19.01.2015 Views

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

My title - Departamento de Matemática da Universidade do Minho

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4<br />

NÚMEROS E DINÂMICA 22<br />

or, equivalently, that x 1 is the unique integer between 0 and 9 such that<br />

10 · r 0 = x 1 · q + r 1<br />

where, again, the rest r 1 is a non-negative integer 0 ≤ r 1 < q. And so on. Hence, the digits of the<br />

<strong>de</strong>cimal expansion of p/q are iteratively <strong>de</strong>termined by<br />

10 · r n−1 = x n · q + r n where 0 ≤ r n < q<br />

Theorem. The rational numbers are precisely those real numbers whose representation in base<br />

10 (or any other base d ≥ 2) is repeating/recurring.<br />

Meanwhile, there exists irrational numbers!<br />

Exercícios.<br />

• Show that the <strong>de</strong>cimal representation of a rational terminates iff the <strong>de</strong>nominator is 2 a 5 b .<br />

• Write 1/3 in base 2, and 2/3 in base 3 and 7.<br />

• Show that the <strong>de</strong>cimal (or any other base) representation of a rational number is repeating<br />

(observe that the possibilities for the rests r n are finite).<br />

• Show the converse: a repeating <strong>de</strong>cimal represents a rational number (compute the sum of<br />

the series).<br />

• Give examples of non-repeating <strong>de</strong>cimal expansions (see [HW59], section 9.4).<br />

• Prove that Euler’s number<br />

e =<br />

∞∑<br />

n=0<br />

is irrational (Fourier’s i<strong>de</strong>a: assume that e = p/q for some positive integers p/q, and <strong>de</strong>duce<br />

that x = q! (e − ∑ q<br />

n=0 1/n!) is then an integer. Estimate the series x = ∑ ∞<br />

n=q+1<br />

q!/n! and<br />

prove that 0 < x < 1).<br />

Multiplicação ×d. Seja d ≥ 2 um inteiro. A transformação F : R → R que envia ca<strong>da</strong> número x<br />

no seu múltiplo d · x tem uma dinâmica trivial. As coisas ficam mais interessantes se consi<strong>de</strong>ramos<br />

os números módulo os inteiros, e <strong>de</strong>finimos a multiplicação por d como sen<strong>do</strong> a transformação <strong>do</strong><br />

círculo ×d : R/Z → R/Z que envia<br />

x + Z ↦→ d · x + Z<br />

Se x = 0.x 1 x 2 x 3 . . . é a representação <strong>de</strong> x ∈ R/Z ≃ [0, 1) na base d, então a transformação ×d<br />

envia<br />

0.x 1 x 2 x 3 . . . ↦→ 0.x 2 x 3 x 4 . . .<br />

Exercícios.<br />

• Verifique que ×d é contínua.<br />

• Determine a cardinali<strong>da</strong><strong>de</strong> <strong>da</strong> imagem inversa <strong>de</strong> um ponto arbitrário <strong>de</strong> R/Z.<br />

1<br />

n!<br />

• Determine os pontos periódicos e pré-periódicos <strong>de</strong> ×d.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!