26.05.2014 Views

Dissipador de energia Tipo IX rampa dentada - Pliniotomaz.com.br

Dissipador de energia Tipo IX rampa dentada - Pliniotomaz.com.br

Dissipador de energia Tipo IX rampa dentada - Pliniotomaz.com.br

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

<strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

49-1


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> tipo <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

108.1 Introdução<<strong>br</strong> />

O objetivo é o dimensionamento do dissipador <strong>Tipo</strong> <strong>IX</strong> do USBR <strong>de</strong>nominado no<<strong>br</strong> />

Brasil <strong>de</strong> <strong>rampa</strong> <strong>de</strong>ntada.É usado pela PMSP e pelo DNIT.<<strong>br</strong> />

108.2 Bacia <strong>de</strong> dissipação <strong>Tipo</strong> <strong>IX</strong> do USBR<<strong>br</strong> />

Um dissipador <strong>de</strong> <strong>energia</strong> muito fácil <strong>de</strong> ser construído é o <strong>Tipo</strong> <strong>IX</strong> conforme Figura<<strong>br</strong> />

(108.36). Geralmente possuem a <strong>de</strong>clivida<strong>de</strong> 2:1 sendo 2 na horizontal e 1 na vertical.<<strong>br</strong> />

Po<strong>de</strong>m ser ainda possuir <strong>de</strong>clivida<strong>de</strong> menor.<<strong>br</strong> />

O dissipador <strong>de</strong> <strong>energia</strong> tipo USBR <strong>Tipo</strong> <strong>IX</strong> não é suscetível a lixo e resíduos que<<strong>br</strong> />

possam estar nas águas pluviais.<<strong>br</strong> />

A bacia <strong>de</strong> dissipação <strong>Tipo</strong> <strong>IX</strong> do USBR é também adotada pela Prefeitura<<strong>br</strong> />

Municipal <strong>de</strong> São Paulo e chamada <strong>de</strong> Rampa Dentada e os melhores <strong>de</strong>sempenhos<<strong>br</strong> />

ocorrem para vazões específicas <strong>de</strong> 3,35m 3 /s.m a 5,6m 3 /s.m. A PMSP re<strong>com</strong>enda ainda<<strong>br</strong> />

que haja no mínimo quatro linhas <strong>de</strong> <strong>de</strong>ntes para que a dissipação <strong>de</strong> <strong>energia</strong> sema mais<<strong>br</strong> />

eficiente.<<strong>br</strong> />

108.3 Critérios técnicos <strong>de</strong> Peterka, 2005<<strong>br</strong> />

O dimensionamento <strong>de</strong> um dissipador <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> tem as seguintes<<strong>br</strong> />

re<strong>com</strong>endações:<<strong>br</strong> />

Faixa <strong>de</strong> valida<strong>de</strong>: 3,35m3/s ≤ Vazão máxima ≤ 5,67 m 3 /s/m.<<strong>br</strong> />

Velocida<strong>de</strong> no canal a montante: V


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

Figura 108.1 <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong><<strong>br</strong> />

Fonte: Peterka, 2005<<strong>br</strong> />

49-3


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

Figura 108.2-Melhor disposição do dissipador <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong><<strong>br</strong> />

Fonte: Peterka, 2005<<strong>br</strong> />

49-4


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

Figura 108.3- Desenho esquemático do perfil do dissipador <strong>de</strong> <strong>energia</strong> chamado<<strong>br</strong> />

<strong>rampa</strong> <strong>de</strong>ntada (<strong>Tipo</strong> <strong>IX</strong> do Peterka) observando o pequeno reservatório.<<strong>br</strong> />

Figura 108.4- Melhor disposição do dissipador <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong><<strong>br</strong> />

Fonte: Peterka, 2005<<strong>br</strong> />

49-5


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

Sendo:<<strong>br</strong> />

q= vazão unitária (m 3 /s/m)<<strong>br</strong> />

W= largura (m)<<strong>br</strong> />

Q= vazão (m 3 /s)<<strong>br</strong> />

q =Q/W<<strong>br</strong> />

A velocida<strong>de</strong> máxima <strong>de</strong> entrada é V 1 calculada pela fórmula empírica <strong>de</strong> Peterka<<strong>br</strong> />

adaptada para as unida<strong>de</strong>s SI:<<strong>br</strong> />

V 1 = (g.q) 1/3 - 1,5<<strong>br</strong> />

Sendo:<<strong>br</strong> />

V 1 = velocida<strong>de</strong> na entrada (m/s)<<strong>br</strong> />

g= aceleração da gravida<strong>de</strong> – 9,81m/s 2<<strong>br</strong> />

q =Q/W<<strong>br</strong> />

A velocida<strong>de</strong> critica é Vc;<<strong>br</strong> />

V C = (g.q) 1/3<<strong>br</strong> />

Exemplo 108.7<<strong>br</strong> />

Dimensionar um dissipador <strong>de</strong> <strong>energia</strong> USBR <strong>Tipo</strong> <strong>IX</strong> para um <strong>de</strong>snível <strong>de</strong> 8,00m. São<<strong>br</strong> />

dados:<<strong>br</strong> />

Vazão Q= 22,17m 3 /s<<strong>br</strong> />

Dados do canal a montante<<strong>br</strong> />

n=0,013 (concreto)<<strong>br</strong> />

Declivida<strong>de</strong> 2:1<<strong>br</strong> />

Largura =B=6,5m<<strong>br</strong> />

Cota da soleira do vertedor do bueiro a jusante= 753,18m<<strong>br</strong> />

Cota do fundo do canal a jusante (m)= 750,18<<strong>br</strong> />

Desnível do dissipador= 3m<<strong>br</strong> />

Altura do nível <strong>de</strong> água que está no bueiro (m)= 1,55m<<strong>br</strong> />

Primeiro passo:<<strong>br</strong> />

Por tentativa supomos uma seção retangular <strong>com</strong> altura D (m) e largura B (m).<<strong>br</strong> />

Supomos B=6,5m<<strong>br</strong> />

q=Q/B= 22,17/6,5= 3,41m 3 s/m < 5,67m 3 /s/m e > 3,35m 3 /s/m OK<<strong>br</strong> />

Segundo passo: velocida<strong>de</strong> critica e velocida<strong>de</strong> máxima V1 na entrada da <strong>rampa</strong><<strong>br</strong> />

<strong>de</strong>ntada<<strong>br</strong> />

Velocida<strong>de</strong> critica<<strong>br</strong> />

V C = (g.q) 1/3<<strong>br</strong> />

V C = (9,81x3,41) 1/3 =3,22m/s<<strong>br</strong> />

yc x B= 22,17/3,22= 6,89<<strong>br</strong> />

yc= 6,89/6,5= 1,06m<<strong>br</strong> />

49-6


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

A velocida<strong>de</strong> máxima <strong>de</strong> entrada é V 1<<strong>br</strong> />

V 1 = (g.q) 1/3 - 1,5<<strong>br</strong> />

V 1 = (9,81x 3,41) 1/3 - 1,5 =1,72m/s<<strong>br</strong> />

Portanto, a velocida<strong>de</strong> máxima <strong>de</strong> entrada é 1,72m/s.<<strong>br</strong> />

Adoto V 1 = 1,72m/s (velocida<strong>de</strong> máxima adotada na entrada da <strong>rampa</strong><<strong>br</strong> />

<strong>de</strong>ntada)<<strong>br</strong> />

Equação da continuida<strong>de</strong> Q= AxV<<strong>br</strong> />

A= Q/V= 22,17/ 1,72= 12,89m 2<<strong>br</strong> />

A= B x H<<strong>br</strong> />

H= A/B= 12,89/6,5= 1,98m<<strong>br</strong> />

Portanto, a altura <strong>de</strong> água na entrada é 1,98m<<strong>br</strong> />

Quarto passo: pequeno reservatório<<strong>br</strong> />

Truque: quero manter o nível <strong>de</strong> água que está vindo ao bueiro que é 1,55m<<strong>br</strong> />

Transição do bueiro para a <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

O bueiro tem 4,00m <strong>de</strong> largura por 2,00m <strong>de</strong> altura. A altura <strong>de</strong> água é 1,55m, a<<strong>br</strong> />

velocida<strong>de</strong> <strong>de</strong> saída no bueiro é 3,59m/s e o numero <strong>de</strong> Frou<strong>de</strong> é 0,92;<<strong>br</strong> />

tan Alfa= 1/ 3Fo= 1/(3x0,92) =0,36 rad<<strong>br</strong> />

F=0,92 B=6,5m D=2,00m<<strong>br</strong> />

L= 3F x (B-D)= 3 x 0,92 x (6,5-2) /2 = 6,21m<<strong>br</strong> />

Pequeno reservatorio Ver Figura (108.3)<<strong>br</strong> />

Rampa <strong>de</strong>ntro do pequeno reservatorio= 6,21/2= 3,11m<<strong>br</strong> />

Comprimento do pequeno reservatorio= 6,21/2= 3,11m<<strong>br</strong> />

Profundida<strong>de</strong> = 0,43m<<strong>br</strong> />

Portanto, temos que fazer um pequeno reservatório <strong>com</strong> profundida<strong>de</strong>= 1,98-1,55=<<strong>br</strong> />

0,43m. Haverá então um pequeno reservatório <strong>com</strong> 0,43m <strong>de</strong> profundida<strong>de</strong> antes da água<<strong>br</strong> />

entrar na <strong>rampa</strong> <strong>de</strong>ntada.<<strong>br</strong> />

Profundida<strong>de</strong> do pequeno reservatório = 0,43m<<strong>br</strong> />

Temos uma transição 1:4 quando a água sai do bueiro e entra no <strong>de</strong>grau e tem um<<strong>br</strong> />

<strong>de</strong>terminado <strong>com</strong>primento L. Para o reservatório pequeno supomos que tem L/2 em <strong>rampa</strong><<strong>br</strong> />

e L/2 em reservatório.<<strong>br</strong> />

Então o pequeno reservatório tem largura <strong>de</strong> 6,5m, profundida<strong>de</strong> <strong>de</strong> 0,43m e<<strong>br</strong> />

<strong>com</strong>primento L/2 e <strong>de</strong>clivida<strong>de</strong> re<strong>com</strong>endada por Peterka <strong>de</strong> S=0,0018m/m.<<strong>br</strong> />

Quinto passo: Elementos <strong>de</strong> concreto na <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Altura critica= 1,06m<<strong>br</strong> />

O número <strong>de</strong> fileiras mínimo <strong>de</strong> <strong>de</strong>ntes <strong>de</strong> concreto=4.<<strong>br</strong> />

Altura do <strong>de</strong>nte H =0,80 x dc= 0,8 x 1,06= 0,85m<<strong>br</strong> />

Altura da pare<strong>de</strong> lateral = 3 x H= 3 x 0,85= 2,54m<<strong>br</strong> />

Distancia entre os <strong>de</strong>ntes na <strong>rampa</strong>= 2xH= 2 x 0,85= 1,70m<<strong>br</strong> />

Espaçamento horizontal entre os <strong>de</strong>ntes <strong>de</strong> concreto= 1,5x H=1,5 x 0,85=1,27m<<strong>br</strong> />

49-7


Curso <strong>de</strong> Manejo <strong>de</strong> águas pluviais<<strong>br</strong> />

Capítulo 108- <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> <strong>Tipo</strong> <strong>IX</strong> <strong>rampa</strong> <strong>de</strong>ntada<<strong>br</strong> />

Engenheiro Plínio Tomaz 10/03/12 pliniotomaz@uol..<strong>com</strong>.<strong>br</strong><<strong>br</strong> />

108.4 Bibliografia e livros consultados<<strong>br</strong> />

-CETESB- Drenagem Urbana- Manual <strong>de</strong> projeto. 3ª Ed. 1986, 452páginas.<<strong>br</strong> />

-DAEE (DEPARTAMENTO DE AGUAS E ENERGIA ELETRICA DO ESTADO DE<<strong>br</strong> />

SAO PAULO). Guia prático para projetos <strong>de</strong> pequenas o<strong>br</strong>as hidráulicas, 2005,124<<strong>br</strong> />

páginas.<<strong>br</strong> />

-FHWA- Hydraulic Design of energy dissipators for culverts and channels, July, 2006.<<strong>br</strong> />

-LENCASTRE, ARMANDO. Hidráulica geral. Edição Luso-Brasileira, 1983, 653<<strong>br</strong> />

páginas.<<strong>br</strong> />

-MAYS, LARRY W. Hydraulic <strong>de</strong>sign handbook. John Wiley& Sons, 2001, 761páginas.<<strong>br</strong> />

-MAYS, LARRY W. Stormwater collection systems <strong>de</strong>sign handbook- Handbook.<<strong>br</strong> />

McGraw-Hill, 2001.<<strong>br</strong> />

-MAYS, LARRY W. Water Resources Engineering. John Wiley& Sons, 2001, 761páginas.<<strong>br</strong> />

-PETERKA, A. J. Hydraulic <strong>de</strong>sign of stilling basins and energy. Havaii, 2005. US<<strong>br</strong> />

Department of the Interior-Bureau of Reclamation. ISBN 1-4102-2341-8. Nota: é uma<<strong>br</strong> />

reimpressão do original.<<strong>br</strong> />

-PMSP (PREFEITURA MUNIC IPAL DE SÃO PAULO). Diretrizes básicas para<<strong>br</strong> />

projetos <strong>de</strong> drenagem urbana no municipio <strong>de</strong> São Paulo, 1998, 279 páginas, elaborado<<strong>br</strong> />

pela Fundação Centro Tecnológico <strong>de</strong> Hidráulica (FCTH) coor<strong>de</strong>nado por Carlos Lhoret<<strong>br</strong> />

Ramos, Mário T. L. <strong>de</strong> Barros e José Carlos F. Palos.<<strong>br</strong> />

-SUBRAMANYA, KK. Flow in openlchannels. Tata McGraw-Hill, New Delhi, 3ª ed,<<strong>br</strong> />

2009, 548 páginas ISBN (13) 978-0-07-06966-3<<strong>br</strong> />

-TAMADA, KIKUO. <strong>Dissipador</strong> <strong>de</strong> <strong>energia</strong> na engenharia hidráulica. EPUSP, 70<<strong>br</strong> />

páginas, 1994, Notas <strong>de</strong> aula, PHD-727.<<strong>br</strong> />

49-8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!