

1 dB r d

Et () = ⎛ r B B sen t

⎝ ⎜ ⎞

1

dt ⎠

⎟ = + ( + )

dt

⎡⎣ 0 1 0 ⎤

2 2

⎦ = B ( + )

2 1 rcos t

0 .

Como ω = 2pf e o valor de E(t) é máximo para cos(ωt + f 0 ) = 1, temos:

1

1

Emax = B1 ( 2 f) r = ( 0, 200 T)( 2)( 15Hz)( 1,

10− 2

m) = 015 , V/m.

2

2

40. Como NF B = Li, temos:

B

Li

= =

N

(, 80× 10−

3H)( 50 , × 10−

3A)

= 10 , × 10

400

−7

Wb = 0,10 Wb.

41. (a) O fluxo magnético que enlaça as espiras é igual ao fluxo que atravessa uma espira multiplicado

pelo número de espiras:

total

= N

= = = ×

B NBA NB( r

2) ( 30, 0)( 2, 60 10

3T)(

)( 0, 100m)

= 245 , × 10−

3

Wb = 2,45 mWb.

(b) De acordo com a Eq. 30-33, temos:

NB

245 , × 10−

3

Wb

L = =

= 645 , × 10−

4

H = 0,645 mH.

i 380 , A

42. (a) Podemos imaginar que o solenoide é a combinação de N espiras circulares dispostas ao

longo da largura W da fita de cobre. Nesse caso, a corrente em cada fita é ∆i = i/N e o campo

magnético no interior do solenoide é

⎛ N ⎞ i i

B= n i =

W ⎠

⎟ ⎛ ⎝ ⎜ ⎞ ×

0 ( 4

10

7

T⋅m/A)(0,035 A)

0 0

N ⎠

⎟ = =

W

016 , m

= 27 , × 10−

7 T = 0,27 T.

(b) De acordo com a Eq. 30-33, temos:

B

RB

2

R2( i W R ×

0 / )

2

0 ( 4

10

7

T⋅m/A)(0,018 m)

L = = = = =

i i i W

016 , m

= 80 , × 10−

9 H = 8,0 nH.

43. Vamos definir um eixo de coordenadas r tal que o eixo central de um dos fios está na origem

e o outro em r = d. De acordo com a regra da mão direita, os campos se somam da região

entre os dois fios e, por simetria, os campos na região em que 0 < r < d/2 têm o mesmo valor

que os campos na região em que d/2 < r < d, com r substituído por d − r. Vamos chamar de l

2

2


SOLUÇÕES DOS PROBLEMAS 237

o comprimento dos fios e calcular, por integração, o fluxo magnético por unidade de comprimento,

F B /l. Devido à simetria, podemos realizar a integração apenas no intervalo 0 < xr < d/2

e multiplicar o resultado por 2:

d/

2

a

B

0

0

∫ ∫ int ∫

d / 2

= 2 BdA= 2 B ( ldr) + 2 B ( l dr),

na qual B int é o campo no interior dos fios, dado pela Eq. 29-20, e B ext é o campo do lado de fora

dos fios, dado pela Eq. 29-17. Assim, temos:

B

a

i

a r i

i

dr

l = ⌠ ⎡ 0

+ 0

2⎮

d − r

⎥ + 2

⌠ ⎡ 0

0i

⌡ 2

2

2

( )

⎢ + dr

⎦ ⎣ 2r

d − r

⌡ 2 ( ) ⎦

0

0i ⎡ ⎛ d − a⎞

⎤ i d a

= 1−2ln

2

⎢ ⎝

d ⎠

⎟ ⎥

+ 0 ⎛ − ⎞

ln

a ⎠

⎟ ,

na qual o primeiro termo é o fluxo no interior dos fios e será desprezado, como sugere o enunciado

do problema. Assim, o fluxo é dado, aproximadamente, por

d / 2

0il ⎛ d − a⎞

B = ln

a ⎠

e, de acordo com a Eq. 30-33 (com N = 1), temos:

L B d a

l =

Li

= ⎛ − ⎞ ×

0

( 4

10

7T ⋅m/A) ⎛ 142−

1,

53⎞

ln

a ⎠

⎟ =

ln

153 , ⎠

= 181 , × 10−

6 H/m = 1,81 H/m.

44. Como, de acordo com a Eq. 30-35, e = –L(di/dt), temos:

di

dt

=−

L

=− 60 V

12

=− 50 , A/s,

H

o que nos dá |di/dt| = 5,0 A/s. Podemos obter esta taxa de variação, por exemplo, reduzindo a

corrente de 2,0 A para zero em 40 ms a uma taxa constante.

45. (a) De acordo com a lei de Lenz, a força eletromotriz se opõe à variação da corrente. Assim,

se a polaridade da fem é tal que a corrente induzida tem o mesmo sentido que a corrente já

existente, isso indica que a corrente está diminuindo.

(b) De acordo com a Eq. 30-35,

17 V

L = = = 68 , × 10−

4 H = 0,68 mH.

di/

dt 2,5 kA/s

46. Durante os períodos de tempo em que a corrente está variando linearmente com o tempo, a

Eq. 30-35 nos dá | e | = L| i/ t

|. Assim, temos (omitindo os símbolos de valor absoluto para

simplificar a notação):

(a) Para 0 < t < 2 ms,

(b) Para 2 ms < t < 5 ms,

= L

i ( 46 , H)( 70 , A 0)

=

= 16 , × 104

V = 16kV.

t

20 , × 10−

3

s

= L

i = ( 46 , H )( 50 , A − 70 , A )

t

( 50 , − 2010 ,

−3

) s

a

= 31 ,

a

ext

× 10 3 V = 3,1 kV.


238 SOLUÇÕES DOS PROBLEMAS

(c) Para 5 ms < t < 6 ms,

= L

i = ( 46 , H )( 0 − 5,

0 A )

t

( 60 , − 5010 ,

−3

) s

= 23 , × 10 4

V = 23kV.

47. (a) De acordo com a Eq. 30-35, a tensão entre os terminais dos indutores é diretamente proporcional

à indutância. A situação é análoga à dos resistores. Como as tensões (independentes)

de componentes em série se somam, as indutâncias de indutores em série se somam. Assim,

temos:

L eq = L 1 + L 2 .

Note que, para que as tensões dos indutores sejam independentes, é preciso que o campo magnético

produzido por um dos indutores não afete o outro, o que significa que os indutores não

devem estar muito próximos (o caso em que os campos magnéticos produzidos por indutores

afetam outros indutores é discutido na Seção 30-12).

(b) Analogamente ao caso dos resistores, L

N

eq = ∑ L . n

n=

1

48. (a) se dois indutores, L 1 e L 2 , estão submetidos à mesma tensão V, a Eq. 30-35 nos dá:

di

dt

L di

=− e =−

V dt

L

V

1 1 2 2

Como a corrente total que passa pelos dois indutores é i 1 + i 2 , temos:

di

dt

di di L L

= + =− −

dt dt V V

1 2 1 2 .

De acordo com a Eq. 30-35, se substituirmos os dois indutores por um único indutor equivalente,

deveremos ter:

di

dt

L

=− eq

Combinando as duas equações anteriores, obtemos:

V

1 1 1

= + .

L L L

eq

1 2

Note que, para que as correntes dos indutores sejam independentes, é preciso que o campo magnético

produzido por um dos indutores não afete o outro, o que significa que os indutores não

devem estar muito próximos (o caso em que os campos magnéticos produzidos por indutores

afetam outros indutores é discutido na Seção 30-12).

(b) Analogamente ao caso dos resistores, 1 =

1

L

∑ .

eq

N

L

n=

1 n

49. De acordo com os resultados dos Problemas 30-47 e 30-48, a resistência equivalente é

LL

L eq 2 3

= L1+ L4 + L23 = L1+ L4

+ = 30, 0

L + L

mH + 150 , mH ( 50, 0mH)( 200 , mH)

+

50, 0mH

+ 200 , mH

= 59,

3 mH.

2 3

50. Vamos chamar de i f o valor final da corrente. De acordo com o enunciado, i = i f /3 no instante

t = 5,00 s. Nesse caso, de acordo com a Eq. 30-41, temos:

−t

/ L

f ( ) ⇒ L = −

i = i 1−e

t 500 , s

= = 12, 3 s.

ln( 1−

ii / ) ln( 1−

1/3)

f


SOLUÇÕES DOS PROBLEMAS 239

=

51. A corrente no circuito é dada por i i e t L

0

, na qual i 0 é a corrente no instante t = 0 e t L =

L/R é a constante de tempo indutiva. Dividindo por i 0 e tomando o logaritmo de ambos os

membros, obtemos

o que nos dá

L

Assim, R = L/t L = 10 H/0,217 s = 46 Ω.

⎛ i ⎞ t

ln ,

i ⎠

⎟ =−

=− t

i i

=− 10 , s

ln( / ) ln ( 10 × 10−

3

A )/( 10 , A)

0

0

L

[ ] =

0,

217s.

52. (a) Logo após o fechamento da chave, e – e L = iR. Entretanto, como i = 0 nesse instante,

e L = e, o que nos dá e L /e = 1,00.

(b) () t = e−t

τL = e− 20 , τL τ L

= e−

20 ,

= 0, 135 ,

o que nos dá e L /e = 0,135.

L

(c) Como e () t = ee−t

τ L

, temos:

L

t

τ

L

⎛ ⎞

= ln t τL

τL

t

⎟ = ln 2 ⇒ = ln 2 = 0,

693

⇒ /τ L = 0, 693.

L

53. (a) se a bateria é ligada ao circuito no instante t = 0, a corrente para t > 0 é dada por

i = −e t L

( 1

− / τ

),

R

na qual t L = L/R. No instante em que i = 0,800e/R, temos:

0, 800 = 1−e−t/ L

⇒ e−t/

L

= 0, 200.

Tomando o logaritmo natural de ambos os membros, obtemos

o que nos dá

–(t/t L ) = ln(0,200) = –1,609,

1, 609L

1, 609(,

630×

10−

6H)

t = 1,

609

L = =

= 845 , × 10−

9 s=

8,45 ns .

R 120 , × 103

(b) No instante t = 1,0t L , a corrente no circuito é

i =

(

R

−e ⎛

1

−10 ,

14,

0 V

) =

× ⎠

⎟ ( 1−

e −10

,

) = 737 , × 10−

3 A = 7,37 mA.

1,20 10 3

A figura a seguir mostra a corrente no circuito em função de t/t L .


240 SOLUÇÕES DOS PROBLEMAS

54. (a) Imediatamente após o fechamento da chave, a corrente no indutor é zero e, portanto,

i

1

=

R

+ R

1 2

100 V

= = 333 , A.

10,0 + 20,0

(b) Como foi visto no item (a), a corrente no indutor é zero e, portanto,

i 2 = i 1 = 3,33 A.

Após um longo tempo, a corrente atinge o valor final. Quando isso acontece, a fem entre os

terminais do indutor é zero e o componente pode ser substituído por um fio condutor. Nesse

caso, a corrente em R 3 é i 1 2 i 2 e, de acordo com a regra das malhas,

−iR

− iR = 0,

1 1 2 2

−iR −( i − i ) R = 0.

1 1 1 2 3

Resolvendo o sistema de equações anterior, obtemos:

(c)

i

1

=

( R2 + R3) ( 100 V)( 20, 0+

300 , )

=

RR + RR + RR ( 10, 0)( 200 , ) + ( 10, 0)( 300 , ) + ( 20, 0)(

30, 0 )

1 2 1 3 2 3

= 455 , A.

(d)

i

2

=

R3

( 100 V)( 30, 0 )

=

RR + RR + RR ( 10, 0)(

200 , ) + ( 10, 0)( 300 , ) + ( 20, 0)( 300 , )

1 2 1 3 2 3

= 273 , A.

(e) Como, após o fechamento da chave, a malha da esquerda deixa de conduzir corrente, i 1 = 0.

(f) Como o valor da corrente em um indutor não pode mudar bruscamente, o valor da corrente

em R 3 imediatamente após a chave ser aberta é o mesmo que antes da abertura da chave, i 3 =

i 1 2 i 2 = 4,55 A 2 2,73 A = 1,82 A. De acordo com a lei dos nós, a corrente em R 2 tem o mesmo

valor absoluto e o sentido inverso: i 2 = 21,82 A.

Como a fonte de alimentação foi desligada do circuito, o valor final de todas as correntes é

zero. Assim,

(g) i 1 = 0.

(h) i 2 = 0.

55. O valor da corrente para t > 0 é dado por

i = i 1 −e−t

/ L

,

f

( )

na qual i f é a corrente final e t L = L/R é a constante de tempo indutiva. No instante em que i =

0,9990i f , temos:

0, 990i ( 1

/

f = if

−e t L

) ⇒ ln( 0, 0010) = −( t/ ) ⇒ t/ L = 691 , .


SOLUÇÕES DOS PROBLEMAS 241

A figura a seguir mostra a corrente normalizada, i/i f , em função de t/t L .

56. Como a inclinação do gráfico da Fig. 30-62 é igual a /i, temos: /i = (4,0 × 10 −4 T . m 2 )/

(2,00 A) = 2 ×10 −4 H. Assim, como N = 25, a indutância do indutor é L = N/i = 5 × 10 −3 H.

Derivando a Eq. 30-41 em relação ao tempo, obtemos:

di

dt

R

=

R L e −t

τ

L

=

L e −t

τ

16 V

L

10

e −3

H

/ / −15

,

,

= 71× 10 2 A/s.

57. (a) Como a corrente no resistor é zero antes da queima do fusível, a aplicação da regra das

malhas à malha formada pela fonte, pelo fusível e pelo indutor nos dá

− L di

t

= 0 ⇒ i = .

dt

L

No instante t q em que o fusível queima, i = i q = 3,0 A. Assim,

(b) A figura a seguir mostra o gráfico pedido.

t

q

iL q (, 30A)( 50 , H)

= = = 15 , s.

10 V

58. De acordo com a regra das malhas,

= L di + iR = L d (, 30+ 50 , t) + (, 30+ 50 , t) R =

60(, ) 50) + ( 30 , + 50 , t)( 40 , )

dt dt

= ( 42 + 20t) V.


242 SOLUÇÕES DOS PROBLEMAS

59. (a) Vamos supor que o sentido da corrente i na chave é da esquerda para a direita. Vamos chamar

de i 1 a corrente no resistor e supor que o sentido dessa corrente é para baixo. Vamos chamar

de i 2 a corrente no indutor e supor que o sentido dessa corrente também é para baixo. De acordo

com a regra das malhas, i 1 R 2 L(di 2 /dt) = 0. De acordo com a regra dos nós, i = i 1 + i 2 . Como a

corrente i é constante, a derivada desta equação em relação ao tempo nos dá di 1 /dt = 2 di 2 /dt.

Substituindo na primeira equação, obtemos

L di 1

+ iR 1 = 0.

dt

Por analogia com a Eq. 30-44, a solução é dada pela Eq. 30-45, com i 1 no lugar de i:

i

= i e− Rt L ,

1 0

na qual i 0 é a corrente no resistor no instante t = 0, imediatamente após o fechamento da chave.

Como a corrente em um indutor não pode variar bruscamente, nesse instante i 2 = 0 e i 1 = i.

Assim, i 0 = i e

i = ie−Rt L, i = i− i = i( − e−RtL).

1 2 1 1

(b) Quando i 2 = i 1 ,

e−Rt L

= −e−RtL ⇒ e−

Rt L

1

1

=

2 .

Tomando o logaritmo natural de ambos os membros, temos:

Rt

L

L

t

⎟ = ln 2 ⇒ = ln 2.

R

A figura a seguir mostra os gráficos de i 1 /i e i 2 /i em função de t/t L .

60. (a) Vamos usar a seguinte notação: h é a altura do núcleo toroidal, a é o raio interno e b é

o raio externo. Como a seção reta é quadrada, h = b 2 a. Podemos calcular o fluxo usando a

Eq. 29-24 e a indutância usando a Eq. 30-33:

e

B

b

= BdA = ⌠

∫ ⎮

a ⌡

a

b

⎛ Ni Nih b

hdr

0 ⎞ 0

r ⎠

⎟ = ln ⎛ ⎞

2

2

a⎠

NB

N2

0 h ⎛ b⎞

L = = ln

i

a⎠

⎟ .

2


SOLUÇÕES DOS PROBLEMAS 243

Como a circunferência interna do núcleo é l = 2pa = 2p(10 cm) ≈ 62,8 cm, o número de espiras

é N ≈ 62,8 cm/1,0 mm = 628. Assim,

N2h

⎛ b⎞

×

0

( 4

10

7Hm)( 628) 2( 002 , m) ⎛ 12⎞

L = ln

a⎠

⎟ ≈

ln 29 , 10 4

2

2

10⎠

⎟ = × −

H = 0,29 mH.

(b) Como o perímetro de um quadrado é igual a quatro vezes o lado, o comprimento total do fio

é l = (628)(4)(2,0 cm) = 50 m e a resistência do fio é

Assim,

L

L

= =

R

R = (50 m)(0,02 Ω/m) = 1,0 Ω.

29 , × 10−

1,0

4

H

= 29 , × 10−

4s

= 0,29 ms.

61. (a) Se a bateria é ligada ao circuito no instante t = 0, a corrente é dada por

i = −e t L

( 1

− τ

),

R

na qual e é a fem da bateria, R é a resistência e t L é a constante de tempo indutiva (L/R). Isso

nos dá

Como

iR t iR

e− t τ L

= 1 ⎛

− ⇒− = ln −

τ ⎝

1 .

( 200 , 10

3

)( 100 , 103

⎛ iR

)

ln 1−

ln 1

⎝ ⎠ = ⎡

− ×

A × ⎤

50,

0 V

a constante de tempo indutiva é

t 500 , × 10−

3s

L = =

= 979 , × 10

0,

5108 0,

5108

L

−3

=−0 , 5108 ,

s

e a indutância é

L = R= (, 979× 10−

3s)( 100 , × 103) = 97,

9H.

L

(b) A energia armazenada na bobina é

1

UB = Li2 1

= ( 97, 9H)( 2, 00 × 10−

3A) 2

= 196 , × 10−

4J=

0,196 mJ.

2 2

62. (a) De acordo com as Eqs. 30-49 e 30-41, a taxa com a qual a energia está sendo armazenada

no campo magnético da bobina é

Como

dU

dt

d

dt

Li

1 2

B 2

−t τ L

Li di

dt

L 1 e

⎝ R

( ) = = = ( − )

⎞ ⎛ 1

e

⎠ ⎝

R τ

t L = L/R = 2.0 H/10 Ω = 0,20 s

L

e e

⎟ = 2 ( R

1 − ) .

−t τ −t τ −t

τ

L L L

e e = 100 V, a expressão anterior nos dá dU B /dt = 2,4 × 10 2 W para t = 0,10 s.

(b) De acordo com as Eqs. 26-27 e 30-41, a potência dissipada na resistência é

P i R e

t L

R e

t L

t =

2

2

= ( −

2 2

1 R

) = ( 1−

)

2

R

τ τ 2

.


244 SOLUÇÕES DOS PROBLEMAS

Para t = 0,10 s, a expressão anterior nos dá P t = 1,5 × 10 2 W.

(c) De acordo com a lei de conservação da energia, a potência fornecida pela fonte é

B

fonte t W.

P = P + dU = 39 , × 10 2

dt

Note que o mesmo resultado poderia ser obtido usando as Eqs. 26-26 e 30-41.

63. De acordo com as Eqs. 30-49 e 30-41, a taxa com a qual a energia é armazenada no campo

magnético do indutor é

dU

dt

d Li2 / 2

Li di L

( e

⎤⎛

1

− τ

1

dt dt R

) e

⎣⎢

⎦⎥ ⎝

R τ

B t L

= ( ) = = −

L

2

1 e e

⎟ = (

R

− ) .

−t τL −t τL −t

τ L

De acordo com as Eqs. 26-27 e 30-41, a taxa com a qual a energia é dissipada no resistor é

P i R e

t L

R e

t L

t =

2

2

= −

− 2

2

( 1

τ

) = ( 1−

− τ

)

2.

R

2

R

Igualando as duas equações e explicitando o tempo, obtemos:

2

2

2

( 1− e−t τ L) = ( 1−e−t τ L) e−t

τ L

⇒ t = L ln 2=

( 37

R

R

τ , 0ms

)ln 2=

25 , 6 ms.

64. Seja

1

U t Li2 2

t . Queremos que a energia no instante t seja metade do valor final:

Ut () = U ( t → º )/ 2=

Li2 / 4 . Isto nos dá i() t = i f / 2 . Como i() t = i ( 1−e

− t / L

), temos:

B

B ( ) = ( )

f

1

⎛ 1 ⎞

1− e − t L

t

= ⇒ = −ln 1−

123

2 ⎝

2 ⎠

⎟ = , .

65. (a) A energia fornecida pela fonte é a integral da Eq. 27-14, na qual a corrente é dada pela

Eq. 30-41:

t

t

2

2

P dt

e

Rt L

dt

R

R t L

R e R

∫ fonte = ⌠

( 1−

) =

+

− tL

( − 1

)

0 ⌡

⎣⎢

⎦⎥

0

L

( 10, 0 ) 550 e

= 2 6

V ⎡ (, H)

⎡ ( , )( , s) , H

⎢200

, s +

670 ,

670 ,

= 18,

7 J.

f

70 200 5 50

1

(b) A energia armazenada no campo magnético é dada pela Eq. 30-49:

2

1

UB

= Li2

1 ⎛ e

t = L

1− e−Rt L 2

1

= ( )

2 2 ⎝ R ⎠

2 550 ⎛ 100

, ⎞

() ( ) , H

670 , ⎠

=

510 , J.

⎤ ⎤

2

V 2

670 , 2, 00 s 550 , H

⎣1

− e−( )( )

(c) De acordo com a lei de conservação da energia, a energia dissipada no resistor é igual à

diferença entre os resultados dos itens (a) e (b): 18,7 J 2 5,10 J = 13,6 J.

66. (a) De acordo com a Eq. 29-9, o módulo do campo magnético no centro da espira é

i ×

0 ( 4

10

7

Hm)( 100 A)

B = =

= 13 , × 10− 3

T=

13 , mT.

2R

250 ( × 10−

3

m)


SOLUÇÕES DOS PROBLEMAS 245

(b) De acordo com a Eq. 30-55, a densidade de energia nas proximidades do centro da espira é

B2

(, 13×

10−

3T)

2

3

uB = =

= 063 , Jm .

2

24 ( × 10−

7

Hm)

0

67. (a) De acordo com a Eq. 30-55, a densidade de energia magnética é dada por u B = B 2 /2m 0 .

Como, no interior de um solenoide, B = m 0 ni, na qual n, neste caso, é dado por

a densidade de energia magnética é

n = (950 espiras)/(0,850 m) = 1,118 × 10 3 m –1 ,

1 1

uB = n i = ×

⋅ ×

0 2 2 ( 4

10 7 T m A)(, 1118 10

3 m 1 )(

2 660

2 3

, A) = 342 , J m .

2 2

(b) Como o campo magnético é uniforme no interior de um solenoide ideal, a energia total

armazenada no campo magnético é U B = u B V, na qual V é o volume do solenoide. O volume V,

por sua vez, é igual ao produto da área da seção reta pelo comprimento do solenoide. Assim,

3 4 2 2

U B = ( 34, 2Jm)( 170 , × 10 − m )( 0, 850 m) = 494 , × 10−

J = 49,4 mJ .

68. A energia magnética armazenada no indutor toroidal é dada por U B = Li 2 /2, na qual L é a

indutância e i é a corrente. A energia magnética também é dada por U B = u B V, na qual u B é

densidade de energia média e V é o volume. Assim,

2uV

B 2( 70, 0 Jm3)( 0, 0200 m3)

i = =

L

90,

10−

3

H

= 558 , A.

69. Como u = E2/ 2= u = B2/ 2

, temos:

E

0

B

0

B

E = =

0 0

050 , T

(, 885× 10−

12

Fm)( 4

× 10−

7

Hm)

= 15 , × 10 8 Vm.

70. É importante notar que o gráfico da Fig. 30-65b não expressa a densidade de energia em

função da coordenada do ponto na qual a densidade de energia é medida; a densidade de energia

é sempre medida na origem. O que o gráfico mostra é a densidade de energia na origem

em função da posição do fio 2. Note que o gráfico passa por um ponto em que a densidade de

energia é zero. Isso significa que os campos magnéticos produzidos pelas duas correntes têm

sentidos opostos, o que, por sua vez, significa que as correntes têm o mesmo sentido nos dois

fios. Além disso, sabemos que |B 1 | = |B 2 | quando x = 0,20 cm, o valor de x para o qual u B é zero.

Assim, de acordo com a Eq. 29-4,

01 i 02

i

=

2

d 2

( 020 , m) ,

o que nos dá d = 0,067 m. Sabemos também que quando a densidade de energia é produzida

exclusivamente por B 1 (o que acontece quando x → ∞), u B = 1,96 × 10 −9 J/m 3 , o que nos dá

B

1 0 u

−7 −9

B

= 2 = 2( 4 × 10 H/m)(1,96 × 10 J/m 3 ) = 7,

02 × 10 −8

T.

(a) Como B 1 = m 0 i 1 /2pd, temos:

i

1

(b) i 2 = 3i 1 = 3(23 mA) ≈ 70 mA.

2

dB

8

1 2

( 0, 067 m)( 702 , × 10−

T)

= =

= 0, 023 A = 23 mA.

4

× 10−

7

H/m

0


246 SOLUÇÕES DOS PROBLEMAS

71. (a) A densidade de energia do campo magnético é

B2

1 ⎛ i⎞

i ×

0 0 uB = =

R ⎠

⎟ = 2 ( 4

10

7

H m)( 10 A)

=

2

2

2 8R2

825 ( , × 10−

3m2)

2

0 0

2

2

3

= 10 , Jm .

(b) A densidade de energia do campo elétrico é

1

iR

uE = E2 0 2 0

= ( J ) =

0 ρ

2 2 2 ⎝ l ⎠

= 48 , × 10−

Jm .

15 3

2

1

= 885× 10−

2

72. (a) O enlaçamento de fluxo magnético 12 da bobina 1 é

12

11

1

[ ]

(,

12 3 2

Fm)( 10 A)( 33 , 10 m)

= Li

= ( 25 mH)(, 60mA)

N 100

= 15 , Wb.

(b) A força eletromotriz autoinduzida na bobina 1 é

1 1

1 2

= L di = ( 25 mH)( 40 , As) = 10 , × 10 mV.

dt

(c) O enlaçamento de fluxo magnético 21 da bobina 2 é

Mi

N

21

1

2

30 , mH 60 ,

200

mA

= = ( )( ) = 90

(d) A força eletromotriz autoinduzida na bobina 2 é

M di

dt

2

1

73. (a) De acordo com a Eq. 30-65, temos:

nWb.

30 , mH 40 , As 12 mV.

= =( )( ) =

ε 1

(b) De acordo com a Eq. 30-59, temos:

74. Como e 2 = –M di 1 /dt ≈ M|∆i/∆t|, temos:

25,

0 mV

M = = = 167 , mH.

di dt 15,

0 As

2

N2 21 = Mi1 = (, 167mH)( 3, 60 A) = 600 , mWb.

M =

i t

= 30 × 103

V

= 13H.

60 , A ( 2,5 × 10−

3

s)

1

75. Como o fluxo magnético através da espira do campo B produzido pela corrente i é dado

por

temos:

+ a+

b

a b

= = ⌠ 0il

Bl dr

= +

⌡ r dr 0il ⎝

b⎞

ln 1

a

2

2

a⎠

⎟ ,

M

N N0l ⎛ b⎞

= = ln +

i

⎜1

a⎠

2

a

( 100)( 4

× 10−

7

Hm )( 0, 30 m) ⎛ ,

=

ln 1 80 ⎞

+

2

10 , ⎠

= 13 , × 10−

5 H = 13 H.


SOLUÇÕES DOS PROBLEMAS 247

76. (a) A indutância mútua da combinação bobina-solenoide é

N bs N( isnR2

0 )

M = Mbs

= = = RnN

2

0 .

i i

s

(b) Como o campo magnético do lado de fora de um solenoide longo é praticamente nulo, se o

solenoide estiver envolvido pela bobina C, o fluxo do campo magnético através da bobina será

sc = B s A s = B s pR 2 , independentemente da forma, tamanho ou possível falta de compactação

da bobina.

77. (a) Vamos supor que a taxa de variação da corrente é di/dt e calcular a fem total induzida

no circuito formado pelas duas bobinas. Os campos magnéticos produzidos pelas duas bobinas

apontam para a direita. Quando a corrente aumenta, os dois campos aumentam e as duas variações

do fluxo induzem forças eletromotrizes de mesma polaridade. Assim, a fem induzida no

circuito é

= + = = − L + M di

dt

s

( ) − ( L + ) =− ( L + L + M ) di

M di

dt

1 2 1 1 2 1 2 2

que é a fem que seria produzida se as duas bobinas fossem substituídas por uma única bobina

de indutância L eq = L 1 + L 2 + 2M.

(b) Para obter este novo valor da indutância equivalente, basta inverter as ligações da bobina

2 com a bobina 1. Isso faz com que os fluxos das bobinas tenham sentidos opostos: o aumento

da corrente na bobina 1 aumenta o fluxo na bobina 1, mas esse aumento também aumenta a

corrente na bobina 2, o que produz um fluxo na bobina 1 oposto ao fluxo criado pela própria

bobina. O mesmo acontece com o fluxo na bobina 2. Assim, a fem induzida no circuito é

= + = = − L − M di

dt

( ) −( L − ) =− ( L + L − M ) di

M di

dt

1 2 1 1 2 1 2 2

que é a fem que seria produzida se as duas bobinas fossem substituídas por uma única bobina

de indutância L eq = L 1 + L 2 2 2M.

78. Derivando a Eq. 30-41 em relação ao tempo, obtemos

di

dt

d

=

−e

t ⎤

L

e

t L

dt ⎣⎢ R ⎦⎥ =

R

=

( 1

/ τ

)

/ τ

τ L e

− − − Rt/ L,

L

dt ,

dt ,

o que nos dá

e

L di

= ⎛ ⎞ ⎛ ⎞

⎝ ⎠ ⎝ dt ⎠

− Rt / L

.

Tomando o logaritmo natural de ambos os membros e explicitando R, obtemos:

R =−

L

t

⎡⎛

L⎞

⎛ di ⎞ ⎤

⎣⎝

⎠ ⎝ dt ⎠ ⎥

=− 23,

0× 10−

ln

e

015 , 0×

10

3

H

−3

79. (a) V 1 = e e i 1 = e/R 1 = (10 V)/(5,0 Ω) = 2,0 A.

23 0×

10−

3

H)(280 A/s)

ln ( , = 95, 4 .

s 12,

0 V

(b) Como a corrente não pode variar bruscamente em um indutor, i 2 = 0.

(c) i s = i 1 + i 2 = 2,0 A + 0 = 2,0 A.

(d) Como i 2 = 0, V 2 = R 2 i 2 = 0.

(e) V L = e = 10 V.


248 SOLUÇÕES DOS PROBLEMAS

(f) di 2 /dt = V L /L = e/L = (10 V)/(5,0 H) = 2,0 A/s.

(g) V 1 = e = 10 V e, portanto, i 1 = (10 V)/(5,0 Ω) = 2,0 A.

(h) Como V L = 0, i 2 = e/R 2 = (10 V)/(10 Ω) = 1,0 A.

(i) i s = i 1 + i 2 = 2,0 A + 1,0 A = 3,0 A.

(j) Como V L = 0, V 2 = e – V L = e = 10 V.

(k) V L = 0.

(l) di 2 /dt = V L /L = 0.

80. De acordo com a Eq. 30-41,

o que nos dá

i = −e−t

L

e

Rt L

( 1 ) = ( 1−

)

R

R

τ

,

L

t = ⎛ ⎞ ⎛ 1 ⎞

⎝ R⎠

⎝ − iR ⎠ = ⎛ 80 , × 10−

6

H⎞

ln

1 / e ⎝

40 , × 103

⎠ ⎟ 1

ln ⎢

⎣ − ( , × ×

≈ 1, 0ns.

1 2 0 10−

3

A )( 4, 0 103

) /( 20 V)

81. Podemos usar a lei de Ohm para relacionar a corrente induzida à fem, que é dada pela lei

de Faraday:

| | 1 d

i = = .

R R dt

(a) Quando a espira penetrou parcialmente na região 1, de modo que uma parte x do comprimento

da espira está na região x, o fluxo é

o que significa que

F B = xHB 1 ,

d B dx

vHB

iR

= ( HB ) = vHB ⇒ i =

1

1 1

⇒ B1

=

dt dt

R

vH

Observando a Fig. 30-70b, vemos que, nessa situação, i = 3,0 mA, o que nos dá

B

1

iR (, 30×

10−

6

A)( 0, 020 )

= =

vH ( 40 × 10−

2

m/s)(,

15×

10 −

2

m

= 10 T.

)

(b) De acordo com lei de Lenz, o sentido do campo magnético na região 1 é para fora do papel.

(c) Quando a espira penetrou parcialmente na região 2, de modo que uma parte x do comprimento

da espira está na região 2 e uma parte D – x está na região 1, o fluxo é

o que significa que

F B = xHB 2 + (D – x)HB 1 = DHB 1 + xH(B 2 2 B 1 ),

d B dx = H(B2 2 B 1 ) = vH(B 2 2 B 1 ) ⇒ i = vH(B 2 2 B 1 )/R ⇒ B

dt dt

2

iR + vHB1

= .

vH


SOLUÇÕES DOS PROBLEMAS 249

Observando a Fig. 30-70b, vemos que, nessa situação, i = −2,0 mA, o que nos dá

B

2

iR + vHB

=

vH

1

20 10

6

0 020 40 10

2

= − ( , × − A)( , ) + ( × −

m/s)( 15 , × 10−

2

m/s)( 10 × 10−

6

T)

( 40 × 10− 2

m/s)(,

15×

10 − 2

m)

= 33 , T.

(d) De acordo com a lei de Lenz, o sentido do campo magnético na região 2 é para fora do

papel.

82. De acordo com a lei de Faraday, temos (considerando apenas uma espira, uma área constante

e um campo B variável no tempo):

d B dBA ( )

=− =− =− A dB =−

dt dt dt

r dB .

dt

π 2

Neste problema,

dB B

B= B e−t

0

0 ⇒ =− e

dt

/ −t/ ,

o que nos dá

= πr

2

B0 e

−t

/ τ

.

83. Estamos interessados em determinar o instante no qual V L = V R . Como, de acordo com a lei

das malhas, e = V R + V L , isso significa que, nesse instante, e = 2V R = 2iR.

A variação com o tempo da corrente no circuito é dada pela Eq. 30-40. Assim, podemos escrever:

o que nos dá

= 2iR

= 2

( 1−

e−

= 2

1−

⎣⎢

Rt / L ) R ( e

Rt/

L),

R ⎦⎥

L 15,

10−

t = ln 2 =

R 20,

0

τ

3

H

( 069 , ) = 0,

520 ms.

84. De acordo com a lei de Faraday, temos (considerando apenas uma espira, uma área constante

e um campo B variável no tempo):

d B dBA ( )

=− =− =− A dB =−

dt dt dt

R dB

dt

π 2

e, portanto,

dB

R

= π 2

dt

,

o que significa que a inclinação das retas da Fig. 30-71b é igual a p(dB/dt).

(a) Como a inclinação da reta da esquerda é (8 nV)/(1 cm 2 ) = (8 × 10 −9 V)/(10 −4 m 2 ) = 80 mV/

m 2 , temos:

dB1 80 V/m2

= ≈25 T/s.

dt


250 SOLUÇÕES DOS PROBLEMAS

(b) Como a inclinação da reta da direita é (12 nV)/(3 cm 2 ) = 40 mV/m 2 , temos:

dB2 40 V/m2

= ≈13 T/s.

dt

(c) De acordo com a lei de Lenz, o módulo de B 2 está aumentando.

85. O campo elétrico induzido é dado pela Eq. 30-20:

E ds B

⋅ = − .

ddt

Como, para a configuração da Fig. 30-72, as linhas de campo elétrico são circunferências concêntricas

com o eixo do cilindro, temos, para uma trajetória ao longo de uma linha de campo

elétrico:

E ( 2 dB

r ) ( dB

r )

1

=−

2

⇒ E = −

dt

2 dt r .

Como a força que o campo exerce sobre um elétron é F

=− eE

, a aceleração do elétron, de

acordo com a segunda lei de Newton, é

a =− eEm / .

(a) No ponto a,

r dB

E =− ⎛ ⎝ ⎜ ⎞ 1

dt ⎠

⎟ =− (, 50× 10−

2m)( − 10 × 10−

3T s)

= 25 , × 10 − 4 V/m.

2 2

Considerando positivo o sentido da normal para dentro do papel, que é o sentido do campo magnético,

o sentido positivo do campo E é o sentido horário. Assim, o sentido do campo elétrico

no ponto a é para a esquerda, o que nos dá E =− ( 25 , × 10−

4 V/m)i. ˆ A aceleração resultante é

eE

aa = − (

= − 160 , × 10 − 19

C)( − 2,

5 × 10−

4

V/m) ˆ i = ( 44 , × 107

m/s2) ˆ. i

m

(, 911 × 10 − 31

kg)

(b) No ponto b, r = 0, E = 0 e, portanto, a b = 0.

(c) O campo elétrico no ponto c tem o mesmo módulo que no ponto a e o sentido oposto. Assim,

a aceleração de um elétron liberado no ponto c é

a =− a = ( − 44 , × 10 7 ms2) ˆ. i

c

a

86. Por causa do decaimento da corrente (Eq. 30-45) que acontece quando as chaves são deslocadas

para a posição B, o fluxo magnético nos circuitos das Figs. 30-73a e 30-73b decai de

acordo com as equações

−t

L

= e e =

/ 1 −t/ L

2

1 10 2 20e

,

na qual as constantes de tempo são dadas pela Eq. 30-42. Igualando os fluxos e explicitando o

tempo, obtemos:

ln( 20 / 10)

ln( 150 , )

t =

=

= 81,

1 s.

( R / L ) − ( R / L ) ( 30,

0 / 0, 0030 H ) − ( 25 / 0, 0050 H)

2 2 1 1

87. (a) A força eletromotriz média é

= − dB = B = BAi

= ( 20 , T)( 020 , m)

2

med

dt t

t 020 , s

=

040 , V.


SOLUÇÕES DOS PROBLEMAS 251

(b) A corrente média induzida é

i

med

88. (a) De acordo com a Eq. 30-28, temos:

med

040 , V

= =

= 20 A.

R 20 × 10−

3

N ( 150)( 50 × 10−

9

T⋅m2)

L = =

= 375 , mH.

i 200 , × 10−

3

A

(b) A indutância não muda; continua a ser 3,75 mH.

(c) Como o campo magnético é diretamente proporcional à corrente na bobina e o fluxo é diretamente

proporcional ao campo magnético, quando a corrente dobra de valor, o fluxo também

dobra de valor. Assim, o novo fluxo é 2(50) = 100 nWb.

(d) De acordo com a Eq. 30-35, o valor absoluto da fem máxima induzida é

L di = ( 0, 00375 H)( 0, 0030 A)( 377 rad/s) = 00 , 0424 V = 4,24 mV.

dt max

89. (a) i 0 = e/R = 100 V/10 Ω = 10 A.

(b) UB = Li / 2= ( 2, 0H)( 10 A) = 1, 0×

10 J.

0 2 2 2

90. De acordo com a Eq. 30-45, i = i e−

t L

. Fazendo i 0 = 0,100 e explicitando t, obtemos:

0

⎛ i0⎞

L ⎛ i0⎞

200H , ⎛ i0

t = L ln

i ⎠

⎟ = ln

R ⎝

i ⎠

⎟ = ln

3,00 ⎝

0,

100i

0

154 , .

⎟ = s

91. (a) Como a corrente em um indutor não pode variar bruscamente, a corrente na fonte é zero

logo depois que a chave é fechada.

(b) Como a corrente na fonte é zero logo depois que a chave é fechada, a aplicação da regra das

malhas mostra que a tensão do indutor, e L , é igual, em valor absoluto, à fem da fonte. Como a

corrente da fonte é igual à corrente do indutor, a Eq. 30-35 nos dá

di

dt

fonte

| L

| 40 V

= = = 80 , × 10 2 As.

L 0,

050 H

(c) Este circuito se torna equivalente ao que foi analisado na Seção 30-9 se substituirmos os

dois resistores de 20 kΩ em paralelo por um resistor equivalente de resistência R = 10 kΩ.

Nesse caso, de acordo com a Eq. 30-41, temos:

i

fonte

eRt L

40 V

= ( 1− ) =

R

10 , × 10

( 1

/

− − ( 10 , × 10 4

4

(d) De acordo com a regra das malhas, temos:

e

)( 30 , × 10 − 6 s) 50 × 10 − 3 H) ≈ 18 , × 10−

3 A = 1,8 mA.

L = − i R= − ×

fonte 40 V (, 18 10

3A)( 10 , × 104

)

= 40 V −18 V = 22 V.

Assim, de acordo com a Eq. 30-35,

di

dt

fonte

| L

| 22 V

= = = 44 , × 10 2 As.

L 0,

050 H


252 SOLUÇÕES DOS PROBLEMAS

(e) Muito tempo após o fechamento da chave, o circuito está no regime estacionário, com e L =

0. Nesse caso, a regra das malhas nos dá

40 V

− ifonteR= 0 ⇒ ifonte

= =

R 10 , × 10

4

= 40 , × 10− 3

A = 4,0 mA.

(f) Muito tempo após o fechamento da chave, o circuito está no regime estacionário, di fonte /

dt = 0.

92. (a) L = F/i = 26 × 10 –3 Wb/5,5 A = 4,7 × 10 –3 H = 4,7 mH.

(b) Explicitando t na Eq. 30-41, obtemos:

⎛ iR L iR

t =− L −

⎝ ⎠ =− ⎛

R ⎝

− ⎞

⎠ =− 47 , × 10−

τ ln 1 ln 1

3 H A

ln

⎡ ( 25 , )( 075 , ) ⎤

1

0,75 ⎢ −

60 , V ⎥

= 24 , × 10−

3 s = 2,4 ms.

93. A energia armazenada quando a corrente é U B = Li 2 /2, na qual L é a indutância do indutor.

Esta energia é armazenada a uma taxa

dU B = Li di ,

dt dt

na qual a corrente i é dada pela Eq. 30-41. Assim, no instante t = 1,61t L , temos:

dU

dt

V

2

= − e−

L

e−

12 0

2

( 1

/

)

/

( , V)

L

= ( 1−e

R

20,

0

B t t

− 161 ,

)

− 1 , 61 = 115 ,

e W.

94. (a) De acordo com a Eq. 30-31, a indutância do solenoide por unidade de comprimento é

L

n A

l = 0 2 = ( 4π × 10 −7 Hm)( 100 espiras cm) 2 ( )(, 16cm) 2

= 010 , H m.

(b) De acordo com a Eq. 30-35, a força eletromotriz induzida por metro é

l

Ldi

l dt

= =( )( ) =

010 , Hm 13As 1, 3Vm.

95. (a) Como a corrente em um indutor não pode variar bruscamente, a corrente no circuito é

zero logo após o fechamento da chave. Isso significa que a tensão e L1 do indutor L 1 é igual, em

valor absoluto, à tensão da fonte. Assim, de acordo com a Eq. 30-35, temos:

di

dt

1

1

L 60 ,

= = = 20 As.

L 030 ,

(b) Como, no regime estacionário, a resistência dos indutores é nula, a aplicação da regra das

malhas à malha externa nos dá

60 , V

− iR1

= 0 ⇒ i = = 075 , A.

R

96. Chamando de l o comprimento dos lados do quadrado, a área do quadrado é l 2 e a taxa de

variação da área com o tempo é dA/dt = 2ldl/dt. Assim, de acordo com a Eq. 30-34, com N =

1, temos:

d B dBA ( )

=− =− =− B dA =− B d l

2l ,

dt dt dt dt

1


SOLUÇÕES DOS PROBLEMAS 253

o que nos dá

e= −2(12 × 10 −2 m)(0,24 T)(5,0 × 10 −2 m) = 0,0029 V.

97. Podemos tratar a indutância e a resistência da bobina como um indutor “puro” em série com

um resistor “puro”, caso em que a situação descrita no problema pode ser analisada usando a

Eq. 30-41. Derivando a Eq. 30-41, obtemos:

di

dt

d

=

−e

t ⎤

L

e

t L

dt ⎣⎢ R ⎦⎥ =

R

=

( 1

/ τ

)

/ τ

τ L e

− − − Rt/ L

− ( 180 )( 12 , × 10 − 3 s)/( 0, 050 H)

L

= 45 V

e

= 12 A/s.

0,

050 H

98. (a) De acordo com a Eq. 30-35, L = (3,00 mV)/(5,00 A/s) = 0,600 mH.

(b) Como N = iL, temos:

N = iL (, 800 A)( 0, 6×

10−

3

H)

=

= 120.

40,

10−

6

Wb


Capítulo 31

1. (a) Quando a carga do capacitor é máxima, toda a energia do circuito está presente no capacitor.

Assim, se Q é a carga máxima do capacitor, a energia total é

U

Q 2

( 290 , × 10−

6C)

2

= =

= 117 , × 10

2C

2360 (, × 10−

6F)

−6

J = 1,17J.

(b) Quando o capacitor está totalmente decarregado, toda a energia está presente no indutor e a

corrente é máxima. Assim, se I é a corrente máxima, U = LI 2 /2 e

2U

2(, 1 168 × 10−

6

J)

I = =

L 75 × 10−

3H

= 558 , × 10−

3

A = 5,58 mA.

2. (a) Os valores de t para os quais a placa A está novamente com a carga positiva máxima são

múltiplos do período:

n n

tA = nT = =

f 200 , × 10

3

= n(, 500s),

Hz

no qual n = 1, 2, 3, 4, … Como o menor desses tempos corresponde a n = 1, t A = 5,00 ms.

(b) Como o tempo para que a outra placa esteja com a carga positiva máxima é metade do período,

a primeira vez em que isso ocorre é t A /2 = 2,50 ms.

(c) Como o tempo para que a corrente seja máxima (e, consequentememente, o campo magnético

do indutor seja máximo) é um quarto do periodo, a primeira vez em que isso ocorre é t A /4 =

1,25 ms.

3. (a) O período é T = 4(1,50 ms) = 6,00 ms.

(b) A frequência é f = 1/T = 1/6,00 ms = 167 kHz.

(c) Como a energia magnética não depende do sentido da corrente (U B ∝ i 2 ), o tempo necessário

é T/2 = 3,00 ms.

4. Como U = Q 2 /2C,

C

Q 2

(, 160×

10−

6C)

2

= =

2U

2( 140 × 10−

6

J)

= 914 , × 10

−9

F = 9,14 nF.

5. Como U = LI 2 /2 = Q 2 /2C,

I

Q

= =

LC

300 , × 10

−6

C

( 1,10 × 10−

3H)( 400 , × 10−

6F)

= 4,

52 × 10 − 2 A = 45,2 mA.

6. (a) A frequência angular é

k Fx

= = =

m m

80 , N

( × )( ) = 89rad s.

2,0 10−

13

m 050 , kg


SOLUÇÕES DOS PROBLEMAS 255

(b) O período é

2

2

T = = = 70 , × 10−

2 s=

70ms.

89rad s

(c) Como v = (LC) –1/2 , temos:

C

1 1

2L

2

89rad s 50 , H

25 , 10

= = = ×

−5

=

( ) ( )

F 25F.

7. As energias dos dois sistemas são comparadas na Tabela 31-1. Observando a tabela, podemos

fazer as seguintes correspondências:

1

x q k

C m L v dx dq

↔ , ↔ , ↔ , = ↔ = i,

dt dt

1 q2

kx

2

↔ ,

2 2C

1

mv 2

↔ 1 Li

2.

2 2

(a) Como a massa m corresponde à indutância, m = 1,25 kg.

(b) A constante elástica k corresponde ao recíproco da capacitância. Como a energia total é

dada por U = Q 2 /2C, na qual Q é a carga máxima do capacitor e C é a capacitância,

e

C

Q 2

( 175 × 10−

6C)

2

= =

= 269 , × 10

2U

2570 (, × 10−

6

J)

1

k =

= 372 N/m.

269 , × 10−

3

m/N

−3

F

(c) Como o deslocamento máximo corresponde à carga máxima,

x max = 175 , × 10−

4 m.

(d) A velocidade máxima v max corresponde à corrente máxima. A corrente máxima é

Q

I = Q

= =

LC

175 × 10

−6

C

(, 125 H)( 2, 69 × 10−

3

F)

= 302 , × 10 −3

A,

a velocidade máxima é

v max = 3,02 × 10 –3 m/s = 3,02 mm/s.

8. Aplicando a lei das malhas ao circuito, temos:

total = L + C + R + = ∑( L + C + R

) = L di q ⎞

1 1 1 j j j ∑ ⎜ j + + iR

⎝ dt

= L di

C

+ q

j

dt C

+ iR

j

na qual

1 1

L = ∑Lj, = R=

C

∑ ,

C

j

j

e e total = 0. Este comportamento é equivalente ao do circuito LRC simples da Fig. 31-26b.

9. Como o tempo necessário é t = T/4, na qual o período é dado por T = 2

/ = 2

LC ,

temos:

j

j

j

j

R

j

T LC

×

2 2 0 050 40 10

6

( , H)( , F)

t = = =

4 4

4

= 70 , × 10

−4

s.


256 SOLUÇÕES DOS PROBLEMAS

10. Como f /2 2

LC

= =( ) −

1

,

1

1

L = =

= 38 , × 10− 5

H = 38H.

42f 2C

4 2( 10× 103Hz) 2(, 6 7×

10−

6F)

11. (a) Como a frequência de oscilação f está relacionada à indutância L e à capacitância C

através da equação f = 12 / LC, o menor valor de C corresponde ao maior valor de f. Assim,

f = 12 / LC , f = 12 / LC e

max min min max

f

f

max

min

Cmax

365pF

= = = 60 , .

C 10 pF

min

(b) Devemos usar uma capacitância adicional C tal que a razão entre a frequência máxima e a

frequência mínima seja

160 , MHz

r = = 296 , .

054 , MHz

Como o capacitor adicional está em paralelo com o capacitor de sintonia, as duas capacitâncias

se somam. Assim, com C em picofarads (pF), devemos ter:

o que nos dá

C + 365pF

= 296 , ,

C + 10pF

( 365pF) − ( 296 , )(

2

10pF)

C =

= 36pF.

( 296 , )

2

− 1

(c) Sabemos que f = 12 / LC . Como, no caso da frequência mínima, C = 365 pF + 36 pF =

401 pF e f = 0,54 MHz, temos:

1

1

L = =

( 2) Cf ( 2) ( 401 × 10−

F)( 054 , × 10 Hz)

2 2 2 12 6 2

= 22 , × 10−

4 H = 0,22 mH.

12. (a) Como a porcentagem de energia armazenada no campo elétrico do capacitor é

( 1− 750 , %) = 25, 0%

, temos:

o que nos dá

(b) Como

temos

U E q2

/ 2C

= = 25, 0%,

U Q2

/ 2C

q

Q = 0 , 250 = 0 , 500 .

U B Li2

/ 2

= = 75, 0%,

U LI

2

/ 2

i

I = 0 , 750 = 0 , 866 .

13. (a) A variação da carga com o tempo é dada por q= Qsen t, na qual Q é a carga máxima

do capacitor e v é a frequência angular de oscilação. A função seno foi escolhida para que q =

0 no instante t = 0. A variação da corrente com o tempo é dada por

dq

i = =Qcos t,

dt


SOLUÇÕES DOS PROBLEMAS 257

e, no instante t = 0, a corrente é I = vQ. Como = 1/ LC , temos:

Q = I LC = ( 200 , A) ( 3, 00 × 10 − 3H)( 270 , × 10−

6F) = 180 , × 10 4 C

(b) A energia armazenada no capacitor é dada por

− =

0,180 mC.

e a taxa de variação é

q2 Q2sen2

t

UE = =

2C

2C

dU E Q sentcost

Q

= =

dt C 2C

2 2

sen( 2t)

A taxa de variação é máxima para sen(2vt) = 1, o que nos dá 2vt = p/2 rad. Assim,

t = = LC = (, 300× 10−

3H)( 2, 70 × 10−

6F) = 707 , × 10 5 s

4

4 4

− =

70,7 s.

(c) Fazendo v = 2p/T e sen(2vt) = 1 na equação dU E /dt = (vQ 2 /2C) sen(2vt),obtemos

⎛ dU

dt

E

⎞ 2Q

2

Q2

⎟ = = .

2TC

TC

max

Como T = 2 LC = 2 (, 300× 10− 3

H)( 2, 70 × 10− 6F) = 5,

655 × 10−

4

s, temos:

dU

dt

E

(, 180×

10−

4

C)

2

⎟ =

66,

7

(, 5 655 × 10−

4

s)(

270 , × 10 −

= W.

6

F)

max

Note que a derivada é positiva, o que mostra que a energia armazenada no capacitor está realmente

aumentando no instante t = T/8.

14. Os capacitores C 1 e C 2 podem ser usados de quatro formas diferentes: (1) C 1 e C 2 em paralelo;

(2) apenas C 1 ; (3) apenas C 2 ; (4) C 1 e C 2 em série.

(a) A menor frequência de oscilação é a que corresponde à forma (1):

f

1

=

2

1

1

=

LC ( + C ) 2

(, 1 0× 10−

2H)( 2,

0× 10−

6F+

5,0 × 10−

F

1 2

6

)

= 60 , × 10 2

Hz.

(b) A segunda menor frequência de oscilação é a que corresponde à forma (2):

f

2

1

1

= =

= 71 , × 102Hz.

2 LC 2 (, 1 0× 10−

2H)( 5, 0×

10−

6F)

1

(c) A terceira maior frequência de oscilação é a que corresponde à forma (3):

f

3

1

1

= =

= 11 , × 103Hz = 1,1 kHz.

2 LC 2 (, 1 0× 10−

2H)( 2, 0×

10−

6F)

2

(d) A maior frequência de oscilação é a que corresponde à forma (4):

f

4

=

2

1

1 20 10

6 6

LC C ( C + C ) = , ×

F + 5,0 × 10−

F

/

2 (1, 0× 10− 2

H)( 20 , × 10− 6

F)( 50 , × 10−

6

F)

1 2 1 2

= 13 , × 103Hz = 1,3 kHz.

15. (a) A carga máxima é

Q = CV max = (1,0 × 10 –9 F)(3,0 V) = 3,0 × 10 –9 C = 3,0 nC.


258 SOLUÇÕES DOS PROBLEMAS

(b) Como U = LI 2 = Q 2 /2C, temos:

I

Q

= =

LC

30 , × 10

−9

C

(, 30× 10−

3H)( 10 , × 10−

9F)

= 17 , × 1

0 − 3 A =

1,7 mA.

(c) Quando a corrente é máxima, a energia magnética também é máxima. Assim,

1

UB,max = LI

2

1

= (, 30× 10−

3H)( 17 , × 10−

3A) 2

= 45 , × 10 9 J

2 2

− =

4,5 nJ.

16. A relação linear entre u (o ângulo de rotação do botão, em graus) e a frequência f deve ser

f

⎛ ⎞

⎛ f ⎞

= f0

+

⎜1 ⎠

⎟ ⇒ = 180°

180 ⎝

⎜ 1

°

f ⎠

0

na qual f 0 = 2 × 10 5 Hz. Como f = v/2p = 1/2p LC , podemos expressar a capacitância C em

função de u:

1

81

C =

=

42Lf

1+

/ 180° 400.

000 180°

+

( )

( )

0 2 2 2 2

em unidade do SI ou, com a capacitância em picofarads,

81 × 1012

205 , × 107

C =

=

400 000

2 2

. 180° + 180° + ) 2

( )

A figura a seguir mostra o gráfico da capacitância em função do ângulo de rotação.

(

17. (a) Quando a chave é colocada na posição b, o circuito se torna um circuito LC. Assim, a

frequência angular de oscilação é = 1/ LC e a frequência é

1

1

f = = =

= 275 Hz.

2 2 LC 2

( 540 , × 10−

3H)( 620 , × 10−

6F)

(b) Como a chave permaneceu muito tempo na posição a, o capacitor se carregou totalmente.

Assim, quando a chave é colocada na posição b, a tensão entre as placas do capacitor é V = 34,0 V

e a carga do capacitor é Q = VC = (34,0 V)(6,20 × 10 –6 F) = 2,11 × 10 –4 C. A amplitude da

corrente é

I = CV = Q = 2 fQ = 2( 275 Hz)( 211 , × 10 − 4

C) = 0,

365 A = 365 mA.


SOLUÇÕES DOS PROBLEMAS 259

18. (a) Como V = IX C = I/vC, v= I/CV e, portanto, T = 2p/v = 2pCV/I = 46,1 ms.

(b) A energia máxima armazenada no capacitor é

1

UE = CV

2

1

= ( 220 , × 10−

7

F)( 0, 250 V) 2

= 688 , × 10−

9

J = 6,88 nJ.

2 2

(c) De acordo com a lei de conservação da energia, a energia máxima armazenada no indutor

tem o mesmo valor que a energia máxima armazenada no capacitor, calculada no item (b):

U B = 6,88 nJ.

(d) De acordo com a Eq. 30-35, V = L(di/dt) max . Como L = CV 2 /I 2 , temos:

di V V I

2

⎛ ⎞

( 750 , × 10−

3

A)

2

dt ⎠

⎟ = = = =

102 , 10

L CV

2/

I

2

CV ( 220 , × 10 −

= ×

7

F)( 0, 250 V)

max

(e) Derivando a equação U B = Li 2 /2 em relação ao tempo, obtemos:

Assim,

⎛ dU

dt

B

dU B = LI

2

1

sentcost = LI

2sen 2t.

dt

2

⎞ 1

LI IV

⎟ =

2

1 1

= = ( 750 , × 10−

3

A )( 0, 250 V) = 0,

938 mW.

2 2 2

max

19. Quando a regra das malhas é aplicada a uma malha com apenas dois dispositivos, a conclusão

é que a diferença de potencial deve ser a mesma, em valor absoluto, nos dois dispositivos.

Suponha que o capacitor tem uma carga q e que a diferença de potencial entre os terminais (que

vamos considerar positiva nesta discussão) é V = q/C. Suponha ainda que, neste momento, a

corrente no indutor é tal que a carga do capacitor está aumentando (ou seja, i = +dq/dt). Nesse

caso, de acordo com a Eq. 30-35, V = −L(di/dt), e interpretamos o fato de que −di/dt > 0 como

significando que d(dq/dt)/dt = d 2 q/dt 2 < 0 representa uma “desaceleração” do processo de carga

do capacitor (já que a carga está se aproximando do valor máximo). Desta forma, podemos

verificar que os sinais da Eq. 31-11 (segundo a qual q/C = − L d 2 q/dt 2 ) estão corretos.

20. (a) Usamos a relação LI 2 /2 = Q 2 /2C para obter o valor de L:

2 2 2

max

1 ⎛ Q⎞

1 ⎛ CV

L =

C ⎝

I ⎠

⎟ =

C ⎝

I

C V ⎠

⎟ = ⎛ ⎝ ⎜ max ⎞

I ⎠

3

A/s.

= ×

⎛ , ⎞

( 400 , 10

6

150V

F)

50,0 × 10−

3 A⎠

2

= 360 , × 1

0 − 3 H =

3,60 mH.

(b) A frequência é

1

1

f = =

2 LC 2 (, 3 60 × 10−

3H)( 400 , × 10−

6F)

= 133 , × 10 3

Hz = 1,33 kHz.

(c) De acordo com a Fig. 31-1, o tempo necessário é um quarto do período. Assim,

1 1 1

t = T = =

= 188 , × 10−

4

s = 0,188 ms.

4 4 f 4133 (, × 103

Hz)

21. (a) Vamos comparar esta expressão da corrente com i = I sen(vt+f). Fazendo (vt+f) =

2500t + 0,680 = p/2, obtemos t = 3,56 × 10 –4 s = 356 ms.

(b) Como v = 2500 rad/s = (LC) –1/2 ,

1 1

L = =

= 250 , × 10

2C

( 2500rad/s) 2( 64, 0×

10−

6

F)

−3

H = 2,50 mH.


260 SOLUÇÕES DOS PROBLEMAS

(c) A energia total é

1

U = LI

2

1

= ( 250 , × 10−

3H)( 160 , A) 2

= 320 , × 10−

3

J=

3,20 mJ.

2 2

22. No primeiro circuito, v = (L 1 C 1 ) –1/2 ; no segundo, v = (L 2 C 2 ) –1/2 . Quando os dois circuitos são

ligados em série, a nova frequência é

1 1 1

′ = =

=

LeqCeq ( L1+ L2) CC 1 2/

( C1+

C2) ( LCC 1 1 2 + L2CC )/( C + C )

1 2 1 2

=

1 1 1

=

( LCC + LC )/ C + C LC ( C + C )/( C + C

1 1 2 1 1 2 1 2 1 1

1 2 1 2)

= .

23. (a) A energia total U é a soma das energias do indutor e do capacitor:

q2 iL

2

(, 380×

10−

6C)

2

(, 920× 10−

3A)( 2

250 , × 10−

3H)

U = UE

+ UB

= + =

+

2C

2 2780 ( , × 10−

6F)

2

= 198 , × 10−

6

J = 1,98 J.

(b) A carga máxima pode ser calculada a partir da relação U = Q 2 /2C:

Q = 2CU

= 2( 780 , × 10− 6F)( 198 , × 10− 6J) = 556 , × 10−

6

C=

5,56 C.

(c) A corrente máxima pode ser calculada a partir da relação U = I 2 L/2:

2U

2(, 198×

10−

6

J)

I = =

L 25,

10−

3

H

= 126 , × 10−

2

A = 12,6 mA.

(d) Se q 0 é a carga do capacitor no instante t = 0, q 0 = Q cos f e

= cos

⎛ q ⎞

⎟ = ⎛

380 , × 10

cos

Q ⎝

556 , × 10

−1 1

−6

−6

C⎞

C⎠

⎟ =±46, 9°

.

Para f = +46,9°, a carga do capacitor está diminuindo; para f = –46,9°, a carga está aumentando.

Para chegar a esta conclusão, derivamos a carga q em relação ao tempo e fazemos t = 0.

O resultado é –vQ sen f. Como sen(+46,9°) é um número positivo e sen(–46,9°) é um número

negativo, o ângulo de fase para o qual a carga está aumentando no instante t =0 é f = –46,9°.

(e) Como foi visto no item (d), para que a carga esteja diminuindo no instante t = 0, devemos

ter f = +46,9°.

24. A carga q após N ciclos pode ser calculada fazendo t = NT = 2pN/v' na Eq. 31-25:

q= Qe−Rt / 2L cos t Qe

RNT L

( ′ + ) =

− / 2

cos ⎡⎣ ′ ( 2N

/ ′

) + ⎤ ⎦

( )

− RN

= ( 2

L/ C

Qe

)/

2L

cos 2N

+

= Qe

− N

R C/

L

cos .

Como a carga inicial, obtida fazendo N = 0 na equação anterior, é q 0 = Q cos f, podemos escrever

a equação anterior na forma

qN = q0 exp( −N R CL / ),

na qual, de acordo com o enunciado, q 0 = 6,20 mC.


SOLUÇÕES DOS PROBLEMAS 261

(a) Para N = 5,

(b) Para N = 10,

(c) Para N = 100,

q 5 620 , C

exp ⎡

5

720 , 0,

00000320 F/12,0 H ⎤ ⎦

= 585 , C.

= ( ) − ( )

q 10 620 , C

exp ⎡

10

7, 20 0,

00000320 F/12,0 H ⎤

⎦ = 552 , C.

= ( ) − ( )

q 100 620 , C

exp ⎡ 100

720 , 0,

00000320 F/12, 0H⎤

⎦ = 193 , C.

= ( ) − ( )

25. Como v' ≈ v, o período é T ≈ 2p/v, na qual = 1/ LC . O tempo necessário para que 50

ciclos sejam completados é

⎛ ⎞

t = 50 T = 50 LC

2

⎟ = 50( 2

) = 50⎡2

( 220 × 10−

3

H)

120 , × 10

= 0,

5104 s.

6

( −

F)

Como foi visto na Seção 31-5, a carga máxima decai de acordo com a equação qmax

= Qe− Rt / 2 L ,

na qual Q é a carga no instante t = 0 (se fizermos f = 0 na Eq. 31-25). Dividindo por Q e tomando

o logaritmo natural de ambos os membros, obtemos

⎛ q

ln max ⎞ Rt

,

Q ⎠

⎟ =− 2L

o que nos dá

2L

⎛ q ⎞

R =−

t ⎝

Q ⎠

⎟ =− 2 220 × 10−

3

max ( H)

ln

0,

5104 s

( ) = × =

ln 0, 99 866 , 10− 3 8, 66 m.

26. De acordo com o enunciado, q = Q em t = 0, o que equivale a dizer que f = 0 na Eq. 31-25.

Como a energia máxima armazenada no capacitor em cada ciclo é q2 max / 2C, na qual q max é a

carga máxima nesse ciclo, temos que determinar o instante no qual

q

2C

1 Q

Q

= ⇒ q =

22C

2

2 2

max

Como foi visto na Seção 31-5, a carga q max é dada por

q

max

max .

q

Qe

Rt / L

max Rt

=

− 2

⇒ln ⎛ .

⎝ ⎜ ⎞

Q ⎠

⎟ =− 2L

Fazendo qmax = Q/

2 e explicitando t, obtemos:

2L

⎛ qmax

⎞ L L

t =−

R ⎝

Q ⎠

⎟ =− 2 ⎛ 1 ⎞

ln ln

R ⎝

2

= ln 2.

R


262 SOLUÇÕES DOS PROBLEMAS

27. Seja t o instante no qual o capacitor está totalmente carregado em um certo ciclo e seja q max 1

a carga do capacitor nesse instante. No mesmo instante, a energia armazenada no capacitor é

na qual, de acordo com a Eq. 31-25,

q2 2

max 1

Ut () = =

C

QC e − Rt / L

2 2

q = Qe−

Rt / 2 L

max1

Depois de transcorrido um período, a carga do capacitor totalmente carrregado é

e a energia é

A fração de energia perdida é

q Qe

Rt ( T) / L

max 2 =

− + 2

em que T= 2

'

q2 2

max 2

Ut ( + T) = =

C

QC e − Rt ( + T )/ L .

2 2

| U | Ut () − Ut ( + T)

e

=

=

U Ut ()

− e

e

Rt

−Rt / L − R( t+

T)/

L

− / L

= 1−e

RT / L

.

Supondo que RT/L << 1 (o que é válido se a resistência for pequena), podemos substituir a exponencial

pelos dois primeiros termos de uma expansão em série (veja o Apêndice E):

e− RT / L

≈1−

e usar a aproximação v ≈ v', que nos dá T = 2p/v. O resultado é o seguinte:

RT

L

| U | ⎛

≈1− −

U ⎝

⎜1

RT

L

⎟ =

RT

L

2 R

≈ .

L

28. (a) Como I = e/X c = v d Ce, temos:

I = ω C

= 2π fC

= 2π(1,00× 10 3 Hz)( 150 , × 10−

6 F)( 30,0 V) = 0,283 A.

d m d m

(b) I = 2p(8,00 × 10 3 Hz)(1,50 × 10 –6 F)(30,0 V) = 2,26 A.

29. (a) A amplitude da corrente é dada por I = V L /X L , na qual X L = v d L = 2pf d L. Como o circuito

contém apenas o indutor e uma fonte de tensão senoidal, V L = e m . Assim,

VL

m

30, 0 V

I = = =

= 0, 0955A

= 95,

5 mA.

X 2π

f L 2π(1,00× 10 3 Hz)(50,0 × 10−

3 H)

L

d

(b) Como a frequência é oito vezes maior que a do item (a), a reatância indutiva X L é oito vezes

maior e a corrente é oito vezes menor. Assim,

I = (0,0955 A)/8 = 0,0119 A = 11,9 mA.

30. (a) A amplitude da corrente que atravessa o resistor é

m

30,

0 V

I = = = 0,

600 A.

R 50,0

(b) Qualquer que seja a frequência da força eletromotriz, I = 0,600 A.


SOLUÇÕES DOS PROBLEMAS 263

31. (a) A reatância indutiva para uma frequência angular v d é X L = v d L e a reatância capacitiva

para a mesma frequência é X C = 1/v d C. Para que as duas reatâncias sejam iguais, é preciso que

v d L = 1/v d C, o que nos dá d = 1/ LC . A frequência correspondente é

f

d

(b) A reatância é

d

1

= = =

2 2 LC 2

1

= 65 , × 10 2 Hz = 0,65 kHz.

(6,0× 10 −3 H)(10×

10−

6

F)

X C = X L = v d L = 2pf d L = 2p(650 Hz)(6,0 × 10 –3 H) = 24 Ω.

(c) Como foi visto no item (a), a frequência é f

circuito.

= / /

2 =1 2 LC , a frequência natural do

32. (a) Como o circuito contém apenas um gerador e um indutor, e m = V L . A amplitude da

corrente é

m

m

25,

0 V

I = = = = 522 ,

X ω L (377 rad/s)(12,7 H)

L

d

× 10−

3 A = 5,22 mA.

(b) Quando a corrente é máxima, a taxa de variação da corrente com o tempo é zero. Assim, a

Eq. 30-35 nos dá e L = 0 nesse instante. Em outras palavras, como existe uma diferença de fase

de 90° entre e(t) e i(t), e(t) = 0 quando i(t) = I. O fato de que f= 90° rad é usado no item (c).

(c) Fazendo e = −12,5 V = −e m /2 na Eq. 31-28, obtemos sen(v d t) = –1/2, o que nos dá v d t = 210 o

ou v d t = 330 o . Note, porém, que é pedido o instante em que a força eletromotriz está aumentando

em valor absoluto, ou seja, está se tornando mais negativa. Assim, não basta que a condição

sen(v d t) = −1/2 seja satisfeita; é preciso também que de/dt = v d cos(v d t) < 0. Para isso, é preciso

que v d t = 210 o . Assim, a Eq. 31-29 nos dá

i = Isen( 210 − 90 ) = I sen( 120 ) = (, 522×

10−

3

o o o A)

3

2

⎟ = 451 , × 10−

3 A = 4,51 mA.

33. (a) A expressão da força eletromotriz apresentada no enunciado do problema mostra que a

fem é máxima para sen(v d t – p/4) = 1, ou seja, para

v d t – p/4 = (p/2) ± 2np, na qual n é um número inteiro.

Para determinar a primeira vez em que a igualdade anterior é satisfeita após t = 0, fazemos n =

0, o que nos dá v d t – p/4 = p/2. Assim,

3

3

t = = = 673 , × 10−

3 s = 6,73 ms.

4

4(350 rad/s)

d

(b) A corrente é máxima para sen(v d t – 3p/4) = 1, ou seja, para

v d t – 3p/4 = (p/2) ± 2np, na qual n é um número inteiro.

Para determinar a primeira vez em que a igualdade anterior é satisfeita após t = 0, fazemos n = 0,

o que nos dá v d t – 3p/4 = p/2. Assim,

5

5

t = = = 112 , × 10−

2

s=

112 , ms.

4

4(350 rad/s)

d

(c) Como a corrente está atrasada 90 o em relação à fem, o elemento é um indutor.

(d) A amplitude I da corrente no indutor está relacionada à amplitude V L da tensão entre os terminais

do indutor através da relação V L = IX L , na qual X L é a reatância indutiva, dada por X L =

v d L. Além disso, como há apenas um componente no circuito, a amplitude da diferença de


264 SOLUÇÕES DOS PROBLEMAS

potencial entre os terminais do componente é igual à amplitude da fem no gerador: V L = e m .

Assim, e m = Iv d L e

m

30,

0 V

L = =

= 0,

138 H = 138 mH.

(620 × 10−

3

A)(350 rad/s)

d

34. (a) Como o circuito é formado apenas por um gerador e um capacitor, V C = e m e, portanto,

a amplitude da corrente é

m

I = = ω Cm

= (377 rad/s)(4,15 × 10−

6 F)(25,0 V) =

X

3,91 × 10 −2

A = 39,

1 mA.

C

(b) O instante em que a corrente é máxima é o instante em que a variação com o tempo da carga

do capacitor é máxima, que coincide com o instante em que o capacitor está momentaneamente

descarregado. Como q = CV, no instante em que isso acontece, a tensão entre as placas do

capacitor (e, portanto, de acordo com regra das malhas, a fem do gerador) também é zero. Em

termos matemáticos, a corrente está adiantada de 90 o em relação à fem, o que significa que

e(t) = 0 quando i(t) = I. O fato de que f = –90° será usado no item (c).

(c) Fazendo e = −12,5 V = −e m /2 na Eq. 31-28, obtemos sen(v d t) = –1/2, o que nos dá v d t =

210 o ou v d t = 330 o . Note, porém, que é pedido o instante em que a força eletromotriz está aumentando

em valor absoluto, ou seja, está se tornando mais negativa. Assim, não basta que a

condição sen(v d t) = − 1/2 seja satisfeita; é preciso também que de/dt = v d cos(v d t) < 0. Para

isso, é preciso que v d t = 210 o . Assim, a Eq. 31-29 nos dá

i = Isen( 210 + 90 ) = I sen( 300 ) = − (, 391× 10−

2

o o o A)

3

2

⎟ =− 338 , × 10−

2

A = − 33,8 mA.

35. De acordo com a Eq. 31-65,

o que nos dá

X

− X

R

L−

1/ C

=

= tan ,

R

L C d d

1 ⎛ 1 ⎞

R= d L−

C ⎠

⎟ = 1

tan tan 75 °

d

1

( 2)(930 Hz) ( 8,

8× 10−

2

H) −

( 2)(930

Hz)(0,94 × 10−

6

F

= 89 .

36. (a) Como o circuito contém apenas um resistor e um capacitor e a resistência não varia com

a frequência, enquanto a reatância capacitiva é inversamente proporcional à frequência, o valor

assintótico de Z corresponde ao valor da resistência, ou seja, R = 500 Ω.

(b) Vamos usar três métodos diferentes para calcular o valor de C, baseados em pontos diferentes

do gráfico.

Método 1: Para v d = 50 rad/s, Z ≈ 700 Ω, o que nos dá

C =

d

1 1

=

Z − R ( 50 rad/s) ( 700 ) − ( 500 )

2 2 2 2

= 41 F.

Método 2: Para v d = 50 rad/s, X C ≈ 500 Ω, o que nos dá

C = 1

X

= 1

50 500

= 40 F.

( rad/s)( )

d

C


SOLUÇÕES DOS PROBLEMAS 265

Método 3: Para v d = 250 rad/s, X C ≈ 100 Ω, o que nos dá

37. A corrente rms do motor é

I

rms

C = 1

X

= 1

250 100

= 40 F.

( rad/s)( )

rms

rms

= = =

Z R2

+ X L

d

C

420 V

( 45,0 ) + ( 32, 0 )

= 761 , A.

2 2 2

38. (a) O gráfico da Fig. 31-29 mostra que a frequência angular de ressonância é 25.000 rad/s,

o que, de acordo com a Eq. 31-4, nos dá

C = (v 2 L) −1 = [(25.000) 2 × 200 × 10 −6 ] −1 = 8,0 mF.

(b) O gráfico da Fig. 31-29 também mostra que a amplitude da corrente na frequência de ressonância

é 4,0 A. Como, na ressonância, a impedância Z é puramente resistiva (Z = R), podemos

dividir a amplitude da fem pela amplitude da corrente para obter valor da resistência: R =

8,0/4,0 = 2,0 Ω.

39. (a) Como, nesse caso, X L = 0, R = 200 Ω e X C = 1/2pf d C = 177 Ω, a impedância é

(b) O ângulo de fase é

(c) A amplitude da corrente é

Z = R2 + X

2

C = ( 200 ) 2

+ ( 177 ) 2

= 267 .

⎛ −

= tan−

1 XL

X

R

C

⎟ =

⎛ − ⎞

tan−

1 0 177

200 ⎠

⎟ =− 41, 5°

.

em

36,

0 V

I = = = 0, 135 A = 135 mA.

Z 267

(d) Vamos primeiro calcular as amplitudes das tensões entre os terminais dos componentes do

circuito:

V

V

R

C

= IR = ( 0, 135 A)(200 ) ≈ 27,

0 V

= IX = ( 0,

135 A)(177 ) ≈ 23,

9 V.

C

Como o circuito é capacitivo, a corrente I está adiantada em relação à força eletromotriz e m . O

diagrama fasorial, desenhado em escala, aparece na figura a seguir.

40. Um diagrama fasorial como o da Fig. 31-14d nos dá a seguinte relação:

V L 2 V C = (6,00 V) sen(30º) = 3,00 V.

Para V C = 5,00 V, a equação anterior nos dá V L = 8,00 V. Como a diferença de fase entre os fasores

que presentam as tensões do capacitor e do indutor é 180°, a diferença de potencial entre

os terminais do indutor é −8,00 V.


266 SOLUÇÕES DOS PROBLEMAS

41. (a) A reatância capacitiva é

X

C

1 1

1

= = =

= 37, 9 .

C 2 f C 2(60, 0Ηz)( 700 , × 10−

6F)

d

d

A reatância indutiva é

X L = v d L = 2pf d L = 2p(60,0 Hz)(230 × 10 −3 H) = 86,7 Ω.

Assim,

Z = R2 + ( X − X )

2

= ( 200 ) 2

+ ( 37, 9− 867 , ) 2

= 206 .

L

C

(b) O ângulo de fase é

⎛ − ⎞ ⎛ −

= tan−

1

XL XC ⎝

⎟ = tan−

1

86, 7 379 , ⎞

R

200 ⎠

⎟ = 13, 7°

.

(c) A amplitude da corrente é

m

36,

0 V

I = = = 0,

175A.

Z 206

(d) Vamos primeiro calcular as amplitudes das tensões entre os terminais dos componentes do

circuito:

V

V

V

R

L

C

= IR = ( 0, 175 A)(200 ) = 35,

0 V,

= IX = ( 0,

175 A)( 86,7 ) = 15,

2 V,

L

= IX = ( 0, 175 A)(37,9 ) = 662 , V.

C

Note que X L > X C e, portanto, e m está adiantada em relação a I. O diagrama fasorial, desenhado

em escala, aparece na figura a seguir.

42. (a) Como Z = R2 + X

2

L e X L = v d L, Z = R para v d = 0, o que nos dá, de acordo com a Fig.

31-30, R = 40 Ω.

(b) Como X L = v d L, L é dado pela inclinação da reta X L = f(v d ) da Fig. 31-30. Como, de acordo

com a Fig. 31-30, X L = 120 Ω para v d = 2000 rad/s, temos:

L = (120 Ω)/(2000 rad/s) = 0,060 H = 60 mH.

43. (a) Para R = 200 Ω e X L = v d L = 2pf d L = 2p(60,0 Hz)(230 × 10 −3 H) = 86,7 Ω, a impedância é

Z = R2 + X

2

L = ( 200 ) 2

+ ( 86, 7 ) 2

= 218 .


SOLUÇÕES DOS PROBLEMAS 267

(b) De acordo com a Eq. 31-65, o ângulo de fase é

⎛ − ⎞ ⎛ − ⎞

= tan−

1

XL XC ⎝

⎟ = tan−

1

86,

7

0

R

200 ⎠

⎟ =

23, 4°

.

(c) A amplitude da corrente é

m

36,

0 V

I = = = 0,

165 A.

Z 218

(d) Vamos primeiro calcular as amplitudes das tensões entre os terminais dos componentes do

circuito:

V

V

R

L

= IR = ( 0, 165 A)(200 )

≈ 33 V,

= IX = ( 0,

165 A)(86,7 ) ≈ 14,3 V.

L

Como se trata de um circuito indutivo, e m está adiantada em relação a I. O diagrama fasorial,

desenhado em escala, aparece na figura a seguir.

44. (a) A reatância capacitiva é

1

1

XC = =

= 16, 6 .

2 fC 2(400 Hz)(24,0 × 10−

6

F)

(b) A impedância é

Z = R + ( X − X ) = R + ( 2

fL−

X )

2 2 2 2

L C C

= ( 220 )

2

+ [ 2(400 Hz)(150 × 10− 3

H) − 16,6 ]

2

= 422 .

(c) A amplitude da corrente é

m

220 V

I = = = 0,

521 A.

Z 422

(d) Como a inclusão de um capacitor em série diminui a capacitância e X C ∝ 1/C, X C aumenta.

(e) C eq = C/2 e a nova impedância é

Z = ( 220 ) 2 + [ 2(400 Hz)(150 × 10 −3

H) − 2( 16,6 )]

2 = 408 < 422 .

Z, portanto, diminui.

(f) Como I ∝ 1/Z, I aumenta.


268 SOLUÇÕES DOS PROBLEMAS

45. (a) Sim, a amplitude da tensão entre os terminais do indutor pode ser maior que a amplitude

da fem do gerador.

(b) A amplitude da tensão entre os terminais do indutor de um circuito RLC série é dada por

V L = IX L = Iv d L. Na ressonância, a frequência angular aplicada é igual à frequência angular

natural do circuito: = =1/ LC . Assim, para o circuito dado,

d

L

XL = =

LC

10 , H

= 1000

(1,0 H)(1,0 × 10−

6F)

Na ressonância, a reatância capacitiva e a reatância indutiva se cancelam e a impedância se

torna igual à resistência: Z = R. Assim,

m

m

10 V

I = = = = 10A.

Z

R 10 ,

ressonância

A amplitude da tensão entre os terminais do indutor é, portanto,

V

L

= IX = (, 10A)(1000 ) = 10 , × 10 3 V,

que é muito maior que a força eletromotriz do gerador.

L

46. (a) O diagrama fasorial é semelhante ao da Fig. 31-11b, com o dístico “I C ” da seta verde

(veja o livro-texto) substituído por “V R ”.

(b) Se IR = IX C , R = X C = 1/v d C, o que nos dá

(c) f = tan −1 (−V C /V R ) = – 45°.

(d) v d = 1/RC =1,00 ×10 3 rad/s.

.

d

1

1

f = = =

= 159 Hz.

2 2RC

2

( 500 , )( 200 , × 10−

5

F)

(e) I =

12 6

= ≈170

mA.

R + 25 2

2

X2

C

47. (a) Para uma dada amplitude e m da fem do gerador, a amplitude da corrente é dada por

m

m

I = =

Z R + ( ω L−1

/ ω C)

2 2

d

d

Para determinar para que frequência angular a corrente é máxima, derivamos a corrente em

relação a v d e igualamos o resultado a zero:

.

dI

d

d

=− ( E) m[ R2 + ( dL− / dC) 2] −32

/

1 ⎤ ⎡

1

⎢dL

⎣ dC

⎥ ⎢ +

L 1 ⎤

⎣ C ⎦

⎥= 0,

2

d

o que nos dá

d

1 1

= =

LC (, 100 H)(20,0 × 10−

6

F)

= 224 rad/s.

(b) Para v d = v, a impedância é Z = R e a amplitude da corrente é

m

30,

0 V

I = = = 600 , A.

R 5,00


SOLUÇÕES DOS PROBLEMAS 269

(c) Precisamos encontrar os valores de v d para os quais

I =

m

m

= .

R2 + ( ω L−1 / ω C)

2 2R

Elevando ao quadrado e reagrupando os termos, obtemos:

d

⎛ 1 ⎞

d

L − R

⎜ C ⎠

⎟ = 3

Extraindo a raiz quadrada de ambos os membros e multiplicando por v d C, obtemos

d

2

d

2

.

2 ( LC) ± ( 3 CR) − 1 = 0 .

A menor solução positiva da equação anterior é

d

1

2 2 6

d

3 3 4 3200 10

= − CR + C R + LC

= − ( , × −

F)(5,00 )

2LC

2(,

100 H)(20,0 × 10−

6F)

+

3200 ( , × 10− 6 F)

2(, 500 )

2 + 4100 (, H)( 20,

10−

6

F)

2100 (, H)(20,0 × 10−

6

F)

= 219 rad/s.

(d) A maior solução positiva é

3 3 4 3200 10

= + CR + C R + LC

= + ( , × −

F)(5,00 )

2LC

2(,

100 H)(20,0 × 10−

6

F)

2

2 2 6

+

3200 ( , × 10− 6 F)

2(, 500 )

2 + 4100 (, H)( 20,

10−

6

F)

2100 (, H)(20,0 × 10−

6

F)

= 228 rad/s.

(e) A largura de linha relativa a meia altura é

2 − 1

228 rad/s−

219 rad/s

=

= 0, 040.

224 rad/s

0

A figura a seguir mostra a amplitude I da corrente em função da frequência angular v d da fonte;

os gráficos foram traçados usando escalas diferentes do eixo horizontal. Podemos ver que I

atinge o valor máximo (6 A), quando v d = v = 224 rad/s, e atinge um valor igual à metade do

valor máximo (3 A) quando v d = 219 rad/s e v d = 224 rad/s.

48. (a) Com as duas chaves fechadas (o que remove o resistor e um dos capacitores do circuito),

a impedância é igual à reatância do outro capacitor e do indutor e é dada por

X tot = (12 V)/(0,447 A) = 26,85 Ω.


270 SOLUÇÕES DOS PROBLEMAS

Com a chave 1 fechada e a chave 2 aberta, temos a mesma reatância do caso anterior, mas agora

o resistor faz parte do circuito. De acordo com a Eq. 31-65, temos:

Xtot

26,

85

R = = = 100

tan tan15°

(b) Com as duas chaves abertas, o segundo capacitor passa a fazer parte do circuito e, de acordo

com a Eq. 31-65, a nova reatância é dada por

X′ tot = R tan f′ = (100 Ω) tan(230,9º) = 259,96 Ω = 26,85 − X C

Assim, a reatância do capacitor C é dada por

Nesse caso, de acordo com a Eq. 31-39,

X C = 26,85 Ω 2 (259,96 Ω) = 86,81 Ω.

C = 1 = 1

2 60 8681

= 30, 6 F.

( Hz)( , )

X C

(c) Como X tot = X 2 X C , X L = X tot + X C = 26,85 Ω + 86,81 Ω = 113,66 Ω e

X L

113,

66

L = = = 301 mH.

2( 60 Hz)

49. (a) Como, neste circuito, L eq = L 1 + L 2 e C eq = C 1 + C 2 + C 3 , a frequência de ressonância é

1

1

f = =

2

LeqCeq

2

L + L C C C

=

2

1 70 × 10

= 796 Hz.

( )( + + )

1 2 1 2 3

,

−3 + ×

− − −

( 3 ) 400× 10

6

+ × 6 +

1

( )

H 2,30 10 H , F 2,50 10 F 3,50 × 10−

6

F

(b) Como f não depende de R, a frequência permanece a mesma quando R aumenta.

(c) Como f ∝ L eq

–1/2

e L eq aumenta quando L 1 aumenta, a frequência diminui quando L 1 aumenta.

(d) Como f ∝ C eq

−1/2

e C eq diminui quando C 3 é removido, a frequência aumenta quando C 3 é

removido.

50. (a) O diagrama fasorial é semelhante ao da Fig. 31-13b, com o dístico “I L ” da seta verde

(veja o livro-texto) substituído por “V R ”.

(b) se V R = V L , IR = IX L , o que nos dá

(c) f = tan −1 (V L /V R ) = tan −1 (1) = +45°.

d

R 80,

0

f = = =

= 318 Hz.

2 2L

2

( 4000 , × 10−

3

H)

(d) v d = R/L = (80,0 Ω)/(40,0 mH) = 2,00 × 10 3 rad/s.

(e) I = e m / R2 + X2

L = (6 V)/(80 2 Ω) ≈ 53,0 mA.

51. De acordo com as expressões obtidas no Problema 31-47,

3 3

2 2

4

3 3

2 2

4

1

= + CR + C R + LC

2

= − CR + C R + LC

, ,

2LC

2LC


SOLUÇÕES DOS PROBLEMAS 271

o que nos dá, de acordo com a Eq. 31-4,

d 1−

2 2 3

= = CR LC = R

2LC

Para os dados do Problema 31-47,

3 C .

L

d =

(, 500)

3200 ( , × 10

100 , H

−6

F)

= 387 , × 10−

2.

O resultado está de acordo com o que foi obtido no Problema 31-47; entretanto, no método

usado no Problema 31-47, a resposta é obtida com apenas um algarismo significativo, já que é

o resultado da diferença entre dois números muito próximos, v 1 e v 2 . No método usado neste

problema, a diferença é calculada algebricamente, o que permite obter a resposta com três algarismos

significativos.

52. Como a impedância do voltímetro é elevada, não afeta a impedância do circuito quando é

ligada em paralelo com o circuito. Assim, a leitura é 100 V nos três casos.

53. (a) De acordo com a Eq. 31-61, a impedância é

( ) =

Z = R + ( X − X ) = ( 12, 0) + 1, 30 −0 121 , .

2 2 2 2

L C

(b) A potência média consumida pelo aparelho é

P

med

2 rmsR

( 120 V) 2( 12, 0 )

= = = 1,

186 × 10 3 W ≈ 1,19 × 10

3 W = 1,19 kW.

Z

2

( 12, 07 )

2

54. O valor máximo da tensão (valor de pico) é

Vmax = 2Vrms = 2( 100V) = 141V.

55. A potência média dissipada por uma resistência R ao ser submetida a uma corrente alternada

é dada por Pmed

= I2

rmsR, na qual I rms é a corrente média quadrática. Como Irms = I/

2,na

qual I é a amplitude da corrente, temos também a relação P med = I 2 R/2. A potência dissipada pela

mesma resistência ao ser submetida a uma corrente contínua i é dada por P = i 2 R. Igualando as

duas potências e explicitando i, obtemos

I 260 , A

i = = = 184 , A.

2 2

56. (a) Como a potência consumida pela lâmpada é P = I 2 R/2, P max /P min = (I/I min ) 2 = 5, o que

nos dá

⎛ I

I

min

Explicitando L max , temos:

L

max

2 2

⎞ m / Zmin

Z

⎟ = ⎛ ⎝ ⎜ ⎞ ⎛

/ Z ⎠

⎟ =

Z

m

max

max

min

⎟ = ⎜

max

⎟ = 5.

R

2 2 2

R

+ ( L )

2R

2( 120V )

2

/ 1000 W

= = = 764 , × 10−

2H

= 76,4 mH.

2(

600 , Hz)

(b) Sim, é possível usar um resistor variável.

(c) Nesse caso, devemos fazer

⎛ R

max

R

+ R

lâmpada

lâmpada

2

⎟ = 5,

2


272 SOLUÇÕES DOS PROBLEMAS

o que nos dá

Rmax = ( 5− 1) R = ( 5− 1) ( 120 V ) 2

lâmpada

= 17, 8 .

1000 W

(d) Este método não é usado porque os resistores dissipam energia, enquanto os indutores a

armazenam temporariamente.

57. De acordo com as Eqs. 31-63, 31-70 e 31-71,

2

mR

2

mR

Pmed = =

2Z

2

2⎡

R + ωdL−1/

ωdC

( )

( )

2 2

na qual Z = R + L−

1/ C é a impedância do circuito.

2 2

d d

(a) No caso de C variável, o valor de P med é máximo quando o valor de R + dL−1/ dC

é

mínimo. Isso acontece para v d L = 1/v d C, o que nos dá

1 1

C = =

= 117 , × 10− 4

F = 117 F.

2 ( 2) 2( 600 , Hz)( 2

60, 0×

10−

3H)

d L

Para este valor de C, o circuito está em ressonância.

,

( )

2 2

(b) Neste caso, queremos que Z 2 tenha o maior valor possível. A impedância aumenta sem limite

quando C tende a zero. Assim, a potência dissipada é mínima para C = 0 (o que equivale

a interromper o circuito).

(c) Para v d L = 1/v d C, temos:

(d) Para v d L = 1/v d C, temos:

o que nos dá f = 0 o .

P

med

m

V

= 2 ( 30, 0 )

= 2

= 90, 0 W.

2R

2500 (, )

XL − XC dL−

1/

dC

tan = =

= 0,

R R

(e) Para f = 0 o , o fator de potência é cos f = cos 0° = 1.

(f) A dissipação mínima é P med = 0 (como em um circuito aberto).

(g) Quando C → 0, X C → ∞ e, portanto, tan f → −∞. Assim, para C = 0, temos:

f = tan −1 (−∞) = −90 o .

(h) Para f = −90 o , o fator de potência é cos f = cos(–90°) = 0.

58. Como o circuito não contém reatâncias, I rms = e rms /R. De acordo com a Eq. 31-71, a potência

média dissipada no resistor R é

⎛ m

PR

= I R =

rms

⎝ r+

R⎠

2

Para determinar o valor de R que maximiza P R , derivamos P R em relação a R e igualamos o

resultado a zero:

2

R.

⎣( r+

R) − 2( r+

R)

R⎤

⎦ 2

( r−

R)

4

=

3

= 0 ⇒ R=

r

( r+

R)

( r + R)

2 2

R m m

dP

=

dR


SOLUÇÕES DOS PROBLEMAS 273

59. (a) A corrente rms é

I

rms

rms

rms

= =

Z R + 2π

fL−1/

fC

( )

2 2

=

75,

0 V

{ }

2

( 15,0 ) + 2π( 550Hz)( 25 , 0mH) − 1 / ⎡⎣

2π ( 550 Hz)( 470 , µ F)

⎤ ⎦

2

=

259 , A.

(b) A tensão rms em R é

Vab = IrmsR

= ( 259 , A)( 150 , ) = 38,

8 V.

(c) A tensão rms em C é

(d) A tensão rms em L é

Irms

259 , A

Vbc

= IrmsXC

= = = 159 V.

2 fC 2( 550 Hz)( 470 , F)

Vcd

= IrmsXL

= 2Irms fL = 2( 259 , A)( 550 Hz)( 25, 0 mH) = 224 V.

(e) A tensão rms em C e L juntos é

(f) A tensão rms em R, C e L juntos é

Vbd = Vbc − Vcd

= 159, 5V − 223,7 V = 642 , V.

V V V

= + = ( ) + ( ) =

2 2 2

ad ab bd

(g) A potência média dissipada em R é

(h) A potência dissipada em C é 0.

(i) A potência dissipada em L é 0.

P

R

38, 8V 642 , V 75,

0V.

V

2

ab ( 38, 8 V)

2

= = = 100 W.

R 15,

0

60. A corrente no circuito é dada por i(t) = I sen(v d t – f), na qual

m

m

I = =

Z R + ω L−1

/ ω C

( )

2 2

d

d

2

=

45, 0 V

2

( 16,0 ) + {( 3000 rad/s)( 920 , mH) − 1 / ⎡⎣ ( 3000 rad/s)( 31 , 2 µ F)

⎤ ⎦ }

2

= 193 , A

e

= tan

⎛ X

− X

R

⎟ = tan

⎛ L−

/ C⎞

R

−1 L C −1 d 1 d

,

= tan− ( 3000 rad/s)( 920 mH

1

) 1

16,

0 ( 3000 rad/s )

( 160 , )( 31,

2F)

= 46, 5°

.


274 SOLUÇÕES DOS PROBLEMAS

(a) A taxa com a qual a energia está sendo fornecida pelo gerador é

( )

P = i()() t t = Isen t−

sen

t

G d m d

= ( 193 , )( 450 , ) ( )( )

A V sen ⎡⎣ 3000 rad/s 0, 442 ms ⎤ ⎦ sen ⎡⎣ 3000 rad/s

( )( 0, 442 ms) − 46,

⎤ ⎦

= 41,

4 W.

(b) Como

v () t = V sen( t−− / 2) = −V cos( t−)

c c d c d

na qual V C = I/v d C, a taxa com a qual a energia do capacitor está variando é

P

C

=

d

dt

q2

⎛ ⎞

i q ⎝

2C

⎟ = C

= iv

I ⎞

=−Isen dt

− ⎜ C ⎠

⎟ cos dt

( ) ⎛ ⎝

2

( )

( ) ×

193 , A

=−

2 3000 rad/s 31,

2 10

=−17,

0 W.

c

d

−6

( F)

I

2

2

C

(c) A taxa com a qual a energia do indutor está variando é

P

L

( ) =− sen 2( t − )

d

⎡⎣

sen ⎡⎣ 2( 3000 rad/s)( 0, 442 ms) − 2465 ( , )

⎤ ⎦

d ⎛ 1

Li Li di

d

=

2⎞

LI dt

I

dt ⎝ ⎠ = dt

= ( − )

1

sen sen( d t − ) d LI d t

2

dt

⎡⎣ ⎤ ⎦ = 2

sen ⎡⎣ 2( −)

2

1

=

2 3000 2

( rad/s)( 193 , A) ( 9, 20 mH) sen ⎡⎣ 2( 3000 rad/s)

( 0, 442 ms) − 2465 ( , )

⎤ ⎦

= 44,

1 W.

(d) A taxa com a qual a energia está sendo dissipada no resistor é

( ) =( ) ( )

PR

= i 2 R= I 2 Rsen 2 dt

− 193 , A 2 160 , sen

2 ⎡⎣ 3000 rad/s 0, 442 ms 46,

5⎤ ⎦

= 14,

4 W.

d

( )( ) −

(e) A soma é igual. P + P + P = 44, 1W − 17,0 W + 14,4 W = 41,5 W = P .

L R C G

61. (a) O fator de potência é cos f, na qual f é a constante de fase definida pela expressão i =

I sen(vt – f). Assim, f = – 42,0° e cos f = cos(– 42,0°) = 0,743.

(b) Como f < 0, vt – f > vt. Isso significa que a corrente está adiantada em relação à fem.

(c) A constante de fase está relacionada à diferença das reatâncias através da equação tan f =

(X L – X C )/R. Como, neste caso, tan f = tan(– 42,0°) = –0,900, um número negativo, a diferença

X L – X C é negativa, o que significa que X C > X L . Assim, o circuito é principalmente capacitivo.

(d) Se o circuito estivesse sendo excitado na frequência de ressonância, X L seria igual a X C , tan

f seria igual a zero e f seria igual a zero. Como f é diferente de zero, a resposta é não.

(e) Como tan f tem um valor negativo, a reatância capacitiva é diferente de zero. Isso significa

que a caixa contém um capacitor e, portanto, a resposta é sim.

⎤ ⎦


SOLUÇÕES DOS PROBLEMAS 275

(f) Como a reatância indutiva pode ser nula, a caixa pode conter ou não um indutor e, portanto,

a resposta é não.

(g) Como tan f tem um valor finito, a resistência é diferente de zero. Isso significa que a caixa

contém um indutor e, portanto, a resposta é sim.

(h) A potência média fornecida pelo gerador é

1 1

Pmed = mIcos = 75 0V 1 20 A 0 743 = 33 4

2

φ ( , )(, )( , ) ,

2 W.

(i) As respostas anteriores dependem apenas da constante de fase f, que foi dada. Se, em vez

da constante de fase, tivessem sido fornecidos os valores de R, L e C, seria preciso conhecer o

valor da frequência para responder às perguntas.

62. De acordo com a Eq. 31-79, temos:

V

s

= V

⎛ N ⎞

s

⎝ N p ⎠

p

⎟ = ( ) ⎛ ⎝ ⎜ ⎞

100V

500

⎟ = 100 , × 10 3 V.

50

63. (a) A tensão no secundário é

V

s

= V

⎛ N ⎞

s

⎝ N p ⎠

p

10

V

⎟ = 24 , V.

500

⎟ = ( ) ⎛ ⎝ ⎜ ⎞

120

(b) A corrente no secundário, de acordo com a lei de Ohm, é

I

s

= Vs

R

= 24 , V

15

= 016 , A

e a corrente no primário, de acordo com a Eq. 31-80, é

I

p

= I

s

s

⎛ N ⎞

s

⎝ N

p ⎠

= ( )⎛ ⎝ ⎜ 10 ⎞

016 , A

⎟ = 32 , × 10−

3 A = 3,2 mA.

500

(c) Como foi visto no item (b), a corrente no secundário é I s = 0,16 A.

64. No caso de um transformador elevador de tensão:

(a) O menor valor da razão V s /V p é obtido usando o enrolamento T 2 T 3 como primário e o enrolamento

T 1 T 3 como secundário: V 13 /V 23 = (800 + 200)/800 = 1,25.

(b) O segundo menor valor da razão V s /V p é obtido usando o enrolamento T 1 T 2 como primário

e o enrolamento T 2 T 3 como secundário: V 23 /V 13 = 800/200 = 4,00.

(c) O maior valor da razão V s /V p é obtido usando o enrolamento T 1 T 2 como primário e o enrolamento

T 1 T 3 como secundário: V 13 /V 12 = (800 + 200)/200 = 5,00.

Para examinar o caso de um transformador abaixador de tensão, basta permutar os enrolamentos

primário e secundário nos três casos anteriores.

(d) O menor valor da razão V s /V p é 1/5,00 = 0,200.

(e) O segundo menor valor da razão V s /V p é 1/4,00 = 0,250.

(f) O maior valor da razão V s /V p é 1/1,25 = 0,800.


276 SOLUÇÕES DOS PROBLEMAS

65. (a) Como a corrente rms no cabo é

I

rms

P 250 × 10

= =

80 × 10

a queda de tensão na linha de transmissão é

(b) A potência dissipada na linha é

(c) Nesse caso, como a corrente no cabo é

V t

3

3

W

V

= 3, 125 A,

∆V = I rms R = (3,125 A)(2)(0,30Ω) = 1,9 V.

Pd = Irms

2 R = (, 3 125 A )( 2)( 0, 60) = 59 , W.

I

rms

P 250 × 103

W

= =

103

V

a queda de tensão na linha de transmissão é

(d) A potência dissipada da linha é

(e) Nesse caso, como a corrente na linha é

V t

= 31, 25 A,

∆V = I rms R = (31,25 A)(2)(0,30Ω) = 19 V.

P d = (, 3 125A)(, 2 060 ) = 5,

10

2 W.

I

rms

P 250 × 10

= =

08 , × 10

a queda de tensão na linha de transmissão é

(f) A potência dissipada na linha é

V t

3

3

W

V

= 312, 5 A,

∆V = I rms R = (312,5 A)(2)(0,30Ω) = 1,9 × 10 2 V = 0,19 kV.

P d = ( 312, 5A)(, 0 60 ) = 59 , × 10

2 4

W=54kW.

66. (a) O amplificador deve ser ligado ao enrolamento primário de um transformador e o resistor

R deve ser ligado ao enrolamento secundário.

(b) Se I s é a corrente rms no enrolamento secundário, a potência média fornecida ao resistor R

é P I R. Como I s = (N p /N s )I p , temos:

med = 2 s

IpN

Pmed = ⎛ ⎝ ⎜ N

na qual I p é a corrente no enrolamento primário. O circuito primário é formado pelo gerador e

duas resistências em série: a resistência de saída do amplficador, r, e a resistência equivalente

R eq = (N p /N s ) 2 R do enrolamento primário (Eq. 31-82). Assim,

I

s

p

2

R,

rms

rms

2

r Req

r N / N R

p = = + + ( p s)

e, portanto,

P

med

2 ( Np/

Ns)

2 R

=

2

.

⎡⎣ r+

( Np/

N

2

s)

R⎤ ⎦


SOLUÇÕES DOS PROBLEMAS 277

Precisamos determinar o valor de N p /N s para o qual P med é máxima. Fazendo x = (N p /N s ) 2 , temos:

P

med =

2 Rx

( r+

xR) . 2

Derivando a equação anterior e igualando o resultado a zero, obtemos

dP

dx

Rr ( − xR)

= 0,

( r+

xR)

med

=

2 3

o que nos dá

r

x = R

= 1000

10

= 100.

Como P med é diretamente proporcional a x para pequenos valores de x e inversamente proporcional

a x para grandes valores de x, o extremo correspondente a x = r/R é realmente um

máximo, e não um mínimo. Como x = (N p /N s ) 2 , concluímos que a transferência de energia é

máxima para

N

N

p

s

= x =10.

A figura a seguir mostra, de forma esquemática, um transformador com uma relação de espiras

de 10 para 1. Na prática, o transformador teria um número muito maior de espiras, tanto no

enrolamento primário como no enrolamento secundário.

67. (a) Fazendo vt − p/4 = p/2, obtemos

t = 3/ 4 = 3

/[ 4( 350 rad/s)] = 673 , × 10−

3

s=

6,

73 ms.

(b) Fazendo vt + p/4 = p/2, obtemos

t = / 4 = /[ 4( 350 rad/s)] = 224 , × 10−

3 s = 2,24 ms.

(c) Como a corrente está adiantada de p/2 em relação à fem, o elemento é um capacitor.

(d) Como X = ( ωC) − 1

= / I,

temos:

C

m

I

C = = 620 , × 10−

3

A

= 590 , × 10−

5

F = 59,0 µ F.

ω ( 30, 0 V)( 350 rad/s)

m


278 SOLUÇÕES DOS PROBLEMAS

68. (a) Como v d = 2pf d = 12566 rad/s, X L = v d L = 754 Ω e X C = 1/v d C = 199 Ω. Assim, a Eq.

31-65 nos dá

⎛ − ⎞

= tan

−1 XL

XC

⎟ =+ 122 , rad.

R

(b) De acordo com a Eq. 31-60,

I =

m

R + ( X − X )

2 2

L C

= 0, 288 A.

69. (a) Como v = 2pf, X L = vL, X C = 1/vC e tan(f) = (X L −X C )/R, temos:

= tan −

1

16, 022 − 33,

157

=−0, 40473 rad≈−0,

405 rad.

40,

0

(b) De acordo com a Eq. 31-63,

I =

120 V

( 40 ) + ( 16, 022 −33, 157 )

2 2

= 2, 7576 A ≈27

, 6A.

(c) Como X C > X L , o circuito é capacitivo.

70. (a) Como X L = vL = 2pfL, temos:

f

XL

130 , × 103

= =

= 460 , × 103

Hz = 4,60 kHz.

2L

2( 450 , × 10−

3

H)

(b) Como X C = 1/vC = 1/2pfC, temos:

1

1

C = =

= 266 , × 10− 8

F = 26,6 nF.

2 fX C 2( 4, 60 × 103 Hz)( 130 , × 103

)

(c) Como X L ∝ f, se f for multiplicada por dois, X L será multiplicada por dois. Assim,

X L = 2(1,30 kΩ) = 2,60 kΩ.

(d) Como X C ∝1/f, se f for multiplicada por dois, X C será dividida por dois. Assim,

X C = (1,30 kΩ)/2 = 0,650 kΩ.

71. (a) A impedância é Z = (80,0 V)/(1,25 A) = 64,0 Ω.

(b) Como cos f = R/Z,

R = (64,0 Ω)cos(0,650 rad) = 50,9 Ω.

(c) Como a corrente está adiantada em relação à fem, o circuito é capacitivo.

72. (a) De acordo com a Eq. 31-65, temos:

⎛ −

=

⎟ = −

tan

1

VL

VC

( , )

tan

1⎡VL

VL/

150 ⎤

tan

1

2

V

0, 588 .

R ⎣ ( VL

/ 2, 00)

= − ⎛ ⎞

3⎠

⎟ = rad

(b) Como o ângulo f é positivo, o circuito é indutivo (X L > X C ).

(c) Como V R = IR = (0,2 A)(49,9 Ω) = 9,98 V, V L = 2,00V R = 20,0 V e V C = V L /1,50 = 13,3 V.

Assim, de acordo com a Eq. 31-60,

= V + ( V − V ) = (, 998V) + ( 200 , V− 13, 3V) = 12,

0V.

2 2 2 2

m R L C


SOLUÇÕES DOS PROBLEMAS 279

73. (a) De acordo com a Eq. 31-4, L = (v 2 C) −1 = [(2pf) 2 C] −1 = 2,41 mH.

(b) U max = LI 2 /2 = 21,4 pJ.

(c) Como, de acordo com a Eq. 25-21, U max = Q 2 /2C, Q =

2CU max = 82,2 nC.

74. (a) De acordo com a Eq. 31-4, = 1/ LC ≈ 5,77 ×10 3 rad/s.

(b) De acordo com a Eq. 16-8, T = 2p/v=1,09 ms.

(c) A figura a seguir mostra um gráfico da carga do capacitor em função do tempo.

75. (a) A impedância é

m

125V

Z = = = 39, 1 .

I 3,20 A

(b) Como V R = IR = e m cos f, temos:

m

cosφ ( 125V)cos( 0, 982 rad)

R = = = 21, 7 .

I

320 , A

(c) Como a corrente está adiantada em relação à fem, concluímos que o circuito é principalmente

capacitivo.

76. (a) De acordo com a Eq. 31-39, f = v/2p = (2pCX C ) −1 = 8,84 kHz.

(b) Como a reatância capacitiva é inversamente proporcional à frequência, se a frequência for

multiplicada por dois, a nova reatância capacitiva será X C = 12,00 Ω/2 = 6,00 Ω.

77. (a) Temos que considerar as seguintes combinações: ∆V 12 = V 1 – V 2 , ∆V 13 = V 1 − V 3 e

∆V 23 = V 2 – V 3 . No caso de ∆V 12 ,

⎛ 120°⎞

⎛ 2d

t − 120°

V12 = Asen( dt) − Asen( dt− 120°

) = 2Asen ⎝

2 ⎠

⎟ cos

2

= 3Acos( t−60°

),

na qual usamos a identidade

d

( )

( )

sen− sen = 2sen⎡⎣ −

2⎤ ⎦ cos ⎡⎣ +

2⎤

⎦ .


280 SOLUÇÕES DOS PROBLEMAS

Da mesma forma,

e

⎛ 240°⎞

⎛ 2d

t − 240°

V13 = Asen( dt) − Asen( dt− 240°

) = 2Asen ⎝

2 ⎠

⎟ cos

2

= 3Acos

t−120°

( )

d

⎛ 120° ⎞ ⎛ 2d

t − 360°

V23 = Asen( dt−120° ) − Asen( dt− 240°

) = 2Asen

2 ⎠

⎟ cos

2 ⎠

= 3Acos

t −180°

).

(

d

As três expressões são funções senoidais de t com frequência angular v d .

(b) A amplitude das três funções senoidais é 3A.

78. (a) Como I2

R = P ,

rms

efetiva

R

efetiva

mecânica

Pmecânica

hp W/hp

= = ( 0 , 100 )( 746 ) = 177 .

I

2

( 0,

650 A)

2

rms

(b) A resistência efetiva não é a resistência R dos enrolamentos do motor e sim a resistência

associada à conversão de energia elétrica em energia mecânica. O produto I2 rmsR

do quadrado

da corrente efetiva pela resistência dos enrolamentos é igual, não à potência mecânica, mas à

potência dissipada nos enrolamentos.

79. (a) Em qualquer instante, a energia total U do circuito é a soma da energia U E armazenada

no capacitor com a energia U B armazenada no indutor. Se, em um certo instante t, U E =

0,500U B , U B = 2,00U E e

U = U E + U B = 3,00U E .

Sabemos que U E = q 2 /2C, na qual q é a carga do capacitor no instante t. A energia total U é dada

por Q 2 /2C, na qual Q é a carga máxima do capacitor. Assim,

Q2 q2

Q

q

Q

2C

= 300 ,

2C

⇒ = 300

= 0 ,

,

577 .

(b) Se o capacitor está totalmente carregado no instante t = 0, a carga do capacitor em função

do tempo é dada por q = Q cos vt. Assim, a condição q = 0,577Q é satisfeita para cosvt =

0,557, o que nos dá vt = 0,955 rad. Como v = 2p/T, na qual T é o período das oscilações, t/T =

0,955/2p = 0,152.

Nota: A fração da energia total armazenada no capacitor no instante t é dada por

U E ( Q2/

2C)cos2t

= = cos t

= cos

U Q2

/ 2C

2 2

A figura a seguir mostra um gráfico de U E /U em função de t/T.

⎛ 2 t ⎞

T ⎠ ⎟ .

O ponto mostrado no gráfico confirma que U E /U = 1/3 para t/T = 0,152.


SOLUÇÕES DOS PROBLEMAS 281

80. (a) Como

X

e

X

L

C

= 2

f L = 2( 400 Hz)( 0, 0242 H) = 60,

82

d

= ( 2

f C)

−1 = [ 2 ( 400 Hz)(, 121× 10− 5

F)] −1

= 3288 , ,

d

aimpedância é

Z = R 2 + ( X − X ) 2 = ( 20, 0) 2 + ( 6082 , −3288 , ) 2

= 3436 , .

L

C

Para e = 90,0 V, temos:

90,

0 V

I 262 , A

I = = = 262 , A ⇒ Irms

= = = 185 , A.

Z 34,36

2 2

Assim, a diferença de potencial rms no resistor é V R rms = I rms R = 37,0 V.

(b) A diferença de potencial rms no capacitor é V C rms = I rms X C = 60,9 V.

(c) A diferença de potencial rms no indutor é V L rms = I rms X L = 113 V.

(d) A potência média dissipada no circuito é P med = (I rms ) 2 R = 68,6 W.

81. (a) A constante de fase é

⎛ −

=

⎟ = −

tan

1

VL

VC

⎛ ,

tan

1

VL

VL/

200⎞

V

V / 200 , ⎠

R

L

tan 1

100 , 450° , .

⎟ = −

( ) =

(b) Como e m cos f = IR, temos:

m

cos φ ( 30, 0V)(cos 45)

R = =

= 70, 7 .

I 300 × 10−

3

A

82. Como U max = LI 2 /2,

2U

2 10 0×

10−

6

max ( , J)

I = =

L 150 , × 10−

3

H

= 0, 115 A.

83. De acordo com a Eq. 31-4,

1

1

f = =

2 LC 2 ( 2, 5× 10−

3H)( 3, 00 × 10−

6F)

= 184 , kHz.

84. (a) se a constante de fase é 45º, a reatância do circuito é igual à resistência e a impedância é

Z = R 2 ⇒ R= Z 2 = (, 100× 103

2) =

707 .

(b) f = 8000 Hz, v d = 2p(8000) rad/s. Como a reatância é igual à resistência, temos:

XL − XC = d L − 1

C

= 707 ,

na qual v d = 2pf = 2p(8000) rad/s.

De acordo com a Eq. 31-4, se a frequência de ressonância é 6000 Hz,

C = 1

L = 1

f L = 1

2

f L = 1

.

2 ( ) 2 4 2 2 4

2 ( 6000 Hz)

2 L

d


282 SOLUÇÕES DOS PROBLEMAS

Substituindo este valor de C na expressão anterior, obtemos L = 32,2 mH.

(c) C = 1

4 6000 L

= 21, 9 nF.

2( Hz)

2

1

1

85. (a) L = =

= 689 ,

42f 2C

4 2( 104 , × 103Hz)(

2

340 × 10−

6F)

1

(b) U = LI

2

1

= (, 689× 10−

7H)( 7, 20 × 10−

3A) 2

= 179 , × 10−11 J.

2 2

× 10−

7 H = 0,689 H.

(c) Q = 2CU

= 2( 340 × 10− 6F)(, 179× 10− 11J) = 110 , × 10−

7C.

86. De acordo com a Eq. 31-60,

R

ε2

ε

2

XL

XL

R2

( 220 V)

2

+ = ⇒ = − = − ( 24,

0) 2

= 693 , .

I

2

I

2

(, 300 A)

2

2 2

87. Quando a chave está aberta, temos um circuito LRC série do qual participa apenas o capacitor

da direita. De acordo com a Eq. 31-65, temos:

1

d

L −

dC

R

o que mostra que 1/v d C > v d L.

= tano = tan( − 20° ) = − tan 20°

,

Com a chave da posição 1, a capacitância equivalente do circuito passa a ser 2C e temos:

1

d

L −

2dC

R

= tan

= tan 10 .

1 °

Finalmente, com a chave na posição 2, o circuito é um circuito LC, cuja amplitude de corrente

é dada por

I

2

m

m

m

= =

=

Z

2 1

LC ⎛

d L

L 1 C

d −

⎞ − ω ,

ω

ωd

⎝ ω C ⎠

na qual usamos o fato de que 1/v d C > v d L para simplificar a raiz quadrada. Resolvendo o sistema

de equações formado pelas três equações anteriores, obtemos:

d

(a)

−m

−120V

R = =

= 165.

I tan ( 200 , A )tan( −200

, ° )

2

φ o

(b)

L = m

d I ⎝

⎜ − tanφ1

ω

φ ⎠

⎟ = 120 V ⎡ tan( 10, 0°

) ⎤

1 2

1 2

03 ,

2 tan o 2π( 600 , Hz )( 200 , A)

⎢ −

⎣ tan( −20, 0°

)

= 13 H

= 313 mH.


SOLUÇÕES DOS PROBLEMAS 283

(c)

I2

C =

d m( −

) =

200 , A

2ω 1 tanφ1/

tanφ0

2(2 π)(60,0 Hz)(120 V) 1 −tan( 10, 0° )/

tan( −200

, ° )

= 149 , × 10−

5 F = 14,9 µ F.

[ ]

88. (a) De acordo com as Eqs. 31-4 e 31-14,

1

Q = = I LC = 127 , × 10 − 6C

= 1, 27 C.

(b) Para que i 0 = I na Eq. 31-15, fazemos f = −p/2 na Eq. 31-12. A energia armazenada no

capacitor é

q2 Q2

UE = = (sen t).

2

2C

2 C

Derivando a equação anterior em relação ao tempo e usando a identidade 2 sen u cos u =

sen 2u, obtemos

dU

dt

E =

Q2

sen 2t

.

2C

O primeiro máximo da expressão anterior acontece para sen 2vt = p/2, o que nos dá

t = = LC = (, 80× 10−

3

H)( 140 , × 10−

6

F) = 8,

31 × 10 − 5 s = 83,1 s.

4

4 4

(c) Fazendo 2vt = p/2 na expressão de dU E /dt obtida no item (b), temos:

⎛ dU

dt

E

Q2 ⎞

( I LC )

2

I I2

L

⎟ = = = = 544 , × 10−

3

W=

544 , mW .

2C

2C

LC 2 C

max

89. (a) Como a energia armazenada no capacitor é dada por U E = q 2 /2C e a carga q é uma função

periódica de t de período T, U E é uma função periódica de t de período T/2 e, portanto, a energia

armazenada no capacitor não varia em um ciclo completo de período T.

(b) Como a energia armazenada no indutor é U B = Li 2 /2 e a corrente i é uma função periódica de

t de período T, U B é uma função periódica de t de período T/2 e, portanto, a energia armazenada

no indutor não varia em um ciclo completo de período T.

(c) A energia fornecida pela fonte alternada em um ciclo é

T

U = Pdt = I sen( t−

)sen( tdt )

= I

na qual usamos as relações

T

T

m d d

0 0

T

m∫ 0

T

= I m

cos ,

2

[sen tcos−

cos tsen ]sen( tdt )

d d d

sen

2

T T

( dt) dt = e sen( dt)cos( dt) dt 0.

2 ∫

=

0 0

(d) A energia dissipada no resistor em um ciclo é

T

T

T

UR

= PRdt = I2 ∫

R∫

sen

2( dt− )

dt = I

2 R .

0

0

2


284 SOLUÇÕES DOS PROBLEMAS

(e) Como mIcos φ = mI( VR/ m) = εmI( IR/ m) = I2 R,

os resultados dos itens (c) e (d) são

iguais.

Nota: Para resolver os itens (c) e (d), poderíamos ter usado as Eqs. 31-71 e 31-74. De acordo

com essas equações, a energia fornecida pela fonte é

PmedT = ( Irms rms ) T = ⎛ 1

cosφ

T

mIcosφ

⎝ 2 ⎠

na qual usamos as relações Irms

= I/ 2 e rms

= m / 2.

Por outro lado, a energia dissipada no resistor é

Pmed, resistor T = IrmsVR

T = Irms IrmsR T = ⎛ 1 ⎞

( ) ( ) T

2 ⎠

⎟ I R

Assim, os mesmos resultados podem ser obtidos sem usar integrais.

90. De acordo com a Eq. 31-4, temos:

C = 1

L

= 1

f L

=

1

= 159 , F.

2 4 2 2 4 2 (, 3 50 × 10 3 Hz)(,

2 130× 10−

3 H)

91. A ressonância acontece quando a reatância indutiva é igual à reatância capacitiva. Como a

frequência de ressonância é a mesma para os dois circuitos, temos:

L

L

1

2

1

=

C

1

1

=

C

Somando membro a membro as duas equações, obtemos

1 ⎛ 1 1 ⎞

( L1+

L2) = +

C C ⎠

⎟ .

Como L eq = L 1 + L 2 e 1/C eq = 1/C 1 + 1/C 2 , temos:

L

eq

2

1

= ,

C

eq

1 2

o que mostra que a frequência de ressonância do novo circuito é a mesma dos dois circuitos

separados.

92. Quando a chave S 1 está fechada e as outras duas estão abertas, o indutor fica fora do circuito

e o circuito resultante é um circuito RC, cuja constante de tempo é t C = RC. Quando a

chave S 2 está fechada e as outras duas estão abertas, o capacitor fica fora do circuito e o circuito

resultante é um crcuito LR, cuja constante de tempo é t L = L/R. Quando a chave S 3 está fechada

e as outras duas estão abertas, o resistor fica fora do circuito e o circuito resultante é um

circuito LC, que oscila com um período T = 2 LC . Fazendo L = Rt L e C = t C /R, obtemos

T = 2 C L.

2 .


Capítulo 32

6

1. Como, de acordo com a lei de Gauss para campos magnéticos, ∑ Bn = 0, temos:

B6

5

n= 1

=− ∑ Bn

=−( − 1Wb + 2Wb − 3Wb + 4Wb − 5Wb) =+ 3Wb .

n=

1

2. (a) O fluxo através da face superior é +(0,30 T)pr 2 , na qual r = 0,020 m. De acordo com o

enunciado, o fluxo através da face inferior é +0,70 mWb. Como o fluxo total é zero, o fluxo

através das faces laterais deve ser negativo e igual, em valor absoluto, à soma dos fluxos através

das faces superior e inferior. Assim, o valor absoluto do fluxo através das faces laterais é 1,1

mWb.

(b) O fato de que o fluxo através das faces laterais é negativo significa que o sentido do fluxo

é para dentro.

3. (a) De acordo com a lei de Gauss para campos magnéticos,

∫ B ⋅ dA

= 0. No caso do cilindro

descrito no enunciado, temos:

∫ B

⋅ dA

= 1+ 2 + C

,

na qual Φ 1 é o fluxo magnético através da primeira base, Φ 2 é o fluxo magnético através da

segunda base e Φ C é o fluxo magnético através da superfície lateral. Como, no caso da primeira

base, o fluxo magnético é para dentro, Φ 1 = –25,0 mWb. Como, no caso da segunda base, o

campo magnético é uniforme, normal à superfície e dirigido para fora, Φ 2 = AB = pr 2 B, na qual

A é a área da base e r é o raio do cilindro. Assim,

2 −3 −5

2

= π( 0, 120m) (, 160× 10 T) =+ 7, 24 × 10 Wb = + 72,

4Wb.

Como a soma dos três fluxos deve ser igual a zero,

C =−1− 2 = 25, 0Wb − 724 , Wb = −47, 4Wb.

Assim, o valor absoluto do fluxo magnético através da superfície lateral do cilindro é | C | =

| | = 47, 4 Wb.

(b) Como o sinal de Φ C é negativo, o fluxo através da superfície lateral do cilindro é para dentro.

4. De acordo com a lei de Gauss para campos magnéticos, o fluxo S 1 através da metade da superfície

lateral do cilindro que está acima do eixo x é igual ao fluxo S 2 através da parte do plano

xz que está no interior do cilindro. Assim,

B

r

r

1 B 2 ∫

2

−r

∫−r

( S ) = ( S ) = BxLdx ( ) = B ( xLdx ) = 2

esquerdo

r

−r

0 i 1

r x Ldx iL

= 0

3

2

2 − ln .

5. Podemos usar o resultado do item (b) do Exemplo “Campo magnético induzido por um

campo elétrico variável”,

µεR2

dE

B = 0 0

, ( r ≥ R)

2r

dt


286 SOLUÇÕES DOS PROBLEMAS

para obter o valor de dE/dt:

dE

dt

2Br

2( 20 , × 10−

7T)( 60 , × 10−

3m)

= =

µεR2

( 4π

× 10 −7 T⋅ m A)( 885 . × 10−

C

2/N ⋅ m2)(, 3 0×

10−

m)

0 0

= 2,

4× 10 13 V/m⋅s.

12 3 2

6. De acordo com as Eqs. 32-18 e 32-19, a integral do campo ao longo da trajetória indicada é

dada por

⎛ área envolvida⎞

0i d

0 075 A

área total ⎠

⎟ = ( , ) ( 40 , cm )( 20 , cm ) = 52 nT ⋅m.

12 cm2

7. (a) Como r 1 = 2,00 cm < R, usamos a Eq. 32-16, B= 0idr1

/ 2R2, na qual a corrente de

deslocamento i d é dada pela Eq. 32-10:

i

d

Assim, temos:

dE

= = ×

−12 ⋅ ×

−3

0 (, 885 10 C

2/N m2)( 3,

00 10 V/m ⋅ s) = 266 , × 10−

14 A.

dt

ir d ×

⋅ ×

0 1 ( 4

10

7

T m/A)(2.66 10

14

A)( 0,

0200 m)

B = =

= 118 , × 10−

2

R2

2

( 0, 0300 m)

2

(b) Como r 2 = 0,0500 m > R, usamos a Eq. 32-17:

19

T.

id

×

⋅ ×

0 ( 4

10

7

T m/A)(2,66 10

14

A)

B = =

= 106 , × 10−

19

2r

2

( 0,

0500 m)

2

T.

8. (a) Aplicando a Eq. 32-3 à circunferência descrita no enunciado, obtemos:

r

B( 2r) = 00( 0, 60 V ⋅m/s) .

R

Para r = 0,0200 m (na verdade, o valor de r não é usado na solução e serve apenas para indicar

que a circunferência está no interior da região circular) e R = 0,0300 m, temos:

B =

µ ( 060 , V ⋅ m/s) ( 885 , × 10−

C

2/N⋅m2 )( 4π

× 10−

7

T ⋅m/A)( 060 , V ⋅ m/s)

=

R

( 0, 0300 m)

0 0

12

= 354 , × 10

−17

T.

(b) Para um valor de r maior que R, o fluxo envolvido tem o valor máximo. Assim, temos:

o que nos dá

B( 2πr) = ε µ ( 0, 60 V ⋅m/s),

0 0

εµ ⋅

×

0 0( 060 , V m/s) ( 885 , 10

12

C

2/N⋅m2 )( 4π

× 10−

7

T ⋅m/A)( 060 , V ⋅ m/s)

B =

=

r

( 0, 0500 m)

= 213 , × 10

−17

T.

9. (a) Usando a Eq. 32-7 com A = pr 2 e dE/dt = 0,00450 V/m . s, temos:

B( 2π

r) = µ πr2

0, 00450 V/m⋅s

.

0 0

( )


SOLUÇÕES DOS PROBLEMAS 287

Para r = 0,0200 m, obtemos

1

B= e 0µ 0r( 0, 00450 V/m⋅s)

2

1

= (, 885× 10−

12

C 2 /N⋅

m

2 )( 4π × 10−

7

2 T ⋅ m/A) ( 0, 0200 m ) ( 0, 00450 V/m ⋅ s )

= 5, 01 × 10− 22 T.

(b) Para r > R, a expressão do item (a) deve ser substituída por

B( 2π

r) = µ π R2( 0, 00450 V/m⋅s).

0 0

Fazendo r = 0,050 m e R = 0,030 m, obtemos

1 R2

B = 0µ 0 ( 0, 00450 V/m ⋅ s)

=

2 r

1

= 885× 10−

12

C

2

m

(, / N⋅ m2

×

( 0, 030 )

2

)( 4π

10

7T ⋅ m/A)

2 , m ( 0,

00450 V/m⋅s)

0 050

= 451 , × 10−

22 T.

10. (a) O fluxo do campo elétrico através da região é dado por

E

r

⎛ r ⎞

=

E 2rdr = t( 0, 500 V/m⋅s)( 2)

⌠ −

⎜1

R⎠

0

⌡ ⎮ = ⎛ r

⎜ − r ⎞

rdr t 2 3

2 3R⎠

em unidades do SI. Assim, de acordo com a Eq. 32-3,

que, para r = 0,0200 e R = 0,0300 m, nos dá

B ( r r

r ) ⎛ 2 3 ⎞

2

= 0

0 −

⎜ 2 3R⎠

⎟ ,

r2 r3

⎛ ⎞

B = µ −

R⎠

⎟ = × −

π × ⎡

12 −7

(0, 0200) 2 ( 0, 0200)

3⎤

0 0

(, 885 10 )( 4 10 ) ⎢ − ⎥

4 6

⎣ 4 600300 ( , ) ⎦

= 309 , × 10−20 T.

(b) Nesse caso, como r > R, o limite superior da integral passa a ser R em vez de r, o que nos

E

R R

= t ⎛ 2 3 ⎞

− t R

⎜ 2 3R⎠

⎟ = 1

6

r

0

2

.

Assim, de acordo com a Eq. 32-3,

1

B( 2π r) = µ π R ,

6 0 0 2

que, para r = 0,0500 m, nos dá

µ R ×

×

0 0 (, 885 10 )( 4π

10 )(

0, 030)

B = =

12r

12( 0, 0500)

2 12 7 2

= 167 , × 10− 20 T.


288 SOLUÇÕES DOS PROBLEMAS

11. (a) Levando em conta o fato de que o campo elétrico (supostamente uniforme) é dado por E =

V/d, na qual d é a distância entre as placas, podemos usar o resultado do item (a) do Exemplo

“Campo magnético induzido por um campo elétrico variável”:

Para V = V max sen(vt), obtemos

µ 00rdE

µ 00r

dV

B = = ( r ≤ R)

.

2 dt 2d

dt

µ 00r

B

d V t B µ 00rVmaxω

= maxωcos( ω ) ⇒ max =

2 2d

na qual V max = 150 V. O valor de B max aumenta com R até atingir o valor máximo para R = r =

30 mm:

B

max

r=

R

µ RVmax ( )(,

00

ω 4π

× 10 8 85 × 10

12

= =

−7 Hm Fm)( 30 × 10−

3m)( 150 V)( 150 V)

2d

250 (, × 10−

3m)

= 19 , ×

10 − 12 T =

1,9 pT.

(b) Para r ≤ 0,03 m, usamos a expressão obtida no item (a), B max = m 0 e 0 rV max v/2d; para r >

0,03 m, ≥ 0,03 m, usamos o resultado do item (b) do Exemplo “Campo magnético induzido por

um campo elétrico variável”:

B

max

R dE

R dV

= ⎛ ⎝ ⎜ µ 0 2

0 ⎞

r dt ⎠

⎟ = ⎛ ⎝ ⎜

µ 0 2

0 ⎞

2

max

2rd

dt ⎠

⎟ = ⎡ µ

⎣ ⎢ 00R2

ω ω ⎥

max

2rd V max cos( t )

µ 00RV

2

=

maxω

( r ≥ R)

2rd

A figura a seguir mostra o gráfico de B max em função de r.

max

12. Os resultados do Exemplo “Campo magnético induzido por um campo elétrico variável”

mostram que B ∝ r para r ≤ R e B ∝ r –1 para r ≥ R. Assim, o valor de B é máximo para r = R

e existem dois valores possíveis de r para os quais o campo magnético é 75% de B max . Vamos

chamar de r 1 e r 2 esses dois valores, com r 1 < R e r 2 > R.

(a) Do lado de dentro do capacitor, 0,75 B max /B max = r 1 /R, o que nos dá r 1 = 0,75R = 0,75(40

mm) = 30 mm.

(b) Do lado de fora do capacitor, 0,75B max /B max = R/r 2 , o que nos dá r 2 = R/0,75 = (40 mm)/

0,75 = 53 mm.


SOLUÇÕES DOS PROBLEMAS 289

(c) De acordo com as Eqs. 32-15 e 32-17,

B

max

id

i ( ×

0 0

4

10

7

T⋅m A)(, 6 0 A)

= = =

= 30 , × 10−

5 T.

2

R 2

R 2

( 0, 040 m)

13. Vamos chamar de A a área das placas e de d a distância entre as placas. De acordo com a

Eq. 32-10,

i

d

dE

d

AE A d ⎛ V A

= = ( ) =

dt dt

dt ⎝ d ⎠ = 0

0 0 0

d ⎝

dV

dt

⎠ ,

e, portanto,

dV

dt

id d id

15 , A

= = =

= 75 , × 105

Vs.

e A C ×

−6

0 2,0 10 F

14. Considere uma superfície de área A perpendicular a um campo elétrico uniforme E. A densidade

de corrente de deslocamento é uniforme e perpendicular à superfície. O módulo dessa

densidade de corrente é dado por J d = i d /A. Como, de acordo com a Eq. 32-10, i d = e 0 A(dE/dt),

temos:

1

J

A

A dE dE

d = 0 = 0 .

dt dt

15. A corrente de deslocamento em um capacitor de placas paralelas é dada por i d = e 0 A(dE/

dt), na qual A é a área de uma das placas e E é o módulo do campo elétrico na região entre as

placas. Como o campo na região entre as placas é uniforme, E = V/d, na qual V é a diferença de

potencial entre as placas e d é a distância entre as placas. Assim,

A

id = 0

d

Como a capacitância C de um capacitor de placas paralelas (que não contém um dielétrico) é

e 0 A/d, temos:

dV

dt

i C dV

d = .

dt

16. Podemos usar a Eq. 32-14, i A dE dt

d = 0 ( / ). Note, que, nesta equação, A é a área na qual

existe um campo elétrico variável. Como o raio r do anel é maior que o raio R das placas do

capacitor, A = pR 2 . Assim,

.

dE

dt

id

id

20 , A

= = =

A π R2 π 885 , × 10

− 12

C

2/N⋅m2 010 , m

0 0

( )( )

2

= 72 , × 1012

V/m⋅s.

17. (a) De acordo com as Eqs. 26-5 e 26-10,

i (, 162× 10−

8 ⋅m)( 100 A)

E = J

= =

= 0,

324V m.

A 500 , × 10−

6m 2

(b) A corrente de deslocamento é

i

d

d E

A dE A d i di

=

=

dt

=

dt

ρ ⎞

0 0 0

dt ⎝ A ⎠ = 0ρ dt

= ( 8, 85 × 10−

12F/m)( 162 , × 10−

8)( 2000 A s)

= 287 , × 10

−16 A.


290 SOLUÇÕES DOS PROBLEMAS

(c) A razão entre os módulos dos campos é

( )

B produzido por id

id

B( produzido por i) = 0 2r

i 2r

0

id

287 , × 10−

= =

i 100 A

16

A

= 287×

10

,

−18.

18. De acordo com a Eq. 28-11,

i

=

R e − t / RC ,

na qual, de acordo com a Eq. 25-9,

No instante t = 250 ms, a corrente é

0A

0π( 005 , m)

2

C = = = 2,

318 × 10−

d 0,

003 m

12,

0 V

i =

e t 20 0 10 2 318 10

20,

10 6

− /( , × 6/ , × −11)

=

11

F.

350 , × 10 − 7 A.

De acordo com a Eq. 32-16, o campo magnético a uma distância radial r do eixo de um capacitor

de placas circulares de raio R é dado por

ir

B = 0 d

.

2 R2

Como, de acordo com a Eq. 32-15, i = i d , temos:

ir d ×

⋅ ×

0 ( 4

10

7T m/A)(3,50 10

7

A)( 0,

030

m)

B = =

= 840 , × 10−

13

2

R2

2 (0,050 m)

2

T.

19. (a) De acordo com as Eqs. 26-5 e 32-16, temos:

0ir

d 0JdAr

0Jd

( R2)

r 1

B = = = = J

R2

R2

R2 0 dr

2 2 2 2

1

= ( 4π × 10−

7T ⋅ m/A)(6,00 A/m

2

)(0,0200 m) = 75, 4nT.

2

(b) De acordo com a Eq. 32-17, temos:

id

JdR2

0 0

B = = =

2r

2r

20. (a) De acordo com a Eq. 32-16, temos:

(b) De acordo com a Eq. 32-17, temos:

0ir

d

B = = 222 , T.

2

R2

0id

B = = 200 , T.

2r

67, 9 nT.

21. (a) Vamos usar a Eq. 32-11, considerando nulo o segundo termo. O primeiro termo, i d,env ,

pode ser calculado integrando a densidade de corrente de deslocamento:

r

id, env = Jd

rdr ( ,

2

2 = 4 00 A/m )( 2)

r

⎛ 1 r3

( 1−

r/

Rrdr )

r

0 ∫

= 8

2

0

2 3R⎠


SOLUÇÕES DOS PROBLEMAS 291

em unidades do SI. De acordo com a Eq. 32-17 (com a corrente i d substituída por i d,env ), obtemos:

0id

, env

B = = 27,

9 nT.

2r

(b) Como, nesse caso, r > R, o limite superior da integral do item (a) passa a ser R. Assim,

temos:

e a Eq. 32-17 nos dá

R

id,env = id

= 8 ⎛ 1

3

R2

− R

2 3R⎠

⎟ = 4

3

0id

B = = 15, 1 nT.

2r

2

22. (a) Vamos usar a Eq. 32-11, considerando nulo o segundo termo. De acordo com a

Eq. 32-17 (com a corrente i d substituída por i d,env ), obtemos:

0id

, env 0(, 300 A )( rR / )

B = = = 20, 0 T.

2r

2r

(b) Nesse caso, i d = 3,00 A e

0id

B = = 12, 0 T.

2r

23. Seja A a área das placas e seja E o módulo do campo elétrico na região entre as placas.

Como o campo elétrico na região entre as placas é uniforme, E = V/d, na qual V é a diferença de

potencial entre as placas e d é a distância entre as placas. A corrente que entra na placa positiva

do capacitor é

dq d

i CV C dV 0A

dEd

= = ( ) = = ( ) = A dE =

d E

0 0 ,

dt dt dt d dt dt dt

e é igual à corrente de deslocamento.

(a) Como a corrente de deslocamento i d no espaço entre as placas é igual à corrente de carga do

capacitor, i d = i = 2,0 A.

(b) A taxa de variação do campo elétrico é

dE

dt

1 ⎛ d E⎞

id

2,

0 A

=

A ⎝

⎜0

dt ⎠

⎟ = =

A ( 85 × 10−

1

Fm)( 10 , m)

0

0

8,

2 2

= 23× 10 ⋅

,

11

V/m s.

(c) A corrente de deslocamento na trajetória indicada é

⎛ d

2

′ =

⎟ = ( )⎛ ⎝ ⎜ 050 , m⎞

id

id

20 , A

⎟ = 05 , 0A.

L2

1,0m

(d) A integral do campo ao longo da trajetória indicada é

B⋅ ds = ′ = ×

−16 = ×

−7

0 (, 126 10 Hm)( 0, 50 A) 63 , 10 T⋅ m = 0,63 T⋅

m.

24. (a) De acordo com a Eq. 32-10,

i

d

i d

dE

= A dE A d 0 = 0 0

( 40 , × 105) − ( 60 , × 104t)

dt dt dt

⎡⎣ ⎤ ⎦ =− 0 A 60 , × 104

Vm⋅s

2 2

( ) ×

=− 885 , × 10−

12

C /N⋅m

=− 21 , × 10

−8

A.

( 40 , 10−

2m2

)( 60 , × 104V m⋅s)

2

( )


292 SOLUÇÕES DOS PROBLEMAS

Assim, o valor absoluto da corrente de deslocamento é | i d | = 21 , × 10−

8 A.

(b) Como o sinal de i d é negativo, o sentido da corrente de deslocamento é para baixo.

(c) De acordo com a Eq. 32-18, para uma trajetória circular no sentido anti-horário na região

entre as placas,

B

⋅ ds = 0 i d < 0,

s

o que significa que

B⋅

ds < 0. Assim, o sentido de B é o sentido horário.

25. (a) De acordo com a Eq. 32-18, temos:

0Ienv

0

Jdr

B = =

2r

2r

63 , 10 T 0,63 T.

= ×

−7

=

2

( ) 1

= = 126 , × 10−

6Hm 20 Am2

50 10

3

( )( ) ×

( m)

1

0Jr

d

2

d E

(b) Como i J r

r dE

d = dπ

2

= 0 = 0π

2

, temos:

dt dt

dE

dt

2

J d 20 Am2

×

−12

0 ,

= =

885 10

= 23 , × 1012

V/m⋅s.

Fm

26. (a) Como, de acordo com a Eq. 32-15, i = i d , a corrente de deslocamento envolvida pelo

anel é

i

d, env

( R/

3)

2

i

= i = = 133 , A.

R2

9

(b) Como foi visto no Exemplo “Campo magnético induzido por um campo elétrico variável”,

o campo magnético é proporcional a r para r < R e é máximo para r = R. Assim,

B

B

max

o que nos dá r = R/4 = (1,20 cm)/4 = 0,300 cm.

300mT , r

= = ,

12,0mT R

(c) De acordo com a Eq. 32-17, fora da região entre as placas, o campo é inversamente proporcional

a r. Assim,

B

B

max

o que nos dá r = 4R = 4(1,20 cm) = 4,80 cm.

27. (a) No intervalo a do gráfico da Fig. 32-33,

300mT ,

= =

12,0 mT

R

r

,

i

d

dE

= = A dE = ( ×

−12

45 ,

0 0 885 , 10 Fm)( 1,

6 m 2 × 105NC− 60 , × 105NC

)

dt dt

40 , × 10−

6s

= 071 , A.

(b) No intervalo b do gráfico, i d ∝ dE/dt = 0.

(c) No intervalo c do gráfico,

,

| i | A dE

− ×

d = = (, ×

−12

40 105

N

0 885 10 Fm)( 1, 6m

)

dt

20 , × 10−

6

s

2

C

= 28 , A.


SOLUÇÕES DOS PROBLEMAS 293

28. (a) De acordo com o gráfico da Fig. 32-34b, i = 4,0 A para t = 20 ms. Assim,

0i

Bi = =

2r

0, 089 mT.

(b) De acordo com o gráfico da Fig. 32-34b, i = 8,0 A para t = 40 ms. Assim,

0i

Bi = = 0, 178 mT ≈ 018 , mT.

2r

(c) De acordo com a gráfico da Fig. 32-34b, i = 10 A para t > 50 ms. Assim,

0i

Bi = =

2r

022 , mT.

(d) De acordo com a Eq. 32-10, i d = e o A(dE/dt) e, de acordo com as Eqs. 26-5 e 26-10, E =

ri/A. Assim, i d = e o r(di/dt). Como, de acordo com o gráfico da Fig. 32-34b, di/dt = 200 A/s no

intervalo 0 < t < 50 ms,

B

id

id

= 0 = 64 , × 10−

22 T.

2r

(e) O resultado é o mesmo do item (d): B id = 6,4 × 10 −22 T.

(f) Como di/dt = 0 para t > 50,0 ms, B id = 0.

(g) De acordo com a regra da mão direita, o sentido de B i em t = 20 ms é para fora do papel.

(h) De acordo com a regra da mão direita, o sentido de B id em t = 20 ms é para fora do papel.

29. (a) De acordo com a Eq. 32-15, i d = i para qualquer valor de t. Assim, i max = i d max = 7,60

mA.

(b) Como, de acordo com a Eq. 32-10, i d = e 0 (dΦ E /dt),

⎛ d

dt

⎞ i

×

max 760 , 10

6

A

⎟ = =

= 859 , × 105

V⋅ m s= 859 kV⋅

m s.

ε ×

−12

0 8,85 10 Fm

E d

max

(c) A corrente de deslocamento é dada por

i

d

dE

d

AE A d ⎛ V A

= = ( ) =

dt dt

dt ⎝ d ⎠ = 0

0 0 0

d ⎝

na qual A é a área das placas. Como a diferença de potencial entre as placas do capacitor é igual,

em valor absoluto, à fem da fonte, V = e m sen vt e dV/dt = ve m cos vt. Assim, i d = (e 0 Ave/d)

cos vt, i dmax = e 0 Ave/d e

0Aω

12 2

m (, 885 10 Fm) π( 0, 180 m) ( 130 rad s)( 220 V)

d = =

760 , × 10−

6

A

i d max

×

= 339 , × 10−

3

m = 3,39 mm,

na qual foi usada a relação A = pR 2 .

(d) Podemos usar a lei de Ampère-Maxwell (Eq. 32-5) na forma

∫ B ⋅ ds = I 0 d , na qual a trajetória

de integração é uma circunferência de raio r em um plano paralelo às placas situado entre

as placas e I d é a corrente de deslocamento na região envolvida pela trajetória de integração.

Como a densidade de corrente de deslocamento é uniforme na região entre as placas, I d = (r 2 /

R 2 )i d , na qual i d é a corrente de deslocamento total e R é o raio das placas. Como as linhas de

dV

dt

⎠ ,


294 SOLUÇÕES DOS PROBLEMAS

campo magnético são circunferências com o centro no eixo das placas, B é paralelo a ds . Como

o módulo do campo é constante ao longo de uma circunferência,

∫ B⋅ ds = 2 rB e

O campo magnético máximo é dado por

B

max

2

⎛ r ⎞

0

2rB

0

R i B ir d

=

2 d

⎟ ⇒ = .

2

R2

id

max r ( × ⋅ )( , ×

0 4

10 )(

= =

−7 T m A 7 6 10

6

A 0, 110m)

2

R2

2

2 0,180m

= 516 , × 10−

12

T = 5,16 pT.

30. (a) O fluxo magnético através do estado do Arizona é

( )

=− BA=− ×

r ( 43 10

6T)( 295, 000 km2)( 103m km) 2

= −1,

3× 10 7 Wb,

apontando para dentro da Terra. De acordo com a lei de Gauss, este fluxo é igual ao negativo

do fluxo Φ' através do resto da superfície da Terra. Assim,

Φ' = 1,3 × 10 7 Wb = 13 MWb.

(b) O fluxo magnético através do resto da superfície do planeta aponta para fora.

31. A componente horizontal do campo magnético da Terra é dada por B h = B cos f i , na qual B

é o módulo do campo e f i é o ângulo de inclinação. Assim,

B = = 16T

cos

cos ° = 55T.

73

B h

i

32. (a) A energia potencial do átomo na presença de um campo magnético externo B ext é dada

pelas Eqs. 32-31 e 32-32:

U =− ⋅ B = − B = − m B

orb ext orb, z ext l B ext.

O fato de que a energia do nível 1 não muda quando o campo B ext é aplicado significa que

m l = 0 para este nível.

(b) Como a aplicação do campo B ext faz o nível 2 se dividir em três, o estado original envolve

três valores diferentes de m l . O estado do meio tem a mesma energia que o estado E 2 na ausência

de campo aplicado e, portanto, corresponde ao estado com m l = 0. Os outros dois estados

possuem m l = −1 e m l = +1.

(c) Como, para dois níveis vizinhos do estado E 2 , |∆ m l | = 1, o espaçamento entre os níveis

desdobrados é

U = | ( − m B)| = | m | B= B= (, 927× 10−

24 J/T)(0,50T) = 4,64 × 10−24

J.

l

B l B B

33. (a) Para m l = 0, L orb,z = m l h/2p = 0.

(b) Para m l = 0, m orb,z = –m l m B = 0.

(c) De acordo com a Eq. 32-32,

(d) De acordo com a Eq. 32-27,

U orb = –m orb,z B ext = – m l m Β B ext = 0.

( )( ) =±

Uspin =− szB=± BB

=± ×

, 927 , 10

24

JT 35mT

3,

2× 10− 25 J.


SOLUÇÕES DOS PROBLEMAS 295

(e) Para m l = –3,

L

orb,

z

(f) Para m l = 23,

orb

mh ( )(, J s)

= = − × −

l 3 6 63 10

27

⋅ =− 316 , × 10

2

2

J⋅s≈− 32 , × 10 J⋅s.

−34 −34

, z =− m B

=−( − )(, ×

JT) = , ×

l 3 9 27 10 24 278 10

23 JT ≈ 28 , × 10−

23 JT .

(g) A energia potencial associada ao momento magnético orbital do elétron passa a ser

U orb =− orb z B ext =− ×

JT ×

, ( 278 , 10

23

)( 35 10

3

T)

= − 97 , × 10−

25 J.

(h) Como a energia potencial associada ao spin do elétron não depende de m l , tem o valor que

foi calculado no item (d):

34. De acordo com a Eq. 32-27,

U spin = ±3,2 × 10 –25 J.

∆U = –∆(m s,z B) = –B∆m s,z ,

na qual, de acordo com as Eqs. 32-24 e 32-25, =± eh 4 m

=± Assim,

( )

sz , e B.

U =−B⎡⎣ − − ⎤ ⎦ = 2

B = 2(, 927× 10−

24

JT)( 0,

25T) = 46 , × 10−

24 J.

B B B

35. De acordo com a Eq. 32-31, m orb, z = –m l /m B .

(a) Para m l = 1, m orb,z = –(1) (9,3 × 10 –24 J/T) = –9,3 × 10 –24 J/T.

(b) Para m l = –2, m orb,z = –(–2) (9,3 × 10 –24 J/T) = 1,9 × 10 –23 J/T.

36. Combinando a Eq. 32-27 com as Eqs. 32-22 e 32-23, vemos que a diferença de energia é

U

B = 2 B

na qual m B é o magnéton de Bohr, cujo valor é dado na Eq. 32-25. Para ∆U = 6,00 ×10 −25 J,

obtemos B = 32,3 mT.

37. (a) A figura a seguir mostra as linhas de campo magnético produzidas pelo ímã em forma

de barra nas proximidades do anel.

(b) De acordo com a discussão da Seção 32-9, o momento magnético tem o sentido oposto

ao de B. Assim, o sentido do momento magnético na figura do item a é para a direita, ou seja,

o sentido +x.

(c) O sentido da corrente convencional é o sentido horário (do ponto de vista do ímã em forma

de barra).

(d) Como todo material diamagnético é repelido da região onde o campo magnético é mais

intenso para a região onde o campo magnético é menos intenso e o módulo de B é proporcional

à “densidade” de linhas de força, o sentido da força magnética exercida sobre o anel é para a

direita, ou seja, o sentido +x.


296 SOLUÇÕES DOS PROBLEMAS

38. Um campo elétrico com linhas de campo circulares é induzido quando o campo magnético

é aplicado. Suponha que o campo magnético aumente linearmente de zero a B em um intervalo

de tempo ∆t. De acordo com a Eq. 30-25, o módulo do campo elétrico na posição da órbita é

dado por

r dB r B

E = ⎛ ⎝ ⎜ ⎞

⎟ = ⎛ dt ⎝ ⎜ ⎞

2 2 t

,

na qual r é o raio da órbita. O campo elétrico induzido é tangente à órbita e muda a velocidade

do elétron. A variação de velocidade é dada por

v a t eE

m t e r B

= = = ⎛ ⎞

m t

t

e ⎝ ⎜ e⎠

⎟ ⎛ ⎝ ⎜ ⎞

⎟ ⎛ ⎝ ⎜ ⎞ erB

⎟ =

2

2m e

.

A corrente associada ao movimento do elétron é i = ev/2pr e o momento dipolar magnético é

A variação do momento dipolar magnético é

= =( ) ⎛ ⎝ ⎜ ⎞

Ai r

2

ev 1

⎟ = evr .

2 r 2

1 1 ⎛ erB ⎞

= =

2 2 ⎝

2 ⎠

⎟ = erB

2 2

er v er

.

m 4m

39. No teste proposto, o maior valor da razão entre o campo magnético e a temperatura é (0,50

T)/(10 K) = 0,050 T/K. Observando a Fig. 32-14, vemos que este ponto está na região linear da

curva de magnetização. A resposta, portanto, é sim.

40. (a) Observando a Fig. 32-14, estimamos que a inclinação da curva no ponto em que M/M max =

0,5 é B/T = 0,50 T/K. Assim,

B = 0,50 T = (0,50 T/K)(300 K) = 1,5 × 10 2 T.

(b) No ponto em que M/M max = 0,9, B/T ≈ 2 e, portanto, B = (2)(300) = 6,0 × 10 2 T.

(c) Esses campos não podem ser produzidos em laboratório, a não ser por um tempo muito

curto e em espaços muito pequenos.

41. Como a magnetização é o momento dipolar por unidade de volume, o momento dipolar

magnético é dado por m = Mg, na qual M é a magnetização e g é o volume do ímã (g = pr 2 L,

na qual r é o raio e L é o comprimento do ímã). Assim,

4 B 410 (, × 10−

23

JT)( 0, 50T)

T = =

= 048K , .

3k

3138 (, × 10−

23

JK)

e

e

42. Temos:

o que nos dá

3

K = kT = ⋅B

−( −⋅B

) = 2 B,

2

4 B 410 (, × 10−

23

JT)( 0, 50T)

T = =

= 048K , .

3k

3138 (, × 10−

23

JK)

43. (a) Como uma carga e que se move com velocidade constante v em uma trajetória circular

de raio r leva um tempo T = 2pr/v para descrever uma órbita completa, a corrente média é

e

i = ev

T

= 2 r

.


SOLUÇÕES DOS PROBLEMAS 297

O módulo do momento dipolar é igual a essa corrente multiplicada pela área da órbita:

= ev

r

r

= evr

2 2

2

.

Como a força centrípeta responsável pelo movimento circular tem módulo evB, a segunda lei de

Newton para rotações nos dá evB = m e v 2 /r. Explicitando r e substituindo na equação anterior,

obtemos

1

= ( ) ⎛ ⎝ ⎜ mv e ⎞

⎟ = ⎛ ⎝ ⎜

1⎞

⎟ ⎛ ⎝ ⎜

1

2⎞

Ke

ev

mv e

⎟ =

2 eB B 2 B .

A força magnética − ev × B deve apontar para o centro da trajetória circular. Para que isso

aconteça, se o elétron está se movendo no sentido anti-horário no plano do papel, o campo magnético

deve apontar para fora do papel, ou seja, no sentido definido como positivo para o eixo

z. Como a carga do elétron é negativa, o sentido convencional da corrente é o sentido oposto

e, de acordo com a regra da mão direita para momentos dipolares, o momento dipolar aponta

para dentro da página, ou seja, no sentido negativo do eixo z. Assim, o momento dipolar tem o

sentido oposto ao do campo magnético.

(b) Como, na demonstração da relação m = K e /B, os sinais se cancelam, a mesma relação é

válida para um íon positivo.

(c) A direção do momento dipolar é a mesma do item (a).

(d) A magnetização do gás é dada por M = m e n e + m i n i , na qual m e é o momento dipolar de um

elétron, n e é a concentração de elétrons, m i é o momento dipolar de um íon e n i é a concentração

de íons. Como n e = n i , podemos chamar de n as duas concentrações. Fazendo m e = K e /B e m i =

K i /B, obtemos:

( ) =

M = n B K + K

e

i

53 , × 10 m

12 , T

21 −3

( ) = ×

62 , × 10−

20

J+7,6 × 10−

21

J 31 , 102

Am.

44. Os termos usados neste problema e a relação entre M e m são discutidos na Seção 32-10.

Como a inclinação do gráfico da Fig. 32-38 é

MM / max 015 ,

= = 075 , K/T,

B / T 020 , T/K

ext

temos:

0,

800 T

= ( 075 , K/T)

= 030 , .

max 2,00 K

45. (a) Vamos chamar de P(m) a probabilidade de que um dipolo e o campo B estejam paralelos

e de P(–m) a probabilidade de que um dipolo e o campo estejam antiparalelos. A magnetização

pode ser considerada uma “média ponderada” dos campos magnéticos produzidos pelos

dipolos, calculada a partir destas probabilidades:

( ) − ( − )

( ) + ( − )

M N P N

=

P

P P

( − B KT

)

B KT

N e

BKT

− e

=

eBKT

+ e−

⎛ B⎞

= N

tanh

kT ⎠

⎟ .

(b) Para mB << kT (ou seja, para mB/kT << 1), e± BkT

/

≈ 1 ± B/

kT e, portanto,

( ) −( − )

( ) + ( − )

⎛ B⎞

N + B kT BkT

M = N

kT ⎠

⎟ ≈

⎡⎣ 1 1 ⎤

tanh

⎦ N2B

= .

1+ BkT

1 B kT kT


298 SOLUÇÕES DOS PROBLEMAS

(c) Para mB >> kT, tanh (mB/kT) ≈ 1 e, portanto,

⎛ B⎞

M = N

tanh N

kT ⎠

⎟ ≈ .

(d) A função tangente hiperbólica pode ser plotada com o auxílio de um computador ou de uma

calculadora gráfica. Ajustando os parâmetros do gráfico, é possível obter uma curva semelhante

à da Fig. 32-14.

46. De acordo com a Eq. 28-36, t= −mB h senu;o sinal negativo indica que o torque se opõe

ao deslocamento angular u. Para pequenos ângulos, t ≈ −mB h u, o que é característico do movimento

harmônico simples (veja a Seção 15-3). Comparando com a Eq. 15-13, vemos que o

período de oscilação é

I

T = 2

Bh

na qual I é o momento de inércia a ser determinado. Como a frequência é 0,312 Hz, o período

é T = 1/f = 1/(0,312 Hz) = 3,21 s. Explicitando I na equação anterior, obtemos

BT2

I = h ( 0, 680 × 10−

3

J/T)( 18, 0×

10−

6

T)(,

3 21 s)

=

4

2

4

2

2

= 319 , × 10−

9

kg ⋅ m2.

47. (a) se a esfera está magneticamente saturada, o momento dipolar total é m total = Nm, na qual

N é o número de átomos de ferro e m é o momento dipolar de um átomo de ferro. Queremos

determinar o raio de uma esfera de ferro com N átomos de ferro. A massa dessa esfera é Nm,

em que m é a massa de um átomo de ferro. Essa massa também é dada por 4prR 3 /3, sendo r a

massa específica do ferro e R é o raio da esfera. Assim, Nm = 4prR 3 /3 e

R

N = 4

3

.

3m

Substituindo N por seu valor na relação m total = Nm, obtemos

total

4R3 total

= ⇒ = ⎛ ⎞

⎝ ⎜ 3m

R

3m

4

Como a massa de um átomo de ferro é m = 56 u = (56 u)(1,66 × 10 −27 kg/u) = 9,30 × 10 −26 kg,

temos:

(b) Como o volume da esfera é

⎡ 3930 (, × 10−

26

kg)( 80 , × 1022

JT)

R =

18 , 105

4(14×

10 3 kg m 3 )( 21 , × 10

23

)

⎥ = × m.

JT ⎦

Ve = 4

R = 4

182× 10 = 2 53 × 10

3 3 (, m)

,

13

13

3 5 3 16

m3

.

e o volume da Terra é

4

V t = ( 637×

106

3

, m) = 1, 08 × 1021m 3 ,

3

a fração do volume da Terra ocupada pela esfera é

253 , × 10

108 , × 10

16

21

m

m

3

3

= 23 , × 10−

5.


SOLUÇÕES DOS PROBLEMAS 299

48. (a) Como, de acordo com o Apêndice F, a massa molar do ferro é 55,847 g/mol, o número

de átomos de ferro contidos na barra de ferro é

( 79 , gcm3)( 50 , cm)(, 10cm2)

N =

= 43 , × 1023.

( 55, 847gmol)(,

6022×

1023

mol)

Assim, o momento dipolar da barra de ferro é

= ( 21 , × 10 − 23

JT)( 43 , × 1023) = 89 , A⋅

m 2 .

(b) t = mB sen 90° = (8,9 A · m 2 )(1,57 T) = 13 N·m.

49. (a) O campo produzido em um ponto do eixo de um dipolo é dado pela Eq. 29-27: B =

m 0 m/2pz 3 , na qual m é o momento dipolar e z é a distância a que o ponto se encontra do dipolo.

Assim,

( 4

× 10−

7T⋅ m A)(, 1 5×

10−

23

JT)

B =

= 3,

0× 10 − 6 T = 3,0 T.

2

( 10 × 10 −9 m)

(b) A energia de um dipolo magnético na presença de um campo magnético B é dada por

U =−⋅ B

= −B

cos ,

na qual f é o ângulo entre o momento dipolar e o campo. A energia necessária para inverter o

dipolo (ou seja, fazer o ângulo mudar de f = 0° para f = 180°) é

U = 2 B= 2(, 15× 10− 23

JT)( 30 , × 10− 6T) = 90 , × 10−

29

J

= (, 90× 10−

29

J)(6,242 × 1018eV/J) = 5,6 × 10−

10

eV.

(c) De acordo com o enunciado, a energia cinética média de translação à temperatura ambiente

é 0,039 eV, um valor muito maior que ∆U. Se as interações dipolo-dipolo fossem responsáveis

pelo alinhamento dos dipolos, a agitação térmica à temperatura ambiente seria suficiente para

impedir que os dipolos pemanecessem alinhados.

50. (a) De acordo com a Eq. 28-36,

= barra Bsen = ( 2700 A/m)( 006 , m) ( 0, 003 m)(,

2

0 035 T)sen( 68o)

= 149 , × 10−

4 N⋅

m,

na qual usamos o fato de que o volume de um cilindro é igual à area da base multiplicada pela

altura.

(b) De acordo com a Eq. 29-38, temos:

∆U = – m barra B(cos u f – cos u i )

= –(2700 A/m)(0,06 m)p(0,003m) 2 (0,035T)[cos(34°) – cos(68°)]

= –72,9 mJ.

51. A magnetização de saturação corresponde ao alinhamento perfeito de todos os dipolos

atômicos e é dada por M sat = mn, na qual n é o número de átomos por unidade de volume e m

é o momento dipolar magnético de um átomo. O número de átomos de níquel por unidade de

volume é n = r/m, sendo r a massa específica do níquel. A massa de um átomo de níquel pode

ser calculada usando a relação m = M/N A , na qual M é a massa atômica do níquel e N A é a constante

de Avogadro. Assim,

N A (, 890gcm3)( 6, 02 × 1023

átomos mol)

n = =

= 9,

126 × 10

M

58,

71g

mol

= 9, 126 × 1028

átomos m3

.

22

átomos cm

3


300 SOLUÇÕES DOS PROBLEMAS

O momento dipolar de um átomo de níquel é

Msat

470 , × 105

Am

= =

= 515 , × 10−

24

A ⋅ m 2 .

n 9,

126 × 1028m3

52. A temperatura de Curie do ferro é 770°C. Se x é a profundidade na qual a temperatura atinge

este valor, 10°C + (30°C/km)x = 770°C. Assim,

770 ° C−

10 ° C

x =

= 25 km.

30 ° Ckm

53. (a) De acordo com a Eq. 32-40, o módulo do campo magnético produzido por um toroide é

dado por B 0 = m 0 ni P , na qual n é o número de espiras por unidade de comprimento do toroide e i P

é a corrente na bobina. Vamos usar o raio médio r med = (r ext + r int )/2, em que r ext é o raio externo

e r int é o raio interno, para calcular n:

Assim,

i

N

n = r

= 400 espiras

= 116 , × 10

2

2( 5,5×

10−

2m)

med

B

×

0

020 , 10

3

T

= =

n ( 4

× 10−

7T ⋅ m/A)(1,16 × 10 / m)

P 3

0

3

espiras/m.

= 014 ,

(b) Se Φ é o fluxo magnético que atravessa a bobina secundária, o valor absoluto da fem induzida

na bobina é e = N(dΦ/dt) e a corrente na bobina é i S = e/R, na qual R é a resistência da

bobina. Assim,

A.

N

iS = ⎛ ⎝ ⎜ ⎞

R ⎠

d .

dt

A carga que atravessa a bobina secundária quando a corrente na bobina primária começa a

circular é

N

q i dt

R

ddt dt N

= = ⌠

= ⌠

∫ S

d

=

⌡ R ⌡

0

N

.

R

O módulo do campo magnético no interior da bobina secundária é B = B 0 + B M = 801B 0 , na qual

B M é o campo dos dipolos magnéticos do material magnético. Como o campo total é perpendicular

ao plano da bobina secundária, o fluxo magnético é Φ= AB, em que A é a área do anel de

Rowland (o campo magnético calculado existe no interior do anel, mas não na região entre o

anel e a bobina). Se r é o raio da seção reta do anel, A = pr 2 e, portanto,

= 801r2 B 0 .

Como o raio r é dado por r = (6,0 cm – 5,0 cm)/2 = 0,50 cm,

e, portanto,

= 801(0,50× 10− 2m) 2( 020 , × 10− 3

T) = 1,26 × 10−

5

Wb

50(,

126×

10

q =

80 ,

−5

Wb)

= 79 , × 10−

5

C = 79C.

54. (a) De acordo com o Problema 32-61, a uma distância r do centro da Terra, o módulo do

campo elétrico é dado por

0

B = 1+

3sen

2

m

,

4r

3


SOLUÇÕES DOS PROBLEMAS 301

na qual m é o momento dipolar da Terra e l m é a latitude magnética. A razão entre os módulos

do campo a diferentes distâncias na mesma latitude é

B

B

2

1

r1 = 3 .

r2 3

Vamos chamar de B 1 o módulo do campo magnético na superfície da Terra, de r 1 = R t , na qual

R t é o raio da Terra, a distância correspoondente do centro da Terra, e de r 2 = R t + h, na qual h é

a altitude, o ponto no qual o módulo do campo magnético é B 1 /2. Nesse caso,

r

r

1

2

R3

t

=

3

05

( R + h) = , .

t

Explicitando h, obtemos:

h= ( 213− 1) = ( 213− 1)( 6370 km) = 166 , × 103

km.

R t

(b) Para obter o valor máximo de B a 2900 km de profundidade, fazemos sen l m = 1,00 e r =

6370 km – 2900 km = 3470 km, o que nos dá

B

max

( ×

0

⋅ )(, ×

= + sen2

4

10

7

T m A 8 00 1022 A⋅

m2)

1 3 m

=

4r

3

4( 3, 47 × 106 m)

3

= 383 , × 10−

4

T.

1+

3100 (, )

(c) Como o ângulo entre o eixo magnético e o eixo de rotação da Terra é 11,5° (veja a Seção

32-6), l m = 90,0° – 11,5° = 78,5° no polo geográfico da Terra. Além disso, r = R t = 6370 km.

Assim,

×

0

⋅ ×

B = +

2

( 4

10

7T m A)(,

8 0 1022

J T) 1+ 3sen 2

78,

1 3sen

m

=

4

3

4( 6,37 × 10 6 m)

3

R t

= 611 , × 10−

5T.

tan 1

2tan 785 , ° 84, 2°

.

(d) i =

( ) =

(e) Uma explicação plausível para a discrepância entre os valores calculados e medidos do

campo magnético da Terra é que as expressões usadas para calcular o campo são baseadas na

hipótese de que o campo magnético da Terra é o campo de um dipolo, o que não corresponde

exatamente à realidade.

55. (a) De acordo com a relação = iA = iR t2 , temos:

2

80 , × 1022

J/T

i = =

2

(6,37×

106

m)

R t

2

= 63 , × 108

A.

(b) Sim, porque, longe da Terra, tanto o campo magnético da Terra como o campo magnético

criado pela espira seriam campos dipolares. Se os dois campos tivessem orientações opostas, o

cancelamento seria total.

(c) Não, porque, nas proximidades da espira, o campo produzido por uma espira não é igual ao

campo produzido por um dipolo magnético.

56. (a) Como o período de rotação é T = 2p/v, este é o tempo que a carga completa do anel leva

para passar por um ponto fixo na trajetória do anel. Assim, a corrente associada à carga do anel

é i = q/T = qv/2p e o módulo do momento dipolar magnético é

= iA = q = 1

r q r

2 2

2 2

.


302 SOLUÇÕES DOS PROBLEMAS

(b) Dobramos os dedos da mão direita no sentido da rotação. Como a carga é positiva, o polegar

aponta na direção do momento dipolar magnético, que é a mesma do vetor momento angular

do anel.

57. A energia potencial associada à interação do dipolo magnético da bússola com o campo

magnético da Terra é

U =−⋅ B

= −B

cos ,

na qual u é o ângulo entre e B t . Para u pequeno,

t

U( ) =−Bt cos ⎛ ⎞

≈−Bt − Bt

⎜ 1 2

2 ⎠

⎟ = 1

2

2

na qual k = mB t . Aplicando a lei de conservação da energia ao movimento da agulha da bússola,

temos:

1

2

2

⎛ d

⎞ 1

I

2

dt ⎠

⎟ + = const.

2

Essa expressão é semelhante à da conservação da energia mecânica em um sistema massamola:

2

1 ⎛ 1

m dx ⎞

kx

2

2 ⎝

dt ⎠

⎟ + = const.,

2

t

que nos dá =

km. Assim, por analogia, temos:

Bt

Bt

= = =

I I ml 2

12 ,

o que nos dá

2 2

×

−2 2 2

B t

ml ( 0, 050 kg)( 40 , 10 m) ( 45rad s)

= =

12

1216 ( × 10 − 6

T)

= 84 , × 102

JT.

ir

58. (a) De acordo com a Eq. 29-20, B = 0

= 222 T.

2

2

0i

(b) De acordo com a Eq. 29-17, B = = 167 T.

2r

0i

(c) De acordo com a Eq. 29-17, B = = 22, 7 T.

2r

ir

(d) De acordo com as Eqs. 32-15 e 32-16, B = 0

d

R

= 125 , T.

2

2

0ir

d

(e) De acordo com as Eqs. 32-15 e 32-16, B = = 375 , T.

2r

2

0id

(f) A Eq. 32-17 nos dá B = = 22, 7 T.

2r

R f

(g) Como a corrente de deslocamento no espaço entre as placas se distribui em uma área maior,

os valores de B nessa área são relativamente pequenos. Do lado de fora do espaço entre as placas,

os valores da corrente no fio e da corrente de deslocamento são iguais.

p


SOLUÇÕES DOS PROBLEMAS 303

59. (a) Podemos usar o resultado do item (a) do Exemplo “Campo magnético induzido por um

campo elétrico variável”:

na qual, no nosso caso, r = 0,80R e

dE

dt

=

µεrdE

B = 0 0

( para r ≤ R)

,

2 dt

d

dt

⎛ V ⎞

d⎠

1 d

Ve 0

d dt

t

⎟ =

( ) =−

V0

d e

na qual V 0 = 100 V. Substituindo por valores numéricos, temos:

r

Bt

Vd e Vr

(

t

) = ⎛ µε 0 0 ⎞ ⎛ e

⎝ ⎠ ⎝

− 0 − τ ⎞

τ ⎠ =− µε 0 0 0

2 2τ

d

−t

τ

−t

( 4π

× 10−

7T⋅ m A)(, 8 85 × 10−

12C 2/N ⋅m2)( 100 V)(

080 , )( 16 mm)

=−

212 ( × 10−

3

s)(, 5 0 mm)

=−(,

12

× 10− 13

T e−

t 12 ms

) .

,

e−

t 12 ms

Assim,

Bt () = (, 12× 10− T) e−t

= ( 12 , × 10− T) e−t

,

13 12 ms 13 00 12 s

.

(b) No instante t = 3t, B(t) = –(1,2 × 10 –13 T)e –3t/t = –5,9 × 10 –15 T; assim,

|B|= 5,9 × 10 –15 T.

60. (a) De acordo com a Eq. 32-1, temos:

( B) = ( B) = 0, 0070 Wb + ( 040 , T)( r

2) = 9,

2 × 10−

3 Wb.

entra sai

Assim, o valor absoluto do fluxo magnético através da parte curva da superfície é 9,2 mWb.

(b) O fluxo é para dentro.

61. (a) De acordo com o teorema de Pitágoras,

0

= 1+

3sen 2

4r

3

m ,

na qual usamos a relação cos 2 l m + sen 2 l m = 1.

(b) De acordo com a Eq. 3-6,

2

B= B h 2

+ B v 2

= ⎛ ⎝ ⎜ 0 ⎞

r

m ⎠

⎟ + ⎛ 0 ⎞

cos

sen

4

3 ⎝

2r3

m

0

⎟ = cos2

+ 4

2

4r

3

m sen m

Bv

( 0 2r

3)sen

m

tani

= = = 2tan

B ( 4r

3

m .

)cos

h

0

62. (a) No equador geomagnético (l m = 0), o campo é

×

0 ( 4

10

7T⋅ m A)(, 8 00 × 1022

A⋅m B = =

2 )

= 310 , × 10−

5

T = 31,0 T.

4r

3

4(,

6 37 × 106 m)

3

(b) f i = tan –1 (2 tan l m ) = tan –1 (0) = 0°.

m

2


304 SOLUÇÕES DOS PROBLEMAS

(c) Para l m = 60,0°, temos:

0

B = 1+ 3sen 2

m = ( 310 , × 10−

5) 1+ 3sen 2

600 , ° = 559 , × 10 − 5 T = 55,9 T.

4r

3

(d) f i = tan –1 (2 tan 60,0°) = 73,9°.

(e) No polo norte geomagnético (l m = 90,0°), temos:

0

B = 1+ 3sen 2

m = ( 310 , × 10−

5) 1+ 3100 (, )

2

= 6,20 × 10 − 5 T = 62,0 T.

4r

3

(f) f i = tan –1 (2 tan 90,0°) = 90,0°.

63. Seja R o raio das placas do capacitor e seja r a distância entre o ponto considerado e o eixo

do capacitor. O módulo do campo magnético é dado pelas Eqs. 32-8 e 32-9:

e

µ rdE

B = 0 0

( r ≤ R)

2 dt

µ R dE

B = 0

2 0

( r ≥ R).

2r

dt

O campo magnético é máximo nos pontos em que r = R; o valor do campo nesses pontos pode

ser calculado usando qualquer uma das equações anteriores:

B

= µ 00

2

RdE

dt

max .

Existem dois valores de r para os quais B é igual a 50% de B max , um menor que R e outro maior

que R.

(a) Para r < R, temos:

(b) Para r > R, temos:

µ 00rdE

µ 00RdE

= ⇒ r = R/ 2= ( 550 , mm/ ) 2=

275 , mm.

2 dt 4 dt

µ 0

2

0R

dE µ 00RdE

= ⇒ r = 2R= 2( 55, 0 mm)

= 110 mm.

2r

dt 4 dt

64. (a) De acordo com a Fig. 32-14, para M/M max = 50% temos B/T = 0,50 e, portanto, T=

B/0,50 = 2/0,50 = 4 K.

(b) De acordo com a Fig. 32-14, para M/M max = 90% temos B/T = 2,0 e, portanto, T = 2/2,0 =

1 K.

65. Seja A a área das placas e seja a a área da região central. Nesse caso,

A

a

= R2

R

= 4

( 2)

2

e, de acordo com a Eq. 32-15, a corrente de descarga é dada por

i = i d = 4(2,0 A) = 8,0 A.

66. Ignorando os pontos de transição, constatamos que o intervalo da curva da Fig. 32-40 no

qual a inclinação é maior é 6 ms < t < 7 ms. Nesse intervalo, de acordo com a Eq. 32-14,

i A E d = =

2

×

6

= ×

−5

0 0( 20 , m )( 20 , 10 V m) 35 , 10 A.

t


SOLUÇÕES DOS PROBLEMAS 305

67. (a) Usando a Eq. 32-13 mas levando em conta o fato de que o capacitor está sendo descarregado,

temos:

dE

dt

i

50 , A

=− =−

A ×

−12

0 (, 885 10 C /N⋅m

)( 0,

0080

2 2

m)

2

=− 88 , × 10 15 V/m⋅s.

(b) Supondo que o campo é perfeitamente uniforme, mesmo perto das bordas, podemos usar

o mesmo raciocínio do item (a) do Exemplo “Substituição de um campo elétrico variável por

uma corrente de deslocamento” e relacionar o valor absoluto da integral de linha à parte da

corrente de deslocamento envolvida:

B ds i ⎛ WH

⋅ = d =

L

i ⎞

⎟ = ×

0 , env 0 59 , 10

2

68. (a) De acordo com a Eq. 32-31, m orb,z = –3m B = –2,78 × 10 –23 J/T.

(b) De acordo com a Eq. 32-31, m orb,z = 4m B = 3,71 × 10 –23 J/T.

7

Wb/m.

69. (a) Como as linhas de campo de um ímã em forma de barra apontam na direção do polo Sul,

as linhas de campo do desenho devem apontar para a esquerda e na direção do eixo central.

(b) O sinal de B

⋅ dA

em todos os elementos de área dA da superfície lateral do cilindro é negativo.

(c) Não, porque a lei de Gauss para o magnetismo se aplica apenas a superfícies fechadas. Se

acrescentarmos as bases do cilindro para formar uma superfície fechada, a lei de Gauss será

válida, pois o fluxo negativo através da superfície lateral do cilindro e da base do cilindro mais

distante do ímã será compensado por um fluxo positivo na base do cilindro mais próxima do ímã.

70. (a) De acordo com a Eq. 22-3,

e

E = r

= (, 160× 10−

19

C)( 8, 99 × 109 N⋅

m2

C2)

= 53 , × 1011

V/m.

4π 2 0 (, 52×

10 − 11

m)

2

(b) De acordo com a Eq. 29-28,

p ×

⋅ ×

0

( 4

10

7T m A)(, 1 4 10

26

J T)

B = =

= 20 , × 10−

2

T=

20 mT.

2

r3

2

(, 5 2 × 10−

11

m)

3

(c) De acordo com a Eq. 32-30,

orb

p

eh 4me

B

9,

27 × 10−

24

JT

= = =

14 , × 10−

26

J T = 66 , × 102.

p

p

71. (a) A figura a seguir mostra as linhas de campo magnético produzidas pelo ímã em forma

de barra nas proximidades do anel.

(b) No caso de materiais paramagnéticos, o momento dipolar magnético é paralelo a B. Na

figura do item anterior, aponta no sentido negativo do eixo x.


306 SOLUÇÕES DOS PROBLEMAS

(c) De acordo com a regra da mão direita, como aponta no sentido negativo do eixo x, o

sentido da corrente convencional é o sentido anti-horário, do ponto de vista do ímã em forma

de barra.

(d) O efeito da força magnética é deslocar o anel para regiões em que o campo magnético é mais

intenso. Como a “densidade” das linhas de força é proporcional à intensidade do campo magnético,

isso significa que a força aponta no sentido negativo do eixo x, ou seja, no sentido 2x.

72. (a) Entre as placas do capacitor, B 1 = m 0 i d r 1 /2pR 2 (Eq. 32-16); do lado de fora do capacitor,

B 2 = m 0 i d /2pr 2 (Eq. 32-17). Assim,

B

B R 2

( 400 , )

2

= = 12,

5

= 16, 7 nT.

rr ( 200 , )( 6, 00)

2 1

(b) De acordo com a Eq. 32-16, a corrente de deslocamento é

12

2

RB

2

id = 1

= 500 , mA.

r

01

73. (a) Para um dado valor de l, m l varia de −l a +l. Neste caso, como l = 3, o número de diferentes

valores de m l é 2l + 1 = 2(3) + 1 = 7. Assim, como L orb,z ∝m l , o número de diferentes

valores de L orb,z é 7.

(b) Como m orb,z ∝m l , o número de diferentes valores de m orb,z é 7.

(c) Como L orb,z = m l h/2p, o maior valor permitido de L orb,z é | m l | max h/2p = 3h/2p.

(d) Como m orb,z = – m l m B , o maior valor permitido de m orb,z é | m l | max m B = 3eh/4pm e .

(e) De acordo com as Eqs. 32-23 e 32-29, a componente z do momento angular total do elétron é

mh l mh s

Ltot

z = Lorb

z + Lsz= +

2

2

, , , .

Assim, o valor máximo de L tot,z acontece para m l = (m l ) max = 3 e m s = 1/2:

h , h

⎡⎣ Ltot,

z ⎤

⎛ ⎞

⎦ = +

.

max ⎝

⎜ 3 1 35

2 ⎠

⎟ 2 =

2

(f) Como o valor máximo de L tot,z é dado por [m J ] max h/2p, na qual, de acordo com o item (e),

[m J ] max = 3,5, o número de valores permitidos de L tot,z é 2[m J ] max + 1 = 2(3,5) + 1 = 8.

74. De acordo com a Eq. 32-17,

75. (a) Os valores possíveis são:

2rB

2

( 0, 0300 m)( 200 , × 10−

6

T)

id = =

= 0, 300 A.

4

× 10−

7

T⋅m A

(b) O valor máximo é 4m B = 3,71 × 10 −23 J/T.

0

{−4,−3,−2,−1, 0, +1, +2, +3, +4} ⇒ 9, no total.

(c) Multiplicando o resultado do item (b) por 0,250 T, obtemos U max = +9,27 × 10 −24 J.

(d) Como, de acordo com o item (a), o valor mínimo de m orb,z é −4m B , a menor energia potencial

é U min = (0,250 T)(−4m B ) = −9,27 × 10 −24 J.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!