Jaarboek no. 89. 2010/2011 - Koninklijke Maatschappij voor ...

Jaarboek no. 89. 2010/2011 - Koninklijke Maatschappij voor ... Jaarboek no. 89. 2010/2011 - Koninklijke Maatschappij voor ...

natuurwetenschappen.diligentia.nl
from natuurwetenschappen.diligentia.nl More from this publisher
19.01.2013 Views

Natuurkundige voordrachten I Nieuwe reeks 89 Elektriciteitopslag voor automobiliteit 28 biliteit om breed ingezet te kunnen worden. Ook de centrale opslag op zeer grote schaal in de vorm van vloeibaar ammonia zou mogelijk moeten zijn. 16 Daarbij kan het feit dat NH3 zeer giftig is, in centrale opslagdepots beter gehanteerd worden dan bij individuele eindgebruikers. Deze eindgebruikers gebruiken de H2 die weer teruggewonnen is uit NH3 en daarna opgeslagen is in een andere vorm (zoals bijvoorbeeld MgH2 ). Noten 1. Tarascon, J.M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, (6861), 359-367. 2. Ellis, B.L.; Lee, K. T.; Nazar, L. F., Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials 22, (3), 691-714. 3. Verhoeven, V.W.J.; de Schepper, I.M.; Nachtegaal, G.; Kentgens, A.P.M.; Kelder, E.M.; Schoonman, J.; Mulder, F.M., Lithium dynamics in LiMn2O4 probed directly by two-dimensional Li-7 NMR. Physical Review Letters 2001, 86, (19), 4314-4317. 4. Wagemaker, M.; Kentgens, A.P.M.; Mulder,F.M., Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418, (6896), 397-399. 5. Wagemaker, M., Borghols, W.J.H., Mulder, F.M., Large impact of particle size on insertion reactions, A case of anatase LixTiO2 J. Am. Chem. Soc. 2007, 129, 4323. 6. Borghols, W.J.H.; Wagemaker, M.; Lafont, U.; Kelder, E.M.; Mulder, F.M., Size Effects in the Li4+xTi5O12 Spinel. Journal of the American Chemical Society 2009, 131, (49), 17786-17792. 7. Huang, H.; Yin, S.C.; Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid State Letters 2001, 4, (10), A170-A172. 8. Yamada, A.; Koizumi, H.; Nishimura, S.I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y., Room-temperature miscibility gap in LixFePO4. Nat. Mater. 2006, 5, (5), 357-360. 9. Wagemaker, M.; Mulder, F.M.; Van der Ven, A., The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds. Advanced Materials 2009, 21, (25-26), 2703-+. 10. Van der Ven, A.; Wagemaker, M., Effect of surface energies and nano-particle size distribution on open circuit voltage of Li-electrodes. Electrochemistry Communications 2009, 11, (4), 881-884. 11. Burch, D.; Bazant, M.Z., Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles. Nano Letters 2009, 9, (11), 3795-3800. 12. Abraham, K.M.; Jiang, Z., A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society 1996, 143, (1), 1-5. 13. Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P.G., Rechargeable Li2O2 electrode for lithium batteries. Journal of the American Chemical Society 2006, 128, (4), 1390-1393. 14. Ji, X.L.; Lee, K.T.; Nazar, L.F., A highly ordered nanostructured carbon-sulphur cathode for lithiumsulphur batteries. Nature Materials 2009, 8, (6), 500-506. 15. Schultz, J.M.; Furbo, S., Solar heating systems with heat of fusion storage with 100% solar fraction for solar low energy builidngs. In Proceedings of Ises Solar World Congress 2007: Solar Energy and Human Settlement, Vols I-V, Goswami, D.Y.; Zhao, Y.W., Eds. Tsinghua University Press: Beijing, 2007; pp 2721-2725. 16. Klerke, A.; Christensen, C.H.; Norskov, J.K.; Vegge, T., Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry 2008, 18, (20), 2304-2310.

Schakelbare spiegels: een samenspel van licht en waterstof Switchable mirrors Prof.dr. R.P. Griessen Condensed Matter Physics, Faculty of Sciences, Vrije Universiteit, Amsterdam The discovery In 1986 the Condensed Matter Physics group at the VU university in Amsterdam focused its research activities entirely on the newly discovered high-temperature superconductors based on copper-oxygen compounds. In 1990 stimulated by theoretical calculations on the superconducting properties of metallic hydrogen1 a new project entitled ΄Metallic dirty hydrogen΄ was started. The basic idea of this project was to dope hydrogen with impurities in a way to bring the metallization pressure from megabars down to the range accessible with our diamond anvil press, which at that time was about 500 kbar (i.e. 5x1010 Pa). The metal Yttrium was chosen as ΄dirt΄ as it was known that this metal formed the trihydride YH3 . Rewriting this composition as HY0.333 suggested that hydrogen was doped with 33.3% of Yttrium impurities and, as is well-known, impurities can drastically influence phase transitions. This is the reason why salt is spread on the roads during winter! After four years of intensive research under high pressure Hans Huiberts, the PhD student working on the ΄Metallic dirty hydrogen΄ project, made the completely unexpected discovery that in presence of hydrogen a 500 nm thick layer of metallic Yttrium became completely transparent. 2 This was the start of a completely new line of research on new materials: the switchable metal-hydride films. For decades, the great majority of experiments on metal-hydrogen systems was carried out without actually looking at the samples. In many cases there was no need to do so (e.g. for all pressure-composition isotherm, electrical resistivity, specific heat, neutron and X-ray scattering measurements). In other cases optical measurements could only be car- Natuurkundige voordrachten I Nieuwe reeks 89 ried out for certain hydrides. For example, Weaver et al. 3 measured in detail the reflectivity of dihydrides of Sc, Y and La but could not extend their interesting measurements to the trihydrides of Y and La. This is unfortunate since the pioneering work of Libowitz et al. 4 on Ce hydrides had demonstrated the existence of a metal-insulator transition between CeH2 and CeH3 . In Y and La, however, hydrogenation from the dihydride to the trihydride leads irrevocably to the powdering of bulk samples. Bulk samples are not easily amenable to optical measurements and it is thus only through the combination of the use of thin films of yttrium in a diamond anvil cell that in 1995, spectacular changes in the optical properties of metal hydride films of yttrium and lanthanum near their metal-insulator transition could be observed: the dihydrides are excellent metals and shiny while the trihydrides are semiconductors and transparent in the visible part of the optical spectrum (see figure 1). Soon after the observation of the metal-insulator transition in the diamond anvil cell it was realized that high hydrogen pressures were not at all necessary to induce the transparency in YHx . At room temperature, less than one bar is sufficient. The transition from a shiny to a transparent state is reversible and simply induced at room temperature by changing slightly the surrounding hydrogen gas pressure or electrolytic cell potential. Not only YH x and LaH x , but all the trivalent rare-earth hydrides and even some of their alloys exhibit switchable optical and electrical properties. In the transparent state they Lezing gehouden voor de Koninklijke Maatschappij voor Natuurkunde ‘Diligentia’ te ’s-Gravenhage op 27 september 2010 29

Natuurkundige <strong>voor</strong>drachten I Nieuwe reeks 89<br />

Elektriciteitopslag <strong>voor</strong> automobiliteit<br />

28<br />

biliteit om breed ingezet te kunnen worden. Ook<br />

de centrale opslag op zeer grote schaal in de vorm<br />

van vloeibaar ammonia zou mogelijk moeten zijn. 16<br />

Daarbij kan het feit dat NH3 zeer giftig is, in centrale<br />

opslagdepots beter gehanteerd worden dan bij individuele<br />

eindgebruikers. Deze eindgebruikers gebruiken<br />

de H2 die weer teruggewonnen is uit NH3 en daarna opgeslagen is in een andere vorm (zoals<br />

bij<strong>voor</strong>beeld MgH2 ).<br />

Noten<br />

1. Tarascon, J.M.; Armand, M., Issues and challenges<br />

facing rechargeable lithium batteries. Nature 2001,<br />

414, (6861), 359-367.<br />

2. Ellis, B.L.; Lee, K. T.; Nazar, L. F., Positive Electrode<br />

Materials for Li-Ion and Li-Batteries. Chemistry of<br />

Materials 22, (3), 691-714.<br />

3. Verhoeven, V.W.J.; de Schepper, I.M.; Nachtegaal, G.;<br />

Kentgens, A.P.M.; Kelder, E.M.; Schoonman, J.; Mulder,<br />

F.M., Lithium dynamics in LiMn2O4 probed directly<br />

by two-dimensional Li-7 NMR. Physical Review Letters<br />

2001, 86, (19), 4314-4317.<br />

4. Wagemaker, M.; Kentgens, A.P.M.; Mulder,F.M.,<br />

Equilibrium lithium transport between<br />

na<strong>no</strong>crystalline phases in intercalated TiO2 anatase.<br />

Nature 2002, 418, (6896), 397-399.<br />

5. Wagemaker, M., Borghols, W.J.H., Mulder, F.M., Large<br />

impact of particle size on insertion reactions, A case<br />

of anatase LixTiO2 J. Am. Chem. Soc. 2007, 129, 4323.<br />

6. Borghols, W.J.H.; Wagemaker, M.; Lafont, U.; Kelder,<br />

E.M.; Mulder, F.M., Size Effects in the Li4+xTi5O12<br />

Spinel. Journal of the American Chemical Society 2009,<br />

131, (49), 17786-17792.<br />

7. Huang, H.; Yin, S.C.; Nazar, L.F., Approaching<br />

theoretical capacity of LiFePO4 at room temperature<br />

at high rates. Electrochemical and Solid State Letters<br />

2001, 4, (10), A170-A172.<br />

8. Yamada, A.; Koizumi, H.; Nishimura, S.I.; So<strong>no</strong>yama, N.;<br />

Kan<strong>no</strong>, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y.,<br />

Room-temperature miscibility gap in LixFePO4. Nat.<br />

Mater. 2006, 5, (5), 357-360.<br />

9. Wagemaker, M.; Mulder, F.M.; Van der Ven, A., The Role<br />

of Surface and Interface Energy on Phase Stability of<br />

Na<strong>no</strong>sized Insertion Compounds. Advanced Materials<br />

2009, 21, (25-26), 2703-+.<br />

10. Van der Ven, A.; Wagemaker, M., Effect of surface<br />

energies and na<strong>no</strong>-particle size distribution on open<br />

circuit voltage of Li-electrodes. Electrochemistry<br />

Communications 2009, 11, (4), 881-884.<br />

11. Burch, D.; Bazant, M.Z., Size-Dependent Spi<strong>no</strong>dal and<br />

Miscibility Gaps for Intercalation in Na<strong>no</strong>particles.<br />

Na<strong>no</strong> Letters 2009, 9, (11), 3795-3800.<br />

12. Abraham, K.M.; Jiang, Z., A polymer electrolyte-based<br />

rechargeable lithium/oxygen battery. Journal of the<br />

Electrochemical Society 1996, 143, (1), 1-5.<br />

13. Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.;<br />

Bruce, P.G., Rechargeable Li2O2 electrode for lithium<br />

batteries. Journal of the American Chemical Society<br />

2006, 128, (4), 1390-1393.<br />

14. Ji, X.L.; Lee, K.T.; Nazar, L.F., A highly ordered<br />

na<strong>no</strong>structured carbon-sulphur cathode for lithiumsulphur<br />

batteries. Nature Materials 2009, 8, (6), 500-506.<br />

15. Schultz, J.M.; Furbo, S., Solar heating systems with<br />

heat of fusion storage with 100% solar fraction for<br />

solar low energy builidngs. In Proceedings of Ises<br />

Solar World Congress 2007: Solar Energy and Human<br />

Settlement, Vols I-V, Goswami, D.Y.; Zhao, Y.W., Eds.<br />

Tsinghua University Press: Beijing, 2007; pp 2721-2725.<br />

16. Klerke, A.; Christensen, C.H.; Norskov, J.K.; Vegge, T.,<br />

Ammonia for hydrogen storage: challenges and<br />

opportunities. Journal of Materials Chemistry 2008, 18,<br />

(20), 2304-2310.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!