Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ...

Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ... Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ...

repositorio.bib.upct.es
from repositorio.bib.upct.es More from this publisher
24.01.2013 Views

Paulignan, Y., MacKenzie, C.L., Materniuk, R.G., Jeannerod, M. (1991a). Selective perturbation of visual input during prehension movements.1. The effects of changing object position. Experimental Brain Research, 83, 502 – 512. Paulignan, Y., Jeannerod, M., MacKenzie, C.L., Materniuk, R.G., (1991b). Selective perturbation of visual input during prehension movements.2. The effects of changing object size. Experimental Brain Research, 87, 407 – 420. Paulignan, Y., Jeannerod, M. (1996). Prehension Movements: The visuomotor channels hypothesis revisited. In A.M. Wing, P. Haggard & J.R. Flanagan (Eds), Hand and Brain: The neurophysiology and psychology of hand movements. Academic Press, New York, 265-282. Paulignan, Y., Frak, V.G., Toni, I., Jeannerod, M. (1997). Influence of object position and size on human prehension movements. Experimental Brain Research, 114, 226 – 234. Pelisson, D., Prablanc, C., Goodale, M.A., Jeannerod, M. (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Experimental Brain Research, 62: 303-311. Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press. New York. 1952. Poggio, T, Torre, V., Koch, C. (1985). Computacional vision and regularization theory. Nature, 317: 314 – 319. Poggio, T. Girosi. F. (1989). A theory of networks for approximation and learning. AI Memo No. 1140, Massachusetts Institute of Technology. Poggio, T. Girosi. F. (1990a). A theory of networks for learning. Science, 247: 978 – 982. Poggio, T. Girosi. F. (1990b). Extension of a theory of networks for approximation and learning: dimensionality reduction and clustering. A.I. Memo 1167, Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Pons J. L., Ceres, R., Pfeiffer. (1999). Multifingered dextrous robotic hands design and control: a review. Robotica, 17(6): 661-674. Pouget. A., Snyder, L.H. (2000). Computational approaches to sensorimotor transformations. Nature 3 :1192 – 1198. Prablanc, C., Echallier, J.F., Komilis, E. Jeannerod, M. (1979) Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biological Cybernetics, 35:113-124

Rezzoug, N., Gorce, P. (2001). A Neural Network Architecture to Learn Hand Posture definition. Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, Tucson, AZ, 5, 3013-3018. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movement. Experimental Brain Research, 71, 491–507. Rizzolatti, G., Gentilucci, M. (1988). Motor and visual – motor functions of the premotor cortex. In P. Rakic, y W. Singer (Eds): Neurobiology of Neocortex. Wiley, Chichester, pp. 269 – 284. Rosenbaum, D.A., Meulenbroek, R.J.G., Vaughan, J., Elsinger, C. (1999). Approaching Grasping From Different Perspectives. Motor Control, 3 (3): 289-297 Rosenbaum, D.A., Marchak, F., Barnes, H.J., Vaughan, J., Slotta, J.D., Jorgensen, M.J. (1990). Constraints for action selection. Overhand versus underhand grips. In: Motor representation and control, Attention and Performance XIII, M. Jeannerod, Ed, Erlbaum, Hillsdale pp. 321-342 Sakata, H., Taira, M., Murata, A., Mine, S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebral Cortex, 5: 429 – 438. Saling, M., Mescheriakov, S., Molokanova, E., Stelmach, G.E., Berger, M. (1996). Grip reorganization during wrist transport: the influence of an altered aperture. Experimental Brain Research, 108, 493-500. Santello, M., Soechting, J.F. (1997). Matching object size by controlling finger span and hand shape. Somatosensory and Motor Research, 14: 203–212. Santello, M., Soechting, J.F. (1998). Gradual molding of the hand to object contours. Journal of Neurophysiology, 79:1307-1320 Santello, M., Flanders, M., Soechting, J.F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18: 10105-10115 Santello, M., Flanders, M., Soechting, J.F. (2002). Patterns of hand motion during grasping and the influence of sensory guidance. Journal of Neuroscience, 22(4): 1426- 1435 Sato, K.C., Tanji, J. (1989). Digit-muscle responses evoked from multiple intracortical foci in monkey precentral motor cortex. Journal of Neurophysiology, 62: 959–970. Scarpa, M., Castiello, U. (1994). Perturbation of a prehension movement in Parkinson’s disease. Movement Disorders, 9(4): 415 – 425.

Paulignan, Y., MacKenzie, C.L., Materniuk, R.G., Jeannerod, M. (1991a). Selective<br />

perturbation of visual input during prehension movements.1. The effects of changing<br />

object position. Experimental Brain Research, 83, 502 – 512.<br />

Paulignan, Y., Jeannerod, M., MacKenzie, C.L., Materniuk, R.G., (1991b). Selective<br />

perturbation of visual input during prehension movements.2. The effects of changing<br />

object size. Experimental Brain Research, 87, 407 – 420.<br />

Paulignan, Y., Jeannerod, M. (1996). Prehension Movements: The visuomotor channels<br />

hypothesis revisited. In A.M. Wing, P. Haggard & J.R. Flanagan (Eds), Hand and Brain:<br />

The neurophysiology and psychology of hand movements. Aca<strong>de</strong>mic Press, New<br />

York, 265-282.<br />

Paulignan, Y., Frak, V.G., Toni, I., Jeannerod, M. (1997). Influence of object position and<br />

size on human prehension movements. Experimental Brain Research, 114, 226 – 234.<br />

Pelisson, D., Prablanc, C., Goodale, M.A., Jeannerod, M. (1986) Visual control of<br />

reaching movements without vision of the limb. II. Evi<strong>de</strong>nce of fast unconscious<br />

processes correcting the trajectory of the hand to the final position of a double-step<br />

stimulus. Experimental Brain Research, 62: 303-311.<br />

Piaget, J. (1952). The Origins of Intelligence in Children. International Universities<br />

Press. New York. 1952.<br />

Poggio, T, Torre, V., Koch, C. (1985). Computacional vision and regularization theory.<br />

Nature, 317: 314 – 319.<br />

Poggio, T. Girosi. F. (1989). A theory of networks for approximation and learning. AI<br />

Memo No. 1140, Massachusetts Institute of Technology.<br />

Poggio, T. Girosi. F. (1990a). A theory of networks for learning. Science, 247: 978 – 982.<br />

Poggio, T. Girosi. F. (1990b). Extension of a theory of networks for approximation and<br />

learning: dimensionality reduction and clustering. A.I. Memo 1167, Artificial<br />

Intelligence Laboratory, Massachusetts Institute of Technology.<br />

Pons J. L., Ceres, R., Pfeiffer. (1999). Multifingered <strong>de</strong>xtrous robotic hands <strong>de</strong>sign and<br />

control: a review. Robotica, 17(6): 661-674.<br />

Pouget. A., Sny<strong>de</strong>r, L.H. (2000). Computational approaches to sensorimotor<br />

transformations. Nature 3 :1192 – 1198.<br />

Prablanc, C., Echallier, J.F., Komilis, E. Jeannerod, M. (1979) Optimal response of eye<br />

and hand motor systems in pointing at a visual target. I. Spatio-temporal<br />

characteristics of eye and hand movements and their relationships when varying the<br />

amount of visual information. Biological Cybernetics, 35:113-124

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!