Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ...

Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ... Universidad Politécnica de Cartagena TESIS DOCTORAL “UNA ...

repositorio.bib.upct.es
from repositorio.bib.upct.es More from this publisher
24.01.2013 Views

Bootsma, R.J., Marteniuk, R.G., MacKenzie, C.L., Zaal, F.T. (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Experimental Brain Research, 98, 535–541. Buchholz, B., Armstrong, T.J., Goldstein, S.A. (1992). Anthropometric data for describing the kinematics of the human hand. Ergonomics, 35(3): 261-273. Buessler J. L., Urban J. P., (2003). Modular neural architectures for robotics, Biologically inspired robot behavior engineering, Physica-Verlag GmbH, Heidelberg, Germany. Bullock, D., Bongers, R., Lankhorst, M., Beek, P. (1999). A vector-integration-toendpoint model for performance of viapoint movements. Neural Networks, 12: 1-29 Bullock, D., Grossberg, S. (1988a). Neural dynamics of planned arm movements: emergent invariants and speed-accuracy trade-offs during trajectory formation. Psychological Review, 95(1):49 – 90. Bullock, D., Grossberg, S. (1988b). The VITE model: a neural command circuit for generating arm and articulator trajectories. In J. Kelso, A. Mandell, & M. Shlesinger (Eds), Dynamic patterns in complex systems (pp 206-305). Singapore: World Scientific. Bullock, D., Grossberg, S. (1991). Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science, 10: 3-53. Bullock, D., Grossberg, S., Guenther, F.H. (1993). A self organizing neural model for motor equivalent reaching and tool use by a multijoint arm. Journal of Cognitive Neuroscience, 5(4), 408 – 435. Bullock, D., Cisek, P., Grossberg, S. (1998). Cortical networks for control of voluntary arm movements under variable force conditions. Cerebral Cortex, 8: 48 -62. Burnod, Y., Grandguillaume, P., Otto, I., Ferraina, S., Johnson, P.B., Camintini, R. (1992). Visuomotor transformations underlying arm movement toward visual targets: A neural network model of cerebral cortical operations. Journal of Neuroscience, 12: 1435 – 1453. Calabresi, P., Centonze, D., Gubellini, P., Marfia, G., Pisani, A., Sancesario, G., Bernardi, G. (2000a). Synaptic transmission in the striatum: from plasticity to neurodegeneration. Progress in Neurobiology, 61:231–265. Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., Bernardi. G (2000b). Acetylcholinemediated modulation of striatal function. Trends in Neurosciences, 23: 120–126. Castiello, U., Bennett, K.M., Stelmach, G.E (1993a). Reach to grasp: The natural response to perturbation of object size. Experimental Brain Research, 94, 163-178.

Castiello, U., Stelmach, G.E., Lieberman, A. (1993b). Temporal dissociation of the prehension pattern in Parkinson’s disease. Neuropsychologia, 31(4): 395-402 Castiello, U., Bennet, M.B., Scarpa, M. (1994). The reach to grasp movement of Parkinson’s disease subjects. In M.B Bennet & U. Castiello (Eds). Insight into the reach to grasp movement (pp. 215 – 237). Amsterdam: Elsevier. Castiello, U., Bennet, M.B. (1997). The bilateral reach to grasp movement of Parkinson’s disease subjects. Brain, 120: 593 – 604. Castiello, U., Bennet, K., Chambers, H. (1998). Reach to grasp: response to a simultaneous perturbation of object position and size. Experimental Brain Research, 120: 31 – 40 Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in the Cognitive Sciences, 3: 264 – 271 Castiello, U., Bennett, K., Bonfiglioli, C., Lim, S., Peppard, R.F. (1999). The reach to grasp movement in Parkinson’s disease: response to simultaneous perturbation of object position and object size. Experimental Brain Research, 125: 453 – 462. Castiello, U., Bennet, M.B, Bonfiglioli, C., Peppard, R.F. (2000). The reach to grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia, 38, 46 – 59. Chang, H.T., and Kita, H. (1992). Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons.Brain Research, 574: 307–311. Chesselet, M.F., Delfs, J.M (1996). Basal ganglia and movement disorders: an update. Trends in Neurosciences, 19: 417 – 422 Chieffi, S., Gentilucci, M. (1993). Coordination between the transport and the grasp components during prehension movements. Experimental Brain Research, 94, 471-477. Chieffi, S., Fogassi, L., Gallese, V., Gentilucci, M. (1992). Prehension movements directed to approaching objects: Influence of stimulus velocity on the transport and the grasp components. Neuropsychologia, 30, 877-897. Cohen, Y.E., Andersen, R.A. (2002). A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews Neuroscience, 3: 553 - 562. Cole, K.J. Abbs, J.H. (1987) Kinematic and electromyographic responses to perturbation of a rapid grasp. Journal of Neurophysiology, 57: 1498-1510 Contreras-Vidal, J.L., Stelmach, G.E. (1995). A neural model of basal gangliathalamocortical relations in normal and parkinsonian movement. Biological Cybernetics, 73(5):467-476.

Bootsma, R.J., Marteniuk, R.G., MacKenzie, C.L., Zaal, F.T. (1994) The speed-accuracy<br />

tra<strong>de</strong>-off in manual prehension: effects of movement amplitu<strong>de</strong>, object size and object<br />

width on kinematic characteristics. Experimental Brain Research, 98, 535–541.<br />

Buchholz, B., Armstrong, T.J., Goldstein, S.A. (1992). Anthropometric data for<br />

<strong>de</strong>scribing the kinematics of the human hand. Ergonomics, 35(3): 261-273.<br />

Buessler J. L., Urban J. P., (2003). Modular neural architectures for robotics, Biologically<br />

inspired robot behavior engineering, Physica-Verlag GmbH, Hei<strong>de</strong>lberg, Germany.<br />

Bullock, D., Bongers, R., Lankhorst, M., Beek, P. (1999). A vector-integration-toendpoint<br />

mo<strong>de</strong>l for performance of viapoint movements. Neural Networks, 12: 1-29<br />

Bullock, D., Grossberg, S. (1988a). Neural dynamics of planned arm movements:<br />

emergent invariants and speed-accuracy tra<strong>de</strong>-offs during trajectory formation.<br />

Psychological Review, 95(1):49 – 90.<br />

Bullock, D., Grossberg, S. (1988b). The VITE mo<strong>de</strong>l: a neural command circuit for<br />

generating arm and articulator trajectories. In J. Kelso, A. Man<strong>de</strong>ll, & M. Shlesinger<br />

(Eds), Dynamic patterns in complex systems (pp 206-305). Singapore: World Scientific.<br />

Bullock, D., Grossberg, S. (1991). Adaptive neural networks for control of movement<br />

trajectories invariant un<strong>de</strong>r speed and force rescaling. Human Movement Science, 10:<br />

3-53.<br />

Bullock, D., Grossberg, S., Guenther, F.H. (1993). A self organizing neural mo<strong>de</strong>l for<br />

motor equivalent reaching and tool use by a multijoint arm. Journal of Cognitive<br />

Neuroscience, 5(4), 408 – 435.<br />

Bullock, D., Cisek, P., Grossberg, S. (1998). Cortical networks for control of voluntary<br />

arm movements un<strong>de</strong>r variable force conditions. Cerebral Cortex, 8: 48 -62.<br />

Burnod, Y., Grandguillaume, P., Otto, I., Ferraina, S., Johnson, P.B., Camintini, R.<br />

(1992). Visuomotor transformations un<strong>de</strong>rlying arm movement toward visual targets:<br />

A neural network mo<strong>de</strong>l of cerebral cortical operations. Journal of Neuroscience, 12:<br />

1435 – 1453.<br />

Calabresi, P., Centonze, D., Gubellini, P., Marfia, G., Pisani, A., Sancesario, G.,<br />

Bernardi, G. (2000a). Synaptic transmission in the striatum: from plasticity to<br />

neuro<strong>de</strong>generation. Progress in Neurobiology, 61:231–265.<br />

Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., Bernardi. G (2000b). Acetylcholinemediated<br />

modulation of striatal function. Trends in Neurosciences, 23: 120–126.<br />

Castiello, U., Bennett, K.M., Stelmach, G.E (1993a). Reach to grasp: The natural<br />

response to perturbation of object size. Experimental Brain Research, 94, 163-178.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!