13.07.2015 Views

THESE DE DOCTORAT DE L'UNIVERSITE PARIS VI - LISMMA

THESE DE DOCTORAT DE L'UNIVERSITE PARIS VI - LISMMA

THESE DE DOCTORAT DE L'UNIVERSITE PARIS VI - LISMMA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.3 Module tangentR 1111 = Φ 11pq F 1p F 1q = λ 2 Φ 1111Soit :R 1111 = 2(2λ 2 + 1 λ ) ∂W∂I 1+4λ 2 ( λ3 −1λ 2) 2 ∂2 W∂I 2 1Relation qui s’écrit aussi :+ 2(λ + 2 λ 2 ) ∂W+ 4( λ3 −1λ 2∂I 2+) 2 ∂2 W∂I 2 2+ 8λ( λ3 −1) 2 ∂2 W(3.29)λ 2 ∂I 1 ∂I 2R 1111 = E 1 =2∑p=1χ p (λ) ∂W∂I p+2∑p=12∑q=1χ pq (λ)∂2 W∂I p ∂I q(3.30)Avec, E 1 est le module d’Young dans la direction 1 (car nous sommes encontraintes uniaxiales), et :⎧χ 1 (λ) = 2(2λ 2 + 1 ) λ⎪⎨⎪⎩χ 2 (λ) = 2(λ + 2 λ 2 )χ 11 (λ) = 4λ 2 ( λ3 −1λ 2 ) 2χ 12 (λ) = χ 21 (λ) = 4λ( λ3 −1λ 2 ) 2 (3.31)χ 22 (λ) = 4( λ3 −1) 2λ 2Dans le cas d’un modèle paramétrique donné par la relation 3.14, il vient :E(λ, t) =N∑n=1Avec en vertu des relations 3.19 :K n g n (t) (1 + α n ) H αn−1n (I 1 , I 2 ) P n (λ) (3.32)P n (λ)Exemple :∑= 2 χ ρ (λ)H n (I 1 , I 2 ) ∂Hnp=1{∑+ 2 2∑χ pq (λ)p=1 p=1∂I p+α n∂H n∂I p99∂H n∂I q∂+ H 2 H nn ∂I p∂I q} (3.33)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!