21.04.2014 Views

these simulation numerique et modelisation de l'ecoulement autour ...

these simulation numerique et modelisation de l'ecoulement autour ...

these simulation numerique et modelisation de l'ecoulement autour ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

the perforated plate. A Large-Eddy Simulation of the flow<br />

around a periodic perforated plate is performed and the<br />

characteristics of the aerodynamical and thermal behavior<br />

of the flow are <strong>de</strong>scribed.<br />

Our anisothermal calculations allow to g<strong>et</strong> d<strong>et</strong>ailed data<br />

about thermal behavior of the flow, especially locally resolved<br />

maps of heat transfers at the perforated plate. In the<br />

presented anisothermal computation, the heat flux in the<br />

aperture represents approximately 30 % of the total cooling<br />

heat flux (suction si<strong>de</strong> + aperture). This confirms that a significant<br />

part of the plate cooling is done thanks to convection<br />

insi<strong>de</strong> the aperture. It also suggests that an improvement<br />

of the calculation results would certainly be obtained by<br />

coupling the resolution of the flow with the resolution of<br />

the thermal field insi<strong>de</strong> the plate. Besi<strong>de</strong>s, as shown by recent<br />

publications (see Errera and Chemin, 2004, Zhong and<br />

Brown, 2007), the current trend is to <strong>de</strong>velop such m<strong>et</strong>hods<br />

to increase to predictive capacity of numerical tools for film<br />

cooling flows.<br />

Comparisons of the anisothermal results with the isothermal<br />

calculations show that the general topology of the flow<br />

is not fundamentally modified due to <strong>de</strong>nsity variations: the<br />

cooling fluid separates at the hole inl<strong>et</strong>, and the j<strong>et</strong> shows<br />

a characteristic kidney shape. The blowing ratio is high<br />

enough to make the j<strong>et</strong> separate at the outl<strong>et</strong>. In the injection<br />

si<strong>de</strong>, a counter-rotating vortex pair is formed at the<br />

hole edges. This CVP, responsible for the entrainment of<br />

inci<strong>de</strong>nt flow towards the wall, has a streamwise orientation<br />

and is located un<strong>de</strong>r the j<strong>et</strong> core downstream of the hole<br />

exit.<br />

By comparing the flow in an isothermal and in an<br />

anisothermal cases, for the same geom<strong>et</strong>rical configuration,<br />

differences in the vortical motions have been shown. In the<br />

suction si<strong>de</strong>, the vortices created downstream of the hole inl<strong>et</strong><br />

(MacManus and Eaton, 2000) have a higher life duration<br />

in the anisothermal <strong>simulation</strong>. The flow in the aperture is<br />

thus different: two pairs of vortices exist in the aperture,<br />

but the pair rotating in the direction opposite to the CVP<br />

is more intense in the anisothermal case. This also seems to<br />

have an impact when the j<strong>et</strong> issues on the injection si<strong>de</strong>. The<br />

CVP is less intense in the anisothermal calculation, leading<br />

to a wi<strong>de</strong>r j<strong>et</strong> located closer from the wall.<br />

ACKNOWLEDGMENTS<br />

The authors are grateful to the European Community<br />

for funding this work un<strong>de</strong>r the project INTELLECT-DM<br />

(Contract No. FP6 - AST3 - CT - 2003 - 502961), and to the<br />

CINES and the BSC (Barcelona Supercomputing Center) for<br />

the access to supercomputer facilities.<br />

REFERENCES<br />

Champion, J.-L., Di Martino, P., Coron, X., 2005, ”Influence<br />

of Flow Characteristics on the Discharge Coefficient<br />

of a Multiperforated Wall”, In ASME TURBO EXPO 2005,<br />

June 6-9, 2005, Reno-Tahoe, Nevada USA.<br />

Colin, O., and Rudgyard, M., 2000, ”Development of<br />

high-or<strong>de</strong>r Taylor-Galerkin schemes for unsteady calculations”,<br />

J. Comput. Phys., Vol. 162(2), pp 338–371.<br />

Eames, I., and Hunt, J. C. R., 1997, ”Inviscid flow<br />

around bodies moving in weak <strong>de</strong>nsity gradients without<br />

buoyancy effects”, J. Fluid Mech., Vol 353, pp 331–355.<br />

Errera, M. P., and Chemin, S., 2004, ”A Fluid-Solid<br />

Thermal Coupling Applied To An Effusion Cooling System”,<br />

In 34th Fluid Dynamics Conference and Exhibit. Portland,<br />

Oregon.<br />

Gustafsson, K. M. B., 2001, ”Experimental Studies of Effusion<br />

Cooling”, Ph.D. thesis, Chalmers University of Technology,<br />

Göteborg.<br />

Hunt, J. C. R., Wray, A. A., and Moin, P., 1988, ”Eddies,<br />

streams, and convergence zones in turbulent flows”, In Proc.<br />

Summer Program CTR, NASA Ames - Stanford University.<br />

Iourokina, I. V., and Lele, S. K, 2006, ”Large eddy <strong>simulation</strong><br />

of film-cooling above the flat surface with a large<br />

plenum and short exit holes”, In 44th Aerospace Sciences<br />

Me<strong>et</strong>ing and Exhibit.<br />

Lefebvre, A. H., 1999, ”Gas Turbines Combustion”, Taylor<br />

& Francis.<br />

MacManus, D. G., and Eaton, J. A., 2000, ”Flow physics<br />

of discr<strong>et</strong>e boundary layer suction measurements and predictions”,<br />

J. Fluid Mech., Vol. 417, pp 47–75.<br />

Men<strong>de</strong>z, S., Nicoud, F., and Poinsot, T., 2006a, ”Large-<br />

Eddy Simulations of a Turbulent Flow around a Multi-<br />

Perforated Plate”, in Complex effects in LES, Vol. 56, pp.<br />

289–303.<br />

Men<strong>de</strong>z, S., Eldredge, J., Nicoud, F., Poinsot, T.,<br />

Shoeybi, M., and Iaccarino, G., 2006b, ”Numerical investigation<br />

and preliminary mo<strong>de</strong>ling of a turbulent flow over<br />

a multi-perforated plate”, Center for Turbulence Research,<br />

in Proceedings of the Summer Program 2006.<br />

Miron, P., 2005, ”Étu<strong>de</strong> expérimentale <strong>de</strong>s lois <strong>de</strong> parois<br />

<strong>et</strong> du film <strong>de</strong> refroidissement produit par une zone multiperforée<br />

sur une paroi plane”, Ph.D. Thesis, Université <strong>de</strong> Pau<br />

<strong>et</strong> <strong>de</strong>s Pays <strong>de</strong> l’Adour.<br />

Nicoud, F., and Ducros, F., 1999, ”Subgrid-scale stress<br />

mo<strong>de</strong>lling based on the square of the velocity gradient tensor”.<br />

Flow, Turbulence and Combustion, Vol. 62(3), pp<br />

183-200.<br />

P<strong>et</strong>erson, S. D., and Plesniak, M. W., 2002, ”Short-hole<br />

j<strong>et</strong>-in-crossflow velocity field and its relationship to filmcooling<br />

performance”, Exps Fluids, Vol. 33, pp 889–898.<br />

Prière, C., Gicquel, L., Kaufmann, A., Krebs, W., and<br />

Poinsot, T., 2004, ”LES predictions of mixing enhancement<br />

for j<strong>et</strong>s in cross-flows”, J. of Turbulence, Vol. 5, pp 005.<br />

Renze, P., Meinke, M., and Shrö<strong>de</strong>r, W., 2006 ”LES<br />

of turbulent mixing in film cooling flows”, In Conference<br />

on Turbulence and Interactions TI2006, May 29 - June 2,<br />

2006, Porquerolles, France.<br />

Rouvreau, S., 2001 ”Etu<strong>de</strong> expérimentale <strong>de</strong> la structure<br />

moyenne <strong>et</strong> instantanée dun film produit par une zone multiperforée<br />

sur une paroi plane”, Ph.D. thesis, ENSMA <strong>et</strong><br />

Faculté <strong>de</strong>s Sciences Fondamentales <strong>et</strong> Appliquées, Poitiers.<br />

Schmitt, P., Poinsot, T., Schuermans, B., and Geigle,<br />

K., 2007, ”Large-eddy <strong>simulation</strong> and experimental study of<br />

heat transfer, nitric oxi<strong>de</strong> emissions and combustion instability<br />

in a swirled turbulent high-pressure burner”, J. Fluid<br />

Mech., Vol. 570, pp. 17–46.<br />

Schönfeld, T., and Rudgyard, M., 1999, ”Steady and unsteady<br />

flows <strong>simulation</strong>s using the hybrid flow solver AVBP”,<br />

AIAA Journal, Vol. 37, No. 11, pp. 1378–1385.<br />

Tyagi, M., and Acharya, S., 2003, ”Large eddy <strong>simulation</strong><br />

of film cooling flow from an inclined cylindrical j<strong>et</strong>”,<br />

ASME J. Turbomach., Vol. 125, pp 734-742.<br />

Yavuzkurt, S., Moffat, R. J., and Kays, W. M, 1980,<br />

”Full coverage film cooling. Part 1. Three-dimensional measurements<br />

of turbulent structures”, J. Fluid Mech., Vol. 101,<br />

pp 129-158.<br />

Zhong, F., and Brown, G. L., 2007, ”A 3-dimensional,<br />

coupled, DNS, heat transfer mo<strong>de</strong>l and solution for multihole<br />

cooling”, Int. J. of Heat and Mass Transfer, Vol. 50,<br />

pp 1328–1343.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!