19.01.2015 Views

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 ITERATION/RECURSION 9<br />

<strong>do</strong> primeiro, o terceiro rectângulo tem como base a média aritmética x 3 = (x 2 + y 2 )/2 <strong>da</strong> base e a<br />

altura <strong>do</strong> segun<strong>do</strong>, e assim sucessivamente. A equação recursiva para as bases é<br />

x n+1 = 1 (<br />

x n + a )<br />

.<br />

2 x n<br />

Observe que se a e a conjectura inicial são racionais, então to<strong>do</strong>s os x n são números racionais.<br />

The algorithm converges, and quite fast.<br />

x 1 = 3/2 for √ 2 (since 1 2 < 2 < 2 2 ), and find<br />

We could, as the babylonians, put an initial guess<br />

x 2 = 17<br />

12 ≃ 1.41666666666 x 3 = 577<br />

408 ≃ 1.41421568627 x 4 = 665857<br />

470832 ≃ 1.41421356237<br />

As you see, the sequence stabilizes quite fast.<br />

Error estimate. As a first attempt to explain this miracle, we could start looking at the<br />

recursive equations for the bases and the heights of the rectangles:<br />

x n+1 = x n + y n<br />

2<br />

y n+1 = 1/x n + 1/y n<br />

2<br />

(so, the next height is the “harmonic mean” of the base and height). We see that the x n ’s and the<br />

y n ’s form <strong>de</strong>creasing and increasing sequences, respectively (disregarding the first guess, of course),<br />

namely<br />

y 2 ≤ y 3 ≤ ... ≤ y n ≤ ... ≤ x n ≤ ... ≤ x 3 ≤ x 2 ,<br />

The real root is somewhere between, namely y n ≤ √ a ≤ x n . Hence, we have an explicit control of<br />

the error. A computation shows that the lenghts of those intervals, the differences ε n = x n − y n<br />

satisfy the recursion<br />

ε n+1 < 1 2 · ε n<br />

So, and initial “error” ε 1 ≤ 1 (an easy achievement, since we easily recognize squares of integers)<br />

reduces to at least ε n ≤ 2 −n after n iterations. The true error is actually much smaller. In<strong>de</strong>ed,<br />

in our example we may compute<br />

ε 2 = 17<br />

12 − 212 17 = 1<br />

204 ≃ .005 and ε 3 = 577<br />

408 − 2408 577 = 1<br />

235416 ≃ 0.000004<br />

So that the first improved guess x 2 has already one correct <strong>de</strong>cimals, and the second, x 3 has already<br />

four correct <strong>de</strong>cimals!<br />

Irrationals. What babylonians didn’t suspect is that if you start with a rational guess for √ 2,<br />

you get an infinite sequence of rational approximations, but the process never stops. This is due<br />

to<br />

Pythagoras theorem.<br />

The square root of 2 is not rational.<br />

Exercícios.<br />

• De acor<strong>do</strong> com a fórmula <strong>de</strong> Heron, a área <strong>de</strong> um triângulo <strong>de</strong> la<strong>do</strong>s a, b e c, e semi-perímetro<br />

s = (a + b + c)/2 é<br />

área = √ s(s − a)(s − b)(s − c)<br />

Estime a área <strong>de</strong> um triângulo <strong>de</strong> la<strong>do</strong>s 7, 8 e 9.<br />

• Estime √ 13 com um erro < 0.01 e 0.001.<br />

• Estime quantas iterações é preciso fazer para obter os primeiros n dígitos <strong>de</strong>cimais <strong>de</strong> √ 2<br />

usan<strong>do</strong> o méto<strong>do</strong> <strong>do</strong>s babilónios.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!