01.05.2013 Views

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

Klik hier om die volledige joernaal in PDF-formaat af te laai - LitNet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LitNet</strong> Akademies Jaargang 9(2), Augustus 2012<br />

antimicrobial, they may be an al<strong>te</strong>rnative to the use of biocides. Many variants of<br />

antimicrobial nanofibres conta<strong>in</strong><strong>in</strong>g biocides are described <strong>in</strong> recent li<strong>te</strong>rature. With<br />

nanofibres <strong>in</strong> the antimicrobial con<strong>te</strong>xt be<strong>in</strong>g a relatively recent field, few stu<strong>die</strong>s have been<br />

dedica<strong>te</strong>d to describ<strong>in</strong>g the activity of antimicrobial nanofibres. The antimicrobial activity of<br />

such fibres are most c<strong>om</strong>monly de<strong>te</strong>rm<strong>in</strong>ed by culturability <strong>te</strong>sts. This ma<strong>in</strong> goal of this study<br />

was to describe a quick, easy and accura<strong>te</strong> protocol for de<strong>te</strong>rm<strong>in</strong><strong>in</strong>g activity of antimicrobial<br />

fibres.<br />

Keywords: Wa<strong>te</strong>r purification; antimicrobial; nano<strong>te</strong>chnology; nanofibres; filtration<br />

Ex<strong>te</strong>nded Abstract<br />

Nano<strong>te</strong>chnology has been identified as a tool with many applications <strong>in</strong> the wa<strong>te</strong>r <strong>in</strong>dustry<br />

(Bot<strong>te</strong>ro et al. 2006, Cloe<strong>te</strong> et al. 2010). One of these applications <strong>in</strong>volves the use of<br />

nanofibres for wa<strong>te</strong>r filtration (Cloe<strong>te</strong> et al. 2010). Nanoparticles or sc<strong>af</strong>folds thereof of<strong>te</strong>n<br />

possess novel biological, physical or chemical properties (Theron et al. 2008).<br />

Nanofibres are solid fibres with diame<strong>te</strong>rs with<strong>in</strong> the nanoscale with a large surface to<br />

volume ratio, and when assembled <strong>in</strong> a non-woven mat have a small pore size, <strong>in</strong> the order of<br />

5-50nm2 (Gule et al. 2011). Furthermore, the specific physical properties of nanofibres, such<br />

as strength, porosity and surface activity, are de<strong>te</strong>rm<strong>in</strong>ed by the polymer and additional nonsoluble<br />

particles used <strong>in</strong> the synthesis<strong>in</strong>g process (Frenot and Chronakis 2003). These<br />

qualities make nanofibres extremely versatile and more effective than conventional polymer<br />

membranes used <strong>in</strong> liquid filtration (Theron et al. 2008; Yoon et al. 2006).<br />

Electrosp<strong>in</strong>n<strong>in</strong>g can produce nanofibres fr<strong>om</strong> a range of electrosp<strong>in</strong>nable polymers. In the<br />

process of needle electrosp<strong>in</strong>n<strong>in</strong>g, a high-voltage electric field is genera<strong>te</strong>d between a<br />

charged source of polymer solution and an earthed metal collector pla<strong>te</strong>. An electrostatically<br />

driven jet of polymer solution gives rise to nanofibres, which are collec<strong>te</strong>d on the pla<strong>te</strong>.<br />

A variation of conventional needle-based electrosp<strong>in</strong>n<strong>in</strong>g, known as bubble electrosp<strong>in</strong>n<strong>in</strong>g,<br />

allows much more rapid production of nanofibres. The process <strong>in</strong>volves the formation of<br />

multiple electrostatically driven jets of polymer fr<strong>om</strong> a charged bubble of polymer solution<br />

(Yang et al. 2009). The electric field is of a much higher voltage than used <strong>in</strong> conventional<br />

needle sp<strong>in</strong>n<strong>in</strong>g, and fibres genera<strong>te</strong>d fr<strong>om</strong> polymer jets are collec<strong>te</strong>d on a negatively charged<br />

metallic collector pla<strong>te</strong> positioned above the bubble.<br />

In recent li<strong>te</strong>rature many stu<strong>die</strong>s have focused on the added value of <strong>in</strong>corporat<strong>in</strong>g biocides<br />

<strong>in</strong>to nanofibre filtration membranes with the aim of remov<strong>in</strong>g pathogens fr<strong>om</strong> wa<strong>te</strong>r.<br />

C<strong>om</strong>monly, these biocides are <strong>in</strong>corpora<strong>te</strong>d <strong>in</strong>to the nanofibre matrix by add<strong>in</strong>g the biocide to<br />

the sp<strong>in</strong>n<strong>in</strong>g solution before electrosp<strong>in</strong>n<strong>in</strong>g. The synthesis of nanofibres conta<strong>in</strong><strong>in</strong>g metal<br />

nanoparticles is a well-researched field (Bo<strong>te</strong>s and Cloe<strong>te</strong>, 2010), largely because of the<br />

advantages associa<strong>te</strong>d with c<strong>om</strong>b<strong>in</strong><strong>in</strong>g the functional properties of metal nanoparticles with<br />

the widely applicable properties of nanofibres (Niu and Crooks 2003). These properties<br />

<strong>in</strong>clude biocidal activity. Metal nanoparticles can be <strong>in</strong>corpora<strong>te</strong>d <strong>in</strong>to polymer nanofibres by<br />

physically blend<strong>in</strong>g the nanoparticles with the polymer before electrosp<strong>in</strong>n<strong>in</strong>g, by <strong>in</strong> situ<br />

polymerisation of a mon<strong>om</strong>er <strong>in</strong> the presence of metal nanoparticles, or by <strong>in</strong>corporation of<br />

metal salts <strong>in</strong>to the polymer with subsequent <strong>in</strong> situ reduction of metal ions to nanoparticles<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!