09.05.2013 Views

Autovalores do Laplaciano - Departamento de Matemática - UFMG

Autovalores do Laplaciano - Departamento de Matemática - UFMG

Autovalores do Laplaciano - Departamento de Matemática - UFMG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rodney Josué Biezuner 135<br />

para to<strong>do</strong>s u, v ∈ V , para to<strong>do</strong> λ ∈ K, e<br />

β = α − |µ| . (7.19)<br />

Consi<strong>de</strong>remos a primeira <strong>de</strong>sigualda<strong>de</strong>, (7.13). Da <strong>de</strong>finição <strong>de</strong> ω (λ), segue que para to<strong>do</strong> u ∈ V vale<br />

ω (λ) uV sup |aλ (u, v)| = sup |aµ (u − z, v)| Cµ u − zV . (7.20)<br />

v∈V<br />

v∈V<br />

vV =1<br />

vV =1<br />

Usan<strong>do</strong> o Lema 7.4 e esta última <strong>de</strong>sigualda<strong>de</strong> escrevemos então<br />

sup |aλ (u, v)| = sup |aµ (u − zh, v)|<br />

v∈Vh<br />

v∈Vh<br />

vV =1<br />

vV =1<br />

ωh (µ) u − zh V<br />

para to<strong>do</strong> u ∈ V . Escolhen<strong>do</strong> u ∈ Vh tal que u V = 1 e<br />

obtemos<br />

ωh (λ) = inf<br />

u∈Vh<br />

uV =1<br />

sup<br />

v∈Vh<br />

v V =1<br />

β u − zhV β (u − zV − z − zhV )<br />

<br />

ω (λ)<br />

β − Zλ − Z h <br />

<br />

<br />

λ<br />

Cµ<br />

|aλ (u, v)| = min<br />

u∈Vh<br />

ωh (λ) β<br />

Cµ<br />

sup<br />

v∈Vh<br />

uV =1 vV =1<br />

u V<br />

|aλ (u, v)| = sup |aλ (u, v)| ,<br />

v∈Vh<br />

vV =1<br />

ω (λ) − β Zλ − Z h <br />

<br />

λ . (7.21)<br />

Portanto, (7.13) segue se provarmos que<br />

lim<br />

h→0 sup<br />

<br />

Zλ − Z<br />

λ∈K<br />

h <br />

<br />

λ = 0. (7.22)<br />

Da mesma forma, a <strong>de</strong>monstração <strong>de</strong> (7.14) <strong>de</strong>pen<strong>de</strong> <strong>de</strong> (7.22). De fato, pela <strong>de</strong>finição <strong>de</strong> ωh (λ) segue<br />

que para to<strong>do</strong> uh ∈ Vh temos<br />

ωh (λ) uhV sup |aλ (uh, v)| = sup |aµ (uh − zh, v)| Cµ uh − zhV . (7.23)<br />

v∈Vh<br />

v∈Vh<br />

vV =1<br />

vV =1<br />

Usan<strong>do</strong> o Lema 7.4 e esta última <strong>de</strong>sigualda<strong>de</strong> escrevemos<br />

sup |aλ (uh, v)| = sup |aµ (uh − z, v)|<br />

v∈V<br />

v∈V<br />

vV =1<br />

vV =1<br />

para to<strong>do</strong> uh ∈ Vh. Escolha u ∈ V tal que u V = 1 e<br />

ω (λ) = inf<br />

u∈V<br />

sup<br />

v∈V<br />

uV =1 vV =1<br />

ω (µ) uh − z V<br />

β uh − zV β (uh − zhV − z − zhV )<br />

<br />

ωh (λ)<br />

β − Zλ − Z h <br />

<br />

<br />

λ<br />

|aλ (u, v)| = min<br />

u∈V<br />

Cµ<br />

sup<br />

v∈V<br />

uV =1 vV =1<br />

uh V<br />

|aλ (u, v)| = sup |aλ (u, v)| .<br />

v∈V<br />

vV =1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!