21.04.2014 Views

these simulation numerique et modelisation de l'ecoulement autour ...

these simulation numerique et modelisation de l'ecoulement autour ...

these simulation numerique et modelisation de l'ecoulement autour ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LES of a bi-periodic turbulent flow with effusion 13<br />

12<br />

10<br />

a<br />

12<br />

10<br />

b<br />

8<br />

8<br />

y/d<br />

6<br />

4<br />

y/d<br />

6<br />

4<br />

2<br />

2<br />

0<br />

0<br />

0.0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1.0<br />

0.00<br />

0.05<br />

0.10<br />

0.15<br />

0.20<br />

12<br />

10<br />

< U > /V j<br />

c<br />

12<br />

10<br />

< V > /V j<br />

d<br />

8<br />

8<br />

y/d<br />

6<br />

4<br />

y/d<br />

6<br />

4<br />

2<br />

2<br />

0<br />

0.00<br />

0.04 0.08 0.12<br />

u rms/V j<br />

0.16<br />

0<br />

0.00<br />

0.04 0.08<br />

v rms/V j<br />

Figure 6. Velocity profiles from the 1-hole ( , Run B) and the 4-hole ( , Run D)<br />

computations at position (d) in figure 9 (viz. in b<strong>et</strong>ween two consecutive holes in the spanwise<br />

or streamwise direction): (a): time averaged streamwise velocity, (b): time averaged normal<br />

velocity, (c): RMS of streamwise velocity, (d): RMS of normal velocity.<br />

0.12<br />

0.16<br />

12<br />

10<br />

a<br />

12<br />

10<br />

b<br />

8<br />

8<br />

y/d<br />

6<br />

4<br />

y/d<br />

6<br />

4<br />

2<br />

2<br />

0<br />

0<br />

0.0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

-40x10 -3 -20 0 20<br />

12<br />

10<br />

< U > /V j<br />

c<br />

12<br />

10<br />

< V > /V j<br />

d<br />

8<br />

8<br />

y/d<br />

6<br />

4<br />

y/d<br />

6<br />

4<br />

2<br />

2<br />

0<br />

0.00<br />

0.04 0.08<br />

u rms/V j<br />

0.12<br />

0<br />

0<br />

10<br />

20 30<br />

v rms/V j<br />

Figure 7. Velocity profiles from the 1-hole ( , Run B) and the 4-hole ( , Run D)<br />

computations at position (e) in figure 9 (x = 0, z = −1.5 d): (a): time averaged streamwise<br />

velocity, (b): time averaged normal velocity, (c): RMS of streamwise velocity, (d): RMS of<br />

normal velocity.<br />

40x10 -3<br />

hole results where the points located one streamwise hole-to-hole distance apart are not<br />

correlated. Figures 8(a,c) suggest that in Run D, with 4 holes computed, no j<strong>et</strong>-to-j<strong>et</strong><br />

interaction occurs, supporting the i<strong>de</strong>a that the use of a periodic domain containing one<br />

aperture does not break any natural interaction. In general, with the exception of the<br />

periodicity effect, no major difference appears b<strong>et</strong>ween the 1-hole and the 4-hole runs.<br />

Note however that non-negligible differences b<strong>et</strong>ween the 1-hole and the 4-hole runs are<br />

som<strong>et</strong>imes visible (for example in figure 8(a) at a reduced separation of 0.1). Given the<br />

very good agreement observed previously for the time-averaged and RMS of streamwise<br />

and normal velocity components (figures 6 and 7), <strong>these</strong> differences are most likely due

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!