Dialogue essais-simulation et identification de lois de comportement ...

Dialogue essais-simulation et identification de lois de comportement ... Dialogue essais-simulation et identification de lois de comportement ...

tel.archives.ouvertes.fr
from tel.archives.ouvertes.fr More from this publisher
28.02.2014 Views

Partie A - Chapitre 1 : Superélasticité des alliages à mémoire de forme *(Meraghni et al. 2011) Meraghni F., Nouri H., Bourgeois N., Czarnota C. et Lory P. (2011). Parameters identification of fatigue damage model for short glass fiber reinforced polyamide (PA6- GF30) using digital image correlation. Procedia Engineering 10, 2110-2116. *(Meraghni et al. 2013) Meraghni F., Chemisky Y., Piotrowski B., Echchorfi R., Bourgeois N., Patoor E., Identification of thermodynamical model parameters for superelastic shape memory alloys using analytical calculation of the sensitivity matrix. Soumis à European Journal of Mechanics A/solids. *(Merzouki 2008) Merzouki T. (2008). Identification expérimentale et modélisation du comportement d’un multicristal en alliage à mémoire de forme. Thèse de doctorat. ARTS et METIERS PARISTECH. Centre de Metz. *(Mohammad Sadeghi 2010) Mohammad Sadeghi Bagher M. (2010). Analyse et Identification du comportement mécanique d’aciers à effet TRIP à partir de mesures de champs cinématiques. Thèse de doctorat. ARTS et METIERS PARIS TECH. Centre de Metz. *(Morin et al. 2011) Morin C., Moumni Z. et Zaki W. (2011). A constitutive model for shape memory alloys accounting for thermomechanical coupling. International Journal of Plasticity, 27(5), 748-767. pastel-00910076, version 1 - 27 Nov 2013 *(Nouri 2009) Nouri H. (2009). Modélisation et identification de lois de comportement avec endommagement en fatigue polycyclique de matériaux composites à matrice thermoplastique. Thèse de doctorat, ARTS et METIERS PARIS TECH, Centre de Metz. (Orgéas et Favier 1998) Orgéas L. et Favier D. (1998). Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta Materialia, 46(15), 5579-5591. (Otsuka et Ren 2005) Otsuka K. et Ren X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science 50(5), 511-678. *(Panico et Brinson 2007) Panico M. et Brinson L. (2007). A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. of Mechanics and Physics of Solids 55, 2491–2511. (Patoor et al. 1995) Patoor E., El Amrani M., Eberhardt A. et Berveiller M. (1995). Determination of the Origin for the Dissymmetry Observed between Tensile and Compression Tests on Shape Memory Alloys. J. Phys. IV, 5, 495–500. (Patoor et Berveiller 1990) Patoor E. et Berveiller M. (1990). Les alliages à mémoire de forme. Hermès. (Patoor et Berveiller 1994) Patoor E. et Berveiller M. (1994). Technologie des alliages à mémoire de forme. Hermès. *(Payandeh 2010) Payandeh Y. (2010). Elaboration and characterization of NiTi/epoxy smart composite - Effects of martensitic transformation on mechanical behavior and interface debonding. Thèse de doctorat. ARTS et METIERS PARIS TECH, Centre de Metz. *(Peultier 2005) Peultier B. (2005). Alliages à mémoire de forme : modélisation et calcul de structures. Thèse de doctorat. ENSAM de Paris. *(Piotrowski et al. 2013) Piotrowski B., Chemisky Y., Meraghni F., Echchorfi R., Bourgeois N. et Patoor E. (2013). Identification and interpretation of material parameters of a shape memory alloy (SMA) model. Materials Science Forum Vols. 738-739, 276-280. 24

Partie A - Chapitre 1 : Superélasticité des alliages à mémoire de forme *(Saint-Sulpice et al 2009) Saint Sulpice L., Arbab Chirani S. et Calloch S. (2009). A 3D superelastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mechanics of Materials 41, 12–26. (Sittner et al., 2006) Sittner, P., Landa, M., Lukas, P. et Novak, V. (2006). R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mechanics of Materials, 38, 475–492. (Tang et al. 1999) Tang W., Sundman B., Sandström R. et Qiu C. (1999). New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system. Acta materialia 47(12), 3457-3468. *(Thiebaud et al. 2007) Thiebaud, F., Lexcellent, C., Collet, M. et Foltete, E. (2007). Implementation of a model taking into account the asymmetry between tension and compression, the temperature effects in a finite element code for shape memory alloys structures calculations. Computational Materials Science 41, 208–221. pastel-00910076, version 1 - 27 Nov 2013 (Xie et al. 1998) Xie Z., Liu Y., et Van Humbeeck J. (1998). Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Materialia, 46, 1989-2000. (Zhang et Sehitoglu 2004) Zhang X., Sehitoglu H. (2004). Crystallography of the B2→R→B19’ phase transformations in NiTi. Materials Science and Engineering A 374, 292–302. * Références citées dans l’introduction. 25

Partie A - Chapitre 1 : Superélasticité <strong>de</strong>s alliages à mémoire <strong>de</strong> forme<br />

*(Saint-Sulpice <strong>et</strong> al 2009) Saint Sulpice L., Arbab Chirani S. <strong>et</strong> Calloch S. (2009). A 3D superelastic<br />

mo<strong>de</strong>l for shape memory alloys taking into account progressive strain un<strong>de</strong>r cyclic loadings.<br />

Mechanics of Materials 41, 12–26.<br />

(Sittner <strong>et</strong> al., 2006) Sittner, P., Landa, M., Lukas, P. <strong>et</strong> Novak, V. (2006). R-phase transformation<br />

phenomena in thermomechanically loa<strong>de</strong>d NiTi polycrystals. Mechanics of Materials, 38, 475–492.<br />

(Tang <strong>et</strong> al. 1999) Tang W., Sundman B., Sandström R. <strong>et</strong> Qiu C. (1999). New mo<strong>de</strong>lling of the B2<br />

phase and its associated martensitic transformation in the Ti–Ni system. Acta materialia 47(12),<br />

3457-3468.<br />

*(Thiebaud <strong>et</strong> al. 2007) Thiebaud, F., Lexcellent, C., Coll<strong>et</strong>, M. <strong>et</strong> Folt<strong>et</strong>e, E. (2007). Implementation of<br />

a mo<strong>de</strong>l taking into account the asymm<strong>et</strong>ry b<strong>et</strong>ween tension and compression, the temperature<br />

effects in a finite element co<strong>de</strong> for shape memory alloys structures calculations. Computational<br />

Materials Science 41, 208–221.<br />

pastel-00910076, version 1 - 27 Nov 2013<br />

(Xie <strong>et</strong> al. 1998) Xie Z., Liu Y., <strong>et</strong> Van Humbeeck J. (1998). Microstructure of NiTi shape memory alloy<br />

due to tension-compression cyclic <strong>de</strong>formation. Acta Materialia, 46, 1989-2000.<br />

(Zhang <strong>et</strong> Sehitoglu 2004) Zhang X., Sehitoglu H. (2004). Crystallography of the B2→R→B19’ phase<br />

transformations in NiTi. Materials Science and Engineering A 374, 292–302.<br />

* Références citées dans l’introduction.<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!