19.01.2015 Views

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CONTEÚDO 3<br />

9 Transversali<strong>da</strong><strong>de</strong> e bifurcações 61<br />

9.1 Transversali<strong>da</strong><strong>de</strong> e persistência <strong>do</strong>s pontos fixos . . . . . . . . . . . . . . . . . . . . 61<br />

9.2 Bifurcações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

9.3 Duplicação <strong>do</strong> perío<strong>do</strong> e cascata <strong>de</strong> Feigenbaum . . . . . . . . . . . . . . . . . . . . 62<br />

10 Statistical <strong>de</strong>scription of orbits 63<br />

10.1 Probability measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

10.2 Transformations and invariant measures . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

10.3 Invariant measures and time averages . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

10.4 Examples of invariant measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

11 Recorrências 74<br />

11.1 Comportamento assimptótico <strong>da</strong>s órbitas infinitas: conjuntos ω e α limite . . . . . 74<br />

11.2 Pontos recorrentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

11.3 Invariant measures and recurrent points: Poincaré theorem . . . . . . . . . . . . . 75<br />

11.4 Conjunto não-errante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

12 Transitivi<strong>da</strong><strong>de</strong> e órbitas <strong>de</strong>nsas 78<br />

12.1 Transitivi<strong>da</strong><strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

12.2 Minimali<strong>da</strong><strong>de</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

12.3 Rotações irracionais <strong>do</strong> círculo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

13 Homeomorfismos <strong>do</strong> círculo 83<br />

13.1 Número <strong>de</strong> rotação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

13.2 Teorema <strong>de</strong> classificação <strong>de</strong> Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

13.3 Difeomorfismos <strong>do</strong> círculo e teorema <strong>de</strong> Denjoy . . . . . . . . . . . . . . . . . . . . 85<br />

14 Per<strong>da</strong> <strong>de</strong> memória e in<strong>de</strong>pendência assimptótica 86<br />

14.1 Órbitas <strong>de</strong>sor<strong>de</strong>na<strong>da</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

14.2 Mixing topológico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

14.3 Dinâmica <strong>do</strong>s <strong>de</strong>slocamentos <strong>de</strong> Bernoulli . . . . . . . . . . . . . . . . . . . . . . . 89<br />

14.4 Conjuntos <strong>de</strong> Cantor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

14.5 Transformações expansoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

14.6 Automorfismos hiperbólicos <strong>do</strong> toro . . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

15 Dimensions, fractals and entropy 96<br />

15.1 Dimensions of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

15.2 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97<br />

15.3 Self-similarity and iterated function systems . . . . . . . . . . . . . . . . . . . . . . 98<br />

15.4 Kleinian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

15.5 Entropia topológica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

16 Ergodicity and convergence of time means 102<br />

16.1 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

16.2 Examples of ergodic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

16.3 Normal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

16.4 Unique ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!