19.01.2015 Views

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8<br />

LINEARIZAÇÃO 59<br />

8 Linearização<br />

8.1 Linearização conforme<br />

Linearização conforme. Seja f : C → C uma função racional <strong>de</strong>fini<strong>da</strong> na esfera <strong>de</strong> Riemann<br />

C = C ∪ {∞}. Ca<strong>da</strong> ponto fixo p <strong>de</strong> f tem uma sua bacia <strong>de</strong> actração B p . A procura <strong>de</strong> meto<strong>do</strong>s<br />

rápi<strong>do</strong>s para calcular itera<strong>da</strong>s, em 1871 E. Schrœ<strong>de</strong>r introduziu a i<strong>de</strong>ia <strong>de</strong> procurar conjugações<br />

conformes <strong>da</strong> restrição f ∣ Bp com funções racionais mais simples, <strong>do</strong> género g : z ↦→ λz , numa<br />

vizinhança B <strong>da</strong> origem. O méto<strong>do</strong> consiste em resolver a equação funcional h◦f ∣ Bp = g ◦h, on<strong>de</strong><br />

h : B p → B é uma função analítica. E. Schrœ<strong>de</strong>r, G. Kœnig e J.H. Poincaré trataram o problema<br />

com |λ| ≠ 1, e <strong>de</strong>pois Carl S. Siegel resolveu o caso |λ| = 1 por volta <strong>de</strong> 1940.<br />

Koenigs linearization theorem. Let z 0 be a fixed point of f with multiplier f ′ (z 0 ) = λ such<br />

that |λ| ≠ 0, 1. Then there exists a conformal map φ, unique up to a non-zero factor, from a<br />

neighborhood of z 0 onto a neighborhood of 0 such that φ ◦ f = λ · φ.<br />

Proof. We assume that z 0 is attracting, i.e. |λ| < 1, since the repelling case follows from<br />

consi<strong>de</strong>ring the local inverse of f. Also, after conjugation, we can assume that z 0 = 0, hence the<br />

map has the form f(z) = λz + a 2 z 2 + ....<br />

Now <strong>de</strong>fine φ n (z) = f n (z)/λ n . There exists a δ > 0 and a constant c < |λ| < 1 such that for<br />

|z| < δ<br />

|φ n+1 (z) − φ n (z)| ≤ k · (c/|λ|) n<br />

for some k > 0. Hence the sequence of holomorphic functions φ n converges uniformly in a small<br />

ball around 0. The functional equation φ ◦ f = λ · φ follows immediatly from its <strong>de</strong>finition.<br />

Comparing coefficients it is easy to see that any conjugation of z ↦→ λz to itself is a constant<br />

multiple of the i<strong>de</strong>ntity, as long as |λ| ≠ 0, 1. Uniqueness follows.<br />

Böttcher theorem<br />

Let z 0 be a superattracting fixed point of f, where<br />

f(z) = z 0 + a p (z − z 0 ) p + ...<br />

with a p ≠ 0 and p ≥ 2. Then there exists a conformal map φ, unique up to multiplication by a<br />

(p − 1)-root of unity, from a neighborhood of z 0 onto a neighborhood of 0 such that φ ◦ f = φ p .<br />

I<strong>de</strong>a of the proof. We can assume that z 0 = 0 and that a p = 1. As in Koenigs proof, we look<br />

for the conjugation as a limit af the functions<br />

φ n (z) = f n (z) p−n .<br />

It can be shown that the φ n converge uniformly in some sufficiently small ball around 0, and the<br />

functional equation follows from the <strong>de</strong>finition. Uniqueness, up to a (p − 1)-root of unity, can be<br />

checked comparing power series.<br />

8.2 Hiperbolici<strong>da</strong><strong>de</strong> e linearização<br />

Hiperbolici<strong>da</strong><strong>de</strong>. As transformações lineares <strong>do</strong>s espaços euclidianos têm dinâmicas simples,<br />

e fornecem mo<strong>de</strong>los para o comportamento <strong>de</strong> uma transformação diferenciável numa vizinhança<br />

<strong>de</strong> um ponto fixo. Um bom exercício é procurar enten<strong>de</strong>r a dinâmica <strong>de</strong> uma transformação linear<br />

<strong>do</strong> plano T : R 2 → R 2 , <strong>de</strong>fini<strong>da</strong> por uma matriz real 2 × 2. A i<strong>de</strong>ia é esboçar o retrato <strong>de</strong><br />

fase <strong>da</strong> transformação, ou seja <strong>de</strong>screver algumas trajetórias típicas, pelo menos uma por ca<strong>da</strong><br />

comportamento possível. Começe por estu<strong>da</strong>r uma transformação diagonalizável<br />

( )<br />

λ 0<br />

T =<br />

0 µ<br />

e reparar as diferenças no comportamento qualitativo <strong>da</strong>s trajetórias ao variar os autovalores λ e<br />

µ. Aju<strong>da</strong> observar que as curvas x log µ = k · y log λ são invariantes. Depois, estu<strong>de</strong> o caso<br />

( )<br />

cos θ sin θ<br />

T = λ ·<br />

− sin θ cos θ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!