Traitement et analyse de séries chronologiques continues de ...

Traitement et analyse de séries chronologiques continues de ... Traitement et analyse de séries chronologiques continues de ...

theses.insa.lyon.fr
from theses.insa.lyon.fr More from this publisher
14.09.2014 Views

Bibliographie Kuczera G. et Parent E. (1988). On the validity of first-order prediction limits for conceptual hydrologic models. Journal of Hydrology, 103, p.229–247. Kuczera G. et Parent E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4), p.69-85. Kuczera G., Kavetski D., Franks S. et Thyer M. (2006). Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. Journal of Hydrology, 331(1-2), p.161-177. Lacour C. (2009). Apport de la mesure en continu pour la gestion de la qualité des effluents de temps de pluie en réseau d’assainissement. Thèse de doctorat, Université Paris-Est, France, 306 p. Laloy E., Fasbender D. et Bielders C.L. (2010). Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach. Journal of Hydrology, 380(1-2), p.82-93. Langergraber G., Fleischmann N. et Hofstädter F. (2003). A multivariate calibration procedure for UV/VIS spectrometric quantification of organic matter and nitrate in wastewater. Water Science and Technology, 47(2), p.63-71. Lepot M. (2010). Mesurage en continu des flux polluants de MES et DCO en réseau d’assainissement. Thèse de doctorat, INSA Lyon, France. Levenberg, K., 1944. A method for the solution of certain problems in Least Squares. Quarterly of Applied Mathematics, 2, p.164-168. Lindblom E., Ahlman S. et Mikkelsen P.S. (2007). Uncertainty in model-based prediction of copper loads in stormwater runoff Incertitude des prédictions basées sur les modèles des charges. Water Science and Technology, 56(6), p.11–18. Macdonald J.R. et Thomson W.J. (1992). Least-squares fiting when both variables contain errors : pitfalls and possibilities. American Journal of Physics, 60(1). Madsen H. (2000). Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. Journal of Hydrology, 235(3-4), p.276-288. Mantovan P. et Todini E. (2006). Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 330(1-2), p.368-381. Mannina G., Freni G., Viviani G., Sægrov S. et Hafskjold L.S. (2006). Integrated urban water modelling with uncertainty analysis. Water Science et Technology, 54(6-7), p.379. Mannina G. et Viviani G. (2010). An urban drainage stormwater quality model: Model development and uncertainty quantification. Journal of Hydrology, 381(3-4), p.248-265. Marquardt D. (1963). An Algorithm for Least Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics, 11, p.431-441. Marsalek J. (1976). Simulation of quality of urban drainage effluents. In American society of Civil Engineers ASCE. 332

Bibliographie May D. et Sivakumar M. (2009). Prediction of urban stormwater quality using artificial neural networks. Environmental Modelling et Software, 24(2), p.296-302. McCarthy D. (2008). Modelling microorganisms in urban stormwater. Thèse de doctorat, Université de Monash, Melbourne, Australie. Menacher F. et Augustin A. (1992). Detention in combined sewers. Institute for Sanitary Engineering, University of Karlsruhe, Germany, Report nr 64, p. 191-222 (in German). Métadier M. et Bertrand-Krajewski J.-L. (2010a). Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems. Water Science and Technology, accepté. Métadier M. et Bertrand-Krajewski J.-L. (2010b). From mess to mass: a methodology for calculating storm event pollutant loads with their uncertainties, from continuous raw data time series. Water Science and Technology, accepté. Métadier M. et Bertrand-Krajewski J.-L. (2010c). Traitement de séries chronologiques de turbidité continues à court pas de temps pour l’estimation des masses de MES et de DCO rejetées en milieu urbain par temps de pluie. La Houille Blanche, 2, p. 77. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. et Teller E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, p.1087–1091. Montanari A. (2005). Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 41. 13 p. Mourad M. (2001). Modèles de calcul de flux polluants en réseau d’assainissement par temps de pluie : étude bibliographique, Rapport interne. Villeurbanne, INSA de Lyon - URGC - Hydrologie urbaine, 2001, 83 p. Mourad M. et Bertrand-Krajewski J.-L., (2001). Traitement de données de l’OTHU par le logiciel Dave. Rapport interne, LGCIE, INSA de Lyon, France. Mourad M. (2005). Modélisation de la qualité des rejets urbains de temps de pluie : sensibilité aux données expérimentales et adéquation aux besoins opérationnels. Thèse de doctorat, INSA de lyon, France, 305 p. Mourad M., Bertrand-Krajewski J.-L. et Chebbo G. (2005). Calibration and validation of multiple regression models for stormwater quality prediction: data partitioning, effect of dataset size and characteristics. Water Science and Technology, 52(3), p.45-52. Mourad M., Bertrand-Krajewski J.-L. et Chebbo G. (2005a). Sensitivity to experimental data of pollutant site mean concentration in stormwater runoff. Water Science and Technology, 51(2), p.155-62. Mourad M., Bertrand-Krajewski J.-L. et Chebbo G. (2005b). Stormwater quality models: sensitivity to calibration data. Water Science and Technology, 52(5), p.61-8. 333

Bibliographie<br />

Kuczera G. <strong>et</strong> Parent E. (1988). On the validity of first-or<strong>de</strong>r prediction limits for conceptual<br />

hydrologic mo<strong>de</strong>ls. Journal of Hydrology, 103, p.229–247.<br />

Kuczera G. <strong>et</strong> Parent E. (1998). Monte Carlo assessment of param<strong>et</strong>er uncertainty in conceptual<br />

catchment mo<strong>de</strong>ls: the M<strong>et</strong>ropolis algorithm. Journal of Hydrology, 211(1-4), p.69-85.<br />

Kuczera G., Kav<strong>et</strong>ski D., Franks S. <strong>et</strong> Thyer M. (2006). Towards a Bayesian total error analysis of<br />

conceptual rainfall-runoff mo<strong>de</strong>ls: Characterising mo<strong>de</strong>l error using storm-<strong>de</strong>pen<strong>de</strong>nt param<strong>et</strong>ers.<br />

Journal of Hydrology, 331(1-2), p.161-177.<br />

Lacour C. (2009). Apport <strong>de</strong> la mesure en continu pour la gestion <strong>de</strong> la qualité <strong>de</strong>s effluents <strong>de</strong> temps<br />

<strong>de</strong> pluie en réseau d’assainissement. Thèse <strong>de</strong> doctorat, Université Paris-Est, France, 306 p.<br />

Laloy E., Fasben<strong>de</strong>r D. <strong>et</strong> Biel<strong>de</strong>rs C.L. (2010). Param<strong>et</strong>er optimization and uncertainty analysis for<br />

plot-scale continuous mo<strong>de</strong>ling of runoff using a formal Bayesian approach. Journal of<br />

Hydrology, 380(1-2), p.82-93.<br />

Langergraber G., Fleischmann N. <strong>et</strong> Hofstädter F. (2003). A multivariate calibration procedure for<br />

UV/VIS spectrom<strong>et</strong>ric quantification of organic matter and nitrate in wastewater. Water Science<br />

and Technology, 47(2), p.63-71.<br />

Lepot M. (2010). Mesurage en continu <strong>de</strong>s flux polluants <strong>de</strong> MES <strong>et</strong> DCO en réseau d’assainissement.<br />

Thèse <strong>de</strong> doctorat, INSA Lyon, France.<br />

Levenberg, K., 1944. A m<strong>et</strong>hod for the solution of certain problems in Least Squares. Quarterly of<br />

Applied Mathematics, 2, p.164-168.<br />

Lindblom E., Ahlman S. <strong>et</strong> Mikkelsen P.S. (2007). Uncertainty in mo<strong>de</strong>l-based prediction of copper<br />

loads in stormwater runoff Incertitu<strong>de</strong> <strong>de</strong>s prédictions basées sur les modèles <strong>de</strong>s charges. Water<br />

Science and Technology, 56(6), p.11–18.<br />

Macdonald J.R. <strong>et</strong> Thomson W.J. (1992). Least-squares fiting when both variables contain errors :<br />

pitfalls and possibilities. American Journal of Physics, 60(1).<br />

Madsen H. (2000). Automatic calibration of a conceptual rainfall–runoff mo<strong>de</strong>l using multiple<br />

objectives. Journal of Hydrology, 235(3-4), p.276-288.<br />

Mantovan P. <strong>et</strong> Todini E. (2006). Hydrological forecasting uncertainty assessment: Incoherence of the<br />

GLUE m<strong>et</strong>hodology. Journal of Hydrology, 330(1-2), p.368-381.<br />

Mannina G., Freni G., Viviani G., Sægrov S. <strong>et</strong> Hafskjold L.S. (2006). Integrated urban water<br />

mo<strong>de</strong>lling with uncertainty analysis. Water Science <strong>et</strong> Technology, 54(6-7), p.379.<br />

Mannina G. <strong>et</strong> Viviani G. (2010). An urban drainage stormwater quality mo<strong>de</strong>l: Mo<strong>de</strong>l <strong>de</strong>velopment<br />

and uncertainty quantification. Journal of Hydrology, 381(3-4), p.248-265.<br />

Marquardt D. (1963). An Algorithm for Least Squares Estimation of Nonlinear Param<strong>et</strong>ers. SIAM<br />

Journal on Applied Mathematics, 11, p.431-441.<br />

Marsalek J. (1976). Simulation of quality of urban drainage effluents. In American soci<strong>et</strong>y of Civil<br />

Engineers ASCE.<br />

332

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!