HEARTLINE HSM Genoa Cardiology Meeting - Aristea

HEARTLINE HSM Genoa Cardiology Meeting - Aristea HEARTLINE HSM Genoa Cardiology Meeting - Aristea

01.06.2013 Views

18 La metodica ultrasonora attualmente riveste un ruolo limitato nel valutare il rilascio di cellule staminali nell’organo bersaglio; altre metodiche di imaging quali la risonanza magnetica e la medicina nucleare sono state utilizzate con buoni risultati per questa nalità. Un vantaggio dell’ecocardiograa è quello di potere essere eseguita in tempo reale al momento della iniezione delle cellule staminali. L'ecocardiograa transesofagea permette una eccellente visualizzazione in tempo reale del miocardio e può essere eseguita al momento del cateterismo cardiaco durante iniezione delle cellule staminali. Per tale scopo sono state utilizzate nanoparticelle per contrassegnare cellule CD1 + iniettate nel miocardio ischemico dell’animale da esperimento (27) ; la metodica ecocardiograca transesofagea ha permesso la visualizzazione delle cellule impiantate nel miocardio sia durante l’iniezione che durante il follow-up. 2) Funzione ventricolare sinistra La maggior parte degli studi con le cellule staminali utilizzano l’ecocardiograa per la valutazione dei volumi, della massa e della frazione di eiezione del ventricolo sinistro. L'utilizzo della formula di Simpson per il calcolo dei volumi con ecocardiograa è meno riproducibile della misurazione dei volumi mediante risonanza magnetica. L’iniezione di microbolle per via endovenosa, aumenta la denizione del miocardio migliorando l'accuratezza e la riproducibilità dei volumi con la metodica ecocardiograca. )Perfusione miocardica nella terapia cellulare e studio della angiogenesi Il trapianto di cellule midollari nel cuore o la somministrazione di citochine possono essere in grado di favorire la rigenerazione cardiaca e la induzione di nuova angiogenesi. I microvasi che si formano in seguito al trapianto di cellule midollari sono troppo piccoli per essere visualizzabili con la metodica angiograca. Per questo motivo è stata impiegata la metodica ECM per la valutazione della angiogenesi dopo terapia cellulare. Nell’animale da esperimento, è stata osservata una correlazione tra l’intensità di contrasto miocardico e la densità capillare osservata all’esame istologico a livello miocardico, confermando come la metodica ECM possa essere una metodica promettente nell’ambito della ricerca clinica della terapia cellulare (28) . )Vitalità miocardica La valutazione della vitalità miocardica e quindi della integrità del microcircolo, effettuata mediante ECM, è importante nel determinare la prognosi del paziente e straticare il paziente in previsione di terapia cellulare. )Targeted Imaging Il “Targeted Imaging” rimane un'area di ricerca molto interessante che utilizza differenti modalità per identicare e visualizzare speciche componenti tissutali con la nalità di identicare meglio le regioni miocardiche idonee per la terapia cellulare. Mentre il Targeted Imaging non è ancora utilizzato da un punto di vista clinico, è stato dimostrato avere un grande potenziale in studi sull'animale. Il targeted imaging può essere effettuato con ultrasuoni utilizzando microbolle dirette a markers specici. Per esempio, alcuni tipi di microbolle si possono legare a leucociti permettendo di visualizzare l'inammazione legata alla lesione miocardica da riperfusione nel corso di infarto miocardico acuto. E’ stato di-

mostrato che il miocardio ischemico può essere visualizzato utilizzando microbolle che si legano alla P-Selectina (29) . È possibile che queste tecniche possano essere estese in futuro per permettere la visualizzazione delle cellule staminali. Bibliograa 1) S.K. Heinle, J. Noblin and P. Goree-Best et al., Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress: comparison with (99m)Tc-sestamibi SPECT imaging, Circulation 102 (2000), pp. –60. 2) M. Olszowska, M. Kostkiewicz and W. Tracz et al., Assessment of myocardial perfusion in patients with coronary artery disease Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography, Int J Cardiol 90 (2002), pp. 9– . ) M.A. Oraby, J. Hays and F.A. Maklady et al., Assessment of myocardial perfusion during pharmacologic contrast stress echocardiography, Am J Cardiol 89 (2002), pp. 6 0–6 . ) K. Wei, L. Crouse and J. Weiss et al., Comparison of usefulness of dipyridamole stress myocardial contrast echocardiography to technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 Multicenter Phase 2 Trial results), Am J Cardiol 91 (200 ), pp. 129 –1298. ) G. Rocchi, F. Fallani and G. Bracchetti et al., Non-invasive detection of coronary artery stenosis: a comparison among power- Doppler contrast echo, 99Tc-sestamibi SPECT and echo wall-motion analysis, Coron Artery Dis 1 (200 ), pp. 2 9–2 . 6) R. Senior, W. Lepper and A. Pasquet et al., Myocardial perfusion assessment in patients with medium probability of coronary artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc singlephoton emission computed tomography, Am Heart J 1 7 (200 ), pp. 1100–110 . 7) M. Peltier, D. Vancraeynest and A. Pasquet et al., Assessment of the physiologic signicance of coronary disease with dipyridamole real-time myocardial contrast echocardiography Comparison with technetium-99m sestamibi single-photon emission computed tomography and quantitative coronary angiography, J Am Coll Cardiol (200 ), pp. 2 7–26 . 8) R. Senior, R. Janardhanan and P. Jeetley et al., Myocardial contrast echocardiography for distinguishing ischemic from nonischemic rst-onset acute heart failure: insights into the mechanism of acute heart failure, Circulation 112 (200 ), pp. 1 87–1 9 . 9) G. Korosoglou, A.E. Dubart and K.G. DaSilva et al., Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography, Am Heart J 1 1 (2006), pp. 1 1–1 8. 10)J.M. Tsutsui, F. Xie and A.C. McGrain et al., Comparison of low–mechanical index pulse sequence schemes for detecting myocardial perfusion abnormalities during vasodilator stress echocardiography, Am J Cardiol 9 (200 ), pp. 6 – 70. 11)A. Elhendy, E.L. O’Leary and F. Xie et al., Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease, J Am Coll Cardiol (200 ), pp. 218 –2191. 12)P. Jeetley, M. Hickman and O. Kamp et al., Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography, J Am Coll Cardiol 7 (2006), pp. 1 1–1 . 1 )F. Xie, J.M. Tsutsui and A.C. McGrain et al., Comparison of dobutamine stress echocardiography with and without real-time perfusion imaging for detection of coronary artery disease, Am J Cardiol 96 (200 ), pp. 06– 11. 1 )Oraby MA, Hays J, Maklady FA, Jayaweera AR, Lindner JR, Kaul S. Comparison of real-time coherent contrast imaging to dipyridamole thallium-201 single-photon emission computed tomography for assessment of myocardial perfusion and left ventricular wall motion. Am J Cardiol 2002; 90: 9– . 1 )H. Leong-Poi, S.J. Rim and D.E. Le et al., Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel versus multivessel stenosis, Circulation 10 (2002) (8), pp. 987–992. 16)M.P. Coggins, J. Sklenar and D.E. Le et al., Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateral-derived myocardial blood ow, Circulation 10 (2001) (20), pp. 2 71–2 77. 17)T.R. Porter, S. Li and R. Oster et al., The clinical implications of no reow demonstrated with intravenous peruorocarbon containing microbubbles following restoration of Thrombolysis In Myocardial Infarction (TIMI) ow in patients with acute myocardial infarction, Am J Cardiol 82 (1998) (10), pp. 117 –1177. 18)H. Ito, A. Maruyama and K. Iwakura et al., Clinical implications of the ‘no reow’ phenomenon A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction, Circulation 9 (1996) (2), pp. 22 –228 19)E. Balcells, E.R. Powers and W. Lepper et al., Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve, J Am Coll Cardiol 1 (200 ) ( ), pp. 827–8 . 20)J.M. Swinburn, A. Lahiri and R. Senior, Intravenous myocardial contrast echocardiography predicts recovery of dysynergic myocardium early after acute myocardial infarction, J Am Coll Cardiol 8 (2001) (1), pp. 19–2 . 21)P. Andrassy, M. Zielinska and R. Busch et al., Myocardial blood volume and the amount of viable myocardium early after mechanical reperfusion of acute myocardial infarction: prospective study using venous contrast echocardiography, Heart 87 (2002) ( ), pp. 0– 22)R. Janardhanan, J.C. Moon and D.J. Pennell et al., Myocardial contrast echocardiography accurately reects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction, Am Heart J 1 9 (200 ) (2), pp. – 62 2 )I.Afridi, P.A. Grayburn and J.A. Panza et al., Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction, J Am Coll Cardiol 2 (1998) ( ), pp. 921–926. 19

mostrato che il miocardio ischemico può essere visualizzato utilizzando microbolle che si<br />

legano alla P-Selectina (29) . È possibile che queste tecniche possano essere estese in futuro<br />

per permettere la visualizzazione delle cellule staminali.<br />

Bibliograa<br />

1) S.K. Heinle, J. Noblin and P. Goree-Best et al., Assessment of myocardial perfusion by harmonic power Doppler imaging at rest<br />

and during adenosine stress: comparison with (99m)Tc-sestamibi SPECT imaging, Circulation 102 (2000), pp. –60.<br />

2) M. Olszowska, M. Kostkiewicz and W. Tracz et al., Assessment of myocardial perfusion in patients with coronary artery disease<br />

Comparison of myocardial contrast echocardiography and 99mTc MIBI single photon emission computed tomography, Int J<br />

Cardiol 90 (2002), pp. 9– .<br />

) M.A. Oraby, J. Hays and F.A. Maklady et al., Assessment of myocardial perfusion during pharmacologic contrast stress<br />

echocardiography, Am J Cardiol 89 (2002), pp. 6 0–6 .<br />

) K. Wei, L. Crouse and J. Weiss et al., Comparison of usefulness of dipyridamole stress myocardial contrast echocardiography<br />

to technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127<br />

Multicenter Phase 2 Trial results), Am J Cardiol 91 (200 ), pp. 129 –1298.<br />

) G. Rocchi, F. Fallani and G. Bracchetti et al., Non-invasive detection of coronary artery stenosis: a comparison among power-<br />

Doppler contrast echo, 99Tc-sestamibi SPECT and echo wall-motion analysis, Coron Artery Dis 1 (200 ), pp. 2 9–2 .<br />

6) R. Senior, W. Lepper and A. Pasquet et al., Myocardial perfusion assessment in patients with medium probability of coronary<br />

artery disease and no prior myocardial infarction: comparison of myocardial contrast echocardiography with 99mTc singlephoton<br />

emission computed tomography, Am Heart J 1 7 (200 ), pp. 1100–110 .<br />

7) M. Peltier, D. Vancraeynest and A. Pasquet et al., Assessment of the physiologic signicance of coronary disease with<br />

dipyridamole real-time myocardial contrast echocardiography Comparison with technetium-99m sestamibi single-photon<br />

emission computed tomography and quantitative coronary angiography, J Am Coll Cardiol (200 ), pp. 2 7–26 .<br />

8) R. Senior, R. Janardhanan and P. Jeetley et al., Myocardial contrast echocardiography for distinguishing ischemic from<br />

nonischemic rst-onset acute heart failure: insights into the mechanism of acute heart failure, Circulation 112 (200 ), pp.<br />

1 87–1 9 .<br />

9) G. Korosoglou, A.E. Dubart and K.G. DaSilva et al., Real-time myocardial perfusion imaging for pharmacologic stress testing:<br />

added value to single photon emission computed tomography, Am Heart J 1 1 (2006), pp. 1 1–1 8.<br />

10)J.M. Tsutsui, F. Xie and A.C. McGrain et al., Comparison of low–mechanical index pulse sequence schemes for detecting<br />

myocardial perfusion abnormalities during vasodilator stress echocardiography, Am J Cardiol 9 (200 ), pp. 6 – 70.<br />

11)A. Elhendy, E.L. O’Leary and F. Xie et al., Comparative accuracy of real-time myocardial contrast perfusion imaging and wall<br />

motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease, J Am Coll Cardiol<br />

(200 ), pp. 218 –2191.<br />

12)P. Jeetley, M. Hickman and O. Kamp et al., Myocardial contrast echocardiography for the detection of coronary artery stenosis:<br />

a prospective multicenter study in comparison with single-photon emission computed tomography, J Am Coll Cardiol 7 (2006),<br />

pp. 1 1–1 .<br />

1 )F. Xie, J.M. Tsutsui and A.C. McGrain et al., Comparison of dobutamine stress echocardiography with and without real-time<br />

perfusion imaging for detection of coronary artery disease, Am J Cardiol 96 (200 ), pp. 06– 11.<br />

1 )Oraby MA, Hays J, Maklady FA, Jayaweera AR, Lindner JR, Kaul S. Comparison of real-time coherent contrast imaging to<br />

dipyridamole thallium-201 single-photon emission computed tomography for assessment of myocardial perfusion and left<br />

ventricular wall motion. Am J Cardiol 2002; 90: 9– .<br />

1 )H. Leong-Poi, S.J. Rim and D.E. Le et al., Perfusion versus function: the ischemic cascade in demand ischemia: implications<br />

of single-vessel versus multivessel stenosis, Circulation 10 (2002) (8), pp. 987–992.<br />

16)M.P. Coggins, J. Sklenar and D.E. Le et al., Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion<br />

based on the extent and magnitude of collateral-derived myocardial blood ow, Circulation 10 (2001) (20), pp. 2 71–2 77.<br />

17)T.R. Porter, S. Li and R. Oster et al., The clinical implications of no reow demonstrated with intravenous peruorocarbon<br />

containing microbubbles following restoration of Thrombolysis In Myocardial Infarction (TIMI) ow in patients with acute<br />

myocardial infarction, Am J Cardiol 82 (1998) (10), pp. 117 –1177.<br />

18)H. Ito, A. Maruyama and K. Iwakura et al., Clinical implications of the ‘no reow’ phenomenon A predictor of complications and<br />

left ventricular remodeling in reperfused anterior wall myocardial infarction, Circulation 9 (1996) (2), pp. 22 –228<br />

19)E. Balcells, E.R. Powers and W. Lepper et al., Detection of myocardial viability by contrast echocardiography in acute infarction<br />

predicts recovery of resting function and contractile reserve, J Am Coll Cardiol 1 (200 ) ( ), pp. 827–8 .<br />

20)J.M. Swinburn, A. Lahiri and R. Senior, Intravenous myocardial contrast echocardiography predicts recovery of dysynergic<br />

myocardium early after acute myocardial infarction, J Am Coll Cardiol 8 (2001) (1), pp. 19–2 .<br />

21)P. Andrassy, M. Zielinska and R. Busch et al., Myocardial blood volume and the amount of viable myocardium early after<br />

mechanical reperfusion of acute myocardial infarction: prospective study using venous contrast echocardiography, Heart 87<br />

(2002) ( ), pp. 0–<br />

22)R. Janardhanan, J.C. Moon and D.J. Pennell et al., Myocardial contrast echocardiography accurately reects transmurality of<br />

myocardial necrosis and predicts contractile reserve after acute myocardial infarction, Am Heart J 1 9 (200 ) (2), pp. – 62<br />

2 )I.Afridi, P.A. Grayburn and J.A. Panza et al., Myocardial viability during dobutamine echocardiography predicts survival in patients<br />

with coronary artery disease and severe left ventricular systolic dysfunction, J Am Coll Cardiol 2 (1998) ( ), pp. 921–926.<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!