27.12.2012 Views

– LA FORMULA DI TAYLOR COL RESTO DI LAGRANGE Sia Pn(x ...

– LA FORMULA DI TAYLOR COL RESTO DI LAGRANGE Sia Pn(x ...

– LA FORMULA DI TAYLOR COL RESTO DI LAGRANGE Sia Pn(x ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 <strong>LA</strong> FORMU<strong>LA</strong> <strong>DI</strong> <strong>TAYLOR</strong> <strong>COL</strong> <strong>RESTO</strong> <strong>DI</strong> <strong>LA</strong>GRANGE<br />

In pratica la ϕ si ottiene dalla (R) mettendo la variabile t al posto del numero<br />

fissato c, e sottraendo la quantità a (x−t)n+1<br />

(x−c) n+1.<br />

Chiaramente ϕ è continua in ]α, β[ e dotata in ogni punto t ∈]α, β[ distinto da c<br />

di derivata prima ϕ ′ (t). Osserviamo ora che si ha ϕ(x) = ϕ(c) = 0. Infatti<br />

ϕ(x) = f(x) −<br />

e<br />

n�<br />

k=0<br />

f (k) (x)<br />

(x − x)<br />

k!<br />

k (x − x)n+1<br />

− a =<br />

(x − c) n+1<br />

= f(x) − f(x) − f ′ (x)(x − x) − f ′′ (x)(x − x) 2 − · · · − f (n) (x)(x − x) n = 0,<br />

ϕ(c) = f(x) −<br />

= f(x) −<br />

n�<br />

k=0<br />

n�<br />

k=0<br />

f (k) (c)<br />

(x − c)<br />

k!<br />

k (x − c)n+1<br />

− a =<br />

(x − c) n+1<br />

f (k) (c)<br />

(x − c)<br />

k!<br />

k − a = 0<br />

per la (R). Per il teorema di Rolle esiste così un punto ξ interno all’intervallo<br />

di estremi c ed x tale che ϕ ′ (ξ) = 0. Calcoliamo, per t ∈]α, β[, t �= c, ϕ ′ (t). Si ha<br />

� ′<br />

ϕ ′ (t) =<br />

�<br />

f(x) −<br />

n�<br />

k=0<br />

f (k) (t)<br />

(x − t)<br />

k!<br />

k (x − t)n+1<br />

− a<br />

(x − c) n+1<br />

�<br />

= 0 − f(t) + f ′ (t)(x − t) + f ′′ (t)<br />

2 (x − t)2 + f ′′′ (t)<br />

(x − t)<br />

3!<br />

3 + · · · + f(n) (t)<br />

(x − t)<br />

n!<br />

n<br />

� ′<br />

+<br />

�<br />

(x − t)n+1<br />

− a<br />

(x − c) n+1<br />

� ′<br />

=<br />

= − f ′ �<br />

(t) − f<br />

����<br />

•<br />

′′ (t)(x − t) − f<br />

� �� �<br />

••<br />

′ � � ′′′ f (t)<br />

(t) − (x − t)<br />

���� 2<br />

•<br />

2<br />

−<br />

� �� �<br />

•••<br />

f ′′ � � ′′′′ (t) f (t)<br />

2 (x − t) − (x − t)<br />

�<br />

2<br />

�� �<br />

3!<br />

••<br />

3<br />

+<br />

� �� �<br />

••••<br />

− f ′′′ (t)<br />

3 (x − t)<br />

3!<br />

2<br />

� � (n+1) f (t)<br />

− · · · − (x − t)<br />

� �� �<br />

n!<br />

•••<br />

n − f(n) (t)<br />

n (x − t)<br />

n!<br />

n−1<br />

�<br />

(x − t)<br />

+ a (n + 1)<br />

� �� �<br />

•<br />

�<br />

•<br />

��<br />

· · · •<br />

�<br />

n<strong>–</strong>volte<br />

n<br />

=<br />

(x − c) n+1<br />

= − f(n+1) (t)<br />

(x − t)<br />

n!<br />

n (x − t)<br />

+ a (n + 1)<br />

n<br />

=<br />

(x − c) n+1<br />

= −<br />

Cosìda<br />

(n + 1)(x − t)n<br />

(x − c) n+1<br />

� �<br />

(n+1) n+1<br />

f (t)(x − c)<br />

− a .<br />

(n + 1)!<br />

ϕ ′ (ξ) = −<br />

segue necessariamente<br />

(n + 1)(x − ξ)n<br />

(x − c) n+1<br />

� �<br />

(n+1) n+1<br />

f (ξ)(x − c)<br />

− a = 0<br />

(n + 1)!<br />

a = f(n+1) (ξ)(x − c) n+1<br />

(n + 1)!<br />

=

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!