12.01.2013 Views

Sea Ceramics Technologies

Sea Ceramics Technologies

Sea Ceramics Technologies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Design, Measurement and Modeling of<br />

LTCC Embedded Inductors and PCB<br />

Balanced Devices<br />

Prof. T.S. Horng (? ??)<br />

E.E. Dept., National Sun Yat-Sen Univ.<br />

Email: jason@ee.nsysu.edu.tw


Outline<br />

LTCC Embedded Inductors<br />

PCB Balanced Devices<br />

Conclusions


Design Trend<br />

Planar Spiral Stacked Spiral Helical<br />

LTCC Inductor<br />

Area<br />

(under the same L eff )<br />

SRF<br />

(under the same L eff )<br />

Q<br />

(under the same L eff )<br />

No. of Layers<br />

Planar Spiral<br />

Large<br />

Low<br />

Low<br />

2<br />

Stacked Spiral<br />

Smaller<br />

Higher<br />

Higher<br />

2<br />

Helical<br />

Smallest<br />

Highest<br />

Highest<br />

≥ 2


Test fixture<br />

Microstrip<br />

line<br />

Measurement Techniques<br />

Test Fixture Microwave Probes<br />

LTCC<br />

Device<br />

Reference plane after<br />

TRL calibration<br />

Electrode<br />

Vector Network<br />

Analyzer<br />

SG/GS-type<br />

probes<br />

LTCC Device<br />

(top view)


Spiral<br />

inductor<br />

The whole<br />

LTCC device<br />

Test-Fixture Measurement<br />

Electrode<br />

LTCC device<br />

on test fixture<br />

Microstrip line<br />

vs. HFSS Simulation<br />

L eff » 6 nH<br />

dB(S21)<br />

dB(S11)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

Mea#1<br />

Mea#2<br />

Mea#3<br />

Sim<br />

Mea#1<br />

Mea#2<br />

Mea#3<br />

Sim<br />

-50<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)


Microwave-Probe Measurement<br />

L eff » 6 nH<br />

vs. HFSS Simulation<br />

GS probe<br />

�Smaller area<br />

�Higher SRF<br />

�Higher Q factor<br />

�Better measured data repeatability<br />

�Better agreement between simulation<br />

and measurement<br />

dB(S11)<br />

dB(S21)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

Mea#1<br />

Mea#2<br />

Sim<br />

Mea#1<br />

Mea#2<br />

Sim<br />

-50<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Frequency (GHz)


A New Modified-T Model for<br />

Lossless Transmission Line<br />

Lossless transmission line<br />

Z 0 : Characteristic impedance<br />

τ: Propagation delay<br />

θ: Electrical length<br />

θ<br />

Z<br />

0<br />

,<br />

θ = 0 → π ⇔ ω =<br />

0 →<br />

τ<br />

≈ ?<br />

ωq<br />

�Is it possible to create an equivalent<br />

single-stage lumped model<br />

for a lossless transmission line<br />

having electrical length up to π ?<br />

Equivalent π model<br />

Equivalent Τ model<br />

Equivalent modified-Τ model<br />

C p<br />

Lm<br />

Ls s L<br />

Cs


Derivation of Element Values of<br />

Equivalent Modified-T Model<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

+<br />

+<br />

−<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

+<br />

−<br />

−<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

+<br />

−<br />

+<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

+<br />

−<br />

+<br />

+<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

p<br />

s<br />

m<br />

s<br />

m<br />

s<br />

s<br />

s<br />

p<br />

s<br />

m<br />

s<br />

m<br />

s<br />

s<br />

m<br />

p<br />

s<br />

m<br />

s<br />

m<br />

s<br />

s<br />

m<br />

p<br />

s<br />

m<br />

s<br />

m<br />

s<br />

s<br />

s<br />

C<br />

j<br />

C<br />

j<br />

L<br />

L<br />

j<br />

L<br />

L<br />

j<br />

C<br />

j<br />

L<br />

j<br />

C<br />

j<br />

C<br />

j<br />

L<br />

L<br />

j<br />

L<br />

L<br />

j<br />

C<br />

j<br />

L<br />

j<br />

C<br />

j<br />

C<br />

j<br />

L<br />

L<br />

j<br />

L<br />

L<br />

j<br />

C<br />

j<br />

L<br />

j<br />

C<br />

j<br />

C<br />

j<br />

L<br />

L<br />

j<br />

L<br />

L<br />

j<br />

C<br />

j<br />

L<br />

j<br />

Z<br />

j<br />

Z<br />

j<br />

Z<br />

j<br />

Z<br />

j<br />

2<br />

)<br />

(<br />

)<br />

(<br />

1<br />

2<br />

)<br />

(<br />

)<br />

(<br />

1<br />

2<br />

)<br />

(<br />

)<br />

(<br />

1<br />

2<br />

)<br />

(<br />

)<br />

(<br />

1<br />

cot<br />

c s c<br />

c s c<br />

cot<br />

0<br />

0<br />

0<br />

0<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

θ<br />

θ<br />

θ<br />

θ<br />

≈<br />

⇒ (F)<br />

(F),<br />

(H)<br />

)<br />

1<br />

4<br />

1<br />

(<br />

(H),<br />

)<br />

1<br />

4<br />

1<br />

(<br />

2<br />

0<br />

0<br />

2<br />

0<br />

2<br />

0<br />

π<br />

τ<br />

τ<br />

π<br />

τ<br />

π<br />

τ<br />

Z<br />

C<br />

Z<br />

C<br />

Z<br />

L<br />

Z<br />

L<br />

p<br />

s<br />

m<br />

s<br />

≈<br />

≈<br />

−<br />

≈<br />

+<br />


S 11 (dB)<br />

S11(dB)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

Comparison of Bandwidth among<br />

Equivalent Models<br />

Modified-T model<br />

Lossless_TL<br />

Modified-T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

q = p q = 2p q = 3p<br />

Transmission-line circuit<br />

50 Ω Z = 1 0 0 Ω , τ =<br />

1 0 0<br />

p s<br />

5 0<br />

Ω<br />

0<br />

S 11 (dB)<br />

S 11 (dB)<br />

S11(dB)<br />

S11(dB)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

π model<br />

Lossless_TL<br />

Pi_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

T model<br />

Lossless_TL<br />

T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)


S 11 (phase)<br />

S11(phase)<br />

200<br />

150<br />

100<br />

50<br />

-100<br />

-150<br />

-200<br />

0<br />

-50<br />

Comparison of Bandwidth among<br />

Equivalent Models<br />

Modified-T model<br />

Lossless_TL<br />

Modified-T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

q = p q = 2p q = 3p<br />

Transmission-line circuit<br />

50 Ω Z = 1 0 0 Ω , τ =<br />

1 0 0<br />

p s<br />

5 0<br />

Ω<br />

0<br />

S 11 (phase)<br />

S11(phase)<br />

S11(phase)<br />

S 11 (phase)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

0 2 4 6 8 10 12 14 16<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

π model<br />

Freq(GHz)<br />

T model<br />

Lossless_TL<br />

Pi_model<br />

Lossless_TL<br />

T_model<br />

-200<br />

0 2 4 6 8<br />

Freq(GHz)<br />

10 12 14 16


S 21 (dB)<br />

S21(dB)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

Comparison of Bandwidth among<br />

Equivalent Models<br />

Modified-T model<br />

Lossless_TL<br />

Modified-T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

q = p q = 2p q = 3p<br />

Transmission-line circuit<br />

50 Ω Z = 1 0 0 Ω , τ =<br />

1 0 0<br />

p s<br />

5 0<br />

Ω<br />

0<br />

S 21 (dB)<br />

S21(dB)<br />

S 21 (dB)<br />

S21(dB)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

Lossless_TL<br />

Pi_model<br />

-20<br />

0 2 4 6 8<br />

Freq(GHz)<br />

10 12 14 16<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

-18<br />

-20<br />

π model<br />

T model<br />

Lossless_TL<br />

T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)


S 21 (phase)<br />

S21(phase)<br />

200<br />

150<br />

100<br />

50<br />

-50<br />

-100<br />

-150<br />

-200<br />

0<br />

Comparison of Bandwidth among<br />

Equivalent Models<br />

Modified-T model<br />

Lossless_TL<br />

Modified-T_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

q = p q = 2p q = 3p<br />

Transmission-line circuit<br />

50 Ω Z = 1 0 0 Ω , τ =<br />

1 0 0<br />

p s<br />

5 0<br />

Ω<br />

0<br />

S 21 (phase)<br />

S 21 (phase)<br />

S21(phase)<br />

S21(phase)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Lossless_TL<br />

Pi_model<br />

-200<br />

0 2 4 6 8<br />

Freq(GHz)<br />

10 12 14 16<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

π model<br />

T model<br />

Lossless_TL<br />

T_model<br />

-200<br />

0 2 4 6 8<br />

Freq(GHz)<br />

10 12 14 16


Z<br />

0<br />

,<br />

Distributed Modified-T Model<br />

3π-long<br />

transmission line<br />

Phase(S11)<br />

dB(S11)<br />

-120<br />

-180<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

120<br />

60<br />

-60<br />

θ =<br />

3π<br />

0<br />

0<br />

τ<br />

≈<br />

C p<br />

/<br />

3<br />

Lm<br />

/<br />

3<br />

Ls /<br />

3 Ls<br />

/<br />

3<br />

Cs<br />

/<br />

3<br />

q = p q = 2p q = 3p<br />

Lossless_TL<br />

3-stage modified-T_model<br />

0 2 4 6 8 10 12 14<br />

Frequency (GHz)<br />

Lossless_TL<br />

3-stage modified-T_model<br />

0 2 4 6 8 10 12 14<br />

Frequency (GHz)<br />

3-stage modified-T model<br />

Phase(S21)<br />

dB(S21)<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

180<br />

-60<br />

-180<br />

-300<br />

0<br />

-3<br />

60<br />

C<br />

p<br />

/<br />

3<br />

Lm<br />

/<br />

3<br />

Ls /<br />

3 Ls<br />

/<br />

3<br />

Cs<br />

/<br />

3<br />

C p<br />

/<br />

3<br />

Lm<br />

/<br />

3<br />

Ls /<br />

3 Ls<br />

/<br />

3<br />

Cs<br />

/<br />

3<br />

Lossless_TL<br />

3-stage modified-T_model<br />

0 2 4 6 8 10 12 14<br />

Frequency (GHz)<br />

Lossless_TL<br />

3-stage modified-T_model<br />

0 2 4 6 8 10 12 14<br />

Frequency (GHz)


loss<br />

Shunt<br />

Cap<br />

L eff » 6 nH<br />

Cp<br />

Modified-T Models<br />

for Spiral Inductors<br />

Modified-T model<br />

R<br />

p<br />

C p1<br />

Lp<br />

1<br />

Lm<br />

Lp<br />

Ls Ls<br />

Cs<br />

Lg<br />

Cg<br />

dB(S21)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

Conventional p model<br />

Cs<br />

zero<br />

Rs<br />

Cp<br />

Leff<br />

1 st by-pass 2 nd by-pass<br />

Ground<br />

Resonance<br />

s C<br />

-35<br />

0 2 4 6 8 10 12 14<br />

Frequency (GHz)


S 11 (dB)<br />

S22(dB)<br />

S 11 (phase)<br />

S22(phase)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

200<br />

150<br />

100<br />

50<br />

-50<br />

-100<br />

-150<br />

-200<br />

0<br />

Comparison of Bandwidth<br />

between Two Inductor Models<br />

Modified-T model<br />

measurement measurement<br />

Modified-T_model<br />

modeling<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

measurement<br />

Modified-T_model<br />

measurement<br />

modeling<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

S 11 (dB)<br />

S11(dB)<br />

S 11 (phase)<br />

S11(phase)<br />

-100<br />

-150<br />

-200<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

Conventional π model<br />

measurement<br />

pi_model Pi_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

measurement<br />

pi_model Pi_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)


S 21 (dB)<br />

S21(dB)<br />

S 21 (phase)<br />

S21(phase)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Comparison of Bandwidth<br />

between Two Inductor Models<br />

Modified-T model<br />

measurement<br />

Modified-T_model<br />

measurement<br />

modeling<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

measurement measurement<br />

Modified-T_model<br />

modeling<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

S 21 (dB)<br />

S21(dB)<br />

S 21 (phase)<br />

S21(phase)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

Conventional π model<br />

measurement<br />

pi_model Pi_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)<br />

measurement<br />

Pi_model pi_model<br />

0 2 4 6 8 10 12 14 16<br />

Freq(GHz)


Outline<br />

LTCC Embedded Inductors<br />

PCB Balanced Devices<br />

Conclusions


Measurement Systems for Multiport<br />

and Mixed-Mode S-Parameters<br />

�Pure Mode Network Analyzer<br />

�Multiport Network Analyzer Using<br />

Full-N Port Calibration<br />

�Two-Port Network Analyzer Using<br />

Renormalization Techniques


Port Termination Problem<br />

DUT<br />

Port 3<br />

terminated<br />

1<br />

a<br />

1<br />

b<br />

2<br />

a<br />

2<br />

b<br />

3<br />

a 3<br />

b<br />

Port 1 Port 2<br />

Port 3<br />

3<br />

33<br />

2<br />

32<br />

1<br />

31<br />

3<br />

3<br />

23<br />

2<br />

22<br />

1<br />

21<br />

2<br />

3<br />

13<br />

2<br />

12<br />

1<br />

11<br />

1<br />

a<br />

S<br />

a<br />

S<br />

a<br />

S<br />

b<br />

a<br />

S<br />

a<br />

S<br />

a<br />

S<br />

b<br />

a<br />

S<br />

a<br />

S<br />

a<br />

S<br />

b<br />

+<br />

+<br />

=<br />

+<br />

+<br />

=<br />

+<br />

+<br />

=<br />

Three-port Network Three-port S parameters<br />

Reflection due to port<br />

termination<br />

3<br />

3<br />

3<br />

b<br />

a<br />

=<br />

Γ<br />

Measured two-port S<br />

parameters<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

Γ<br />

−<br />

Γ<br />

+<br />

Γ<br />

−<br />

Γ<br />

+<br />

Γ<br />

−<br />

Γ<br />

+<br />

Γ<br />

−<br />

Γ<br />

+<br />

=<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

3<br />

33<br />

3<br />

32<br />

23<br />

22<br />

3<br />

33<br />

3<br />

31<br />

23<br />

21<br />

3<br />

33<br />

3<br />

32<br />

13<br />

12<br />

3<br />

33<br />

3<br />

31<br />

13<br />

11<br />

p3t<br />

22<br />

p3t<br />

21<br />

p3t<br />

12<br />

p3t<br />

11<br />

p3t<br />

1<br />

1<br />

1<br />

1<br />

]<br />

[<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S


Partial Renormalization<br />

a<br />

1<br />

a<br />

2<br />

Zo1 Z<br />

2<br />

b<br />

1<br />

Port 1 Port 2<br />

Port 3<br />

[ S′<br />

] = ( [ U ] − [ S]<br />

) ( [ S]<br />

− [ Γ]<br />

) ( [ U ] − [ S][<br />

Γ]<br />

) ( [ U ] − [ S]<br />

)<br />

where<br />

G<br />

o o1<br />

[S DUT<br />

]<br />

[ DUT S<br />

]<br />

a 3<br />

3 b<br />

Port 3<br />

terminated<br />

k<br />

=<br />

ζ<br />

ζ<br />

− 1<br />

0k<br />

0k<br />

−<br />

+<br />

b<br />

2<br />

Zo<br />

3<br />

Z<br />

Z<br />

0k<br />

0k<br />

⇒<br />

,<br />

a<br />

1<br />

a<br />

2<br />

ζ ζo<br />

2<br />

for<br />

k<br />

b<br />

1<br />

=<br />

Port 1 Port 2<br />

1,<br />

2<br />

Port 3<br />

a 3<br />

3 b<br />

Port 3<br />

terminated<br />

− 1<br />

'<br />

b<br />

2<br />

ζo<br />

3


Renormalization Transforms<br />

�Three partial 2-port S-parameter measurements<br />

⎡<br />

p 3 t<br />

p 3 t⎤<br />

⎡<br />

p 3 t S<br />

= ⎢<br />

1 1 S1<br />

2 ⎥<br />

p 2 t S<br />

[ S<br />

]<br />

,<br />

[ S<br />

] = ⎢<br />

p 3 t<br />

p 3 t<br />

⎢<br />

⎣S<br />

⎥<br />

⎦<br />

⎢<br />

2 1 S2<br />

2 ⎣<br />

S<br />

�After partial renormalizations<br />

[ S<br />

m1<br />

⎡S<br />

] = ⎢<br />

⎢⎣<br />

S<br />

⎡S<br />

⎢<br />

⎢<br />

⎢<br />

⎢⎣<br />

S<br />

m1<br />

11<br />

m1<br />

21<br />

m1<br />

11<br />

S<br />

S<br />

m1<br />

12<br />

m1<br />

22<br />

⎤<br />

⎥<br />

,<br />

⎥⎦<br />

[ S<br />

m2<br />

⎡S<br />

] = ⎢<br />

⎢⎣<br />

S<br />

p 2 t<br />

1 1<br />

p 2 t<br />

3 1<br />

m2<br />

11<br />

m2<br />

31<br />

S<br />

S<br />

S<br />

S<br />

p 2 t<br />

1 3<br />

p 2 t<br />

3 3<br />

m2<br />

13<br />

m2<br />

33<br />

⎤<br />

⎥<br />

,<br />

[ S<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

,<br />

[ S<br />

⎥⎦<br />

p 1 t<br />

m3<br />

⎡S<br />

] = ⎢<br />

⎢<br />

⎣<br />

S<br />

⎡S<br />

] = ⎢<br />

⎢⎣<br />

S<br />

�Construct the S matrix of the three-port network normalized<br />

to [ζ 0 ] and then transform it back to the S matrix normalized<br />

to [Z0 ] :<br />

p 1 t<br />

2 2<br />

p 1 t<br />

3 2<br />

m3<br />

22<br />

m3<br />

32<br />

m1<br />

m1<br />

m3<br />

[ S′ ] = S S S<br />

⇒<br />

[ S]<br />

21<br />

m2<br />

31<br />

S<br />

S<br />

m1<br />

12<br />

22<br />

m3<br />

32<br />

S<br />

S<br />

m2<br />

13<br />

23<br />

m2<br />

33<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥⎦<br />

renormalized to<br />

S<br />

S<br />

S<br />

S<br />

p 1 t<br />

2 3<br />

p 1 t<br />

3 3<br />

m3<br />

23<br />

m3<br />

33<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎥⎦


Determination of [ζ 0 ]<br />

� Use TRL Calibration<br />

�<br />

ζ<br />

=<br />

0i<br />

Z<br />

0<br />

1+<br />

1−<br />

Γ<br />

Γ<br />

i<br />

i


DC-Block Branch-Line Coupler<br />

Design guide Photo of component<br />

Z<br />

a a<br />

0e − Z<br />

0o<br />

=<br />

2Z<br />

0<br />

Port 1 Port 2<br />

Port 4 Port 3<br />

Z<br />

a a<br />

0e − Z<br />

0o<br />

=<br />

2Z<br />

0


S11 (dB)<br />

S31 (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Comparison between Ensemble<br />

Simulation and Measurement<br />

-30<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

Frequency<br />

Ensemble<br />

Measured<br />

-45<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

Frequency<br />

Ensemble<br />

Measured<br />

S21 (dB)<br />

S41 (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

Frequency<br />

Ensemble<br />

Measured<br />

-35<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

Frequency<br />

Ensemble<br />

Measured


Impedance Transform<br />

Branch-Line Coupler<br />

Design guide Photo of component<br />

Port 1<br />

Z<br />

1<br />

[ S<br />

] ⇒<br />

[ Z<br />

]<br />

:<br />

[ Z<br />

] ⇒<br />

[ S<br />

λ<br />

Z 4<br />

1<br />

2<br />

λ<br />

4<br />

Z<br />

'<br />

]<br />

:<br />

[ Z<br />

] =<br />

[ S<br />

'<br />

]<br />

=<br />

[ Z<br />

0<br />

[ ξ<br />

]<br />

(<br />

[ U<br />

] −<br />

[ S<br />

]<br />

)<br />

0<br />

]<br />

-<br />

1<br />

(<br />

[ Z<br />

] −<br />

[ ξ<br />

Port 2<br />

Port 4 Port 3<br />

Z<br />

1<br />

Z<br />

1<br />

Z<br />

Z<br />

2<br />

50O 25O<br />

Generalized S-parameter Transform<br />

2<br />

Z<br />

1Z<br />

2<br />

2<br />

2<br />

Z<br />

2<br />

−1<br />

0<br />

(<br />

[ U<br />

] +<br />

[ S<br />

]<br />

)<br />

]<br />

)<br />

(<br />

[ Z<br />

] +<br />

[ ξ<br />

0<br />

]<br />

)<br />

[ Z<br />

−1<br />

0<br />

]<br />

−1<br />

[ ξ<br />

0<br />

]


S21 (dB)<br />

S11 (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

Comparison between Ensemble<br />

Simulation and Measurement<br />

-40<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Frequency<br />

-30<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

Frequency<br />

Ensemble<br />

Measured Before transform<br />

Measured After transform<br />

Ensemble<br />

Measured Before transform<br />

Measured After transform<br />

S41 (dB)<br />

S22 (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

Frequency<br />

-50<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009<br />

Frequency<br />

Ensemble<br />

Measured Before transform<br />

Measured After transform<br />

Ensemble<br />

Measured Before transform<br />

Measured After transform


Mixed-Mode S parameters<br />

Mixed-Mode S Matrix<br />

Response<br />

⎡<br />

⎢<br />

⎣<br />

Different ial-Mode<br />

Port 2<br />

Port 1<br />

Common-Mode<br />

Port 4<br />

Port 3<br />

[ bD<br />

]<br />

[ b ]<br />

C<br />

⎤ ⎡<br />

⎥ = ⎢<br />

⎦ ⎣<br />

D i f f e r e n t i a l-M o d e C o m m o n- M o d e<br />

Port 1 Port 2 Port 1 Port 2<br />

S DD<br />

11 S DD<br />

12<br />

S DD<br />

21 S DD<br />

22<br />

S CD<br />

11 S CD<br />

12<br />

S CD<br />

21 SCD<br />

22<br />

[ SDD<br />

] [ SDC<br />

]<br />

[ S ] [ S ]<br />

CD<br />

CC<br />

⎤⎡<br />

⎥⎢<br />

⎦⎣<br />

S t i m u l u s<br />

[ aD<br />

]<br />

[ a ]<br />

C<br />

⎤<br />

⎥<br />

⎦<br />

S DC<br />

11 S DC<br />

12<br />

S DC<br />

21 S DC<br />

22<br />

S CC<br />

11 S CC<br />

12<br />

S CC<br />

21 SCC<br />

22<br />

=<br />

mm [ S ]<br />

⎡<br />

⎢<br />

⎣<br />

[ ]<br />

[ ] ⎥ aD<br />

⎤<br />

aC<br />

⎦<br />

Common-Mode Rejection Ratio<br />

CMRR<br />

=<br />

S<br />

S<br />

DD<br />

2 1<br />

CC<br />

2 1


Mixed-Mode Transform<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

4<br />

3<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

2<br />

1<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

C<br />

C<br />

D<br />

D<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

=<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

4<br />

3<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

2<br />

1<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

C<br />

C<br />

D<br />

D<br />

]<br />

][<br />

[<br />

]<br />

[<br />

se<br />

mm<br />

a<br />

M<br />

a =<br />

]<br />

][<br />

[<br />

]<br />

[<br />

se<br />

mm<br />

b<br />

M<br />

b =<br />

1<br />

]<br />

][<br />

][<br />

[<br />

]<br />

[<br />

−<br />

= M<br />

S<br />

M<br />

S<br />

se<br />

mm


Design guide<br />

Input<br />

C<br />

=<br />

(<br />

Lange-Type Marchand Balun<br />

1+<br />

λ<br />

2<br />

Output<br />

[ M ]<br />

=<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

Input<br />

0 ⎤<br />

⎥<br />

−<br />

1⎥<br />

1 ⎥<br />

⎦<br />

Port 1<br />

Response<br />

Balanced Port 2<br />

Common Differential<br />

Lange<br />

Coupler<br />

Output<br />

Planar type Lange type<br />

2Z<br />

Z<br />

o u t<br />

0 −1<br />

)<br />

in<br />

0<br />

Photo of component<br />

,<br />

1<br />

2<br />

⇒<br />

0<br />

0<br />

2<br />

0<br />

1<br />

1<br />

Port 1<br />

S<br />

11<br />

S D<br />

1<br />

Lange<br />

Coupler<br />

Mixed-mode [S]<br />

S<br />

DD<br />

S C<br />

1 S CD<br />

Stimulus<br />

Balanced Port 2<br />

Differential Common<br />

S 1 D<br />

S 1 C<br />

S<br />

S<br />

DC<br />

CC


S11 (dB)<br />

SCC (dB)<br />

S11 (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

Comparison between HFSS<br />

Simulation and Measurement<br />

-25<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

Frequency<br />

-2.5<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

Frequency<br />

Simulated<br />

Measured<br />

Simulated<br />

Measured<br />

SC1 & S1C (dB)<br />

SD1 & S1D (dB)<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

Frequency<br />

Simulated<br />

Measure<br />

-35<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

Frequency<br />

Simulated<br />

Measured


SDD (dB)<br />

CMRR<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Comparison between HFSS<br />

Simulation and Measurement<br />

-30<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

Frequency<br />

Simulated<br />

Measured<br />

SD1<br />

-25<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

Frequency<br />

Simulated<br />

Measured<br />

SCC (dB)<br />

SCD & SDC (dB)<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

Frequency<br />

Simulated<br />

Measured<br />

-45<br />

1E+009 2E+009 3E+009 4E+009 5E+009 6E+009 7E+009 8E+009<br />

Frequency<br />

Simulated<br />

Simulated


VNA setup via Vee<br />

Measure, renormalize<br />

and Transform<br />

Semi-Automatic<br />

Measurement System<br />

Single-ended S parameters<br />

Mixed-Mode<br />

S Parameters


Application to On-Wafer<br />

91$<br />

$JLOHQW $JLOHQW $JLOHQW<br />

Measurement<br />

Our proposed System System made by NIST


Conclusions<br />

� Various types of LTCC Embedded Inductors have been<br />

designed and measured. Simulated results agree with<br />

measurements quite well.<br />

� A new modified-T equivalent circuit has been<br />

proposed to model LTCC inductors over an extremely<br />

large bandwidth successfully.<br />

� Very cost-effective multiport network analyzer system<br />

based on renormalization techniques has been<br />

developed to measure balanced devices.<br />

� Several examples of multiport and balanced devices<br />

on PCB have been designed and measured.<br />

Comparison between simulation and measurement<br />

shows excellent agreement.


References<br />

1. K. Lim, et. al., “RF-system-on-package (SOP) for wireless<br />

communications,” IEEE Microwave Magazine, pp. 88-99,<br />

March 2002.<br />

2. J.C. Tippet and R.A. Speciale, “A rigorous technique for<br />

measuring the scattering matrix of a multiport device with a<br />

2-port network analyzer, ” IEEE Transactions on Microwave<br />

Theory and Techniques, pp. 661-666, May 1982.<br />

3. L.-Q. Yang, Design and modeling of embedded inductors and<br />

capacitors in low-temperature cofired ceramic technology,<br />

Master ’s Thesis, National Sun Yat-Sen University at Kaohsiung<br />

Taiwan, 2002.<br />

4. D.-C. Tsai, Measurement of balanced devices using vector<br />

network analyzers, Master ’s Thesis, National Sun Yat-Sen<br />

University at Kaohsiung, Taiwan, 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!