31.07.2015 Views

Etudes par microscopie en champ proche des phénomènes de ...

Etudes par microscopie en champ proche des phénomènes de ...

Etudes par microscopie en champ proche des phénomènes de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15∗ Electronic address: Yves.Lassailly@polytechnique.edu1 J. Unguris, D. T. Pierce, A. Galejs, and R. J. Celotta,Physical Review Letters 49, 72 (1982).2 E. Kisker, W. Gudat, and K. Schro<strong>de</strong>r, Solid State Communications44, 591 (1982).3 H. Hopster, R. Raue, E. Kisker, G. Guntherodt, andM. Campagna, Physical Review Letters 50, 70 (1983).4 D. R. P<strong>en</strong>n, S. P. Apell, and S. M. Girvin, Physical ReviewB 32, 7753 (1985).5 D. P. Pappas, K. P. Kamper, B. P. Miller, H. Hopster,D. E. Fowler, C. R. Brundle, A. C. Luntz, and Z. X. Sh<strong>en</strong>,Physical Review Letters 66, 504 (1991).6 M. Getzlaff, J. Bansmann, and G. Schonh<strong>en</strong>se, Solid StateCommunications 87, 467 (1993).7 G. Schonh<strong>en</strong>se and H. C. Siegmann, Annal<strong>en</strong> Der Physik2, 465 (1993).8 E. Vescovo, C. Carbone, U. Alkemper, O. Ra<strong>de</strong>r,T. Kachel, W. Gudat, and W. Eberhardt, Physical ReviewB 52, 13497 (1995).9 Y. Lassailly, H. J. Drouhin, A. J. Van<strong>de</strong>rsluijs, G. Lampel,and C. Marliere, Physical Review B 50, 13054 (1994).10 A. van <strong>de</strong>r Sluijs, Ph.D. thesis, Ecole Polytechnique (1996).11 J. C. Grobli, D. Guarisco, S. Frank, and F. Meier, PhysicalReview B 51, 2945 (1995).12 H. J. Drouhin, A. J. van<strong>de</strong>rSluijs, Y. Lassailly, andG. Lampel, Journal Of Applied Physics 79, 4734 (1996).13 D. Oberli, R. Burgermeister, S. Ries<strong>en</strong>, W. Weber, andH. C. Siegmann, Physical Review Letters 81, 4228 (1998).14 C. Cacho, Y. Lassailly, H. J. Drouhin, G. Lampel, andJ. Peretti, Physical Review Letters 88, 066601 (2002).15 D. J. Monsma, J. C. Lod<strong>de</strong>r, T. J. A. Popma, and B. Di<strong>en</strong>y,Physical Review Letters 74, 5260 (1995).16 T. Kinno, K. Tanaka, and K. Mizushima, Physical ReviewB 56, R4391 (1997).17 P. N. First, J. A. Bonetti, D. K. Guthrie, L. E. Harrell,and S. S. P. Parkin, Journal Of Applied Physics 81, 5533(1997).18 A. Filipe, H. J. Drouhin, G. Lampel, Y. Lassailly, J. Nagle,J. Peretti, V. I. Safarov, and A. Schuhl, Physical ReviewLetters 80, 2425 (1998).19 W. H. Rip<strong>par</strong>d and R. A. Buhrman, Applied Physics Letters75, 1001 (1999).20 S. van Dijk<strong>en</strong>, X. Jiang, and S. S. P. Parkin, AppliedPhysics Letters 83, 951 (2003).21 X. Jiang, S. van Dijk<strong>en</strong>, R. Wang, and S. S. P. Parkin,Physical Review B 69, 014413 (2004).22 N. Rougemaille, H.-J. Drouhin, G. Lampel, Y. Lassailly,J. Peretti, T. Wirth, and A. Schuhl, AIP Confer<strong>en</strong>ce Proceedings675, 1001 (2003).23 A. Filipe and A. Schuhl, Journal Of Applied Physics 81,4359 (1997).24 A. Filipe, Ph.D. thesis, Ecole Polytechnique (1997).25 D. Lamine, Ph.D. thesis, Ecole Polytechnique (2007).26 As discussed in Refs.24 − 25, the oxi<strong>de</strong> layer formed onGaAs is most probably Ga 2O 3. The value of the oxi<strong>de</strong>band gap measured on our samples is of about 4.6eV (seeRef.25). This is com<strong>par</strong>able with the values betwe<strong>en</strong> 4eVand 5.2eV that can be found in the literature for the bandgap of various gallium oxi<strong><strong>de</strong>s</strong> : see for instance, M. Passlak,E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya,S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L.Schnoes, and G. J. Zydzik, J. Appl. Phys. 77, 686 (1995);Z. Ji, J. Du, J. Fan, and W. Wang, Optical Materials 28,415 (2006).27 M. P. Seah and C. P. Hunt, Surface And Interface Analysis5, 33 (1983).28 It is sometimes consi<strong>de</strong>red that the primary and secondaryelectron distributions have id<strong>en</strong>tical shapes. This wouldonly be the case if all the electrons had the same number ofcollisions along the transport whatever their final emerging<strong>en</strong>ergy (like in a thermalized electron distribution). Thisis not the case here and we consi<strong>de</strong>r that the number ofcollisions n that an electron un<strong>de</strong>rgoes during the transportacross the metal layer <strong>de</strong>p<strong>en</strong>ds on its exit <strong>en</strong>ergy ε.This assumption seems reasonable since, for instance, itis clear that electrons transmitted at the injection <strong>en</strong>ergyE 0 (i.e. with no <strong>en</strong>ergy loss) had no collision while electronstransmitted with an <strong>en</strong>ergy very close to the barrierheight have certainly suffered in average many collisions.Th<strong>en</strong>, according to the <strong>en</strong>ergy relaxation equation that wehave used [Eq.(5)], we obtain n (ε) =Ln (E 0/ε) /Ln (2).Consequ<strong>en</strong>tly, at <strong>en</strong>ergy ε, the ratio of the total number ofelectrons (primaries and secondaries together) to the numberof primary electrons is F (ε) /f p (ε) =2 n(ε) = E 0/ε.29 In the configuration of the pres<strong>en</strong>t experim<strong>en</strong>t, we can onlymeasure the transmission asymmetry related to the primaryelectron polarization. Therefore, the polarization ofthe secondary electrons can not be evid<strong>en</strong>ced since its ori<strong>en</strong>tationis <strong>de</strong>termined by that of the magnetic layer magnetizationand not by the primary electron polarization.To evid<strong>en</strong>ce the spin-filtering of secondary electrons oneshould either use a spin-valve structure or measure the polarizationof the transmitted electrons.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!