24.06.2014 Views

maenas (intertidal zone) and Segonzacia mesatlantica - Station ...

maenas (intertidal zone) and Segonzacia mesatlantica - Station ...

maenas (intertidal zone) and Segonzacia mesatlantica - Station ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

178 Current Protein <strong>and</strong> Peptide Science, 2008, Vol. 9, No. 2 Bruneaux et al.<br />

involved in the pigment structure in the physiological buffer,<br />

hopefully the same as in the hemolymph. This is supported<br />

by the progressive decrease in mass observed with increasing<br />

denaturation/desolvatation: native MALLS mass is superior<br />

to native ESI-MS mass, which is superior to model mass<br />

from denatured subunits (Fig. 7). It is thus possible that what<br />

is really measured is not always exactly the same from one<br />

method to another. However, the good agreement between<br />

these two methods using different principles suggest that<br />

both of them provides accurate results <strong>and</strong> support further<br />

use of them in a complementary approach to study macromolecular<br />

complexes <strong>and</strong> protein-protein interactions.<br />

ACKNOWLEDGEMENTS<br />

The authors would like to thank their academic structures<br />

(CNRS, UPMC, ULP) for supporting their work. M.B. was<br />

funded by a MRT grant, n°18213-2005.<br />

ABBREVIATIONS<br />

Hb = Hemoglobin<br />

HBL-Hb = Hexagonal bilayer hemoglobin<br />

Chl = Chlorocruorin<br />

Hc = Hemocyanin<br />

TEM = Transmission electron microscopy<br />

STEM = Scanning transmission electron microscopy<br />

ESI-MS = Electrospray ionization mass spectrometry<br />

FFF = Field flow fractionation<br />

MALLS = Multi-angle laser light scattering<br />

n 50 = Hill-coefficient at half-saturation<br />

P 50 = Oxygen partial pressure at half-saturation<br />

LS = Light scattering<br />

HPLC = High performance liquid chromatography<br />

SDS-PAGE =<br />

Sodium dodecyl sulfate polyacrylamide gel<br />

electrophoresis<br />

rms = Root mean square<br />

Rg = Gyration radius<br />

Rh = Hydrodynamic radius<br />

cryo-EM = Cryoelectron microscopy<br />

AmHb = Arenicola marina hemoglobin<br />

LtHb = Lumbricus terrestris hemoglobin<br />

SAXS = Small-angle x-ray scattering.<br />

REFERENCES<br />

[1] Toulmond, A. <strong>and</strong> Truchot, J.P. (1993) La Recherche, 254, 562-<br />

570.<br />

[2] Kurtz, D.M., Jr. (1992) In Blood <strong>and</strong> tissue oxygen carriers (Mangum,<br />

C.P., Ed.), pp. 151-171, Springer-Verlag, Berlin.<br />

[3] van Holde, K.E., Miller, K.I. <strong>and</strong> Decker, H. (2001) J. Biol. Chem.,<br />

276, 15563-15566.<br />

[4] Weber, R.E. <strong>and</strong> Vinogradov, S.N. (2001) Physiol. Rev., 81, 569-<br />

628.<br />

[5] Katta, V. <strong>and</strong> Chait, B.T. (1991) J. Am. Chem. Soc., 113, 8534-<br />

8535.<br />

[6] Rousselot, M., Le Guen, D. <strong>and</strong> Zal, F. (2006) FEBS J., 273, 1582-<br />

1596.<br />

[7] Zal, F., Lallier, F.H. <strong>and</strong> Toulmond, A. (2000) International patent,<br />

PCT/FR01/01505<br />

[8] Rousselot, M., Delpy, E., Drieu La Rochelle, C., Lagente, V., Pirow,<br />

R., Rees, J.F., Hagege, A., Le Guen, D., Hourdez, S. <strong>and</strong> Zal,<br />

F. (2006) Biotechnol. J., 1, 333-345.<br />

[9] Martin, A.G., Depoix, F., Stohr, M., Meissner, U., Hagner-Holler,<br />

S., Hammouti, K., Burmester, T., Heyd, J., Wriggers, W. <strong>and</strong><br />

Markl, J. (2007) J. Mol. Biol., 366, 1332-1350.<br />

[10] Menze, M.A., Hellmann, N., Decker, H. <strong>and</strong> Grieshaber, M.K.<br />

(2005) Biochemistry, 44, 10328-10338.<br />

[11] van Holde, K.E., Miller, K.I. <strong>and</strong> van Olden, E. (2000) Biophys.<br />

Chem., 86, 165-172.<br />

[12] Decker, H. <strong>and</strong> Sterner, R. (1990) J. Mol. Biol., 211, 281-293.<br />

[13] Mangum, C.P. (1976) In Adaptation to environment: physiology of<br />

marine animals. (Newell, P.C., Ed.), pp. 191, Butterworth's: London,<br />

London.<br />

[14] Weber, R.E. (1978) in Physiology of annelids (Mill, P., Ed.), pp.<br />

393-446, Academic Press, New York.<br />

[15] Svedberg, T. <strong>and</strong> Eriksson, I.B. (1933) J. Am. Chem. Soc., 55,<br />

2834-2841.<br />

[16] Roche, J. (1965) in Studies in comparative biochemistry. (Munday,<br />

D.A., Ed.), Pergamon Press, Oxford.<br />

[17] Terwilliger, N.B. (1992) In Blood <strong>and</strong> tissue oxygen carriers<br />

(Mangum, C.P., Ed.), pp. 193-229, Springer-Verlag, Berlin.<br />

[18] Svedberg, T. <strong>and</strong> Eriksson, I.B. (1933) J. Am. Chem. Soc., 56,<br />

1700-1705.<br />

[19] Mangum, C.P., Woodin, B.R., Bonaventura, C., Sullivan, B. <strong>and</strong><br />

Bonaventura, J. (1975) Comp. Biochem. Physiol., 51A, 281-294.<br />

[20] Weber, R.E. <strong>and</strong> Baldwin, J. (1985) Mol. Physiol., 7, 93-106.<br />

[21] Antonini, E., Rossi-Fanelli, A. <strong>and</strong> Caputo, A. (1962) Arch. Biochem.<br />

Biophys., 97, 343-350.<br />

[22] Zhu, H., Ownby, D.W., Riggs, C.K., Nolasco, N.J., Stoops, J.K.<br />

<strong>and</strong> Riggs, A.F. (1996) J. Biol. Chem., 271, 30007-30021.<br />

[23] Martin, P.D., Kuchumov, A.R., Green, B.N., Oliver, R.W.,<br />

Braswell, E.H., Wall, J.S. <strong>and</strong> Vinogradov, S.N. (1996) J. Mol.<br />

Biol., 255, 154-169.<br />

[24] Truchot, J.P. (1992) In Blood <strong>and</strong> tissue oxygen carriers. (Mangum,<br />

C.P., Ed.), pp. 377-410, Springer-Verlag, Berlin.<br />

[25] Bridges, C.R. (2001) J. Exp. Biol., 204, 1021-1032.<br />

[26] Mangum, C.P. <strong>and</strong> Rainer, J.S. (1988) Bio. Bull., 174, 77-82.<br />

[27] Bellelli, A., Giardina, B., Corda, M., Pellegrini, M.G., Cau, A.,<br />

Condó, S.G. <strong>and</strong> Brunori, M. (1988) Comp. Biochem. Physiol.,<br />

91A, 445-449.<br />

[28] Condó, S.G., Pellegrini, M.G., Corda, M., Sanna, M.T., Cau, A.<br />

<strong>and</strong> Giardina, B. (1991) Biochem. J., 277, 419-421.<br />

[29] Mangum, C.P. (1994) Comp. Biochem. Physiol. Biochem. Mol.<br />

Biol., 108, 537-541.<br />

[30] Howlett, G.J., Minton, A.P. <strong>and</strong> Rivas, G. (2006) Curr. Opin.<br />

Chem. Biol., 10, 430-436.<br />

[31] Lebowitz, J., Lewis, M.S. <strong>and</strong> Schuck, P. (2002) Protein Sci., 11,<br />

2067-2079.<br />

[32] Hanin, L., Green, B., Zal, F. <strong>and</strong> Vinogradov, S. (2003) J. Biosci.,<br />

28, 557-568.<br />

[33] Lee, S.C. <strong>and</strong> Whitaker, J.R. (2004) J. Agric. Food Chem., 52,<br />

4948-4952.<br />

[34] Philo, J.S. (2006) AAPS J., 8, E564-571.<br />

[35] Müller, S.A. <strong>and</strong> Engel, A. (2001) Micron, 32, 21-31.<br />

[36] Schlags, W., Walther, M., Masree, M., Kratzel, M., Noe, C.R. <strong>and</strong><br />

Lachmann, B. (2005) Electrophoresis, 26, 2461-2469.<br />

[37] Lamy, J.N., Green, B.N., Toulmond, A., Wall, J.S., Weber, R.E.<br />

<strong>and</strong> Vinogradov, S.N. (1996) Chem. Rev., 96, 3113-3124.<br />

[38] Harding, S.E. <strong>and</strong> Jumel, K. (1998) Curr. Protocols Protein Sci.,<br />

7.8.1-7.8.14.<br />

[39] Wyatt, P.J. (1993) Anal. Chim. Acta, 272, 1-40.<br />

[40] Takagi, T. (1990) J. Chromatogr., 506, 409-416.<br />

[41] Wen, J., Arakawa, T. <strong>and</strong> Philo, J.S. (1996) Anal. Biochem., 240,<br />

155-166.<br />

[42] Doty, P.M., Zimm, B.H. <strong>and</strong> Mark, H. (1944) J. Chem. Phys., 12,<br />

144-145.<br />

[43] Zimm, B.H. (1948) J. Chem. Phys., 16, 1093-1116.<br />

[44] Andersson, M., Wittgren, B. <strong>and</strong> Wahlund, K.G. (2003) Anal.<br />

Chem., 75, 4279-4291.<br />

[45] Silveira, J.R., Raymond, G.J., Hughson, A.G., Race, R.E., Sim,<br />

V.L., Hayes, S.F. <strong>and</strong> Caughey, B. (2005) Nature, 437, 257-261.<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!