22.11.2012 Views

Cell-cell interactions in tumour progression - The University of Sydney

Cell-cell interactions in tumour progression - The University of Sydney

Cell-cell interactions in tumour progression - The University of Sydney

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pathology Discipl<strong>in</strong>e<br />

Honours Year Students<br />

Summary <strong>of</strong> Requirements


ENTRY REQUIREMENTS<br />

Must have a WAM <strong>of</strong> 65 or<br />

greater<br />

Must approach a supervisor<br />

obta<strong>in</strong> permission to<br />

undertake his/her Honours<br />

project


Why a WAM <strong>of</strong> 65 or greater?<br />

Faculty <strong>of</strong> Science rule that WAM must be >65<br />

<strong>The</strong> Faculty <strong>of</strong> Science may consider applicants <strong>in</strong> the<br />

range 63-65 on special application, with support from the<br />

Discipl<strong>in</strong>e<br />

WAM < 68 - difficult to achieve Honours 1<br />

<strong>The</strong> m<strong>in</strong>imum score for Honours I is 80<br />

Pathology constra<strong>in</strong>ed by Faculty <strong>of</strong> Science (average Honours<br />

marks <strong>in</strong> each Dept must not exceed average WAM + 10).<br />

NOTE: <strong>The</strong> current cut-<strong>of</strong>f for a post-graduate<br />

scholarship for a PhD is:<br />

WAM ~72/Hons ~82 (local students)


NOTE !<br />

It is NOT necessary to have completed<br />

<strong>Cell</strong> Pathology 3.


REQUIREMENTS OF CANDIDATES<br />

General<br />

Recommended students start by February 1st.<br />

Courses:<br />

Animal Handl<strong>in</strong>g Course.<br />

Radiation Safety Course.<br />

Laboratory Safety Course


REQUIREMENTS OF CANDIDATES<br />

Sem<strong>in</strong>ars<br />

Department Presentations:<br />

Project overview & research plan<br />

March (10 m<strong>in</strong>).<br />

F<strong>in</strong>al sem<strong>in</strong>ar<br />

November (20 m<strong>in</strong>)<br />

Weekly Research Techniques Sem<strong>in</strong>ars &<br />

Journal Club: - Semester 1<br />

Attendance at formal research sem<strong>in</strong>ars (x4).


REQUIREMENTS OF CANDIDATES<br />

Assessment<br />

Mark breakdown:<br />

Literature Review (May) 5%<br />

F<strong>in</strong>al Sem<strong>in</strong>ar (Nov) 10%<br />

<strong>The</strong>sis (Nov) 75%<br />

Coursework (Sem 1) 10%<br />

(Includ<strong>in</strong>g all aspects <strong>of</strong> sem<strong>in</strong>ar<br />

participation)


How to apply for Honours<br />

Step 1: Select a research project/s. Lists <strong>of</strong> projects are available at<br />

this session and at:<br />

Pathology Discipl<strong>in</strong>e website:<br />

http://sydney.edu.au/medic<strong>in</strong>e/pathology/students/honours/<strong>in</strong>dex.php<br />

Searchable database for Science Honours projects <strong>in</strong> the Faculty <strong>of</strong> Medic<strong>in</strong>e:<br />

http://sydney.edu.au/medic<strong>in</strong>e/future-students/honours/<strong>in</strong>dex.php<br />

Step 2: Discuss the research project with the supervisor/s and<br />

obta<strong>in</strong> permission to undertake the project/s<br />

Step 3: Submit application form to Pathology Discipl<strong>in</strong>e Front<br />

Office (Pathology Dept website)<br />

http://sydney.edu.au/medic<strong>in</strong>e/pathology/students/honours/<strong>in</strong>dex.php<br />

Step 4: Submit application form to Faculty <strong>of</strong> Science<br />

http://sydney.edu.au/science/fstudent/undergrad/course/honours/<strong>in</strong>dex.shtml


Pathology Honours Website


Searchable database for Science Honours<br />

projects <strong>in</strong> the Faculty <strong>of</strong> Medic<strong>in</strong>e<br />

http://sydney.edu.au/medic<strong>in</strong>e/future-students/honours/<strong>in</strong>dex.php


Students consider<strong>in</strong>g Medic<strong>in</strong>e<br />

or Dentistry<br />

It is possible and encouraged to defer<br />

admission <strong>in</strong>to Medic<strong>in</strong>e or Dentistry to<br />

undertake Honours (and later a PhD)


<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

Honours Merit Scholarships<br />

Awarded on the basis <strong>of</strong> academic merit and<br />

personal attributes such as leadership and<br />

creativity<br />

$6,000 for one year !<br />

Applications close early January<br />

http://www.usyd.edu.au/scholarships/prospective/honours.shtml


Marfan Syndrome (MFS)<br />

Hambly Lab<br />

Marfan syndrome (MFS) is an autosomal dom<strong>in</strong>ant <strong>in</strong>herited<br />

genetic connective tissue disease with the estimated<br />

<strong>in</strong>cidence <strong>of</strong> 1 / 3000 ~ 5000.<br />

MFS patients are extremely tall and slim with multi-system<br />

symptoms.<br />

Skeletal: long slim limbs and f<strong>in</strong>gers, scoliosis, pectus<br />

excavatum or car<strong>in</strong>atum and abnormal jo<strong>in</strong>t flexibility and<br />

so on.<br />

Ocular: ectopia lentis (most obvious symptom)<br />

Cardiovascular: mitral valve prolapse, ventricular<br />

dilatation and thoracic aortic aneurysm<br />

Possible pathogenesis<br />

MFS patients <strong>in</strong>herited an abnormal fibrill<strong>in</strong> mutation<br />

from their parents or may generate a new somatic<br />

mutation<br />

MFS patients produce abnormal fibrill<strong>in</strong>, compromis<strong>in</strong>g<br />

micr<strong>of</strong>ibril formation<br />

Fibrill<strong>in</strong>-1+ latent TGF-β → control TGF-β signall<strong>in</strong>g<br />

21 May 2012


Abnormal elasticity<br />

- STIFF WALL (echo)<br />

Abnormal fibrill<strong>in</strong><br />

Excessive wall stress<br />

dur<strong>in</strong>g heart pump<strong>in</strong>g<br />

Inflammation<br />

- cytok<strong>in</strong>es<br />

- MMPs<br />

Cystic Medial Necrosis<br />

Thoracic aortic aneurysm<br />

Failure <strong>of</strong> sequestration <strong>of</strong> TGF-β<br />

- Increased fibrosis<br />

- STIFF WALL (echo)<br />

21 May 2012


Plasma TGFβ and MMPs <strong>in</strong> Human Heritable Aortopathy<br />

600<br />

400<br />

200<br />

15<br />

10<br />

5<br />

0<br />

0<br />

TGFβ ng/ml x 10 NS<br />

Control Marfan MASS FTAD<br />

MMP3 (ng/ml)<br />

*<br />

Control Marfan MASS TAAD<br />

*<br />

600<br />

400<br />

200<br />

0<br />

150<br />

100<br />

50<br />

0<br />

MMP2 ng/ml<br />

*<br />

Control Marfan MASS FTAD<br />

MMP9 (ng/ml)<br />

Control Marfan MASS TAAD<br />

Lu et al unpublished data 2012<br />

*<br />

NS


Supervisor: Dr Danuta Kal<strong>in</strong>owski<br />

Co‐Supervisor: Pr<strong>of</strong> Des Richardson


Fe<br />

Oxidative Phosphorylation DNA Synthesis<br />

‐ Cancer <strong>cell</strong>s require higher levels <strong>of</strong> iron for proliferation and are<br />

more sensitive to iron depletion than normal <strong>cell</strong>s.


• <strong>The</strong>refore, drugs that can b<strong>in</strong>d iron (iron chelators)<br />

represent a novel chemotherapeutic treatment avenue.


Vehicle Control<br />

(15% Propylene<br />

glycol <strong>in</strong> Sal<strong>in</strong>e)<br />

Dp44mT<br />

(0.4 mg/kg)<br />

SK-Mel-28 Tumour Implants after 7 weeks <strong>of</strong> Treatment – IV <strong>in</strong>jection once a day


• This project will assess the anti‐cancer activity and<br />

the mechanisms <strong>of</strong> action <strong>of</strong> novel iron chelators<br />

developed <strong>in</strong> our group.<br />

‐ Structure‐Activity Relationships<br />

‐ Pharmacology<br />

‐ Routes <strong>of</strong> <strong>Cell</strong>ular Uptake<br />

‐ Selectivity <strong>in</strong> Target<strong>in</strong>g Cancer


Ascorbate<br />

Iron Metabolism & Chelation (IMC) Program<br />

Department <strong>of</strong> Pathology<br />

<strong>The</strong> <strong>University</strong> <strong>of</strong> <strong>Sydney</strong>


Iron (Fe) is an essential metal for all mammalian<br />

<strong>cell</strong>s<br />

Fe is required for oxygen transport, mitochondrial<br />

respiration, DNA synthesis, etc.<br />

Although necessary, Fe is potentially toxic to <strong>cell</strong>s<br />

and must be carefully delivered<br />

Almost all Fe <strong>in</strong> plasma is bound to the serum Fe<br />

transport prote<strong>in</strong>, transferr<strong>in</strong> (Tf)<br />

<strong>The</strong> Tf‐to‐<strong>cell</strong> cycle is the major Fe uptake route<br />

used by most <strong>cell</strong>s, and <strong>in</strong> particular dur<strong>in</strong>g red<br />

blood <strong>cell</strong> production<br />

<strong>The</strong> follow<strong>in</strong>g honours project exam<strong>in</strong>es some<br />

basic unanswered questions <strong>in</strong> <strong>cell</strong>ular Fe biology


Andrews N C Blood 2008;112:219-230


Transferr<strong>in</strong>-Fe<br />

complex<br />

<strong>Cell</strong><br />

Transferr<strong>in</strong><br />

without Fe<br />

•<strong>Cell</strong>s <strong>in</strong> the body take up<br />

almost all their iron (Fe)<br />

from the transferr<strong>in</strong> (Tf)-to<strong>cell</strong><br />

cycle<br />

•Vitam<strong>in</strong> C (ascorbate)<br />

stimulates this process by<br />

an unknown mechanism


•<strong>Cell</strong>s <strong>in</strong> the body take up<br />

almost all their iron (Fe)<br />

from the transferr<strong>in</strong> (Tf)-to<strong>cell</strong><br />

cycle<br />

•Vitam<strong>in</strong> C (ascorbate)<br />

stimulates this process by<br />

an unknown mechanism<br />

•<strong>The</strong> Tf-to-<strong>cell</strong> cycle can<br />

be regulated by hypoxia<strong>in</strong>ducible<br />

factors (HIFs)<br />

•Your project can<br />

exam<strong>in</strong>e how ascorbate<br />

regulates <strong>cell</strong> Fe uptake<br />

via HIFs.


Relevance to understand<strong>in</strong>g basic <strong>cell</strong>ular<br />

and systemic iron metabolism, which is<br />

central to a wide range <strong>of</strong> disease types.<br />

Relevance to cancer <strong>cell</strong> metabolism as the<br />

metabolic phenotype <strong>in</strong> cancer <strong>cell</strong>s is<br />

frequently associated with <strong>in</strong>creased<br />

expression <strong>of</strong> HIF1α and decreased <strong>cell</strong>ular<br />

ascorbate


Please contact either:<br />

Darius Lane<br />

darius.lane@sydney.edu.au<br />

Des Richardson<br />

d.richardson@sydney.edu.au


N<br />

Iro on<br />

N<br />

N NH<br />

DpC<br />

S<br />

N<br />

N (CH ) 2 5<br />

N<br />

HO O<br />

Me etaboolismm<br />

aand<br />

d<br />

Che C elat tion n PPro<br />

ograamm<br />

HHO<br />

ONO OUR RS S PRROOJE<br />

ECTTS<br />

Hea aded bby:<br />

Pr<strong>of</strong>es P ssor Des D Riicharddson<br />

H 2<br />

O<br />

H O<br />

N<br />

(CH2 ) 5<br />

N<br />

HO O<br />

DFO<br />

H<br />

N<br />

(CH ) 2 5<br />

N<br />

HO O


Iron is essential for f life and gr rowth. While it is well kno own that ironn<br />

deficiency ccan<br />

lead to annaemia<br />

it is geenerally<br />

not<br />

appreeciated<br />

that iron i is critica al for the grow wth <strong>of</strong> all <strong>cell</strong> ls, particularlly<br />

cancer <strong>cell</strong> lls. <strong>The</strong> Iron MMetabolism<br />

aand<br />

Chellation<br />

Progra am is concern ned with unde erstand<strong>in</strong>g the<br />

basic proceesses<br />

<strong>of</strong> how t<strong>tumour</strong><br />

<strong>cell</strong>s utilise and trransport<br />

iron.<br />

This knowledge will w lead to the<br />

developmen nt <strong>of</strong> therapie es that can seelectively<br />

starrve<br />

<strong>tumour</strong> ceells<br />

<strong>of</strong> iron annd<br />

<strong>in</strong>hibit<br />

theirr<br />

growth. In addition, a we are a study<strong>in</strong>g the t mechanis sms <strong>in</strong>volved <strong>in</strong> iron load<strong>in</strong>ng<br />

<strong>in</strong> the <strong>in</strong>hherited<br />

diseasees<br />

β-<br />

thalaassaemia<br />

and d Friedreich's s ataxia.<br />

1. Deevelopment<br />

t <strong>of</strong> New Iro on Chelators s as Novel Drugs D Aga<strong>in</strong>nst<br />

Cancer<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Davvid<br />

Lovejoy, Dr. Danuta KKal<strong>in</strong>owski.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> techn niques that are e implemented<br />

<strong>in</strong> chemistrry,<br />

biochhemistry,<br />

phy ysiology, mole ecular biology y and pharma acology to dessign<br />

and asseess<br />

the activityy<br />

<strong>of</strong> noovel<br />

drugs for r the treatmen nt <strong>of</strong> cancer. Your Y project will w be multi- faceted and wwill<br />

<strong>in</strong>volve<br />

groww<strong>in</strong>g<br />

human tu umour <strong>cell</strong>s <strong>in</strong> n tissue cultur re and assessi <strong>in</strong>g the effectss<br />

<strong>of</strong> chelators on gene<br />

expreession.<br />

This will w be done us<strong>in</strong>g u Western n analysis, RT T-PCR and mmicroarray<br />

anaalysis.<br />

<strong>The</strong> labb<br />

has cconsiderable<br />

experience e <strong>in</strong> these cutt<strong>in</strong>g g-edge techniq ques and you will be taughht<br />

the<br />

<strong>in</strong>triccacies<br />

<strong>of</strong> their r use. Feel fre ee to contact Dr. D David Lov vejoy (david. lovejoy@syddney.edu.au)<br />

and DDr.<br />

Danuta Kal<strong>in</strong>owski<br />

(da anutak@med. .usyd.edu.au) to have a chaat<br />

about whetther<br />

the projecct<br />

matches yoour<br />

<strong>in</strong>terests.<br />

2. Tra ansport <strong>of</strong> nitric n oxide <strong>in</strong> <strong>cell</strong>s andd<br />

its <strong>in</strong>teracttion<br />

with iroon<br />

conta a<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s<br />

<strong>in</strong> tumoour<br />

<strong>cell</strong>s<br />

Prima ary superviso or: Pr<strong>of</strong>. Des Richardson.<br />

Nitric oxide (NO) functions f as a natural iron chelator and is <strong>of</strong>ten secreeted<br />

by<br />

macro ophages to des stroy cancer c<strong>cell</strong>s.<br />

This prooject<br />

<strong>in</strong>volvess<br />

exam<strong>in</strong><strong>in</strong>g tthe<br />

method by y<br />

which NO is able to o <strong>in</strong>duce the ssecretion<br />

<strong>of</strong> irron<br />

from canccer<br />

<strong>cell</strong>s. Thiss<br />

project will<br />

use a comb<strong>in</strong>ation c <strong>of</strong> o techniquess<br />

that are usedd<br />

<strong>in</strong> biochemistry,<br />

physioloogy,<br />

<strong>cell</strong><br />

biolog gy, molecular biology and ppharmacologgy.<br />

Feel free too<br />

contact Pr<strong>of</strong>.<br />

Des<br />

Richar rdson (d.richa ardson@med. .usyd.edu.au) ) to have a chat<br />

about whetther<br />

the<br />

projec ct matches you ur <strong>in</strong>terests.<br />

3. Thhe<br />

Role <strong>of</strong> Iron I <strong>in</strong> the Pathogenesi<br />

P is <strong>of</strong> the Cri ippl<strong>in</strong>g Neurrodegeneraative<br />

Diseasee,<br />

Friedreichh's<br />

Ataxia<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Micchael<br />

Huang, Dr. Yohan SSuryo<br />

Rahmannto.<br />

Frieddreich’s<br />

Ataxi ia is a neurod degenerative disease d cause by the accummulation<br />

<strong>of</strong> iroon<br />

<strong>in</strong> the enerrgy<br />

produuc<strong>in</strong>g<br />

macrop phages. This condition c <strong>of</strong>te en results <strong>in</strong> cardiac c hyperttrophy,<br />

muscuular<br />

atrophy aand<br />

earlyy<br />

death. <strong>The</strong> current c project t will exam<strong>in</strong> ne both the pat thophysiologgy<br />

<strong>of</strong> Friedreicch’s<br />

ataxia annd<br />

a<br />

potenntial<br />

new ther rapy that <strong>in</strong>vo olves iron chelation.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> techn niques that are e used <strong>in</strong> biocchemistry,<br />

phyysiology,<br />

pharmmacology<br />

and d molecular biology. b Feel free f to contac ct Dr. Michaeel<br />

Huang<br />

(mihuuang@med.u<br />

usyd.edu.au) to t have a chat t about wheth her the projectt<br />

matches youur<br />

<strong>in</strong>terests.<br />

4. MMolecular<br />

Re egulation <strong>of</strong> f eIF3a <strong>in</strong> Cancer C <strong>Cell</strong> Motility M andd<br />

Invasion<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Fedderica<br />

Saletta.<br />

eIF3a is the largest su ubunit <strong>of</strong> the eeukaryotic<br />

<strong>in</strong>iitiation<br />

factorr<br />

3 (eIF3) andd<br />

plays a role<br />

as a regu ulator <strong>of</strong> a sub bset <strong>of</strong> mRNAAs<br />

encod<strong>in</strong>g pprote<strong>in</strong>s<br />

<strong>in</strong>vollved<br />

<strong>in</strong> the <strong>cell</strong><br />

cycle, <strong>cell</strong><br />

prolifera ation and <strong>cell</strong> mobility. Thiis<br />

project aimms<br />

to identify new targets o<strong>of</strong><br />

eIF3a<br />

<strong>in</strong>volved d <strong>in</strong> enhanced cancer <strong>cell</strong> mmobility<br />

and i<strong>in</strong>vasion.<br />

A vaariety<br />

<strong>of</strong> techhniques<br />

will<br />

be used <strong>in</strong>clud<strong>in</strong>g: i cel ll culture, revverse-transcripptase-PCR<br />

annd<br />

quantitative<br />

PCR,<br />

Western blott<strong>in</strong>g, imm mun<strong>of</strong>luorescent<br />

sta<strong>in</strong><strong>in</strong>g, ggene<br />

knockdoown,<br />

drug treeatment<br />

etc.<br />

This study is impo ortant for und derstand<strong>in</strong>g th he pathologica al role <strong>of</strong> eIF33a<br />

<strong>in</strong> the exprression<br />

<strong>of</strong> mettastasis<br />

regulaators<br />

and for<br />

devellop<strong>in</strong>g<br />

novel therapeutics target<strong>in</strong>g t eIF3 3a and its dow wnstream signnal<strong>in</strong>g.<br />

Our sttudies<br />

are cruucial<br />

for deepeen<strong>in</strong>g<br />

our<br />

knowwledge<br />

about cancer <strong>cell</strong> bi iology and de evelop<strong>in</strong>g exp ploitable treatmments<br />

for canncer.<br />

Feel freee<br />

to contact DDr.<br />

Federica<br />

Salettta<br />

(fsaletta@med.usyd.edu<br />

u.au) to have a chat about whether w the pproject<br />

matchhes<br />

your <strong>in</strong>tereests.


5. Innvestigat<strong>in</strong>g<br />

g <strong>cell</strong>ular res sponse to iron-depletion<br />

by exam<strong>in</strong>n<strong>in</strong>g<br />

the miitogen-activated<br />

prote<strong>in</strong>n<br />

k<strong>in</strong>ases<br />

(MAAPK)<br />

signall l<strong>in</strong>g pathwa ay<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Yu Yu.<br />

Iron-depletion<br />

ca an cause mmultiple<br />

effeccts<br />

<strong>in</strong>clud<strong>in</strong>gg<br />

<strong>in</strong>hibition <strong>of</strong> the iron n-<br />

IRON DEPLETION<br />

conta<strong>in</strong><strong>in</strong>g<br />

enzym me, ribonuclleotide<br />

reduuctase<br />

whichh<br />

is importaant<br />

for DNA A<br />

TTrx<br />

Trx<br />

synth hesis, <strong>cell</strong> cyc cle arrest andd<br />

apoptosis. RRecently,<br />

the rrole<br />

<strong>of</strong> signall<strong>in</strong>g<br />

pathways<br />

AASK1<br />

ASKK1-<br />

P<br />

<strong>in</strong> th he regulation <strong>of</strong> <strong>cell</strong>ular iroon<br />

metabolismm<br />

is becom<strong>in</strong>ng<br />

<strong>in</strong>creas<strong>in</strong>glly<br />

recognized d.<br />

<strong>The</strong> aim <strong>of</strong> this pr roject is to eluucidate<br />

the mmolecular<br />

signnall<strong>in</strong>g<br />

pathwaay<br />

<strong>in</strong>volved <strong>in</strong> n<br />

MKK4/7<br />

MKK3/6<br />

iron-depletion<br />

by y exam<strong>in</strong><strong>in</strong>gg<br />

the mitogeen-activated<br />

prote<strong>in</strong> k<strong>in</strong>aases<br />

(MAPK K)<br />

DUSPP<br />

1<br />

DDUSP<br />

1 signa all<strong>in</strong>g pathwa ay which funcctions<br />

to l<strong>in</strong>k extra<strong>cell</strong>ularr<br />

signals to regulate<br />

diverse<br />

DUSPP<br />

10<br />

DUSPP<br />

16<br />

JNK- P<br />

p38- P DDUSP<br />

10<br />

DDUSP<br />

16 <strong>cell</strong>u ular processes.<br />

<strong>The</strong> projeect<br />

will <strong>in</strong>vollve<br />

multiple techniques i<strong>in</strong>clud<strong>in</strong>g<br />

cel ll<br />

cultu ures, RNA tr ransfection, rreverse-transccriptional-PCCR,<br />

Western blott<strong>in</strong>g, cel ll<br />

p53- P<br />

ATF2- P proli iferation assa ays, etc. <strong>The</strong> rresults<br />

will bee<br />

vital for ouur<br />

understandi<strong>in</strong>g<br />

<strong>of</strong> <strong>cell</strong>ula ar<br />

signa all<strong>in</strong>g aspect ts <strong>of</strong> iron-deficiency<br />

and d the molecuular<br />

pharmacoology<br />

<strong>of</strong> iron n<br />

APOPTOSIS<br />

chela ation. Contac ct Dr. Yu Yuu<br />

(yuyu@medd.usyd.edu.auu)<br />

to have a cchat<br />

about the<br />

proje ect.<br />

HS<br />

HS<br />

S<br />

S<br />

6. Cancer<br />

<strong>The</strong>ra apeutics and<br />

Target<strong>in</strong>g g (Multi-Dru ug Resistannce)<br />

Primmary<br />

supervis sor: Dr. Patri ic Jansson; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson.<br />

Multtidrug<br />

resistan nce (MDR) is a phenomeno on <strong>in</strong> which cancer c <strong>cell</strong>s arre<br />

resistant too<br />

the cytotoxicc<br />

effects <strong>of</strong> vaarious<br />

chemmotherapeutic<br />

agents. One major mechan nism by whic ch this occurss<br />

is through thhe<br />

over--expression<br />

<strong>of</strong><br />

ATP-dependent<br />

drug effl flux transporte ers such as thhe<br />

P-glycoprotte<strong>in</strong><br />

(Pgp) ) and multidrug<br />

resistance-associated<br />

pr rote<strong>in</strong> (MRP) ). <strong>The</strong> hypoxiia-<strong>in</strong>ducible<br />

fa factor<br />

(HIF)-1<br />

is a maste er transcriptio onal activator <strong>of</strong> oxygen-re egulated geness<br />

and HIF-1 iis<br />

consttitutively<br />

up regulated r <strong>in</strong> several<br />

tumou ur types under r hypoxic connditions<br />

and HHIF<br />

mighht<br />

thus be imp plicated <strong>in</strong> tum mour therapy resistance.<br />

This Honours proj ject will <strong>in</strong>vestigate<br />

wheth her iron chelat tion, HIF-1 acctivation,<br />

hyppoxia<br />

and PPgp<br />

is important<br />

for how novel n iron che elators overco ome drug resisstance.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> cutt<strong>in</strong> ng-edge techn niques <strong>in</strong>cludi<strong>in</strong>g:<br />

<strong>cell</strong> cultuure,<br />

westeern<br />

blott<strong>in</strong>g, siRNA, s cytoto oxicity detect tion and fluor rescent/confoccal<br />

microscoppy<br />

etc. PPlease<br />

contact t Dr. Patric Ja ansson (patric c.jansson@sy ydney.edu.au) to discuss thhis<br />

projeect.<br />

7. Thhe<br />

Role <strong>of</strong> Melanotrans<br />

M sferr<strong>in</strong> <strong>in</strong> Melanoma M Growth G and Metastasis<br />

Primmary<br />

supervis sor: Dr. Yoha an Suryo Rah hmanto; Co-su upervisors: PPr<strong>of</strong>.<br />

Des Ricchardson,<br />

Dr. Yu Yu, Dr. ZZakl<strong>in</strong>a<br />

Kovaacevic.<br />

Melaanoma<br />

is the fourth f most co ommon cance er <strong>in</strong> NSW an nd Australia aand<br />

new<br />

Iron homeostasis /<br />

metabolism<br />

treatmments<br />

are urg gently required.<br />

Melanotran nsferr<strong>in</strong> (MTf f) is a molecuule<br />

that is<br />

highlly<br />

expressed <strong>in</strong> i melanoma (for review see<br />

Oncogene 26:6113-24) . <strong>The</strong><br />

Epithelial septal<br />

Angiogenesis<br />

MTf<br />

junction<br />

aim o<strong>of</strong><br />

this project t is to exam<strong>in</strong> ne the hypothe esis that MTf f plays roles <strong>in</strong>n<br />

<strong>cell</strong><br />

cyclee<br />

<strong>progression</strong>, , growth and melanoma m me etastasis. This<br />

is importantt<br />

as<br />

<strong>Cell</strong> prroliferation,<br />

migration and<br />

<strong>tumour</strong>igenesis<br />

melaanoma<br />

<strong>in</strong>ciden nce is <strong>in</strong>creasi <strong>in</strong>g worldwid de and metasta atic melanomma<br />

is<br />

almoost<br />

completely y resistant to every e known therapy. Laboratory<br />

technniques<br />

<strong>in</strong>volveed:<br />

animal haandl<strong>in</strong>g,<br />

mammmalian<br />

<strong>cell</strong><br />

cultuure,<br />

molecular r clon<strong>in</strong>g, <strong>cell</strong> l transfection, , RNA and pr rote<strong>in</strong> extractiion,<br />

RT-PCR,<br />

Western bloott<strong>in</strong>g,<br />

<strong>cell</strong> bioology<br />

assay<br />

and aanalysis,<br />

flow w cytometry an nd immunohi istochemistry.<br />

Contact Dr. Yohan Suryoo<br />

Rahmanto<br />

(yohaan.suryorahm<br />

manto@sydney y.edu.au) to have h a chat ab bout this projeect.<br />

8. MMolecular<br />

regulation<br />

<strong>of</strong> ERp29 <strong>in</strong> epithelial<br />

can ncer <strong>cell</strong> plaasticity<br />

Primmary<br />

supervis sor: Dr. Daoh hai Zhang; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson<br />

Endooplasmic<br />

retic culum prote<strong>in</strong> n 29 (ERp29) is a novel mo olecule that <strong>in</strong>nduces<br />

epithelial-mesenchyymal<br />

reverse transition and d<br />

epithhelial<br />

<strong>cell</strong> mor rphogenesis. This T project aims a to understand<br />

the funcctions<br />

and moolecular<br />

mechhanisms<br />

<strong>of</strong> ERRp29<br />

<strong>in</strong><br />

estabblish<strong>in</strong>g<br />

epithe elial architect ture <strong>in</strong> cancer r <strong>cell</strong>s. A variety<br />

<strong>of</strong> techniqques<br />

that will be used <strong>in</strong>cluude<br />

<strong>cell</strong> cultuures,<br />

3-<br />

dimeensional<br />

<strong>cell</strong> system, s revers se-transcriptio onal-PCR, Western W blott<strong>in</strong>ng,<br />

immun<strong>of</strong>luuorescent<br />

stai<strong>in</strong><strong>in</strong>g,<br />

prote<strong>in</strong>n-prote<strong>in</strong><br />

<strong>in</strong>teraaction,<br />

gene knockdown, k etc e . This stud dy is importan nt for understaand<strong>in</strong>g<br />

the paathological<br />

fuunction<br />

<strong>of</strong> ERpp29<br />

as a<br />

noveel<br />

<strong>tumour</strong> supp pressive mole ecule and for develop<strong>in</strong>g novel n therapeuutics<br />

target<strong>in</strong>gg<br />

ERp29 and its downstreaam<br />

signal<strong>in</strong>g.<br />

1


9. Diissect<strong>in</strong>g<br />

the e role <strong>of</strong> NDR RG-1 <strong>in</strong> regu ulat<strong>in</strong>g endo oplasmic retiiculum<br />

stress<br />

and cancerr<br />

<strong>cell</strong> survivaal<br />

Primmary<br />

supervis sor: Dr. Daoh hai Zhang; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson.<br />

N-myyc<br />

downstrea am regulated gene g 1 (NDRG G1) is a meta astasis suppressor<br />

that is<br />

<strong>in</strong>vollved<br />

<strong>in</strong> <strong>cell</strong> di ifferentiation, , carc<strong>in</strong>ogenesis,<br />

survival, and metastasis.<br />

It is sensittive<br />

to thee<br />

redox status s <strong>of</strong> the <strong>cell</strong>s and a the <strong>in</strong>trac <strong>cell</strong>ular calciu um concentrattion.<br />

Disruption<br />

<strong>of</strong> caalcium<br />

homeo ostasis with<strong>in</strong> endoplasmic reticulum (E ER) system is associated wiith<br />

the EER<br />

stress response<br />

that repr resents an ada aptive mechan nism supporti t<strong>in</strong>g survival aand<br />

chemmoresistance<br />

<strong>of</strong> o tumor <strong>cell</strong>s s. This project t aims to disse ect how NDRRG1<br />

expressioon<br />

moduulates<br />

ER stre ess and to und derstand the biological b con nsequences. TThis<br />

study willl<br />

use<br />

<strong>cell</strong> cculture,<br />

immu unoblott<strong>in</strong>g, gene g silenc<strong>in</strong>g g, <strong>cell</strong>-based functional f anaalysis,<br />

phospphatase<br />

assay y, drug treatm ment and <strong>cell</strong> apoptosis, a etc.<br />

Feel free to contact Dr.<br />

Daohhai<br />

Zhang (da aohai.zhang@ @sydney.edu.a au) to have a chat c about thiis<br />

project.<br />

10. HHow<br />

does vi itam<strong>in</strong> C (as scorbate) re egulate iron n uptake by <strong>cell</strong>s? <strong>The</strong> rrole<br />

<strong>of</strong> HIFss.<br />

Primmary<br />

supervis sor: Dr. Dariu us Lane; Co- supervisors: Pr<strong>of</strong>. Des Riichardson.<br />

Iron (Fe) is essen ntial for life and it has long l been re ecognised thaat<br />

vitam<strong>in</strong> C (ascorbate)- deficiency caauses<br />

anemia a.<br />

Normmally,<br />

circulat<strong>in</strong>g<br />

Fe is bou und to the Fe e-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>,<br />

transferrr<strong>in</strong><br />

(Tf), withh<br />

Tf-Fe uptakke<br />

be<strong>in</strong>g the mmajor<br />

route <strong>of</strong> o<br />

Fe uuptake<br />

by ma ammalian <strong>cell</strong>s.<br />

<strong>Cell</strong>ular hypoxia h (low w oxygen tenssion)<br />

stimulaates<br />

Tf-Fe upptake<br />

by up-rregulat<strong>in</strong>g<br />

the<br />

expreession<br />

<strong>of</strong> prote<strong>in</strong>s<br />

<strong>in</strong>volve ed <strong>in</strong> the classical<br />

Tf-to-ce ell cycle for FFe<br />

delivery ( (e.g., the Tf rreceptor;<br />

TfRR1).<br />

We have<br />

recenntly<br />

identified d that ascorb bate, which is s abundant <strong>in</strong> n vivo but typpically<br />

absent nt <strong>in</strong> standardd<br />

<strong>cell</strong> culture,<br />

dramatically y<br />

stimuulates<br />

Fe upta ake from Tf-F Fe, although th he molecular mechanism iis<br />

unknown.<br />

<strong>The</strong> aim <strong>of</strong> this project p is to determ<strong>in</strong>e d ho ow ascorbate <strong>in</strong>teracts i withh<br />

HIFs to reggulate<br />

<strong>cell</strong>ularr<br />

Fe uptake. TThis<br />

will have<br />

impoortant<br />

ramifica ations for the treatment <strong>of</strong> f diseases rang g<strong>in</strong>g from anaaemia<br />

to canccer.<br />

Feel free to contact Drr.<br />

Darius Lane<br />

(dariuus.lane@sydn<br />

ney.edu.au) to o have a chat about whethe er the project matches youur<br />

<strong>in</strong>terests.<br />

11. HHow<br />

do astr rocytes proc cess iron? Role R <strong>of</strong> GPI-l<strong>in</strong>ked<br />

Cp.<br />

Primmary<br />

supervis sor: Dr. Dariu us Lane; Cosupervisors: Pr<strong>of</strong>. Des Riichardson.<br />

<strong>The</strong> bbra<strong>in</strong><br />

has a high<br />

requirement<br />

for iron (Fe), ( which is s essential forr<br />

life, yet the mechanisms by which Fee<br />

enters and is<br />

proceessed<br />

by the bra<strong>in</strong> b rema<strong>in</strong>s s a mystery. With<strong>in</strong> W the bra a<strong>in</strong>, astrocytes<br />

(‘star-shapeed’<br />

glial <strong>cell</strong>s that are at leeast<br />

equivalen nt<br />

<strong>in</strong> nuumber<br />

to neur rones) are tho ought to be important i <strong>in</strong> process<strong>in</strong>g p annd<br />

re-distribuut<strong>in</strong>g<br />

Fe <strong>in</strong> thhe<br />

bra<strong>in</strong>. Astrrocytes<br />

extend d<br />

long processes that<br />

ensheathe the bra<strong>in</strong> cap pillaries and help to form m the BBB. Inntrigu<strong>in</strong>gly,<br />

thhe<br />

ends <strong>of</strong> thhese<br />

processes<br />

(i.e., the ‘end-feet t’) express a special s form <strong>of</strong> o the Fe oxid dis<strong>in</strong>g enzymme,<br />

ceruloplasmm<strong>in</strong><br />

(Cp). Thhis<br />

prote<strong>in</strong> is ttethered<br />

to the<br />

exterrnal<br />

surface <strong>of</strong> o the plasma membrane by b a glycopho osphatidyl<strong>in</strong>ossitol<br />

(GPI) annchor.<br />

<strong>The</strong> roole<br />

<strong>of</strong> astrocyyte<br />

GPI-l<strong>in</strong>ked d<br />

Cp iss<br />

unknown.<br />

<strong>The</strong> aim <strong>of</strong> this project p is to determ<strong>in</strong>e the<br />

role <strong>of</strong> GPI I-l<strong>in</strong>ked Cp <strong>in</strong>n<br />

astrocytic FFe<br />

process<strong>in</strong>gg.<br />

This will hhave<br />

importan nt<br />

ramiffications<br />

for the t understan nd<strong>in</strong>g and trea atment <strong>of</strong> neu urodegeneratiive<br />

diseases tthat<br />

are assocciated<br />

with abbnormal<br />

bra<strong>in</strong> n<br />

Fe metabolism, such as Alzheimer’s A<br />

and Park<strong>in</strong> nson’s diseaases.<br />

Feel free to coontact<br />

Dr. Darius Lane<br />

(dariuus.lane@sydn<br />

ney.edu.au) to o have a chat about whethe er the project matches youur<br />

<strong>in</strong>terests.<br />

12. EExam<strong>in</strong><strong>in</strong>g<br />

the t Molecul lar Mechanisms<br />

Beh<strong>in</strong>d d the Anti-TTumour<br />

Acttivity<br />

<strong>of</strong> NDDRG1<br />

<strong>in</strong> Panncreatic<br />

Cancer<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isor: Dr. Zakll<strong>in</strong>a<br />

Kovacevvic.<br />

Pancreatic<br />

cancer is a highly ag ggressive dise ease with a po oor response tto<br />

current<br />

theraapies.<br />

<strong>The</strong> metastasis<br />

suppr ressor N-myc c down-stream m regulated geene<br />

1 (NDRGG1)<br />

has bbeen<br />

shown to o effectively <strong>in</strong>hibit i pancre eatic cancer by y reduc<strong>in</strong>g prrimary<br />

tumouur<br />

growwth,<br />

metastasis s and angioge enesis.<br />

This project will <strong>in</strong>volve<br />

exami <strong>in</strong><strong>in</strong>g the mol lecular functio ons <strong>of</strong> NDRGG1<br />

to elucidatte<br />

the<br />

mechhanisms<br />

that are a <strong>in</strong>volved <strong>in</strong> i its anti-tum mour activity. Moreover, thhe<br />

project will<br />

also<br />

examm<strong>in</strong>e<br />

a novel class c <strong>of</strong> anti-cancer<br />

agents that are able to t markedly uup-regulate<br />

NDRRG1<br />

expressio on <strong>in</strong> cancer and a may be a potential new w therapeutic strategy for<br />

pancrreatic<br />

cancer treatment.<br />

A rannge<br />

<strong>of</strong> experim mental techni iques <strong>in</strong>clud<strong>in</strong> ng tissue cultu ure, western bblot<br />

analysis,<br />

immuunohistochem<br />

mistry and dru ug treatments will be performed.<br />

Feel frree<br />

to contact Dr.<br />

Zakli<strong>in</strong>a<br />

Kovacevic<br />

(zakl<strong>in</strong>a.kov vacevic@syd dney.edu.au) to t have a chatt<br />

about whethher<br />

the<br />

projeect<br />

matches yo our <strong>in</strong>terests.


2013 Honours Projects<br />

SYDNEY MEDICAL SCHOOL<br />

Neuropathology<br />

Dr Greg Sutherland and Pr<strong>of</strong> Jillian Kril<br />

Discipl<strong>in</strong>e <strong>of</strong> Pathology


Alcohol-related bra<strong>in</strong> damage<br />

and neurogenesis<br />

Sutherland et al. Submitted to Exp Neurol<br />

Fluorescent<br />

microscopy<br />

ARBD and Hepatic Encephalopathy<br />

Human bra<strong>in</strong> transcriptome<br />

2


Dementia<br />

Alzheimer's disease Frontotemporal dementia<br />

Sutherland and Kril. Ch 16, Neuroscience: Deal<strong>in</strong>g with Frontiers<br />

Masters CL, Kril JJ et al. Pathology 2011;43:93-102.<br />

Neuroglob<strong>in</strong>, PI3K/Akt<br />

signal<strong>in</strong>g and Alzheimer's<br />

disease<br />

3


2013 Honours Year Project:<br />

<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Dermatology Research Labs, Blackburn Bldg<br />

Pr<strong>in</strong>cipal supervisor: Assoc. Pr<strong>of</strong>. Guy Lyons<br />

guy.lyons@sydney.edu.au<br />

Associate supervisors: Dr Cathy Payne<br />

Dr Vani Raviraj<br />

Pr<strong>of</strong>. Gary Halliday


<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

• Mutations cause two basic properties <strong>of</strong> cancer:<br />

• Uncontrolled proliferation<br />

• Spread from the site <strong>of</strong> orig<strong>in</strong><br />

• Tumours <strong>of</strong>ten conta<strong>in</strong> <strong>cell</strong>s that have different mutations<br />

i.e. they are dist<strong>in</strong>ct clones<br />

• This genetic diversity provides the opportunity for<br />

<strong><strong>in</strong>teractions</strong> to occur between clones<br />

• Clonal <strong><strong>in</strong>teractions</strong> might make <strong>tumour</strong>s more malignant<br />

BUT DO THEY?<br />

Aim: Create clones with dist<strong>in</strong>ct oncogenes and<br />

test their malignant behaviour alone and together


<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Techniques used:<br />

1. Genetic eng<strong>in</strong>eer<strong>in</strong>g<br />

2. Genetic modification <strong>of</strong> cultured mammalian <strong>cell</strong>s<br />

3. Analysis <strong>of</strong> gene expression immunologically<br />

4. Fluorescence microscopy<br />

5. Small animal handl<strong>in</strong>g and bioimag<strong>in</strong>g


Eng<strong>in</strong>eer gene expression vectors<br />

Use molecular biological methods to make plasmid and viral<br />

vectors suitable for express<strong>in</strong>g genes <strong>in</strong> mammalian <strong>cell</strong>s


Make genetically modified human <strong>cell</strong> l<strong>in</strong>es<br />

Transfect the start<strong>in</strong>g non-malignant clone<br />

with candidate oncogenes<br />

Gene 1<br />

+<br />

RFP<br />

Clone 1 Clone 2<br />

Clones 1 and 2<br />

together<br />

Proliferation * Motility * Invasion * Tumour Growth


Live <strong>cell</strong> imag<strong>in</strong>g microscopy to measure<br />

<strong>cell</strong> motility


Live animal imag<strong>in</strong>g to measure<br />

<strong>tumour</strong> growth<br />

Paul Sou


2013 Honours Year Project:<br />

<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Dermatology Research Labs, Blackburn Bldg<br />

Pr<strong>in</strong>cipal supervisor: Assoc. Pr<strong>of</strong>. Guy Lyons<br />

guy.lyons@sydney.edu.au<br />

Associate supervisors: Dr Cathy Payne<br />

Dr Vani Raviraj<br />

Pr<strong>of</strong>. Gary Halliday


Redef<strong>in</strong><strong>in</strong>g the role <strong>of</strong> monocytes/macrophages <strong>in</strong> vascular disease<br />

Are all macrophages <strong>in</strong> the plaque bad?<br />

Th<strong>in</strong> cap<br />

(mac MMPs)<br />

large<br />

necrotic core<br />

(mac foam <strong>cell</strong>s)<br />

the<br />

Heather Medbury, Vascular Biology Research Centre,<br />

Surgery, Westmead Hospital, Westmead<br />

Heart attack<br />

stroke


Classical activation M1 Alternatively activated M2( a, b, c...)<br />

CD86<br />

CD64 CD163<br />

Plaque <strong>in</strong>stability?<br />

M1:CD86 M2:CD163<br />

CD206 (MR)<br />

Athero‐protective?<br />

Macrophage marker, procollagen I, co‐expression mac marker & procollagen I, nuclei


Redef<strong>in</strong><strong>in</strong>g monocyte/macrophage role by address<strong>in</strong>g:<br />

SMC<br />

1. Site <strong>of</strong> transformation: (blood or plaque)<br />

MMP’s<br />

4. Fate <strong>of</strong> the <strong>cell</strong>:<br />

Proliferation, death, migration<br />

3. Function<br />

‐Foam <strong>cell</strong><br />

‐MMPs<br />

‐Collagen<br />

production<br />

2. Pathway <strong>of</strong> differentiation (<strong>in</strong>clud<strong>in</strong>g plasticity)<br />

EC


Dr Hilda Pickett<br />

hpickett@cmri.org.au<br />

Cancer Research Unit<br />

http://www.cmri.org.au


Telomere biology group<br />

Cancer <strong>cell</strong>s become<br />

immortal by activat<strong>in</strong>g<br />

the enzyme telomerase<br />

to replenish telomere<br />

loss dur<strong>in</strong>g <strong>cell</strong> division


Telomere ma<strong>in</strong>tenance mechanisms <strong>in</strong> cancer<br />

Projects available:<br />

1. Molecular changes associated with the alternative lengthen<strong>in</strong>g <strong>of</strong><br />

telomeres (ALT) mechanism <strong>of</strong> telomere ma<strong>in</strong>tenance<br />

2. <strong>The</strong> role <strong>of</strong> telomere rapid deletion <strong>in</strong> <strong>cell</strong> proliferation<br />

3. Functional analysis <strong>of</strong> s<strong>in</strong>gle nucleotide polymorphisms with<strong>in</strong> the TERT<br />

locus<br />

4. <strong>The</strong> role <strong>of</strong> non-cod<strong>in</strong>g RNAs <strong>in</strong> telomere ma<strong>in</strong>tenance mechanisms<br />

hpickett@cmri.org.au


Def<strong>in</strong><strong>in</strong>g the antigen presentation capacity <strong>of</strong> bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Primary supervisor: Dr Julie Wheway (julie.wheway@sydney.edu.au)<br />

Co‐supervisor: Pr<strong>of</strong> Georges Grau (georges.grau@sydney.edu.au)<br />

Techniques used will <strong>in</strong>clude <strong>cell</strong> culture, tripartite co‐culture assays, flow cytometry and fluorescence<br />

microscopy.<br />

pRBC<br />

“Pr<strong>of</strong>essional”<br />

APC<br />

Bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Immature<br />

T <strong>cell</strong><br />

?<br />

Activated<br />

T <strong>cell</strong>


Exam<strong>in</strong><strong>in</strong>g an immunomodulatory role for endothelial microparticles<br />

Primary supervisor: Dr Julie Wheway (julie.wheway@sydney.edu.au)<br />

Co‐supervisor: Pr<strong>of</strong> Georges Grau (georges.grau@sydney.edu.au)<br />

Techniques used will <strong>in</strong>clude <strong>cell</strong> culture, flow cytometry and fluorescence microscopy and western<br />

blott<strong>in</strong>g.<br />

pRBC<br />

Inflammation<br />

Bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Membrane surface<br />

shedd<strong>in</strong>g<br />

eMPs<br />

?<br />

Immature<br />

T <strong>cell</strong><br />

Activated<br />

T <strong>cell</strong>


Nature Genetics <strong>Cell</strong><br />

American Journal <strong>of</strong> Human Genetics<br />

Human Molecular Genetics<br />

Sports Illustrated 2010<br />

A gene for speed: the<br />

role <strong>of</strong> α-act<strong>in</strong><strong>in</strong>-3 <strong>in</strong> the<br />

regulation <strong>of</strong> skeletal<br />

muscle mass<br />

Supervisors: Pr<strong>of</strong>essor Kathryn<br />

North, Dr Kate Qu<strong>in</strong>lan and Dr<br />

Peter Houwel<strong>in</strong>g


WT KO<br />

kate.qu<strong>in</strong>lan@sydney.edu.au<br />

~ 1 billion people


Located <strong>in</strong> Westmead Millennium Institute<br />

Currently have 3 grants<br />

Supported by the Storr Trust<br />

Westmead pulls <strong>in</strong> 1/3 <strong>of</strong> NHMRC fund<strong>in</strong>g go<strong>in</strong>g to USYD<br />

My group is 10: 1 Postdoc, 4 PhD students, 4 RAs, 1 TA.<br />

Have 20 knock‐out mouse l<strong>in</strong>es available<br />

Look<strong>in</strong>g for students to do Honours and then a PhD<br />

New Build<strong>in</strong>g <strong>in</strong> March 2014


Does liver talk to fat??<br />

Eg:<br />

Adiponect<strong>in</strong><br />

TNF, IL6<br />

FABP4<br />

?????? BA<br />

Metabolic Studies us<strong>in</strong>g TGR5, FXR & Adiponect<strong>in</strong> KO mice


Does diet promote adipocytok<strong>in</strong>e changes?


Skills learned<br />

1. <strong>Cell</strong> based models<br />

2. Mouse based models.<br />

3. Biochemistry, histology.<br />

4. Human cohorts.<br />

lionel.hebbard@sydney.edu.au<br />

Phone: 02 9845 9132


Most common <strong>in</strong>herited<br />

disease present<strong>in</strong>g <strong>in</strong><br />

neurogenetics cl<strong>in</strong>ics<br />

Cl<strong>in</strong>ically and genetically heterogeneous<br />

disorder affect<strong>in</strong>g both the motor and<br />

sensory neurons <strong>of</strong> peripheral nervous<br />

system<br />

CHARCOT MARIE<br />

TOOTH DISEASE (CMT)<br />

50 Genes known to cause CMT<br />

<strong>The</strong> biological problem is the<br />

‘dy<strong>in</strong>g back’ <strong>of</strong> the nerve or<br />

axonal degeneration


Family Studies & L<strong>in</strong>kage Analysis<br />

Utilis<strong>in</strong>g Exome SequenceData<br />

Bio<strong>in</strong>formatics<br />

IDENTIFYING<br />

NEW GENES<br />

CAUSING<br />

MOTOR<br />

AND SENSORY<br />

NEURON DEATH<br />

International Track record<br />

State-<strong>of</strong>-the-art technology for<br />

variant validation<br />

High Resolution<br />

Melt (HRM)<br />

Well resourced lab – staff & students


Westmead Millennium Institute<br />

Dr Mark Douglas<br />

Hepatitis C Virus<br />

Pathogenesis Group<br />

for Medical Research


Hepatitis C Virus (HCV)<br />

› 3% <strong>of</strong> the world’s population (1% <strong>in</strong> Australia) is <strong>in</strong>fected with HCV<br />

› It is now the ma<strong>in</strong> cause <strong>of</strong> liver failure, liver transplant and liver cancer <strong>in</strong><br />

Australia, USA and UK<br />

› HCV causes more deaths than HIV <strong>in</strong> Australia and USA<br />

› It is now curable but current treatments are toxic and <strong>of</strong>ten fail, so new<br />

treatments are needed<br />

2


Metabolic Complications <strong>of</strong> Hepatitis C<br />

HCV <strong>in</strong>teracts with Host Lipid Metabolism<br />

› Steatosis (fatty liver) – HCV Genotype 3<br />

- Lipids essential for HCV replication<br />

- Virus circulates <strong>in</strong> serum with lipoprote<strong>in</strong>s<br />

- Block lipid synthesis <strong>in</strong>hibits HCV replication<br />

› Insul<strong>in</strong> resistance (diabetes) – Genotype 1<br />

- Faster <strong>progression</strong> to liver fibrosis,<br />

cirrhosis and liver cancer<br />

- Predicts non-response to antiviral treatment (<strong>in</strong>terferon,<br />

ribavir<strong>in</strong>)<br />

› Mechanisms are poorly understood<br />

3


PROJECT 1<br />

Treat<strong>in</strong>g hepatitis C virus with cannab<strong>in</strong>oid antagonists<br />

› Endocannab<strong>in</strong>oids are hormones related to cannabis that control lipid<br />

metabolism<br />

› CB1 is the ma<strong>in</strong> endocannab<strong>in</strong>oid receptor <strong>in</strong> the liver<br />

› CB1 expression is <strong>in</strong>creased <strong>in</strong> the livers <strong>of</strong> people with chronic hepatitis C<br />

- This likely contributes to steatosis and encourages virus replication<br />

› Drugs that block CB1 (CB1 antagonists) can <strong>in</strong>hibit HCV replication <strong>in</strong> <strong>cell</strong><br />

culture models.<br />

› This project explores the mechanism <strong>of</strong> this effect, and will hopefully lead<br />

to trials <strong>of</strong> CB1 antagonists <strong>in</strong> patients with Hepatitis C<br />

4


PROJECT 2<br />

Revers<strong>in</strong>g IFN refractor<strong>in</strong>ess to improve HCV treatment<br />

› <strong>The</strong> ma<strong>in</strong> treatment for HCV is <strong>in</strong>terferon (IFN) alpha<br />

- Over 50% <strong>of</strong> patients with HCV genotype 1 fail current IFN treatment<br />

› Patients who respond poorly to IFN have evidence <strong>of</strong> IFN pre-activation <strong>in</strong><br />

their liver, which <strong>in</strong>duces IFN refractor<strong>in</strong>ess and poor response to IFN<br />

› We have discovered novel prote<strong>in</strong>s that <strong>in</strong>hibit IFN signall<strong>in</strong>g <strong>in</strong> patients<br />

with hepatitis C <strong>in</strong>fection<br />

› We have shown that PPAR alpha agonists (anti-cholesterol drugs) can<br />

partially reverse IFN refractor<strong>in</strong>ess <strong>in</strong> HCV <strong>cell</strong> culture models<br />

› This project will explore the mechanisms <strong>of</strong> this effect, and will hopefully<br />

lead to trials <strong>of</strong> these drugs <strong>in</strong> patients with chronic Hepatitis C<br />

5


› Contac Mark Douglas<br />

› Mark.douglas@sydney.edu.au<br />

› Tel: 9845-7705<br />

6


Change<br />

Sensitive Resistance<br />

Supervisor:<br />

Dr. Patric J. Jansson<br />

Cancer <strong>The</strong>rapeutics and Target<strong>in</strong>g Group,<br />

Iron Metabolism and Chelation Program<br />

Problem<br />

Project: How to overcome MDR?


Supervisor: Paul K. Witt<strong>in</strong>g (Pathology)<br />

E-mail: pwitt<strong>in</strong>g@med.usyd.edu.au<br />

Phone: 9767-9103<br />

Discipl<strong>in</strong>e <strong>of</strong> Pathology<br />

<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

1


Redox Biology Lab<br />

• Research team comprises 1 PTE Postdoctoral<br />

Fellow, five Postgraduate students (3 x PhD and 2 x<br />

MPhil), one PTE Research assistant, and facility for<br />

a maximum <strong>of</strong> two Honours students (2013)<br />

Technical expertise<br />

• Field <strong>of</strong> redox biology coupled with monitor<strong>in</strong>g <strong>of</strong><br />

oxidative stress <strong>in</strong> develop<strong>in</strong>g vascular disease<br />

2


Animal study<br />

Research Projects<br />

• Title: Post translational changes to key cardiac prote<strong>in</strong>s <strong>in</strong> the<br />

hearts <strong>of</strong> diabetic rats after experimental heart attack<br />

<strong>Cell</strong>-based studies<br />

• Title: Achiev<strong>in</strong>g neuro-protection by <strong>in</strong>creas<strong>in</strong>g neuronal <strong>cell</strong><br />

content <strong>of</strong> neuroglob<strong>in</strong>.<br />

• Title: Snore-like vibrations stimulate a pro-<strong>in</strong>flammatory and<br />

prothrombotic state <strong>in</strong> endothelial <strong>cell</strong>s<br />

3


Model <strong>of</strong> experimental AMI <strong>in</strong> rats<br />

<strong>The</strong> left anterior descend<strong>in</strong>g<br />

(LAD) coronary artery is ligated<br />

to simulate AMI<br />

Blood flow is <strong>in</strong>hibited to this<br />

region <strong>of</strong> the myocardium for 30<br />

m<strong>in</strong> (ischemia).<br />

Release <strong>of</strong> the suture simulates<br />

tissue reperfusion.<br />

4


<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

Outcomes <strong>of</strong> sleep<br />

studies <strong>in</strong> <strong>in</strong>fants:<br />

Obstructive Sleep Apnea<br />

(OSA) & CPAP use.<br />

Dr Rita Machaalani & Pr<strong>of</strong> Karen Waters<br />

SIDS & Sleep Apnea Laboratory<br />

Side effect <strong>of</strong> OSA<br />

=daytime sleep<strong>in</strong>ess<br />

Treatment= (cont<strong>in</strong>uous positive<br />

airways pressure (CPAP) mach<strong>in</strong>e


Project title: Phospho‐regulation <strong>of</strong> centrosome prote<strong>in</strong>s <strong>in</strong> cancer <strong>cell</strong>s<br />

Supervisors: Dr Rose Boutros<br />

Dr Megan Chircop<br />

Laboratory: <strong>Cell</strong> Cycle Unit<br />

<strong>The</strong> Children’s Medical Research Institute<br />

Westmead<br />

<strong>The</strong> centrosome<br />

Structural prote<strong>in</strong>s: ‐, ‐, ‐tubul<strong>in</strong>s, Centr<strong>in</strong>s, Pericentr<strong>in</strong>, N<strong>in</strong>e<strong>in</strong>, Nucleophosm<strong>in</strong>, CP110,...<br />

Regulatory Prote<strong>in</strong>s: CDKs, Cdc25, PLK, Nek2, PP2A, 14‐3‐3, dyne<strong>in</strong>, dynact<strong>in</strong>, Mps1, ...


<strong>The</strong> Project<br />

A study <strong>in</strong> S. Cerevisiae revealed that the majority <strong>of</strong> yeast centrosome prote<strong>in</strong>s are<br />

phosphorylated at some stage dur<strong>in</strong>g <strong>cell</strong> division Keck et al. Science 332:1557, 2011<br />

Hypothesis: Phosphorylation <strong>of</strong> centrosome prote<strong>in</strong>s is important for normal<br />

centrosome function and <strong>cell</strong> division <strong>in</strong> human <strong>cell</strong>s.<br />

Misregulation <strong>of</strong> these can contribute to cancer.<br />

Aims: Investigate the role <strong>of</strong> prote<strong>in</strong> phosphorylation <strong>in</strong> regulat<strong>in</strong>g centrosome<br />

function <strong>in</strong> cancer<br />

‐ mutate phosphorylation sites by site‐directed mutagenesis<br />

‐ <strong>in</strong>troduce phosphorylation mutants <strong>in</strong>to <strong>cell</strong>s and screen for<br />

phenotypes us<strong>in</strong>g immun<strong>of</strong>luorescence microscopy


E‐cadher<strong>in</strong><br />

B‐caten<strong>in</strong><br />

Decipher<strong>in</strong>g the function <strong>of</strong> NDRG1<br />

Primary Tumour<br />

A number <strong>of</strong> molecular changes<br />

occur <strong>in</strong> the <strong>cell</strong> <strong>in</strong>clud<strong>in</strong>g:<br />

‐E‐cadher<strong>in</strong> is reduced<br />

‐B‐caten<strong>in</strong> is reduced<br />

<strong>The</strong>se molecules are crucial for<br />

<strong>cell</strong> adhesion and motility.<br />

E‐cadher<strong>in</strong><br />

B‐caten<strong>in</strong><br />

NDRG1<br />

Change <strong>in</strong> Morphology to<br />

become more <strong>in</strong>vasive<br />

NDRG1 can REVERSE this!<br />

Control NDRG1<br />

Control NDRG1<br />

NDRG1 restores the expression<br />

<strong>of</strong> crucial molecules that<br />

promote <strong>cell</strong> adhesion and<br />

<strong>in</strong>hibit <strong>cell</strong> motility.<br />

Cancer Metastasis<br />

HOW DOES<br />

NDRG1 DO<br />

THIS???<br />

Perhaps YOU will be<br />

able to f<strong>in</strong>d out!!!<br />

Contact:<br />

Dr. Zakl<strong>in</strong>a Kovacevic<br />

zakl<strong>in</strong>a.kovacevic@sydney.edu.au


2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Level 13,<br />

Koll<strong>in</strong>g Institute <strong>of</strong> Medical Research,<br />

Royal North Shore Hospital<br />

Honours student<br />

PhD student<br />

Medical student – Elective term<br />

2 Research Fellows<br />

Royal North<br />

Shore Hospital


Occlud<strong>in</strong>g branch <strong>of</strong> LAD<br />

2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Experimentally simulate a heart attack<br />

Reperfusion Injury<br />

Free radicals<br />

Stress-response<br />

Apoptosis<br />

Autophagy<br />

Non-ischemic areas<br />

Cardiac damage<br />

Royal North<br />

Shore Hospital<br />

Infarct<br />

area<br />

At- risk but viable


For 2013:<br />

• Regulation <strong>of</strong> aldosterone/m<strong>in</strong>eralocorticoid receptors <strong>in</strong> the heart<br />

• Glucagon-Like Peptide-1 agonists, reperfusion <strong>in</strong>jury and type 2 diabetes<br />

• Hyperglycemia Removes the Gender Gap Dur<strong>in</strong>g Experimental Myocardial<br />

Infarction<br />

2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Royal North<br />

Shore Hospital

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!