23.10.2013 Views

Gli Aspetti Tecnologici dell'Adroterapia - C.R. ENEA Frascati

Gli Aspetti Tecnologici dell'Adroterapia - C.R. ENEA Frascati

Gli Aspetti Tecnologici dell'Adroterapia - C.R. ENEA Frascati

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Gli</strong> <strong>Aspetti</strong> <strong>Tecnologici</strong> dell’Adroterapia<br />

Parte 1<br />

Sandro Rossi<br />

Fondazione CNAO<br />

Corso teorico-pratico sull’adroterapia: l’alta tecnologia applicata alla clinica<br />

CNAO, Pavia, 17-18 Maggio 2013


Introduzione: il razionale dell’adroterapia<br />

Stato dell’arte: il Centro Nazionale di Adroterapia Oncologica<br />

Panoramica: la tecnologia e attività di R&S


Adroterapia consente di trattare casi “difficili”<br />

PRECISIONE<br />

EFFICACIA<br />

Tumori vicini ad organi critici<br />

Tumori radioresistenti,<br />

che non rispondono<br />

alla radioterapia convenzionale


Direzione del fascio di radiazioni nella materia<br />

Precisione dell’adroterapia<br />

Posizione del<br />

tumore


Adroni: irraggiamento conforme<br />

Larghezza del tumore<br />

5


Adroni: irraggiamento conforme<br />

Raggi-X (IMRT) – 9 campi Protoni – 1 campo


(M. Belli et al.)<br />

Ioni Carbonio: efficacia biologica<br />

4<br />

3<br />

2<br />

1<br />

RBE<br />

1 10 100 LET<br />

10 – 20 keV/µm = 100 – 200 MeV/cm =<br />

20 – 40 eV/(2 nm)<br />

Ridotta dipendenza da presenza di ossigeno<br />

7


Patologie trattate con ioni carbonio al NIRS di Chiba


Terapia con Raggi-X (fotoni di 5 – 20 MeV)<br />

Protonterapia<br />

In Italia: 120'000 pz/anno<br />

Categoria A: pazienti elettivi = 1'000 pz/anno<br />

Numero di potenziali pazienti<br />

Categoria B: probabili vantaggi = 12'000 pz/anno<br />

Terapia con ioni carbonio<br />

% tumori radioresistenti 1'500 pz/anno<br />

(Commissione Ministero della Salute – Anno 2009)<br />

Si giustifica il CNAO (ca. 2000 paz/anno)<br />

e in prospettiva altri centri per protoni


Prevista dal Ministero della Salute<br />

Art. 92 della Legge 23 dicembre 2000, n. 388<br />

Insediata il 21 Novembre 2001


•L’età media<br />

•45% femmine<br />

•55% maschi<br />

Oggi al CNAO lavorano 90 persone<br />

48%<br />

• Ingressi di<br />

personale<br />

nel triennio<br />

2010 -2012


NAZIONALI<br />

Fondazione TERA: progetto definitivo, specifiche alta tecnologia, ricerca<br />

INFN: co-direzione AT, > 15 task tecnici, ricerca e formazione<br />

Università di Milano: coordinamento medico e formazione<br />

Università di Pavia: task tecnici, radiobiologia e formazione<br />

Università di Catania: fisica medica<br />

IL CNAO ESEMPIO DI SISTEMA<br />

LA RETE DI COLLABORAZIONI<br />

Università del Piemonte Orientale: attività mediche<br />

Politecnico di Milano: posizionamento paziente, radioprotezione<br />

Istituto Europeo di Oncologia: attività mediche, autorizzazioni<br />

Fondazione Ospedale San Matteo di Pavia: attività mediche, logistica<br />

Comune di Pavia: terreno e autorizzazioni<br />

Provincia di Pavia: viabilità e autorizzazioni


INTERNAZIONALI<br />

CERN (Geneva): task tecnici, progetto PIMMS<br />

GSI (Darmstadt): linac e componenti speciali<br />

LPSC (Grenoble): ottica, betatrone, low-level RF, sistema di controllo<br />

Med-Austron (Vienna): collaborazione tecnica per il centro MA<br />

Roffo Institute (Buenos Aires): attività mediche<br />

NIRS (Chiba): attività mediche, radiobiologia, formazione<br />

HIT (Heidelberg): attività di ricerca<br />

IL CNAO ESEMPIO DI SISTEMA<br />

LA RETE DI COLLABORAZIONI


Le fasi del CNAO<br />

Fase 0: organizzazione Anni: 2002 - 2004<br />

Fase 1: costruzione Anni : 2005 - 2009


Giugno 2005


19 Novembre 2009<br />

7 Novembre 2005<br />

La costruzione del CNAO è terminata a fine 2009<br />

16


Le aree del CNAO<br />

Espansione per gantry:<br />

spazio sufficiente per<br />

contenere due gantry simil-HIT<br />

meeting<br />

rooms<br />

conference<br />

room<br />

direction offices<br />

Centrale elettrica<br />

(132 kV --> 15 kV)<br />

(2 x 20 MVA)<br />

library<br />

Circa 3500 mq<br />

Futuro Bld.<br />

della ricerca:<br />

circa 2000 mq


Il sincrotrone per protoni e ioni carbonio


Hospital based: safety, efficiency, reliability, maintainability<br />

High Energy<br />

Transfer<br />

Lines<br />

Linac<br />

Ion Sources<br />

Synchrotron<br />

Treatment<br />

Rooms


Starting point… THE PATIENT<br />

Hospital based: safety, efficiency, reliability, maintainability<br />

1 Beam particle species p, He 2+ , Li 3+ , Be 4+ , B 5+ , C 6+ , O 8+<br />

2 Beam particle switching time ≤ 10 min<br />

3 Beam range<br />

1.0 g/cm 2 to 27 g/cm 2 in one treatment room<br />

3.1 g/cm 2 to 27 g/cm 2 in two treatment rooms<br />

Up to 20 g/cm 2 for O 8+ ions<br />

4 Bragg peak modulation steps 0.1 g/cm 2<br />

5 Range adjustment 0.1 g/cm 2<br />

6 Adjustment/modulation accuracy ≤± 0.025 g/cm 2<br />

7 Average dose rate 2 Gy/min (for treatment volumes of 1000 cm 3 )<br />

8 Delivery dose precision ≤± 2.5%<br />

9 Beam axis height (above floor)<br />

150 cm (head and neck beam line)<br />

120 cm (elsewhere)<br />

10 Beam size 1<br />

4 to 10 mm FWHM for each direction<br />

independently<br />

11 Beam size step 1 1 mm<br />

12 Beam size accuracy 1 ≤± 0.25 mm<br />

13 Beam position step 1 0.8 mm<br />

14 Beam position accuracy 1 ≤± 0.2 mm<br />

15 Field size 1<br />

16 Field position accuracy 1 ≤± 0.5 mm<br />

17 Field dimensions step 1 1 mm<br />

18 Field size accuracy 1 ≤± 0.5 mm<br />

(Basic specifications of CNAO facility)<br />

5 mm to 34 mm (diameter for ocular treatments)<br />

2×2 cm 2 to 20×20 cm 2 (for H and V fixed beams)


4 (Cortesia Aprile 2008 di Siemens Medical)<br />

(Cortesia di GSI)<br />

Tecnica di<br />

irraggiamento<br />

sistema attivo


Le fasi del CNAO<br />

Fase 0: organizzazione Anni: 2002 - 2004<br />

Fase 1: costruzione Anni : 2005 - 2009<br />

Fase 2: sperimentazione Anni: 2010 - 2013<br />

Fase 3: funzionamento Anni : 2014 …


Certificazione di qualità: ISO 9001 e ISO 13485


Dosimetry and Radiobiology<br />

Preventive intercomparison CNAO vs INT-MI<br />

with X-rays (linac 6 MV, 2 Gy): difference < 0.1%<br />

(in collaborazione con gruppi radiobio INFN)<br />

Field10x10 cm 2 ,<br />

33x33 spots,<br />

scanning step 3 mm<br />

(16 energie)


Results Survival curves of cells crypts<br />

in 3 SOBP positions<br />

Facility Beam D10 (Gy) Variance RBE10 Variance<br />

position<br />

D10<br />

(%)<br />

Cobalt-60<br />

γ rays<br />

--- 14.86±0.08(*)<br />

NIRS Proximal 10.38 (+) 1.44 (*)<br />

Middle 9.46(+) 1.57(*)<br />

Distal 8.29(+) 1.80(*)<br />

GSI Proximal 10.21(+) 1.47(*)<br />

Middle 9.40(+) 1.63(*)<br />

Distal 8.37(+) 1.80(*)<br />

CNAO Proximal 9.85 5.1 % NIRS 1.51 4.7% NIRS<br />

3.5% GSI<br />

2.7 % GSI<br />

Middle 9.75 3.1% NIRS 1.52 3.18% NIRS<br />

3.7% GSI<br />

6.7% GSI<br />

Distal 8.5 2.5% NIRS 1.75 2.78% NIRS<br />

1.5% GSI<br />

2.78% GSI<br />

Carbon beam at CNAO is biologically<br />

identical to the ones in NIRS and GSI<br />

(difference in RBE < 7%)


PROTONI<br />

22 Settembre 2011: il trattamento del primo paziente


13 Novembre 2012: 1°paziente con ioni Carbonio al CNAO<br />

Recidiva locale di carcinoma adenoideo cistico<br />

12 frazioni da 4.1 GyE , 4 frazioni a settimana, 49.2 GyE totali.<br />

Boost di ulteriori 4 frazioni da valutare in base a tolleranza.<br />

3 campi in IMPT


Ioni<br />

Carbonio Protoni<br />

Abruzzo 1<br />

Basilicata 1<br />

Calabria 1 1<br />

Campania 2<br />

Emilia Romagna 3 4<br />

Lazio 6<br />

Liguria 2 4<br />

Lombardia 7 12<br />

Marche 2<br />

Piemonte 1 7<br />

Puglia 1 6<br />

Sardegna 1<br />

Sicilia 1 2<br />

Toscana 3 6<br />

Veneto 3 3<br />

Totale complessivo 22 58<br />

Provenienza geografica pazienti arruolati<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Ioni Carbonio Protoni


La fase di funzionamento<br />

I trattamenti saranno effettuati nell’ambito del Sistema<br />

Sanitario Nazionale e una rete consentirà il reclutamento<br />

efficiente dei pazienti<br />

A regime il CNAO arriverà a trattare circa 2000 pazienti<br />

per anno<br />

Una sala sperimentale sarà realizzata al CNAO e tempo<br />

fascio sarà dedicato ad attività di ricerca clinica,<br />

radiobiologica e traslazionale


European Network for LIGht ion Hadron Therapy


Expansion and Research spaces integrated in facility layout<br />

Extra space to host 2 C-gantries<br />

(Partial underground level of CNAO)<br />

Laboratories and<br />

research spaces<br />

Experimental Room<br />

Project of research beamline<br />

ready fall 2013<br />

Beam line devoted to clinical,<br />

radiobiology and physics research<br />

(collaboration with INFN)


Tecnologia e attività di R&S:<br />

Accelerators Technology<br />

Dose Delivery Systems<br />

Gantry for carbon ions<br />

Patient positioning and dose verification<br />

Imaging and software<br />

ACKNOWLEDGMENTS: U. AMALDI<br />

Panoramica<br />

(Useful ref.: U. Linz Ed., Ion Beam Therapy, Springer 2011 and refs therein)


Loma Linda University Medical Center: first patient 1992<br />

First hospital based<br />

protontherapy centre<br />

(1992)<br />

2009:160 sessions/d<br />

7m<br />

synchrotron<br />

Optivus Ltd. commercialises this centre


45,000<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Research centres<br />

Protontherapy is booming<br />

40,000 patients<br />

> 84 000 patients<br />

22 PT centers<br />

Hospitals<br />

1950 1960 1970 1980 1990 2000 2010<br />

Carbon Ions: > 9000 patients; 6 centres (+2 planned)<br />

45<br />

40<br />

35<br />

33 centres<br />

(+16 planned)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0


EPAC - 30 June 2006<br />

IBA<br />

Protontherapy: a market exists …<br />

Mitsubishi<br />

Varian<br />

Hitachi<br />

37


Coming up: Single room facility<br />

250 MeV synchrocyclotron rotating around the patient<br />

MEVION S250<br />

Superconducting SC<br />

Diameter 1.8 m


Expansion in 2010<br />

HIMAC<br />

Heavy Ion Medical Accelerator in Chiba<br />

(First patient in 1995)<br />

Superconducting<br />

gantry<br />

Carbon Ion facilities<br />

2 synchrotrons 800 MeV/u,<br />

therapy and nuclear physics<br />

Japan: Hyogo + Gunma – (China Lanzhou 2013+Shangai 2014)


Ion-<br />

Sources<br />

Synchrotron<br />

LINAC<br />

Treatment halls by<br />

Siemens Medical<br />

HIT - Heidelberg<br />

First patient: end 2009<br />

So far about 1.000 patients<br />

High Energy Beam Transport Line<br />

Quality<br />

Assurance<br />

Gantry


Med-Austron (based on CNAO/INFN design + DDS)<br />

• 3 ion sources for phase 1 (one additional source possible)<br />

• Pre-accelerator – RFQ & IH Linac<br />

• Main accelerator – synchrotron (77 m circ.) CNAO/CERN/PIMMS design<br />

• Extraction line<br />

• Irradiation rooms: research: horizontal,<br />

medical: horizontal & vertical, horizontal, proton-gantry


New medical accelerators (?): IBA Superconducting cyclotron<br />

700 tons


+ Simplicity of fixed field<br />

+ Potential for fast (ms) variable energy<br />

+ Rapid cycling (200 Hz, repainting)<br />

- High intensities<br />

- Multistage accelerators<br />

- Complicated magnets<br />

- Complicated RF cavity<br />

- Dense lattice (ext. diff.)<br />

New medical accelerators (?): FFAG<br />

(original idea dates back to 1950’s)<br />

Only existing reasearch facility: KURRY 150 MeV proton scaling FFAG


New medical accelerators (?): BNL fast cycling synchrotron<br />

30 Hz repetition rate (repainting?)<br />

Fast energy change<br />

(first publication 1999’s, S. Peggs et al.)<br />

Injection linac at 8 MeV/u<br />

Racetrack, FODO in the arcs, D=0 ss<br />

Fast inj+extr, C = 60 m<br />

(from D. Trbojevic et al. IPAC2011)


150 MeV/u<br />

Source EBIS - SC<br />

Cyclotron K 600 - SC<br />

200 tons<br />

Linac CCL @ 5.7 GHz<br />

16 modules<br />

RF power<br />

system<br />

New medical accelerators (?): TERA cyclinac for C-ions<br />

16 Klystrons<br />

(P peak = 12 MW)<br />

Linac for Image Guided Hadron<br />

THerapy LIGHT 150-400 MeV/u<br />

CABOTO =<br />

CArbon BOoster for<br />

Therapy in<br />

Oncology<br />

400 MeV/u<br />

Energy is adjusted in 2 ms in the full range by changing the power pulses sent to the<br />

accelerating modules<br />

Charge in the spot is adjusted every 2 ms with the computer controlled source<br />

300 Hz


Technology status and R&D:<br />

Accelerators Technology<br />

Dose Delivery Systems<br />

Gantry for carbon ions<br />

Patient positioning and dose verification<br />

Imaging and software<br />

Panoramica


Methods for imparting the dose with carbon ions:<br />

layer stacking (NIRS+Japan)<br />

Wobbling and multileaf collimator adapted<br />

to transverse shape of each slice<br />

(energy changed with synchrotron and range shifter)<br />

Conformation, components activation, secondary neutrons


Methods for imparting the dose with carbon ions:<br />

active scanning: “raster scanning” à la GSI (HIT+CNAO)<br />

The synchrotron beam is moved<br />

continuously<br />

Energy changed with the synchrotron<br />

NIRS decided recently to adopt the active scanning


Slow extraction<br />

Bucket channeling<br />

Ripples<br />

Beam<br />

0 V<br />

Improvements:<br />

beam extraction optimization<br />

High-density,<br />

slow -moving<br />

Extracted beam<br />

Low-density,<br />

fast moving<br />

Transverse<br />

beam size<br />

Resonance<br />

lines<br />

x, ∆p/p, Qh<br />

Intensity dinamic range: ≈1000<br />

FWHM = 4-10 mm<br />

Intensity ripple (∆I/I) ≤ ± 20% at 2 kHz<br />

(extraction with a betatron core - PIMMS)<br />

50 ms


“Minimal” choice: breathing synchronisation<br />

(already applied in Chiba and HIT)<br />

Interesting also for IMRT:<br />

lots of efforts and devices<br />

(Review in Riboldi et al, Lancet Oncology 2012)<br />

Improvements: On-line imaging<br />

External surrogates with<br />

correlation models<br />

X-rays<br />

(Courtesy of Medical Intelligence)<br />

Ultrasound, MRI<br />

Particle radiography


GSI approach<br />

p +1 or C +6<br />

Improvements: tumour tracking with active scanning<br />

Tranverse<br />

variation<br />

4D<br />

Energy<br />

variation


Monitoring system (CNAO)<br />

Double system of ICs:<br />

(integral, stripX,Y) – (integral, pixel)<br />

Two measures: Intensity, Position, Profile<br />

Redout frequency: 1 MHz (integral),<br />

10 kHz (strip, pixel)<br />

Resolution: 0.1 mm strip, 0.2 mm pixel<br />

Area: 20 x 20 cm2<br />

Non uniformity < 1%<br />

Short term stability < 0.3%<br />

(NIMA 698 (2013) 202-207) Issue: monitoring spots of C-ions at low intensity


Technology status and R&D:<br />

Accelerators Technology<br />

Dose Delivery Systems<br />

Gantry for carbon ions<br />

Patient positioning and dose verification<br />

Imaging and software<br />

Panoramica


PSI proton gantry<br />

(Courtesy M. Pullia)<br />

Comparison of dimensions<br />

GSI carbon ion gantry


(Courtesy T. Haberer)<br />

Main Parameters<br />

Diameter [m] 13<br />

Length [m] 25<br />

Overall weight [t] 600<br />

Maximum power [kW] 600<br />

Rotational weight [t] 420<br />

Maximum allowed deformation [mm] 0,5<br />

Heidelberg ion gantry: unique in the World!<br />

First patient October 19 th , 2012


Bmax = 2.88 T<br />

Gmax = 9.0 T/m<br />

HIMAC superconducting gantry is in construction<br />

Combined function magnets:<br />

bending and focusing (BM1 ~ BM6)<br />

(Courtesy T. Murakami)<br />

B and G changing vs cycle<br />

Scanning magnets at<br />

the middle point<br />

Combined function magnets (BM9 ~ BM10)<br />

-> square irradiation field<br />

-> parallel beams


Novel gantry for carbon ions<br />

The ULICE WP6 collaboration realized a conceptual design of a mobile isocenter gantry,<br />

• Innovative layout<br />

• Cheaper and simplified mechanical structure<br />

• Less magnets in the gantry line<br />

Rationale for the choice<br />

• Total weight reduced as well as deformations<br />

• Well known magnet technology<br />

• Layout scalable to SC magnets


Project in progress by CEA (France) in collaboration with IBA<br />

12.2 tons<br />

B = 5 tesla<br />

Two layer helical wires<br />

on a straight cylinder<br />

give a dipole field<br />

(S. Caspi et al.)<br />

ISSUES: field quality for scanning beams;<br />

changing fields (energy) for active scanning<br />

90° magnet following a design<br />

by INFN-Genoa and TERA<br />

Project in progress at LBL - Berkeley


Technology status and R&D:<br />

Accelerators Technology<br />

Dose Delivery Systems<br />

Gantry for carbon ions<br />

Patient positioning and dose verification<br />

Imaging and software<br />

Panoramica


High precision devices for patient positioning<br />

(Treatment room #1 at CNAO)


3D Real-time IR Optical Tracking (OTS)<br />

• Real time reconstruction of spherical markers<br />

and surfaces<br />

• Sub-millimeter accuracy : peak 3D errors


Projectile<br />

Pre-collision Post-collision<br />

12 C<br />

Atomic nucleus<br />

of tissue<br />

16 O<br />

15 O<br />

11 C<br />

Dose visualisation: “in beam PET”<br />

Projectile fragment<br />

Neutron<br />

Target fragment<br />

Courtesy of GSI<br />

[kGy]<br />

D ose<br />

]<br />

Counts [10<br />

3<br />

6<br />

4<br />

2<br />

0<br />

5<br />

0<br />

Dose<br />

Activity<br />

β +<br />

0 50 100 150 200<br />

Depth [mm]<br />

ISSUES: low statistics;<br />

blood flow dilution;<br />

off-line PET logistics


Proton Range Radiography (PRR)<br />

Secondaries emission and reconstruction<br />

Electronic telescope for the measure of position and residual range of<br />

protons; it gives the density map of the traversed volumes; it permits<br />

to check in real time the treatment planning assumptions on position<br />

and dimensions of the traversed tissues and organs.<br />

Nuclear Scattering<br />

Tomography (NST)<br />

(U. Amaldi et al.)<br />

Three-dimensional map of the<br />

tissues densities obtained by<br />

vertex reconstruction of high<br />

energy protons interactions (><br />

600 MeV).<br />

Interaction Vertex<br />

Imaging (IVI)<br />

Density of interaction<br />

vertex reconstruction<br />

gives information on the<br />

Bragg peak position.<br />

PROMPT radiation (Gamma) - Enlight


Technology status and R&D:<br />

Accelerators Technology<br />

Dose Delivery Systems<br />

Gantry for carbon ions<br />

Patient positioning and dose verification<br />

Imaging and software<br />

Panoramica


1(+1) CT Medical Imaging rooms<br />

CNAO – Surface Level<br />

NIRS - 30th November 2007<br />

Advanced Medical Imaging Modalities (fusion sw)<br />

1 MR (3T) room<br />

1(+1) CT-PET rooms<br />

Advanced 3D molecular imaging modalities<br />

tumour molecular profiling<br />

dose painting with different LET ions<br />

( sources and accelerators choices)<br />

(O. Jäkel, in IBT, Springer2011)


Treatment Planning System<br />

TPS is directly related to scanning modality and RBE evaluation model<br />

Need to include management of moving organs and integration of in-room imaging<br />

(TPS used at CNAO)


Siemens<br />

TPS<br />

Imaging Modalities<br />

(CT, MR, CT-PET))<br />

DICOM<br />

DICOM<br />

RT Ion<br />

PT Archive<br />

(Short-term)<br />

Oncological Information System<br />

DICOM RT Ion<br />

DICOM<br />

RT Ion<br />

DICOM<br />

PACS<br />

PPS-PVS<br />

Elekta MOSAIQ V 2.0<br />

DOP<br />

OIS<br />

Long Term Storage R&V<br />

DICOM RT Ion<br />

Management of patients data in multiple rooms: patient throughput<br />

Networking with hospitals and clinics: patient recruitment<br />

DTMI<br />

CNAO<br />

Synchrotron<br />

Control<br />

System<br />

and<br />

Dose Delivery<br />

System


Conclusioni<br />

I centri di protonterapia sono “centri commerciali” (e<br />

“single room solutions” sono in arrivo). Non si può dire<br />

altrettanto dei centri con ioni carbonio.<br />

<strong>Gli</strong> sviluppi della tecnologia in adroterapia non si limitano al<br />

settore degli acceleratori, ma investono uno spettro molto<br />

ampio di sistemi: alcuni più urgenti di altri.<br />

Collaborazioni, confronti, rete sono parole chiave per il<br />

successo dell’adroterapia e sono utili per stabilirne<br />

l’evidenza clinica (l’aumento del numero di pazienti trattati<br />

è un fattore importante) .


GRAZIE PER L’ATTENZIONE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!