01.05.2013 Views

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

Epigenetics: The l<strong>in</strong>k between genetics and environment<br />

<strong>LitNet</strong> Akademies Jaargang 9(2), Augustus 2012<br />

All liv<strong>in</strong>g organisms face the constant challenge of adapt<strong>in</strong>g to an ever chang<strong>in</strong>g<br />

environment. The mechanisms that br<strong>in</strong>g about adaptation have been under <strong>in</strong>vestigation for<br />

centuries. Aristotle (384 BC–322 BC), the Greek philosopher and author of the theory of<br />

epigenesis, postula<strong>te</strong>d that each embryo of an organism develops sys<strong>te</strong>matically fr<strong>om</strong> an<br />

undifferentia<strong>te</strong>d mass. Epigenesis was the first theory to po<strong>in</strong>t to development based on<br />

specific cues. It contras<strong>te</strong>d with preformation: the idea that all organisms develop fr<strong>om</strong><br />

m<strong>in</strong>iature versions of themselves <strong>in</strong> the game<strong>te</strong>s. Jean-Baptis<strong>te</strong> Lamarck (1744–1829), a<br />

French naturalist and author of the <strong>te</strong>rm biology, published the first formal theory of<br />

evolution <strong>in</strong> which he proposes two laws of evolution – the law of use or disuse and the law<br />

of <strong>in</strong>heritance of acquired charac<strong>te</strong>ristics. In his theory of natural selection Charles Darw<strong>in</strong><br />

(1809–1882) postula<strong>te</strong>d that subtle variation <strong>in</strong> the phenotype of an organism, favour<strong>in</strong>g<br />

survival, will be carried over to the offspr<strong>in</strong>g. In The Orig<strong>in</strong> of Species (1859) Darw<strong>in</strong><br />

describes two forces <strong>in</strong> evolution – natural selection and conditions of exis<strong>te</strong>nce<br />

(environment). Of these two forces, Darw<strong>in</strong> argues the lat<strong>te</strong>r to be more powerful, imply<strong>in</strong>g<br />

that natural selection can take place only with<strong>in</strong> the boundaries of a specific environment.<br />

The <strong>te</strong>rm epigenetics was co<strong>in</strong>ed by Conrad Wadd<strong>in</strong>gton <strong>in</strong> 1942, and he def<strong>in</strong>ed it as the<br />

<strong>in</strong><strong>te</strong>raction between genes and the environment to produce phenotype. Today epigenetics is<br />

widely used to refer to the heritable and transient changes <strong>in</strong> gene expression not caused by<br />

nucleotide sequence variation, but collectively <strong>in</strong>stiga<strong>te</strong>d by epigenetic marks classified as<br />

DNA methylation, histone modification and non-cod<strong>in</strong>g RNA. In addition to these nucleicacid-rela<strong>te</strong>d<br />

modifications, prion-media<strong>te</strong>d variation <strong>in</strong> pro<strong>te</strong><strong>in</strong> fold<strong>in</strong>g was more recently<br />

identified as a pro<strong>te</strong><strong>in</strong>-conformation-based epigenetic mechanism <strong>in</strong> baker’s yeast. Epigenetic<br />

marks respond to changes <strong>in</strong> the environment, allow<strong>in</strong>g adaptation. Unlike the gen<strong>om</strong>e,<br />

plasticity of the epigen<strong>om</strong>e is observed over a short time, respond<strong>in</strong>g to, and dictat<strong>in</strong>g change<br />

with<strong>in</strong>, one generation. The phenotype is therefore de<strong>te</strong>rm<strong>in</strong>ed by the <strong>in</strong><strong>te</strong>raction between the<br />

gen<strong>om</strong>e, epigen<strong>om</strong>e and environment.<br />

The most widely stu<strong>die</strong>d and best understood epigenetic modification is DNA methylation.<br />

The methylation of a DNA sequence <strong>in</strong>volves the covalent b<strong>in</strong>d<strong>in</strong>g of a methyl group on the<br />

5th carbon position of a cytos<strong>in</strong>e r<strong>in</strong>g <strong>in</strong> a reaction catalysed by DNA methyl transferase 1<br />

(DNMT-1). Cytos<strong>in</strong>e methylation occurs largely <strong>in</strong> the con<strong>te</strong>xt of CpG d<strong>in</strong>ucleotides and<br />

clus<strong>te</strong>rs of these d<strong>in</strong>ucleotides are known as CpG islands (CGIs). The epigen<strong>om</strong>e undergoes<br />

major reprogramm<strong>in</strong>g marked by global demethylation dur<strong>in</strong>g early embryogenesis when<br />

pa<strong>te</strong>rnal and ma<strong>te</strong>rnal gen<strong>om</strong>es merge to form the zygo<strong>te</strong> and dur<strong>in</strong>g gametogenesis <strong>in</strong> the<br />

primordial germ cells (PGCs) of the embryo. L<strong>in</strong>eage-specific DNA methylation pat<strong>te</strong>rns are<br />

established by de novo DNA methyl transferases, DNMT3A and DNMT3B, around<br />

implantation and are ma<strong>in</strong>ta<strong>in</strong>ed by DNMT-1. Intr<strong>in</strong>sic and extr<strong>in</strong>sic (environmental) factors<br />

<strong>in</strong>fluence the establishment and ma<strong>in</strong><strong>te</strong>nance of epigenetic marks.<br />

DNA and histone methylation h<strong>in</strong>ge on the level of S-adenosylmethion<strong>in</strong>e (SAM), the<br />

universal methyl donor genera<strong>te</strong>d by the methion<strong>in</strong>e (one-carbon) cycle <strong>in</strong> <strong>in</strong><strong>te</strong>raction with<br />

the fola<strong>te</strong> cycle. Dur<strong>in</strong>g specific stages of development the epigen<strong>om</strong>e is selectively<br />

demethyla<strong>te</strong>d, bestow<strong>in</strong>g a unique epigenetic signature on each cell type. DNMT-1 ma<strong>in</strong>ta<strong>in</strong>s<br />

methylation pat<strong>te</strong>rns and abnormal hyp<strong>om</strong>ethylation is a cause of al<strong>te</strong>red gene expression <strong>in</strong><br />

diseased tissue. In addition to DNA methylation, specific modifications on histones form a<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!