28.02.2014 Views

σχολη εφαρμοσμένων μαθηματικων και φυσικων ... - DSpace

σχολη εφαρμοσμένων μαθηματικων και φυσικων ... - DSpace

σχολη εφαρμοσμένων μαθηματικων και φυσικων ... - DSpace

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Αναφορές<br />

[1] International Energy Agency, ‘World Energy Outlook 2010’, Paris, France, (2010)<br />

[2] Solar energy, from Wikipedia, the free encyclopedia: http://wikipedia.org/wiki/Solar_energy.<br />

[3] EPIA, ‘Global Market Outlook for Photovoltaics until 2016’, (2012).<br />

[4] Carlson D., Wronski C, ‘Amorphous silicon solar cells’, Topics in Applied Physics Vol. 36<br />

(1985) pp. 287-329.<br />

[5] Oerlikon Solar-Lab SACH-2000 Neuchâtel, Ulrich Kroll, ‘From R&D to Thin Film Silicon PV<br />

at Oerlikon Solar’, 3 rd Gen Photovoltaics: CleanTech Day CSEM Basel / 19th August, (2009).<br />

[6] Corinne Droz, ’Thin Film Microcrystalline Silicon Layers and Solar Cells: Microstructure<br />

and Electrical Performances’, PhD Thesis, Université de Neuchâtel: Institute de Microtechnique,<br />

(2003).<br />

[7] M. Luysberg, P. Hapke, R. Carius, and F. Finger, Phil. Mag. A, Vol. 75 (1997) pp. 31.<br />

[8] E. Vallat-Sauvain, U. Kroll, J. Meier, A. Shah, and J. Pohl, ’Evolution of the microstructure<br />

in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen<br />

dilution’, J. Appl. Phys. Vol. 87 (2000) pp. 3137.<br />

[9] J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz, and A. Shah, ‘Microstructure and opencircuit<br />

voltage of n−i−p microcrystalline silicon solar cells’, J.Appl. Phys. Vol. 93/9<br />

(2003) pp. 5727.<br />

[10] S. Klein, F. Finger, R. Carius, T. Dylla, B. Rech, M. Grimm, L. Houben, and M. Stutzmann,<br />

’Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for<br />

thin film solar cells’, Thin Solid Films, Vol. 430/1-2 (2003) pp. 202.<br />

[11] T. Roschek, T. Repmann, J. Muller, B. Rech, and H. Wagner, ‘Comprehensive study of microcrystalline<br />

silicon solar cells deposited at high rate using 13.56 MHz plasmaenhanced<br />

chemical vapor deposition’, J. Vac. Sci. Technol. A, Vol. 20/2 (2002) pp. 492.<br />

[12] A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, and U. Graf,<br />

‘Microcrystalline silicon and ‘micromorph’ tandem solar cells’, Thin Solid Films, Vol. 403<br />

(2002) pp. 179.<br />

[13] Vallat-Sauvain et al. ‘High efficiency micromorph tandem cells’, U. S. Patent<br />

2012/0227799 A1, September 13, (2012).<br />

[14] James D. Plummer, Michael D. Deal, Peter B Griffin, ‘Silicon VLSI Technology: Fundamentals,<br />

Practice and Modeling’, Prentice Hall, New Jersey (2000).<br />

[15] A.A. Howling, J.-L. Dorier, C. Hollenstein, U. Kroll, and F. Finger, ’Frequency effects in<br />

silane plasmas for plasma enhanced chemical vapor deposition’, J. Vac. Sci. Technol.<br />

A, Vol. 10 (1992) pp. 1080.<br />

[16] H. Curtins, N. Wyrsch, M. Favre, and A.V. Shah, ‘Influence of plasma excitation frequency<br />

fora-Si:H thin film deposition’, Plasma Chem. Plasma Proc. Vol. 7/3 (1987) pp. 267.<br />

[17] A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, ‘Material and<br />

solar cell research in microcrystalline silicon’, Solar Energy Materials & Solar Cells, Vol.<br />

78 (2003) pp. 469–491.<br />

[18] A. Kolodziej, ‘Staebler-Wronski effect in amorphous silicon and its alloys’, Opto-<br />

Electronics Review Vol. 12(1) (2004) pp.21-32.<br />

XIV

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!