13.06.2013 Views

I POSSIBILI APPROCCI ALLA VALUTAZIONE DEL ... - Istituti

I POSSIBILI APPROCCI ALLA VALUTAZIONE DEL ... - Istituti

I POSSIBILI APPROCCI ALLA VALUTAZIONE DEL ... - Istituti

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

La risposta immunitaria a stressori infettivi e noninfettivi<br />

nel suino: distinzione tra la risposta<br />

costitutiva in interferon-alfa rispetto a quella virusindotta<br />

Massimo Amadori, Elisabetta Razzuoli<br />

IZSLER - Brescia<br />

Background<br />

Established view<br />

A new conceptual<br />

framework<br />

Open problems<br />

IZSLER Brescia


Introduzione: l’allevamento del suino<br />

Allevamento suino e uso del farmaco veterinario<br />

Punti critici del ciclo zootecnico: lo svezzamento<br />

Conseguenze fisio-patologiche sugli animali<br />

Possibili strategie per un aumentato benessere e<br />

riduzione dell’uso del farmaco<br />

IZSLER Brescia


L’allevamento del suino in Italia<br />

Suino pesante: 10 milioni capi macellati / anno<br />

Circuiti esterni: 3 milioni capi macellati / anno<br />

Scrofe: 800.000 circa<br />

Suini prodotti: 18 milioni nel complesso<br />

Mancano all’ “appello” 5 milioni di animali !!<br />

Di questi è interessante la scomposizione<br />

IZSLER Brescia


Gli aspetti preoccupanti<br />

(Candotti P., Rota Nodari S., 2006)<br />

Categorie: morti, “scarti” o “declassati”. Quindi:<br />

1,8 milioni morti durante l’allattamento<br />

0,25 milioni di scrofe e verri macellati<br />

0,72 milioni morti entro 80 giorni di vita<br />

0,54 milioni morti nel restante periodo<br />

Rapporto ISTAT 2005: segnalati 800.000 lattoni<br />

e 1.200.000 magroni macellati<br />

2 milioni di suini macellati come “scarti” (11%)<br />

IZSLER Brescia


Motivi di tali perdite ?<br />

Impianti tecnologici avanzati<br />

Riduzione ore lavoro / capo<br />

Strutture “hard”, alta competizione per risorse<br />

e zone riposo<br />

Qualità aria e pavimentazioni<br />

Fasi giovanili: patologie sistemiche (PMWS)<br />

Accrescimento: forme respiratorie<br />

Scrofe: rimonta al 35%, sindromi mammarie,<br />

osteo-articolari<br />

IZSLER Brescia


Uso degli antibiotici<br />

Condizioni attuali: uso di mangimi medicati su<br />

larga scala<br />

Uso profilattico: inaccettabile<br />

Farmaci iniettabili long acting : soggetti < 40<br />

Kg<br />

Soggetti malati: comunque numerosi<br />

Il trattamento di questi è obbligatorio (D.Lvo<br />

146/2001)<br />

IZSLER Brescia


Resistenza agli antibiotici<br />

Parere Scientifico Congiunto 2009 di: ECDC,<br />

EFSA, EMEA, SCENIHR<br />

Antibiotico-resistenza di agenti di zoonosi:<br />

in aumento in tutto il mondo<br />

E’ necessario rafforzare la sorveglianza<br />

Sviluppare nuovi antibiotici<br />

Sviluppare nuove strategie di controllo<br />

della antibiotico-resistenza<br />

(http://www.efsa.europa.eu/cs/BlobServer/Scientific_O<br />

pinion/1372.pdf?ssbinary=true )<br />

IZSLER Brescia


La situazione attuale<br />

Preoccupanti i livelli di resistenza osservati con<br />

Salmonella e Campylobacter spp<br />

Possibile contributo di biocidi (disinfettanti,<br />

antisettici e conservanti)<br />

Livelli diversi nei Paesi UE<br />

Difficile adozione di strategia unitaria<br />

Fonti principali di contagio alimentare: macello<br />

e processazione di alimenti<br />

Precauzioni per fluorochinoloni e cefalosporine<br />

IZSLER Brescia


Ceppi Salmonella resistenti a Chinolonici<br />

IZSLER Brescia


Resistenze agli antibiotici e sanità pubblica:<br />

un’incognita?<br />

The New England Journal of Medicine<br />

342: 1242-1249, 2000<br />

Ceftriaxone-resistent salmonella infection<br />

acquired by a child from cattle<br />

Paul D. Fey et al.<br />

IZSLER Brescia


Fabbisogno di antibiotici: fronti di<br />

intervento<br />

Igiene zootecnica e benessere animale<br />

Tempestività degli accertamenti diagnostici<br />

Genetica animale e adattamento ambientale<br />

(“forbice” da controllare)<br />

Funzionalità del sistema immunitario innato ed<br />

adattativo<br />

Immuno-modulazione mirata in fasi critiche<br />

dei cicli zootecnici<br />

Quali basi concettuali ?<br />

IZSLER Brescia


stimoli<br />

psicosensoriali<br />

SISTEMA NERVOSO CENTRALE<br />

sistema neuroendocrino<br />

SISTEMA IMMUNITARIO<br />

stimoli<br />

antigenici<br />

risposte<br />

comportamentali<br />

risposta<br />

immunitaria<br />

IZSLER Brescia


The stress response<br />

Immune response, stress and inflammation:<br />

ancestral set of responses neutralization of<br />

noxae perturbing body homeostasis<br />

Cytokines : homeostatic agents<br />

Effector mechanisms: similar in infectious and<br />

non-infectious stress<br />

For instance: IL-1 HPA + cerebral NA after<br />

infection, electric shock or restraint<br />

Brain IFN-α after infectious and noninfectious<br />

stimuli<br />

IZSLER Brescia


La risposta immunitaria<br />

Può essere rivolta verso:<br />

STRESSORI INFETTIVI<br />

STRESSORI NON INFETTIVI<br />

Degenerazione, stress e distruzione tissutale<br />

da cause varie (es. : alterazioni e disfunzioni<br />

metaboliche, stress ox, lesioni articolari,<br />

disturbi vascolari, ecc.)<br />

IZSLER Brescia


SISTEMA IMMUNITARIO<br />

Sistema deputato al riconoscimento delle componenti<br />

estranee all’organismo animale<br />

Componenti della “clearance “ degli agenti di infezione<br />

Fase Caratteristiche Meccanismo<br />

Immediata (96 ore)<br />

Non specifica<br />

Inducibile<br />

Non da memoria<br />

Specifica, inducibile, dà<br />

memoria, Comporta<br />

linfociti specifici<br />

Interferon, cellule NK<br />

attivate da IFN<br />

Linfociti T Citotossici,<br />

interferon, anticorpi<br />

specifici<br />

IZSLER Brescia


Attivazione del Sistema Immunitario Innato<br />

1)PAMPs: strutture microbiche tipiche (LPS)<br />

Riconoscimento mediato da: PRP (es. TLR),<br />

RIG-like helicases (RIG-1 e MDA-5 per ac.<br />

Nucleici virali), NLRs (es. per PG batterico)<br />

2) DAMPS: da cellule danneggiate (es. acido<br />

urico) segnalazione del “pericolo”<br />

Quale teoria alla base del modello ?<br />

IZSLER Brescia


An innate sense of danger<br />

(Matzinger P., 2002, Ann. N.Y. Acad. Sci. 961, 341-342)<br />

Il paradigma “self – not self” è insufficiente<br />

Presenza fisiologica di cellule T e B autoreattive<br />

ma innocue, proteine del latte, Ag<br />

alimentari, batteri commensali, feti, sperma:<br />

fenomeni non spiegati dal paradigma<br />

Driving force: riconoscimento del “pericolo”<br />

Danger: stress e/o distruzione tissutale:<br />

rilascio di segnali (alarmine o DAMPs)<br />

IZSLER Brescia


Il ruolo delle “alarmine”<br />

DAMPs o “alarmine”: prodotto di cellule<br />

necrotiche, stressate e degenerate<br />

Alarmine: HMGB1 (e istoni in generale): lega<br />

TLR2 e 4, RAGE<br />

ROS ciclofillina A, proteine S100 (A8, A9):<br />

legame a TLR-4<br />

Trasduzione di potenti segnali in senso proflogistico:<br />

SAPK cJun NH2, p38 MAPK<br />

HSP72: antagonista naturale di tali risposte<br />

(vedi bovine da latte !)<br />

IZSLER Brescia


Alarmine: secrezione di istoni in cellule BHK-21<br />

infettate da FMDV O1 Losanna<br />

1 2 3 4 5 6 7 8<br />

30’ k30 120’ k120’ 240’ k240’ 360 k360’<br />

IZSLER Brescia


Infiammazione mortale, no infezione.<br />

Il mistero SIRS<br />

(Systemic Inflammatory Response Syndrome)<br />

Esempio: pazienti con gamba rotta, dopo 2 giorni<br />

febbre altissima, shock, resp. artificiale<br />

Ipotesi trad. Ridotto flusso ematico all’intestino,<br />

aumento permeab. Intestinale, batteriemia<br />

In realtà: quadro plasmatico sterile in vena porta<br />

Plasma: alto contenuto di DNA, MITOCONDRI !<br />

Per SII: mitocondri = Batteri = risposta flogistica<br />

HBS (Hemorragic Bowel Syndrome) nelle bovine da<br />

latte ??<br />

IZSLER Brescia


Organizzazione della risposta flogistica:<br />

il ruolo dell’inflammosoma<br />

Indotto da segnali di PAMPs e DAMPs<br />

Complesso di oligomeri NLRs/adattatore (ASC)<br />

caspasi 1 IL-1β<br />

3 classi: Nalp1, Nalp3, IPAF (diverso effettore)<br />

IL-1β MyD88: trasduzione di segnale come<br />

PAMP !!<br />

Attivazione: variazioni ioniche (K+), ATP, acido<br />

urico, stress ox<br />

IZSLER Brescia


Ruolo degli inflammosomi<br />

Discriminare l’ambiente microbico e non<br />

microbico per individuare le condizioni di<br />

“pericolo” (Danger Theory)<br />

Repertano segnali infiammatori endogeni in<br />

assenza di infezioni microbiche (vedi SIRS!)<br />

Sono alla base dell’efficacia di alcuni adiuvanti<br />

come Al (OH) 3 DC inflammosoma<br />

NALP3 IL-1β<br />

Collegamento immunità innata / adattativa<br />

IZSLER Brescia


Come si manifesta la risposta a<br />

stressor non-infettivi ?<br />

1) Fenomeno flogistico citochine e chemochine<br />

circuiti regolazione omeostatica<br />

2) Risposta linfocitaria allo stress (specie linf. T γδ):<br />

Riconoscimento di “neo-antigeni” e antigeni da stress:<br />

T10, T22, CD1c (DC!), IPP, ATPseF1, altri Ag MHC-like<br />

(MICA, MICB, H60). Ovvero:<br />

Danno epit. Linf.Tγδ DC risposta T conv.<br />

(inversione del flusso consueto)<br />

Lymphoid Stress-Surveillance Response<br />

IZSLER Brescia


Una nuova frontiera: il concetto di<br />

“Behavioral Immunization”<br />

Precedenti blandi stress sono “educativi”<br />

Fenomeni immunitari implicati ?<br />

Topi deficitari di cellule T fronteggiano peggio lo<br />

stress mentale<br />

Stress: aumentato traffico di linfociti al cervello<br />

Effetto protettivo verso nuovo stress<br />

Minore ansietà dopo vaccinazione con peptide<br />

SNC<br />

IZSLER Brescia


Esistono evidenze in medicina veterinaria?<br />

Lymphoid Stress-Surveillance Response: modelli<br />

umani e murini<br />

Secrezione di citochine in risposta a stressors<br />

non-infettivi: evidenziata anche in bovini e suini<br />

Interferon I (specie IFN-α) gioca un ruolo<br />

regolatorio centrale<br />

IZSLER Brescia


Interferon: a dogma in immunology<br />

Dogmas / paradigms = serendipitous<br />

Discovery of new components of the immune<br />

system<br />

Interferon = no exception to this rule<br />

1957 = Isaacs and Lindenmann discovery of<br />

a potent antiviral substance accumulated in<br />

embryonated eggs<br />

50 years later: most immunologists share the<br />

same view: antiviral activity + “accessory<br />

properties”<br />

IZSLER Brescia


IFNs as homeostatic agents<br />

Three types of IFNs (I, II and III)<br />

Type I IFN: 10 sub-families (α, β, ω, τ, etc.); many α subtypes<br />

IFN-α : a highly diversified system (13 genes and 5 pseudogenes<br />

in humans; at least 14 genes and 2 pseudogenes in pigs) should<br />

serve diverse functions and effector mechanisms<br />

Low levels of IFN α/β in tissues of healthy subjects:<br />

constitutive expression<br />

Steady-state role under health conditions<br />

Most important: frequent involvment in the stress<br />

response<br />

IZSLER Brescia


The physiological IFN response<br />

IFN is produced under health conditions: e.g.<br />

after meals and drinking<br />

Not obligatorily related to infection status<br />

This is true of the whole type I family<br />

IFN-β : maintenance of memory T cells<br />

IFN-τ : survival of the conceptus in ruminants<br />

IZSLER Brescia


Aims of the physiological IFN response<br />

Strong cellular responses to viruses and<br />

cytokines<br />

To control the effects of growth factors<br />

To prevent unnecessary harmful inflammatory<br />

responses in tissues<br />

Default function of IFN-α<br />

It would complement other established<br />

biological activities after infectious and noninfectious<br />

IFN-inducing stimuli<br />

IZSLER Brescia


In vitro activity of IFN-α<br />

Very low concentrations (0.05 – 5 U/ml)<br />

down-regulate CD14 expression in swine<br />

PBMC and PAM, as opposed to higher<br />

concentrations<br />

Signalling by LPS/LPS binding protein is<br />

inhibited<br />

Released CD14: potent scavenging system for<br />

LPS<br />

IZSLER Brescia


How does the control action take place?<br />

A direct modulation of the inflammatory<br />

response in target cells<br />

Release of second messengers for<br />

neighbouring cells<br />

Neighbouring cells would be thus instructed to<br />

down-regulate the inflammatory response<br />

An in vivo propagation of these signals to<br />

distant sites would be possible as well.<br />

IZSLER Brescia


The IFN-α response in farm animals<br />

Low-titered IFN-α response in pigs after early<br />

weaning and transportation (calves, too)<br />

Early weaning: activation of inflammatory<br />

cytokine genes in the small intestine and upregulation<br />

of IFN-γ in PBMC<br />

IFN-α at weaning: (1) A SPF pig model . (2) A<br />

conventional pig model<br />

IZSLER Brescia


The SPF pig study<br />

1 litter of L x Lw SPF piglets (n. 8)<br />

Matched for weight at day 20 of age (4.9±0.9 versus<br />

5.4±0.8 Kg in treatment and control groups, respectively)<br />

and weaned one day later.<br />

At weaning, 4 piglets: 20 IU freeze-dried human IFNalpha<br />

/ Kg b.w. for 10 days in RG lactose per os. 4 piglets:<br />

placebo (the same mass of RG lactose) in a separate cage.<br />

Daily clinical inspections. Blood samples at days –1 / +3 /<br />

+21 with respect to weaning<br />

Individual weight controls at days –1/ +21 / +30<br />

RT real time PCR for inflammatory cytokine genes in<br />

PBMC. Interferon-α and TNF-α bio-assays on serum<br />

samples (MDBK and WEHI 164 cells).<br />

IZSLER Brescia


Results obtained on SPF piglets<br />

No clinical difference between treated and control animals<br />

Daily weight gain greater in IFN alpha-treated groups between days -1<br />

and +21 and also between days 21 and 30; the effect of the treatment between<br />

days –1 and + 30 was almost significant (p


log2(n-fold)<br />

N-fold gene expression values by the 2 -ΔΔCt method<br />

(basis: mean value at day -1)<br />

Housekeeping gene: TATA box-binding protein gene (TBP)<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

-4.0<br />

-5.0<br />

-hIFN-alpha<br />

IFNA<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

IFNG IL1B IL6<br />

TNF<br />

+hIFN-alpha<br />

α<br />

-hIFN-alpha<br />

β<br />

+hIFN-alpha<br />

b<br />

-hIFN-alpha<br />

a<br />

+hIFN-alpha<br />

3d 21d 3d 21d 3d 21d 3d 21d 3d 21d<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

-hIFN-alpha<br />

+hIFN-alpha<br />

IZSLER Brescia


Aims:<br />

The conventional pig model<br />

1) To check the oral, IFN-α treatment under<br />

practical, large-scale conditions (in drinking<br />

water)<br />

2) To evaluate the endogenous IFN-α<br />

response<br />

3) To assess the influence of the weaning age<br />

4) To characterize such a stress-induced<br />

response<br />

IZSLER Brescia


The field trial: role of the endogenous IFN-α response<br />

39, LxLW piglets, of a healthy, farrow-to-finish<br />

herd, randomly allocated to:<br />

Group 1: weaned at 28 days (19 pigs, 2 litters)<br />

Group 2: weaned at 22 days (20 pigs, 2 litters)<br />

Group 3: weaned at 22 days and orally treated<br />

with hIFN-α in drinking water (1 IU / Kg<br />

b.w. over 10 days) (20 piglets, 2 litters).<br />

Clinical checks and blood samplings at days -1 /<br />

+6 / +12 with respect to weaning<br />

IZSLER Brescia


Clinical findings<br />

All piglets remained healthy during the trial<br />

No clinical difference between early and late weaning<br />

groups. DMWG: greater in the late weaning group<br />

(28 days) and in IFN-treated animals (both: +1.5<br />

Kg on average at 48 days of age) (p


The IFN-α response in serum samples<br />

Interferon alpha-positive<br />

alpha positive pigs out of the total<br />

Groups Day -1 Day + 6 Day + 12<br />

1 (weaned at 28 days) 1/19 7/19* 0/19<br />

2 (weaned at 22 days) 1/20 20/20 1/20<br />

3 (weaned at 22 days<br />

and IFN alphatreated)<br />

0/20 18/20 0/20<br />

*Significantly different, p


Gel-filtration<br />

Gel filtration on a Sephadex G-75 75 column of IFN-α IFN in samples<br />

from group 2 pigs at day + 6<br />

Kav<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

Fractions checked by a bioassay<br />

on MDBK cells<br />

Serum<br />

* Also shown by rec. IFN-α 1<br />

0<br />

y = -0,5959x+3,1898<br />

27-30 27 30 kDa*<br />

17-18 17 18 kDa*<br />

< 14 kDa<br />

(Apparent MW)<br />

R 2 = 0,9909<br />

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9<br />

PM log<br />

Log MW<br />

Fractions checked by ELISA<br />

with mAbs F17 and K9<br />

PBMC NP-40 lysates<br />

Also: 58 kDa (dimer)<br />

and 41 kDa<br />

IZSLER Brescia


Flow Cytometry: Cytometry:<br />

analysis of intracellular IFN-α in<br />

fixed and permeabilized swine PBMC at day +6<br />

IFN-α positive samples out of the total:<br />

• Group 1: 4 / 19 (0.6 – 3.9% positive cells)<br />

• Group 2: 10 / 20 (0.6 – 8.8% positive cells)<br />

IZSLER Brescia


Control<br />

Anti-IFN α mAb<br />

Flow cytometry assay for intracellular porcine IFN-α<br />

in fixed and permeabilized swine PBMC at day +6<br />

2% IFN α−positive cells on average<br />

(0.1 – 0.3% in 2-3 month-old pigs)<br />

IZSLER Brescia


RT real time PCR for IFN-α IFN genes (group group 2 pigs) pigs<br />

Day -1<br />

Campione IFN-α 1 IFN-α 2 IFN-α 3 IFN-α 4 IFN-α 5/6 IFN-α 7/11 IFN-α 8 IFN-α12<br />

25T0 - - - - + - - +<br />

26T0 - - - - + - - +<br />

28T0 - - - - - - - +<br />

29T0 - - - - + - - +<br />

30T0 - - - - + + - +<br />

31T0 + - - - + - - -<br />

32T0 + + - - - + - -<br />

33T0 - - - - + - - -<br />

34T0 + + - - + + - +<br />

Day +6: no expression evidenced<br />

Day +12<br />

Campione IFN-α 1 IFN-α 2 IFN-α 3 IFN-α 4 IFN-α 5/6 IFN-α 7/11 IFN-α 8 IFN-α12<br />

25T+12 + + - - - - - -<br />

26T+12 + + - - - - - -<br />

28T+12 + + - - + - - +<br />

29T+12 - - - + - - -<br />

30T+12 - - - - + - - -<br />

31T+12 - + - - + - - +<br />

32T+12 + + - - - - - -<br />

33T+12 - - - - + - - -<br />

34T+12 + + - - + + - +<br />

Assays carried out according to Cheng G. et al., (2006), Gene 382, 28-38<br />

(No valid results for IFN α 10 gene)<br />

IZSLER Brescia


IFN-α gene expression at days -1, +6, +12<br />

Day -1<br />

Day +12<br />

Day +6<br />

Day +12<br />

Day +12<br />

Day -1<br />

Day +6<br />

Day -1<br />

RT real time PCR for IFN-α 5/6<br />

The test was carried out on<br />

PBMC of the same pig at days –1<br />

/ +6 / +12 with respect to weaning<br />

IZSLER Brescia


Constitutive and virus-induced expression<br />

Previous data on PK-15 cells in vitro:<br />

Virus-induced expression: IFN-α 2/3/4/8/9/10/13<br />

Constitutive expression: IFN-α 1/2/5/6/7/11/12<br />

Truncated Porcine IFN-α genes: IFN-α 1/2/3/11<br />

Genes with N-glycosylation site: IFN-α 7/9/10/11<br />

IZSLER Brescia


Issues raised by the field trial and in vitro tests<br />

Is this pattern of response also applied to<br />

infectious (viral) stressors ?<br />

Are inflammatory cytokines released at<br />

weaning implied in the modulation of type I<br />

IFN system ?<br />

This is the reason why we investigated IFN<br />

genes and proteins in a relevant model of in<br />

vitro cultured swine PBMC from healthy, 70 to<br />

80-day old animals, far away from the<br />

weaning stress.<br />

IZSLER Brescia


In vitro tests<br />

IFN proteins (α nd γ) and IFN-α gene expression<br />

in PBMC cultures of 70/80-day old pigs<br />

Time 0<br />

Unstimulated control<br />

Priming (100 IU/ml IFN-a)<br />

Priming + Paramixovirus (NDV) stimulation<br />

NDV, only<br />

Supernatant collection / RNA extraction after 18<br />

hours of culture<br />

IZSLER Brescia


In vitro results<br />

IFN-α1, α2, α4, α5/6 and α7/11 genes were shown to be<br />

involved in constitutive expression in uncultured PBMC<br />

(Time 0 samples).<br />

Further IFN-α genes were then expressed in culture.<br />

Interestingly, expression was often shown in unstimulated<br />

cultures, as well.<br />

As a result, NDV stimulation often caused only increased<br />

expression compared with unstimulated cultures<br />

Alpha 9 expression: virus-dependent, associated to<br />

protein release<br />

IZSLER Brescia


Un ruolo di IL-1β ?<br />

IL-1β suina ricombinante può indurre in vitro<br />

tracce di IFN-α.<br />

Colture di PBMC e di sangue in toto<br />

Per quanto concerne i geni IFN-α, IL-1β si<br />

comporta come NDV, specie per quanto<br />

concerne il gene α9<br />

La co-presenza di TNF-a modula<br />

l’espressione dei geni IFN-α da parte di IL-<br />

1β<br />

Ruolo di inflammosoma in vivo ?<br />

IZSLER Brescia


A possible explanation of the IFN-α response ?<br />

Weaning<br />

(alarmins)<br />

Intestinal cell damage NLRs<br />

inflammosomes IL-1β<br />

Type I IFN<br />

(Control action)<br />

IL-18<br />

IL-12<br />

Ads. LPS<br />

(Amplification of<br />

antibacterial<br />

immune<br />

response)<br />

(α / β) (control action ?)<br />

IFN-γ: danger ! (Imbalance Th17/Treg in SI?)<br />

Up-regulation of crypt cell response to LPS, downregulation<br />

of repair processes in ECM, increased intestinal<br />

permeability: post-weaning diarrhoea !!<br />

IZSLER Brescia


Response to LPS of intestinal cells<br />

Porcine intestinal epithelial cells: expression<br />

of TLR-4 / MD2 complex (Moue et al., 2008)<br />

Fully competent for a response to LPS (IL-8<br />

for example)<br />

IZSLER Brescia


Which circumstantial evidence ?<br />

IL-12 + IL-18 i.p. diarrhoea in mice<br />

Histologically, lesions in SI similar to those of pigs after<br />

weaning. Effects abrogated in IFN-γ KO mice (Chikano<br />

S. et al., 2000, Gut, 47, 779-786)<br />

IFN-γ increases intestinal epithelial permeability<br />

(Beaurepaire C. et al., 2009)<br />

In piglets, IL-1β gene is up-regulated in most parts of<br />

the intestine after weaning (Pié S. et al., 2004)<br />

In piglets, plasma IL-1β is increased after weaning<br />

(McCracken B. et al. 1995)<br />

In vitro, porcine IL-1β induces IFN-α in leukocyte<br />

cultures.<br />

IZSLER Brescia


Conclusions: (1)<br />

An oral, low-dose IFN-α treatment was shown to<br />

modulate the stress of early weaning<br />

No clinical difference, but DMWG was greater<br />

IFN-γ is the main target of the control action in PBMC<br />

This is justified by precise biological properties of IFN-γ<br />

IFN-α: possible amplification loop of the IL-1β response<br />

TNF-α and IL-6 play instead a minor role in the 1st week<br />

after weaning<br />

A tendency to a control action in the 3rd week after<br />

weaning (correlation with WG data in the field trial !)<br />

IZSLER Brescia


Conclusions: (2)<br />

Endogenous IFN-α is involved in the pigs’<br />

adaptation strategy to weaning<br />

The requirement is probably lesser in 4 -, compared<br />

with 3-week old piglets.<br />

A transcriptional feed-back control on IFN-α is<br />

exerted at day 6 after weaning.<br />

IZSLER Brescia


Take home message<br />

Type I IFNs can act as important homeostatic<br />

agents in the response to environmental stressors<br />

The immune system displays similar responses to<br />

both infectious and non-infectious stressors<br />

IZSLER Brescia


Use of IFN-α in veterinary medicine<br />

Field trials as immunomodulator: IFN<br />

administration and induction of endogenous IFN<br />

Environment is critical: poor efficacy in the<br />

presence of overwhelming infectious pressure<br />

Protocols to be adopted in “problem” herds<br />

and/or in farms with abnormal values of clinical<br />

immunological parameters.<br />

Evidence of reduced immunological competence<br />

IZSLER Brescia


IFN-α trial 1: anamnestic data<br />

In a farrow-to-finish farm with 520 sows, a respiratory form was<br />

observed in 40-day old piglets (20 days after weaning) :<br />

» High morbility: 60%<br />

» Dry cough<br />

» Mortality: 7-12%<br />

» Low-grade anorexia<br />

15% of piglets experienced progressive wasting<br />

Virological tests on affected animals revealed both PRRSV (Eu and<br />

USA) and PCV2<br />

IZSLER Brescia


Protocol<br />

Trial scheme<br />

Oral administration of freeze-dried IFN-α for 15 days after weaning<br />

Product constantly fed (10 IU/Kg bw) by an automatic device through the<br />

drinkers<br />

A more strict control of good farming practices<br />

Controls: initial and final weights of pigs, number of dead and waste pigs,<br />

mean daily weight gain<br />

IZSLER Brescia


Group Pigs<br />

Mean<br />

weight<br />

at 22 days<br />

(Kg)<br />

Results<br />

Mean weight<br />

at 86 days<br />

(Kg)<br />

Daily weight<br />

gain (Kg)<br />

Dead and<br />

waste pigs<br />

(%)<br />

IFN-α treated 280 5.6 37.1 0.48 1.4*<br />

Controls 280 5.6 33.8 0.44 4.9*<br />

*P


IFN-α trial 2<br />

(Candotti P., Rota Nodari S., 2003)<br />

Aim: to evaluate the<br />

clinical efficacy of oral<br />

IFN-α treatment against<br />

a reproductive<br />

syndrome ( abortion,<br />

agalaxia and<br />

periparturient mortality)<br />

IZSLER Brescia


Use of oral IFN-α in an outbreak of reproductive PRRS<br />

In july 2002 a herd of 400 sows was affected<br />

by a typical PRRS outbreak, characterized:<br />

» Early parturition<br />

» Agalaxia<br />

» High mortality of piglets<br />

Oral administration in the farrowing cage,<br />

starting at day 7 before the alleged parturition<br />

date till day 3 after farrowing<br />

IZSLER Brescia


100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Results: sows<br />

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9<br />

Healthy<br />

Diseased<br />

IZSLER Brescia


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Week 1<br />

Week 2<br />

Week 3<br />

Week 4<br />

Results: piglets<br />

Week 5<br />

Week 6<br />

Week 7<br />

Week 8<br />

Week 9<br />

Weaned %<br />

Mortality %<br />

IZSLER Brescia


IFN-α trial 3: reproductive PRRS<br />

(Candotti P., Rota Nodari S., 2003)<br />

In January 2002 a herd of 1100 sows was<br />

affected by reproductive PRRS:<br />

» Enzootic abortion<br />

Oral administration of IFN-α was carried out<br />

on all pregnant sows in the ad libitum food<br />

ration for 15 days in a row<br />

The treatment was repeated 15 days later<br />

IZSLER Brescia


70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

June<br />

August<br />

October<br />

Results<br />

December<br />

Abortions<br />

February<br />

April<br />

June<br />

August<br />

October<br />

December<br />

IZSLER Brescia


Dose/response curve of IFN-α<br />

Foundation in the dose/response curve<br />

Immune effector functions: bell-shaped curve<br />

Positive/decrease/even reversion (e.g. Ab response<br />

to sheep RBC in mice)<br />

Concept: low dose priming / high dose suppression<br />

Timing and concentration: crucial roles (subtypes?)<br />

At odds with antiviral / anti-proliferative activities:<br />

it increases with increasing IFN-α concentrations<br />

IZSLER Brescia


Homeostatic role of IFN-α:<br />

truck transportation of calves<br />

Long-distance journeys of calves:<br />

Serious sensory dullness<br />

Dehydration (HCT, serum protein, albumin, Hb)<br />

Adrenal response (glucose, urea)<br />

PO 4 increase e Fe decrease<br />

Detection of IFN-α in serum<br />

IZSLER Brescia


Risposta al trasporto: citochine e risposta APP+<br />

concentrazione<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

in vitelli trasportati dalla Polonia<br />

T-2 T-1 T0 T+4 T+15<br />

tempo<br />

IL-6 (ng/ml)<br />

TNF alfa (ng/ml)<br />

Aptoglobina (mg/dl)<br />

Elevata risposta in IL-6 e TNF-alfa (carattere compensativo) prima e dopo il trasporto<br />

Risposta APP+<br />

Elevata pressione infettante in allevamento di origine<br />

IZSLER Brescia


IFN-alfa IFN alfa e risposta adattativa in vitelli trasportati<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

dalla Polonia<br />

T-2 T-1 T0 T+4 T+15<br />

Tempo<br />

IFN-alfa<br />

Negativi<br />

Positivi<br />

Risposta in IFN-alfa in tutti gli animali nel centro di raccolta e dopo il trasporto<br />

Diminuzione a 4 giorni dall’arrivo in Italia<br />

Conferma del suo ruolo adattativo di tale citochina<br />

picco di citochine infiammatorie risposta IFN-alfa<br />

IZSLER Brescia


La filiera ANAFI:<br />

il trasporto dei bovini di breve durata<br />

5 trasporti controllati di torelli Frisoni di 6-12<br />

mesi al Centro Genetico ANAFI di Cremona<br />

(totale 26)<br />

Dicembre 2008, Gennaio 2009, Aprile 2009,<br />

Giugno 2009, Luglio 2009<br />

200 – 300 Km, 3-6 ore*, Torino-Cuneo/Cremona<br />

Sopralluoghi a T-4 (esame clinico ed etologico),<br />

T0 (carico-scarico), T+4, T+15, T+30<br />

Prelievi ematici nelle stesse date<br />

Riprese filmate da T-4 a T+4<br />

IZSLER Brescia


E’ importante la componente climatica nei<br />

trasporti animali ? Suddivisione dei trasporti di<br />

breve durata su base stagionale<br />

Si possono distinguere:<br />

2 trasporti invernali (range: 5,7-13,7 °C; 2,6-<br />

9,4 °C ). Trasporti 1 e 2<br />

1 trasporto in stagione termo-neutrale (range<br />

11,3-16,1 °C) Trasporto 3<br />

2 trasporti estivi (range 23-33 °C, THI 46-<br />

73,5). Trasporti 4-5. Temp. > superiori a<br />

quelle prospettate nel doc. Commissione UE<br />

IZSLER Brescia


Lesioni muscolari, enzima CK plasmatico<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

T-4 T0 T+4 T+15 T+30<br />

CK<br />

giorni dal trasporto<br />

Andamento differente nel trasporto 1 a causa di forti interazioni<br />

agoniste di 2 torelli, mai tenuti in gruppo prima. Elevata<br />

prevalenza di risposte IFN-alfa sino a T+15 !!<br />

Gruppo 1<br />

Gruppo2<br />

Gruppo3<br />

Gruppo4<br />

Gruppo 5<br />

IZSLER Brescia


Risposta negativa (APP-) e positiva di fase acuta<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Albumina<br />

T-4 T0 T+4 T+15 T+30<br />

giorni dal trasporto<br />

La risposta APP+ nel gruppo 5 è accompagnata da risposta APP-<br />

(ipo-albuminemia) a T+15, come evidenziato nelle bovine da latte<br />

nel periparto. Forte correlazione con la risposta in IFN-alfa !!<br />

Gruppo 1<br />

Gruppo2<br />

Gruppo3<br />

Gruppo4<br />

Gruppo 5<br />

IZSLER Brescia


Citochina IL-6 e risposta di fase acuta<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

T-4 T0 T+4<br />

giorni dal trasporto<br />

T+15 T+30<br />

Andamento atteso per i trasporti 2 e 5: come atteso, in assenza<br />

di lesioni, RFA dipende da incremento ad alto titolo di IL-6<br />

plasmatica.<br />

IL 6<br />

Gruppo 1<br />

Gruppo2<br />

Gruppo3<br />

Gruppo4<br />

Gruppo 5<br />

IZSLER Brescia


Trasporto breve: conclusioni<br />

Non è possibile considerare l’impatto del trasporto<br />

avulso dal contesto ambientale (origine +<br />

destinazione): strategia adattativa globale.<br />

L’esito finale in termini di sanità e benessere animale<br />

dipende dal complesso di condizioni pre e post<br />

trasporto, oltre che dal trasporto stesso.<br />

2 strategie di adattamento:<br />

A basso impatto infiammatorio (gr. 3): incremento e/o<br />

allungamento delle alterazioni da stress acuto<br />

(cortisolo, NEFA, glucosio, lattato)<br />

Ad alto impatto infiammatorio (gr. 1): da traumi nel<br />

trasporto (CK, APP+, IFN-alfa, NEFA)<br />

<br />

IZSLER Brescia


The “hinge” role of IFN-α<br />

A “hinge” role of IFN-α between innate and<br />

adaptive immunity is widely recognized<br />

PDC IFN-α type and extent of the<br />

adaptive immune response<br />

The concept should now be widened<br />

IFN-α would also promote a balance between<br />

danger and response<br />

A homeostatic control action: the “spring”<br />

mechanism<br />

IZSLER Brescia


The “spring” mechanism of IFN-α<br />

IZSLER Brescia


Flow chart of actions<br />

Start of innate immunity: IFN-α released at<br />

moderate/high concentrations after TLR<br />

recognition of microbes<br />

Later on clearance of microbes decrease<br />

of IFN-α release<br />

Shift to an inflammatory control action based<br />

on the transcriptional control of inflammatory<br />

cytokine genes and PAMP receptors (CD14)<br />

Major tissue damage is avoided<br />

The system gets at a “stand-by” status<br />

IZSLER Brescia


Tuning of the IFN-α response<br />

Tuning of the response of paramount<br />

importance<br />

Detrimental effects because of high therapy<br />

dosage, overexpression in transgenic mice,<br />

genetic defects of regulation even without<br />

infection<br />

This confirms the induction of IFN-α under<br />

health conditions and the need for a strict<br />

control of this response<br />

Excessive concentrations of IFN-α checked by<br />

Ab responses in the host (self /not self ??)<br />

IZSLER Brescia


A note of caution<br />

Several features need to be investigated<br />

4 issues:<br />

which effector cell populations ?<br />

how are they activated ?<br />

how can they sense different<br />

concentrations of IFN-α ?<br />

how do they propagate the signal ?<br />

As many issues for future research !!<br />

IZSLER Brescia


Acknowledgements<br />

Dr. Paolo Candotti, IZSLER, Brescia<br />

Dr. Ivonne Laura Archetti, IZSLER, Brescia<br />

Dr. Barbara Begni, IZSLER, Brescia<br />

Antonio Cristiano<br />

Cinzia Mantovani<br />

Lab technicians, IZSLER<br />

IZSLER Brescia


Thank you for<br />

the attention !<br />

IZSLER Brescia

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!