12.07.2015 Views

continuación de parasitología latinoamericana y revista ibérica de ...

continuación de parasitología latinoamericana y revista ibérica de ...

continuación de parasitología latinoamericana y revista ibérica de ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REVISTA IBERO-LATINOAMERICANA DE PARASITOLOGIAEditorHéctor Alcaíno Contador (Chile)Editor AlternoPablo Diez Baños (España)Co-Editores (Receiving Editors)A. Martínez Fernán<strong>de</strong>z (UCM - España)F. Martínez Ubeira (USC - España)Mª D. Bargues (UV - España)F. Rojo Vazquez (ULE - España)W. Apt (Universidad <strong>de</strong> Chile)Secretaria <strong>de</strong> EdiciónMª Patrocinio Morrondo Pelayo(Secretaria Científica <strong>de</strong> la Soc. Española <strong>de</strong> Parasitología. USC)Comité EditorialAna Espino (Univ <strong>de</strong> Puerto Rico)Anne F. Petavy (Lyon, Francia)Benjamín Cimerman (Brasil)César Náquira (Perú)Claudio Genchi (Italia, Milán)Christian Epe (Hannover, Alemania)David Rollinson (Natural History MuseumLondon, UK)Douglas Colwell (Lethbridge, Alberta. Canadá)David Botero (Colombia)Edoardo Pozio (Roma, Italia)Els Meeusen (Monash University, Australia)George Hillyer (Puerto Rico, USA)Guillermo Denegri (Argentina)Heinz Mehlhorn (Bochum, Alemania)Hernán Reyes (Chile)Jacques Cabaret (INRA, Tours, Francia)Jack Frenkel (Nueva México, USA)Jean Dupouy-Camet (Paris)Jorge Guerrero (Phila<strong>de</strong>lfia, USA)Jorge Sapunar (Chile)J. Barret (Presi<strong>de</strong>nte Sociedad Británica <strong>de</strong>Parasitología)J.P. Dubey (Iowa. USA)JM Correia da Costa (Portugal)J. Guisantes <strong>de</strong>l Barco (Univ. <strong>de</strong>l País Vasco, España)Luca Rossi (Turín, Italia)Michel Tibayrenc (Montpellier, Francia)Naftale Katz (Belo Horizonte, Brasil)Osvaldo Ceruzzi (Uruguay)Pascal Boireau (Francia)Paul <strong>de</strong> Rycke (Gent, Bélgica)Peter Schantz (Atlanta, USA)Philippe Dorchies (Touluse, Francia)Ramón Carreño Passow (Ohio WesleyanUniversity, USA)Ramón Lazo (Ecuador)Raúl Romero Cabello (México)Rodrigo Zeledón (Costa Rica)Thomas Schnie<strong>de</strong>r (Director Institute forParasitology, Hannover, Alemania)Yves Carlier (Bruselas, Bélgica)5


ContenidoPana<strong>de</strong>ro R., Díez-Baños P., Morrondo P., Paz-Silva A. y Sánchez-Andra<strong>de</strong> R............................ 109- Infestación múltiple por ácaros ectoparásitos en conejos <strong>de</strong> crianza.Cal<strong>de</strong>rón-Arguedas O., Troyo A., Avendaño A., Aymerich R., Berrocal B. yCoto-Morales T............................................................................................................................... 114COMUNICACIONES- Primer reporte <strong>de</strong> Dracunculus spp. en la provincia <strong>de</strong> Santa Argentina.Bono Battistoni M.F ., Orcellet., Plaza D., Gutiérrez G., Ciepielak M. y Peralta J.L.................... 119- Occurrence of Cryptosporidium spp. oocysts in mammals at a zoo in southern Brazil.Ludwig R. and Marques S.M.T........................................................................................................ 122SEMBLANZA- In memoria <strong>de</strong>l Prof. Sr. Víctor Muñoz Flores............................................................................... 48- In memorian <strong>de</strong>l Prof. Dr. Antonio Atías MartinWerner Apt...................................................................................................................................... 129Normas <strong>de</strong> publicación......................................................................................................................... 1307


PREGNANCY AND HUMORAL IMMUNE RESPONSE AGAINST T. CRUZIcolas. A los 10 días <strong>de</strong> infección las ratas fueron apareadas y a los 21 días <strong>de</strong> gestación fueron sacrificadas.La parasitemia fue significativamente (P < 0,05) más alta en las ratas preñadas infectadas con la cepa Y(PY n = 10) en comparación con las ratas preñadas infectadas con la cepa ASM (PASM n = 10) y que enlas vírgenes infectadas con T. cruzi. La evaluación inmunológica mediante la aplicación <strong>de</strong> inmunofluorescenciaindirecta confirmó resultados positivos para las inmunoglobulinas (Igs) IgA e IgM anti-T. cruzi en elcerebro (C) <strong>de</strong> 15 (75%) <strong>de</strong> las 20 ratas infectadas preñadas. La mayor frecuencia <strong>de</strong> Igs fue observada enel C <strong>de</strong> 8 ratas (80%) PASM y en 7 ratas preñadas (70%) PY. En la médula espinal (ME) las Igs <strong>de</strong> los isotiposIgA e IgM anti-T. cruzi fueron observadas en 9 (45%) <strong>de</strong> las 20 ratas infectadas preñadas y con mayorfrecuencia en la región sacra <strong>de</strong> la ME <strong>de</strong> 5 ratas preñadas (50%) PASM seguida <strong>de</strong> 4 ratas preñadas (40%)PY. El análisis histológico con Hematoxilina y Eosina y la inmunotinción con Peroxidasa anti Peroxidasa<strong>de</strong>l C, ME, corazón y musculo esquelético <strong>de</strong> las ratas preñadas, mostró infiltrado <strong>de</strong> células mononucleares,nidos <strong>de</strong> amastigotes y reacción antigénica <strong>de</strong> T. cruzi. Las lesiones inflamatorias y <strong>de</strong>strucción <strong>de</strong>los tejidos cardíaco y muscular esquelético confirmaron miocarditis chagásica aguda y miositis en las rataspreñadas. En los tejidos nerviosos <strong>de</strong> las ratas vírgenes infectadas no se observó Igs específicas anti-T. cruzi,ni parasitismo, ni alteraciones histológicas. Estos resultados son indicativos <strong>de</strong> que la preñez incrementa lasusceptibilidad <strong>de</strong>l sistema nervioso central <strong>de</strong> las ratas <strong>de</strong> adquirir infecciones <strong>de</strong>bido a la modificación <strong>de</strong>la respuesta inmune humoral. El hallazgo <strong>de</strong> IgA e IgM específicos fueron marcadores <strong>de</strong> la infección agudapor T. cruzi en el C y ME <strong>de</strong> las ratas preñadas.Palabras clave: Trypanosoma cruzi, inmunoglobulina, cerebro, Medula espinal, ratas preñadas.INTRODUCCIÓNLa enfermedad <strong>de</strong> Chagas o tripanosomiasis americanaes una entidad clínica causada por el protozoariohemoflagelado digenético <strong>de</strong> la Familia Trypanosomatidae<strong>de</strong>nominado Trypanosoma (Schizotrypanum)cruzi (Chagas, 1909), el cual se multiplica en los tejidos<strong>de</strong> hospedadores vertebrados.La infección constituye un problema <strong>de</strong> saludpública en América Latina don<strong>de</strong> 18 millones <strong>de</strong>personas aproximadamente se encuentran infectadasy otras 100 millones en riesgo <strong>de</strong> infección,principalmente en el medio rural don<strong>de</strong> las condicionesecológicas son favorables para el alojamientoy <strong>de</strong>sarrollo <strong>de</strong> los insectos vectores hematófagostransmisores <strong>de</strong> T. cruzi (OPS, 2003).En la naturaleza la principal vía <strong>de</strong> transmisión<strong>de</strong>l parásito ocurre a través <strong>de</strong>l contacto directo <strong>de</strong>las excretas postprandiales conteniendo tripomastigotesmetacíclicos <strong>de</strong> los triatominos vectores <strong>de</strong> laFamilia Reduviidae, durante la ingesta sanguíneasobre humanos y otros vertebrados (Rodríguez etal, 2004). Una vez en el hospedador vertebrado lainfección por T. cruzi <strong>de</strong>sarrolla una fase aguda inicialcon duración <strong>de</strong> varias semanas, una fase in<strong>de</strong>terminaday una fase crónica que persisten <strong>de</strong> porvida en el hospedador infectado.Durante la fase aguda se reconoce la presencia<strong>de</strong> parasitemias patentes, períodos febriles, inflamación<strong>de</strong> los ganglios linfáticos, hepatoesplenomegaliay elevados niveles <strong>de</strong> inmunoglobulinasIgM. Con el progreso <strong>de</strong> la infección <strong>de</strong> Chagasagudo se elevan los niveles <strong>de</strong> anticuerpos IgA eIgG y se intensifica el parasitismo tisular afectandofrecuentemente los tejidos cardíaco, muscular esqueléticoe intestinal (Scorza y Scorza, 1972ª; Guillenet al, 2001). La infección causa severos dañospor acción directa <strong>de</strong>l parásito sobre las célulasinfectadas e indirectamente por inducción <strong>de</strong>l <strong>de</strong>sarrollo<strong>de</strong> hipersensibilidad, <strong>de</strong> fenómenos autoinmunes,producción <strong>de</strong> intensos procesos inflamatoriosy en algunos casos se <strong>de</strong>sarrollan patologíasneurológicas ( Lorca et al, 1989).La naturaleza sistémica <strong>de</strong> la infección por T.cruzi durante la interacción parásito-hospedadorafectan la modulación <strong>de</strong> la respuesta inmunológica<strong>de</strong>l paciente, favoreciendo la activación endotelial<strong>de</strong> la microvasculatura cerebral y en ocasionesla infección <strong>de</strong> los tejidos nerviosos (Forbes et al,1983; Lugo <strong>de</strong> Yarbuh et al, 2006).Otras investigaciones han revelado que la infección<strong>de</strong> los tejidos cerebrales pue<strong>de</strong> ser rápidamenteactivada en humanos <strong>de</strong>bido a la presencia <strong>de</strong>otra enfermedad severa, como los que sufren el síndrome<strong>de</strong> inmuno<strong>de</strong>ficiencia adquirida, meningoencefalitisaguda con focos múltiples <strong>de</strong> encefalitisRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-159


A. LUGO <strong>de</strong> YARBUH et al.<strong>de</strong>scritos como nódulos o granulomas glial/microglialo en pacientes sometidos a terapias inmunosupresorasen los cuales es frecuente el <strong>de</strong>sarrollo <strong>de</strong>lesiones tumorales, necrosis y hemorragias cerebrales(Leiguarda et al, 1990; Antunes et al, 2002).Por otro lado, bajo ciertas condiciones patológicasse produce la reactivación <strong>de</strong> la infección por T.cruzi, afectando los tejidos muscular esqueléticoy cardíaco en pacientes con enfermeda<strong>de</strong>s autoinmuneso en mujeres embarazadas con infecciónchagásica crónica, las cuales se encuentran expuestasa frecuentes picadas <strong>de</strong> los insectos vectores <strong>de</strong>T. cruzi en regiones endémicas para la enfermedad<strong>de</strong> Chagas. En estos casos se ha registrado aumento<strong>de</strong> la parasitemia patente principalmente durante eltercer trimestre <strong>de</strong> gestación así como la transmisión<strong>de</strong> T. cruzi a nivel placentario o sistémico (Torricoet al, 2006).En este sentido es posible consi<strong>de</strong>rar que lagestación estaría asociada con la variación <strong>de</strong> ciertosparámetros inmunológicos humorales y celulares,por lo que los efectos <strong>de</strong> la infección por T.cruzi sobre el Sistema Nervioso Central (SNC) sepotencian durante el período <strong>de</strong> gestación, favoreciéndoseel alcance <strong>de</strong> los parásitos <strong>de</strong>l parénquimacerebral en fagocitos mononucleares y el paso porla barrera sanguínea formada por la estrecha uniónentre las células endoteliales <strong>de</strong> la microvasculaturacerebral <strong>de</strong> los animales infectados durante elperíodo <strong>de</strong> gestación (Drevets y Lleenen, 2000).En base a las investigaciones antes mencionadasen el presente estudio se propuso estudiar el efecto<strong>de</strong> la preñez sobre la circulación <strong>de</strong> los tripanosomasal sistema nervioso central <strong>de</strong> ratas gestantes, através <strong>de</strong> la expresión <strong>de</strong> inmunoglobulinas específicas<strong>de</strong> los isotipos IgA e IgM anti-T. cruzi medianteinmuofluorescencia indirecta convencional (IFI) y lareacción antigénica específica por inmunotinción conPeroxidasa anti-Peroxidasa (PAP) en el cerebro ymédula espinal <strong>de</strong> las ratas con infección aguda producidapor dos aislados <strong>de</strong> T. cruzi. Las alteracioneshistopatológicas en el corazón y músculo esquelético<strong>de</strong> las ratas gestantes fueron analizadas mediante lacoloración con Hematoxilina y Eosina (HE).MATERIAL Y MÉTODOSParásitos: Se utilizaron tripomastigotes sanguícolas<strong>de</strong> las cepas M/HOM/Ve/92/ASM aislada <strong>de</strong>un caso agudo con enfermedad <strong>de</strong> Chagas en Venezuelay M/HOM/BRA/53/Y <strong>de</strong> T. cruzi aislada <strong>de</strong>un caso agudo en Brasil con linajes filogenéticosTcI y TcII respectivamente. La caracterización molecular<strong>de</strong> las formas flageladas <strong>de</strong> los aislados <strong>de</strong>parásitos fue realizada mediante ADN específicopor la Reacción en Ca<strong>de</strong>na <strong>de</strong> la Polimerasa (PCR)(González et al, 1994) y el linaje <strong>de</strong> los parásitoscultivados fue analizado mediante Random Amplificationof Polymorphic DNA (RAPD) (Carrasco etal, 1996).Animales: Un total <strong>de</strong> 40 ratas albinas cepa Wistar<strong>de</strong> 3 meses <strong>de</strong> nacidas y con 200 gr <strong>de</strong> pesofueron separadas en cuatro grupos. Las ratas fueroni<strong>de</strong>ntificadas como infectadas preñadas con la cepaASM (PASM, n = 10), infectadas preñadas con lacepa Y (PY, n = 10) y ratas controles vírgenes infectadas(IASM, n = 10) e (IY, n = 10).Infección <strong>de</strong> las ratas y apareamiento: Lostripanosomas usados en la infección <strong>de</strong> las ratasfueron obtenidos <strong>de</strong> la sangre <strong>de</strong> ratones machosNMRI que presentaron alta parasitemia patente.Un inoculo <strong>de</strong> 2 x 10 5 tripanosomas en 0,05 mL <strong>de</strong>suspensión <strong>de</strong> cada cepa <strong>de</strong> T. cruzi fue estimadosiguiendo la técnica <strong>de</strong> Brener (1962). . Las 40 ratasfueron separadas en dos grupos <strong>de</strong> 20 ratas cadauno para ser infectadas por inyección intraperitoneal(ip) <strong>de</strong> 0,05 mL <strong>de</strong> la suspensión <strong>de</strong> parásitos<strong>de</strong> la cepas ASM y Y respectivamente.A los 12 días post-infección (pi) a 20 <strong>de</strong> las ratasinfectadas con las diferentes cepas <strong>de</strong> T. cruziles fue revisado el contenido vaginal el cual fuecolocado en láminas portaobjeto y coloreado conazul <strong>de</strong> metileno. La presencia <strong>de</strong> células nucleadasy epiteliales cornificadas en el moco vaginal comprobóque las ratas se encontraban en estro o proestro<strong>de</strong>l ciclo estral (Marcon<strong>de</strong>s et al, 2002). En jaulasindividuales fueron colocadas 2 ratas hembrascon 1 macho durante tres días para que ocurriera elapareamiento y una vez comprobada la presencia<strong>de</strong> espermatozoi<strong>de</strong>s en el frotis <strong>de</strong>l contenido vaginal,las hembras fueron separadas <strong>de</strong> los machosy revisadas para controlar la preñez. Los animalesfueron mantenidos en condiciones controladas <strong>de</strong>temperatura, humedad relativa y alimentadas conRatarina® y agua ad libitum.Análisis <strong>de</strong> la parasitemia patente: El curso <strong>de</strong>la parasitemia patente (PP) en las ratas infectadaspreñadas fue evaluado revisando muestras <strong>de</strong> 5 µL<strong>de</strong> sangre <strong>de</strong> cada rata ligeramente anestesiada con10Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-15


PREGNANCY AND HUMORAL IMMUNE RESPONSE AGAINST T. CRUZIvapores <strong>de</strong> cloroformo. La sangre fue obtenida <strong>de</strong>lplexo retro orbital con capilares heparinizados alos 10; 20; 25 y 35 días post-infección (pi) y con0; 16; 18 y 21 días <strong>de</strong> gestación respectivamente.La PP en las 20 ratas vírgenes infectadas con lasdiferentes cepas <strong>de</strong> T. cruz fue <strong>de</strong>terminada en losmismos días pi que las ratas infectadas preñadas.El resultado <strong>de</strong> la PP fue expresado con el número<strong>de</strong> Tripanosomas/mm (Rodríguez et al, 2004)(Trips/mm 3 ) <strong>de</strong> sangre y las diferencias entre lasmedias <strong>de</strong> la PP entre los grupos <strong>de</strong> ratas infectadaspreñadas y vírgenes infectadas con T. cruzi, fueroncomparadas mediante un análisis <strong>de</strong> varianza noparamétrico <strong>de</strong> un factor (Kruskal y Wallis, 1952).Obtención <strong>de</strong> los tejidos: Para la evaluación <strong>de</strong>la infección en el C, ME, corazón y músculo esquelético<strong>de</strong> las ratas preñadas PASM y PY con 35días <strong>de</strong> infección y 21 días <strong>de</strong> gestación así como enlas vírgenes infectadas con las diferentes cepas <strong>de</strong>T. cruzi, las ratas fueron anestesiadas con vapores<strong>de</strong> cloroformo. Luego se expuso la caja torácica yse bloqueó la arteria aorta <strong>de</strong>scendiente, se cortó lavena cava y se introdujo 300 mL <strong>de</strong> solución fisiológicaa través <strong>de</strong>l ventrículo izquierdo, seguido <strong>de</strong>la solución <strong>de</strong> fijación <strong>de</strong>l tejido compuesta <strong>de</strong> 500mL <strong>de</strong> paraformal<strong>de</strong>hido al 4% en tampón PBS apH 7,2 durante 10 min. Los tejidos fueron extraídospara realizar los estudios histopatológico con HE yla evaluación inmunológica por IFI y PAP.Estudio histopatológico: Una vez fijada laporción anterior <strong>de</strong>l animal se extrajo el cerebrocompleto, las regiones cervical (RC), lumbar (RL),torácica (RT) y sacra (RS) <strong>de</strong> la ME, el corazóny músculo esquelético. Los tejidos fueron fijadosen formalina neutra al 10% durante 48 hr, se<strong>de</strong>shidrataron en alcohol isopropílico entre 70% y100%, alcohol-acetona 1:1, acetona-xilol 1:1 y xiloly se impregnaron con Paraplast a 56 o C (MonojectScientific, St. Louis, MO. USA) durante 12 hr a 60 0C. Los cortes <strong>de</strong> 7 µm <strong>de</strong> espesor fueron coloreadoscon Hematoxilina y Eosina (HE).Tinción con Hematoxilina y Eosina: Los cortes<strong>de</strong> 7 µm <strong>de</strong>l C, ME, corazón y músculo esqueléticofueron colocados sobre láminas portaobjetos tratadascon Poly-L-Lisina (Sigma Aldrich, St. Louis,USA) al 0,1% en agua <strong>de</strong>ionizada, luego fueron<strong>de</strong>sparafinados, rehidratados en alcohol isopropílicoentre 100% y 70% y agua <strong>de</strong>stilada, coloreadoscon Hematoxilina <strong>de</strong> Mayer, contra-coloreados conEosina, <strong>de</strong>shidratados con alcohol isopropílico entre70% y 100% y cubiertos con Mar-Tex y cubreobjeto.Inmunotinción: Peroxidasa anti-Peroxidasa:Los cortes <strong>de</strong> C y ME <strong>de</strong> las ratas infectadas preñadasy vírgenes infectadas, fueron <strong>de</strong>sparafinados,hidratados, incubados con peróxido <strong>de</strong> hidrógeno al3% en metanol durante 45 min y lavados con PBS apH 7,2. Luego fueron incubados con suero normal<strong>de</strong> cabra al 30% diluido en solución <strong>de</strong> Buffer Fosfatoa pH 7,2 por 30 min, lavados con PBS, incubadoscon suero <strong>de</strong> conejo anti-T. cruzi diluido 1:100por 1 hr y con suero <strong>de</strong> conejo anti-IgG conjugadoa Peroxidasa diluido 1:500 durante 45 min. Lasmuestras se revelaron con 3,3ʹDiaminobenzidina-Urea, se lavaron con PBS y se contracolorearon conHematoxilina <strong>de</strong> Mayer. Los cortes se cubrieroncon Mar-tex y cubreobjeto (Sell y Burton, 1981).Análisis <strong>de</strong> inmunoglobulinas IgA e IgM anti-T. cruzi: IFI: Los cortes <strong>de</strong> C y <strong>de</strong> la ME <strong>de</strong>sparafinadosy rehidratados se cubrieron con solución<strong>de</strong> Tritón al 0,1% en PBS a pH 7,2 por 30 min, selavaron con PBS y se incubaron con suero normal<strong>de</strong> cabra al 30% en PBS por 30 min. Luego se incubaroncon suero <strong>de</strong> conejo anti T. cruzi diluido1:300 en una solución <strong>de</strong> PBS-SAB (Suero Albumina<strong>de</strong> Bovino) al 0,05% por 45 min y con suero<strong>de</strong> conejo anti-rata IgA o anti-rata IgM conjugadoa Isotiocianato <strong>de</strong> Fluoresceína (Sigma, St. Louis,USA) diluido 1:500. Los cortes se cubrieron conglicerina en PBS a pH 7,2 en una relación 9:1 y concubreobjeto.Los animales utilizados en este estudio fuerontratados siguiendo las normas establecidas para elmanejo <strong>de</strong> animales experimentales en el laboratorio,por el comité <strong>de</strong> Bioética y Seguridad <strong>de</strong>l FondoNacional <strong>de</strong> Ciencias y Tecnología en su capítulo 2y Bioética animal en Venezuela (De Jesús, 2002).RESULTADOSLos valores <strong>de</strong> la parasitemia patente (PP) en lasratas preñadas infectadas con la cepa Y fueron <strong>de</strong>10 ± 9,2; 22 ± 8,3; 20 ± 16,5 y 11 ± 3,1 Trips/mm 3<strong>de</strong> sangre obtenidos a los 10; 20; 25 y 35 días <strong>de</strong>infección y con 0; 16; 18 y 21 días <strong>de</strong> gestación respectivamente.En las ratas vírgenes IY infectadascon la cepa Y los valores <strong>de</strong> la PP fueron <strong>de</strong> 8 ± 2,1;10 ± 7,2; 11 ± 2,2 y 3 ± 0,7 Trips/mm 3 <strong>de</strong> sangre yregistrados en los mismos días pi que la PP <strong>de</strong> lasRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-1511


A. LUGO <strong>de</strong> YARBUH et al.ratas preñadas PY (Figura 1).Los valores <strong>de</strong> la PP en las ratas preñadas infectadascon la cepa ASM fueron <strong>de</strong> 3 ± 1,3; 11 ±4,8; 13 ± 5,1 y 4 ± 1,7 Trips/mm 3 <strong>de</strong> sangre obtenidosa los 10; 20; 25 y 35 días <strong>de</strong> infección y con0; 16; 18 y 21 días <strong>de</strong> gestación respectivamente.En las ratas vírgenes IASM infectadas con la cepaASM la PP fue <strong>de</strong> 2 ± 0,41; 6 ± 3,5; 4 ± 2,9 y 2 ±0,40 Trips/mm 3 <strong>de</strong> sangre y registradas en los mismosdías pi que la PP <strong>de</strong> las ratas preñadas PASM(Figura 2).Las diferencias en el promedio <strong>de</strong> las PP entrelos grupos <strong>de</strong> ratas infectadas preñadas y vírgenesinfectadas resultaron significativas (P < 0,05).Evaluación <strong>de</strong> la respuesta humoral: Laevaluación inmunológica por IFI mostró resultadospositivos para las inmunoglobulinas (Igs) IgA eIgM anti-T. cruzi en el cerebro <strong>de</strong> 15 (75%) ratasy en la médula espinal <strong>de</strong> 9 (45%) ratas <strong>de</strong> las 20ratas infectadas preñadas analizadas.Al analizar la frecuencia <strong>de</strong> las Igs específicasen el C <strong>de</strong> las ratas se observó la IgM en 8 (80%)ratas PASM y en 7 (70%) ratas PY <strong>de</strong> las 10 ratasinfectadas preñadas en cada grupo.Para la IgA anti-T. cruzi los resultados fueronpositivos en el C <strong>de</strong> 5 (50%) ratas PASM y en el C<strong>de</strong> 3 (30%) ratas PY <strong>de</strong> las 10 ratas analizadas encada grupo.En relación con la respuesta inmune humoralespecífica inducida por T. cruzi en la médula espinal<strong>de</strong> las ratas preñadas e infectadas con las diferentescepas <strong>de</strong> parásitos, la evaluación inmunológicamostró resultados positivos para las Igs <strong>de</strong> losisotipos IgA e IgM anti-T. cruzi en las regiones RC,RT, RL y RS <strong>de</strong> la ME <strong>de</strong> 9 <strong>de</strong> las 20 ratas infectadaspreñadas analizadas.La IgA fue <strong>de</strong>tectada en 5 (50%) ratas PASM yen 4 (40%) ratas PY <strong>de</strong> cada 10 ratas <strong>de</strong> los gruposanalizados mientras que la IgM fue <strong>de</strong>tectada 3(30%) ratas PASM y en 3 (30%) ratas PY <strong>de</strong> cada10 ratas <strong>de</strong> los grupos analizados.Las Igs se observaron con más frecuencia enla RL <strong>de</strong> las ratas preñadas infectadas con la cepaASM <strong>de</strong> T. cruzi y con distribución similar en lasregiones RC y RT <strong>de</strong> la ME <strong>de</strong> ambos grupos <strong>de</strong>ratas PASM y PY. La mayor frecuencia <strong>de</strong> IgA eIgM fue <strong>de</strong>tectada en la RS <strong>de</strong> la ME <strong>de</strong> 5 ratasPASM seguida <strong>de</strong> 4 ratas PY.Ninguna reacción positiva <strong>de</strong> IgA e IgM fueobservada en las muestras <strong>de</strong> los tejidos nerviosos<strong>de</strong> las ratas vírgenes infectadas con las diferentescepas <strong>de</strong> T. cruzi.En la Figura 3 se <strong>de</strong>stacan las células neuronales<strong>de</strong>l C <strong>de</strong> rata preñada marcadas con inmunofluorescenciaque representan las inmunoglobulinas <strong>de</strong>los isotipos IgA e IgM anti-T. cruzi y en el GráficoFigura 1. Parasitemia patente en las ratas infectadas preñadas(PY) a los 10, 20, 25 y 35 días <strong>de</strong> infección con lacepa Y <strong>de</strong> T. cruzi y con 0, 16, 18 y 21 días <strong>de</strong> gestación(▬■▬) y en las ratas vírgenes infectadas (IY) entre 10 y35 días <strong>de</strong> infección (--♦--) ± Desviación estándar.Figura 2. Parasitemia patente en las ratas infectadaspreñadas PASM a los 10, 20, 25 y 35 <strong>de</strong> infección con lacepa ASM <strong>de</strong> T. cruzi y con 0, 16, 18 y 21 días <strong>de</strong> gestación(▬■▬) y en las ratas vírgenes infectadas (IASM) entre10 y 35 días <strong>de</strong> infección (--♦--) ± Desviación estándar.12Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-15


PREGNANCY AND HUMORAL IMMUNE RESPONSE AGAINST T. CRUZIFigura 3. Neuronas <strong>de</strong>l cerebro <strong>de</strong> ratas preñadas que muestran células marcadas con inmunofluorescencia y presentaninmunoglobulinas <strong>de</strong> los isotipos A) IgA y B) IgM anti- T. cruzi en las ratas infectada con las cepas Y y ASM <strong>de</strong> T. cruzirespectivamente. (IFI. 400X y 1000X).Gráfico 1. Número <strong>de</strong> ratas PASM y PY con 21 días <strong>de</strong>preñadas y 35 días <strong>de</strong> infección con las cepas ASM y Y<strong>de</strong> T. cruzi que mostraron inmunoglobulinas específicas<strong>de</strong> los isotipos IgA e IgM en el cerebro y en la médulaespinal.Figura 4. Sección <strong>de</strong> cerebro <strong>de</strong> rata preñada PASMe infectada con la cepa ASM <strong>de</strong> T. cruzi en la que seobservan amastigotes, fuerte reacción antigénica <strong>de</strong> T.cruzi y linfocito activado cerca a cuerpos neuronales ygliales con histología conservada (→) (PAP. 1000X).1 se representa el número <strong>de</strong> ratas preñadas quemostraron respuesta inmune humoral IgA e IgMespecífica anti-T. cruzi.Detección <strong>de</strong> antígeno <strong>de</strong> T. cruzi: La inmunotincióncon PAP <strong>de</strong>l tejido nervioso reveló intensareacción antigénica <strong>de</strong> T. cruzi en el cerebro<strong>de</strong> 12 (60%) <strong>de</strong> las 20 ratas preñadas infectadas conlas distintas cepas <strong>de</strong> parásitos. En estas muestrasfue frecuente observar la presencia <strong>de</strong> amastigoteslibres e intensa reacción antigénica en el parénquimacerebral <strong>de</strong> las ratas infectadas preñadas. Porotro lado, es importante <strong>de</strong>stacar la presencia <strong>de</strong>linfocitos entre los cuerpos neuronales y gliales <strong>de</strong>lcerebro <strong>de</strong> las ratas preñadas infectadas con la cepaASM <strong>de</strong> T. cruzi (Figura 4).Estudio histopatológico: En los cortes <strong>de</strong>l corazón<strong>de</strong> las ratas PY preñadas infectadas con la cepaY <strong>de</strong> T. cruzi se <strong>de</strong>staca el marcado miotropismocon <strong>de</strong>strucción <strong>de</strong> células cardíacas, <strong>de</strong>nso infiltradoinflamatorio <strong>de</strong> naturaleza linfoplasmohistiocitarioen las áreas <strong>de</strong> daño cardíaco y nidos <strong>de</strong> amastigotesen las fibras musculares cardíacas indicandomiocarditis chagásica aguda (Figura 5 A y B).En el músculo esquelético <strong>de</strong> las ratas preñadasinfectadas con las diferentes cepas <strong>de</strong> parásitos fuefrecuente la presencia <strong>de</strong> infiltrado inflamatorio <strong>de</strong>células mononucleares y polimorfonucleares juntoa nidos <strong>de</strong> amastigotes y <strong>de</strong>strucción <strong>de</strong> la fibraRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-1513


A. LUGO <strong>de</strong> YARBUH et al.Figura 5. Secciones <strong>de</strong>l miocardio <strong>de</strong> rata preñada PY infectada con la cepa Y <strong>de</strong> T. cruzi que muestran A) nido <strong>de</strong>amastigotes en la fibra cardíaca. En B) se observa <strong>de</strong>nso infiltrado inflamatorio linfoplasmohistiocitario ocupando elespacio <strong>de</strong> las fibras cardíacas parcialmente <strong>de</strong>struidas. (HE. 1000X).Figura 6. Secciones <strong>de</strong> músculo esquelético <strong>de</strong> rata preñada PY y PASM infectadas con las cepas Y y ASM <strong>de</strong> T.cruzi que muestran A) nido <strong>de</strong> amastigotes. En A y B) se <strong>de</strong>stacan áreas con intensa <strong>de</strong>strucción <strong>de</strong> la fibra muscularesquelética sustituida por infiltrado inflamatorio (HE. 1000X, 400X).muscular esquelética indicando miosistis aguda(Figura 6 A y B).En las secciones <strong>de</strong> los tejidos cardíaco y muscularesquelético <strong>de</strong> las ratas vírgenes IASM e IYinfectadas con las diferentes cepas <strong>de</strong> T. cruzi seobservaron leves alteraciones histopatológicas,discreta parasitosis y mo<strong>de</strong>rados procesos inflamatoriosen comparación con las severas alteracioneshistopatológicas encontradas en los tejidos <strong>de</strong> lasratas infectadas preñadas.DISCUSIÓNEn años recientes las investigaciones han llamadola atención sobre el resurgimiento <strong>de</strong> la enfermedad<strong>de</strong> Chagas, la cual provoca una gran diversidad<strong>de</strong> manifestaciones clínicas con afecciones en lostejidos cardíaco, muscular esquelético, digestivo ymuy pocas veces compromete el sistema nerviosocentral. Sin embargo, existen evi<strong>de</strong>ncias en otraspatologías cerebrales provocadas por virus y bac-14Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-15


PREGNANCY AND HUMORAL IMMUNE RESPONSE AGAINST T. CRUZIterias que revelan que la célula endotelial <strong>de</strong> lamicrovasculatura cerebral, elemento esencial en labarrera sanguínea cerebral pue<strong>de</strong> ser alterada facilitandola infiltración <strong>de</strong> microorganismos en monocitosy macrófagos activados circulantes (Drevetsy Lleenen, 2000). En este estudio, el análisis <strong>de</strong>la parasitemia por T. cruzi en el cerebro y médulaespinal <strong>de</strong> las ratas preñadas e infectadas con lasdiferentes cepas <strong>de</strong> T. cruzi, reveló la presencia<strong>de</strong> amastigotes cercanos a procesos inflamatoriosneuroinmunes <strong>de</strong> células mononucleares, hechoque pudiera explicar la posibilidad <strong>de</strong> entrada <strong>de</strong> T.cruzi en leucocitos infectados al SNC <strong>de</strong> las rataspreñadas. Por otro lado, estos resultados posiblementese relacionen con un conjunto <strong>de</strong> factorestales como, la respuesta inmune supresora <strong>de</strong>sarrolladaen las ratas gestantes con infección chagásicaaguda <strong>de</strong>bido al incremento <strong>de</strong> la parasitemia, porla duración <strong>de</strong>l estímulo antigénico, la liberación <strong>de</strong>citocinas y hormonas en la sangre durante la gestación,hechos que sugieren la modificación <strong>de</strong> larespuesta inmunológica durante la preñez, produciendoen consecuencia la exacerbación <strong>de</strong> la parasitemiay la participación <strong>de</strong>l sistema inmune en lagénesis <strong>de</strong> lesiones neuronales (Silva et al, 1999),como ocurre en pacientes con esclerosis múltiple ocon enfermeda<strong>de</strong>s neuro<strong>de</strong>generativas (Menezes etal, 1992).Por otro lado, el hallazgo <strong>de</strong> inmunoglobulinasespecíficas <strong>de</strong> los isotipos IgA e IgM lo han relacionadocon la presencia <strong>de</strong> células microgliales activadasque facilitan la entrada <strong>de</strong> parásitos al SNCen macrófagos periféricos (Giulian et al, 1993),estimulando la respuesta inmune humoral con incrementosignificativo <strong>de</strong> Ig <strong>de</strong>l isotipo IgM anti-T.cruzi marcador indicativo <strong>de</strong> infección aguda y <strong>de</strong>IgA específica la cual contribuye con informaciónadicional <strong>de</strong> una infección aguda por T. cruzi enel cerebro y médula espinal <strong>de</strong> las ratas durante elperíodo <strong>de</strong> gestación.En este estudio la infección por T. cruzi revelódiferentes patrones en la parasitemia patente enlas ratas preñadas, la cual se mantuvo alta por mástiempo y produjo mayores efectos histopatológicoscon características <strong>de</strong> respuesta inmunológica celularen los tejidos nervioso, cardíaco y muscularesquelético <strong>de</strong> las ratas preñadas PY y PASM infectadascon T. cruzi. En ese sentido es importanteconsi<strong>de</strong>rar que existen una serie <strong>de</strong> factores que serelacionan con el incremento <strong>de</strong> la parasitemia porT. cruzi en mujeres embarazadas, como el <strong>de</strong>sarrollo<strong>de</strong> la respuesta inmune humoral y celular <strong>de</strong>bidoa la presencia <strong>de</strong>l parásito durante la fase aguda <strong>de</strong>la infección, generando reacciones inflamatorias<strong>de</strong> leucocitos mononucleares, linfocitos con signos<strong>de</strong> activación, macrófagos, neutrófilos, miocarditisy miosistis chagásica aguda y la presencia <strong>de</strong> Igsen los tejidos nerviosos <strong>de</strong> las ratas preñadas PY yPASM, resultados que confirman la gran variabilida<strong>de</strong>n la infectividad y patogenicidad <strong>de</strong> las cepas<strong>de</strong> T. cruzi frente a los diferentes patrones <strong>de</strong> parasitemia<strong>de</strong> las ratas preñadas (Moreno et al, 2006).La fase aguda inicial <strong>de</strong> la infección con T. cruzies usualmente asintomática y en muy pocos casosse <strong>de</strong>sarrolla encefalitis chagásica, por lo que lascomplicaciones cerebrovasculares <strong>de</strong> origen cardioembólicose presentan con más frecuencia enla fase crónica <strong>de</strong> la infección, en la que aumentala susceptibilidad <strong>de</strong> adquirir nuevas infeccioneso reactivación <strong>de</strong> la infección crónica durante lapreñez como ocurre en malaria murina por Plasmodiumbergei (Van Zon y Eling, 1980).Por otro lado, las variaciones <strong>de</strong> la respuestahumoral específica anti-T. cruzi con incremento <strong>de</strong>IgM en las ratas preñadas, la disminución <strong>de</strong> losniveles <strong>de</strong> inmunoglobulinas particularmente <strong>de</strong>los isotipos IgG2a e IgG3 en ratones preñadas crónicamenteinfectados con T. cruzi y la activaciónpoliclonal <strong>de</strong> las células B, revelan el efecto <strong>de</strong> lapreñez sobre la infección <strong>de</strong> los tejidos maternales(Carlier et al, 1987; Moreno et al, 2005). En ocasionesla fase aguda <strong>de</strong> la enfermedad <strong>de</strong> Chagasse manifiesta como una meningoencefalitis agudaen niños nacidos <strong>de</strong> madres con infección chagásicaaguda y en pacientes inmunosuprimidos coninfecciones virales, en los que se han <strong>de</strong>tectado formación<strong>de</strong> masas tumorales en el sistema nerviosocentral, sin embargo, no es frecuente observar losparásitos <strong>de</strong>ntro <strong>de</strong> las neuronas y por otro lado se<strong>de</strong>sconoce el tipo <strong>de</strong> célula glial <strong>de</strong> la microglía infectadapor T. cruzi (Del Castillo et al, 1990).Otras observaciones han revelado que las afeccionesen los tejidos nerviosos se producen cuandofragmentos <strong>de</strong> trombos formados en el ventrículoizquierdo, migran junto con los parásitos por víasanguínea al cerebro <strong>de</strong> pacientes con insuficienciacardiaca (Spina-Franca et al, 1988; Pittella, 1993),a diferencia <strong>de</strong> lo que ocurre con la penetración activa<strong>de</strong> T. brucei brucei a ciertas áreas <strong>de</strong>l cerebroen el que se produce acumulación <strong>de</strong> parásitos en elRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-1515


A. LUGO <strong>de</strong> YARBUH et al.área perivascular entre las membranas basales endotelialesy parenquimales (Masocha et al, 2004).Algunos autores han relacionado la presencia<strong>de</strong> tripanosomas y los signos neurológicos con elhallazgo <strong>de</strong> IgM el cual se presenta como un indicador<strong>de</strong> infección en el SNC con producción <strong>de</strong>lesiones neuronales. En ese sentido la presencia <strong>de</strong>amastigotes y antígenos <strong>de</strong> T. cruzi cerca <strong>de</strong> neuronasinflamadas ocurre <strong>de</strong>bido a mecanismos inmunológicos,hallazgos soportados por el encuentro<strong>de</strong> anticuerpo monoclonal citotóxico en neuronas<strong>de</strong> mamíferos in vitro y por la activación <strong>de</strong> reaccióninflamatoria y <strong>de</strong>strucción <strong>de</strong> neuronas en elcerebro y <strong>de</strong> motoneuronas en la médula espinal acausa <strong>de</strong>l efecto directo <strong>de</strong> la activa replicación <strong>de</strong>lparásito en ratones con infección aguda (Bisser etal, 2002; Lugo <strong>de</strong> Yarbuh et al, 2006).Otros estudios han revelado que durante el embarazose producen alteraciones en algunos factoresen la respuesta inmune, relacionados con lasupresión transitoria <strong>de</strong> la inmunidad celular paraprevenir el rechazo al feto (Hermann et al, 2004),incrementándose la posibilidad <strong>de</strong> infecciones pororganismos patógenos en mujeres durante la gestación,en las que se ha observado inmuno<strong>de</strong>presión<strong>de</strong> tipo celular e incremento <strong>de</strong> la inmunoglobulinaM en el curso <strong>de</strong>l embarazo. Estos hechos han sidointerpretados como evi<strong>de</strong>ncia <strong>de</strong> infección (Eastonet al, 1998), asociadas con las modificaciones inmunológicasy con cambios hemodinámicos en ellecho endotelial, factores que condicionan la susceptibilidada la infección en el sistema cerebrovascular(Easton et al, 1998). En este estudio la <strong>de</strong>tecciónsimultánea <strong>de</strong> anticuerpos específicos IgA eIgM anti-T. cruzi confirmó la presencia <strong>de</strong>l parásitoen los tejidos nerviosos <strong>de</strong> las ratas que mostraronelevadas parasitemia y en las que <strong>de</strong>sarrollaronprocesos inflamatorios en los tejidos cerebrales ymedulares, por lo que se sugiere que la barrera sanguíneaendotelial sufre alteraciones o modificacionescelulares las cuales facilitan el transporte y laentrada <strong>de</strong> parásitos al SNC <strong>de</strong> las ratas gestantesen leucocitos infectados con T. cruzi.En relación con mujeres embarazadas infectadascon T. cruzi se ha <strong>de</strong>terminado que en algunoscasos no se presentan síntomas o signos atribuiblesa la enfermedad <strong>de</strong> Chagas y probablemente noocurre infección <strong>de</strong>l SNC, en este sentido se ha reportadoque un bajo porcentaje <strong>de</strong> mujeres <strong>de</strong>sarrollanencefalitis con cambios inflamatorios discretosen el SNC mientras que en otros casos se produceun incremento <strong>de</strong> la parasitemia patente con <strong>de</strong>tección<strong>de</strong> IgM específico consi<strong>de</strong>rado marcadorindicativo <strong>de</strong> infección aguda <strong>de</strong> la enfermedad <strong>de</strong>Chagas maternal, mientras que en algunos casos laIgM se ha observado durante el último trimestre <strong>de</strong>gestación período durante el cual las células hospedadorasson atacadas por T. cruzi y <strong>de</strong>struidas porlos antígenos (Vieira et al, 1983).Finalmente concluimos afirmando la importanciaque requiere conocer las modificaciones que seproducen en la respuesta inmune humoral en lasmujeres embarazadas que resi<strong>de</strong>n en áreas ruralesendémicas para la enfermedad <strong>de</strong> Chagas, en don<strong>de</strong>la transmisión <strong>de</strong>l parásito pue<strong>de</strong> efectuarse por lasdiferentes especies <strong>de</strong> triatominos y en las que seencuentran en zonas urbanas no endémicas don<strong>de</strong>el parásito circula entre la población humana,vectores intradomiciliarios, reservorios silvestres yanimales domésticos (Lugo <strong>de</strong> Yarbuh et al, 2010).REFERENCIAS1. ANTUNES AC, CECCHINI F, BOLLI F, POLANCYKDE OLIVEIRA P, GURGEL R, LAMPERT T, FRICKED. 2002. Cerebral trypanosomiasis and aids. ArqNeurom Psiquiatr 60: 730-733.2. BISSER S, LEJON V, PREUX P, et al. 2002. Bloodcerebrospinal fluid barrier and intrathecal immunoglobulinscompared to field diagnosis of central nervoussystem involvement in sleeping sichness. J Neurol Sci15: 127-135.3. BRENER Z. 1962; Observações sobre a imunida<strong>de</strong> asuperinfecçoes em camundongos experimentalmenteinoculados com Trypanosoma cruzi e submetidos atratamento. Inst Med Trop São Paulo 4: 119-123.4. CARLIER Y, RIVERA M T, TRUYENS C, GOLGMANM, LAMBERT P, FLAMENT J, BAUWENS D, VRAYB. 1987. Pregnancy and humoral responses in micechronically infected by Trypanosoma cruzi. InfectImmunol 55: 2496-2501.5. CARRASCO HJ, FRAME I, VALENTE S, MILES M.1996. Genetic exchange as a possible source of genomicdiversity in sylvatic population on Trypanosoma cruzi.Am J Trop Med Hyg 54: 418-424.6. CHAGAS C. 1909. Nova trypanosomiasis humana. Estudosobre a morfologia e o ciclo evolutivo do Schizotrypanumcruzi, N. Gen. Mem Inst Oswaldo Cruz 1:159-218.7. DE JESÚS R. 2002. Bioética animal en Venezuela. RevFac Farm ULA 43: 15-18.8. DEL CASTILLO M, MENDOZA G, OVIEDO J, PÉ-REZ-BIANCO RP, ANSELMO AE, SILVA M. 1990.AIDS and Chagasʹdisease in central nervous systemtumor-like lesion. Am J Trop Med Hyg 88: 693-694.16Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-15


PREGNANCY AND HUMORAL IMMUNE RESPONSE AGAINST T. CRUZI9. DREVETS DA, LLEENEN PJ. 2000. Leukocyte-facilitate<strong>de</strong>ntry intracellular pathogens into the centralnervous system. Microb Infect 2: 1609-1618.10. EASTON JD, HAUSER SL, MARTIN JB. 1998.Cerebrovascular diseases. In: Harrison, TR. Principlesof internal medicine. 14th ed. New York. McGrawHill;p. 2325-2348.11. FORBES RD, GUTTMANN RD, GOMERSALL M,HIBBERD JA. 1983. A controlled serial ultrastructuraltracer study of first-set cardiac allograft rejection in therat. Evi<strong>de</strong>nce that the microvascular endothelium is theprimary target of graft <strong>de</strong>struction. Am J Pathol 111:184-196.12. GIULIAN D, VACA K, CORPUZ M. 1993. Brain gliarelease factors with opposing actions upon neuronalsurvive. Neurosci 13: 29-37.13. GONZÁLEZ N, GALINDO I, GUEVARA P, SCOR-ZA JV, et al. 1994. I<strong>de</strong>ntification and <strong>de</strong>tection of Trypanosomacruzi using a DNA amplification fingerprintobtained from the ribosomal intergenic spacer. J ClinMicrobiol 32: 153-158.14. GUILLÉN PB, LUGO DE YARBUH A, MORENOE. 2001. Dilatación <strong>de</strong>l tracto digestivo <strong>de</strong> ratonesinfectados con Trypanosoma cruzi. Invest Clin 42: 195-209.15. HERMANN E, TRUYENS C, VEGA C, EVEN J, RO-DRÍGUEZ P, et al. 2004. Human congenital infectionwith Trypanosoma cruzi is associated with maternalenhanced parasitemia and <strong>de</strong>creases production of interferongamma in response to parasite antigens. J InfDis 189: 1274-1281.16. KRUSKAL W, WALLIS W A. 1952. Use of ranks inone-criterion variance analysis. J Am Statist Asso 47:583-621.17. LEIGUARDA R, RONCORONI A, TARATUTO A,JOST L, BERTHIER M, NOGUES M, FREILIJ H.1990. Acute CNS infection by Trypanosoma cruzi(Chagasʹdisease) in immunosupressed patients. Neurol40: 850-851.18. LORCA M, VELOSO C, SPORRONG L, ANGSTROMA. 1989. Synthetic pepti<strong>de</strong>s of Trypanosoma cruziantigens in the diagnosis congenital of Chagasʹdisease.Res. Rev Parasitol 58: 43-47.19. LUGO DE YARBUH A, COLASANTE C, ALARCÓNM, MORENO E. 2006. Gastrocnemius skeletal musclemicrovasculature and neuromuscular junction alterationsin mice with experimental acute Chagas infection.Rev Cient FCV-LUZ 6: 593-603.20. LUGO DE YARBUH A, ARAUJO S, COLASANTEC, ALARCÓN M. MORENO E. 2006. Effects ofacute Chagasʹdisease on mice central nervous system.Parasitol Latinoam 61: 3-11.21. LUGO DE YARBUH A, ARAUJO S, ALARCÓN M,MORENO E, De ASCENCÃO A, CARRASCO HJ.2010. Efectos <strong>de</strong> la infección aguda por diferentescepas <strong>de</strong> Trypanosoma cruzi en fetos <strong>de</strong> ratas. RevCient FCV-LUZ 4: 353-361.22. MASOCHA W, ROBERTSON B, ROTTENBER ME,MALANGA J, SOROKIN L, KRISTENSSON K.2004. Cerebral vessels laminis and IFN-gamma <strong>de</strong>fineTrypanosoma brucei brucei penetration of the bloodbrainbarrier. J Clin Invest 114: 689-694.23. MARCONDES FK, BIANCHI FJ, TANNO AP. 2002.Determination of the estrous cycle phases of rats: Somehelpful consi<strong>de</strong>rations. Braz J Biol 62: 609-614.24. MENEZES CA, BITTERCOURT AL, MOTA E,SHERLOCK I, FERREIRA J. 1992. Avaliação da parasitemiaem mulheres portadoras <strong>de</strong> infecção peloTrypanosoma cruzi durante e após a gestação. Evaluationof parasitaemia in women who are carriers ofTrypanosoma cruzi infection during and after pregnancy.Rev Soc Bras Med Trop 2: 109-113.25. MORENO E, ARAUJO M, ALARCÓN M, LUGO DEYA, ARAUJO S, BORGES R. 2006. Efecto <strong>de</strong> la infecciónchagásica aguda en ratas Wistar gestantes. RevCientif FCV-LUZ 5: 506-516.26. MORENO E, MÉNDEZ M, ALARCÓN M, ARAUJOS, LUGO DE YARBUH A. 2005. Reactivation of theChagasic infection in Wistar rats in gestation. Kasmera33: 51-63.27. OPS. 2003. Definición <strong>de</strong> caso. Tripanosomiasis americana(Enfermedad <strong>de</strong> Chagas). Bol Epi<strong>de</strong>miol 24: 3.28. PITTELLA JE. 1993. Central nervous system involvementin Chagasʹdisease. An updating. Inst Med TropSão Paulo 35: 111-116.29. RODRÍGUEZ E, BRICEÑO L, CHIURILLO M,MOSCA W, CAMPOS Y. 2004. Tripanosomiasis americana:Aspectos teóricos. Instituto <strong>de</strong> BiomedicinaUCV. Caracas, Venezuela. 3.30. SCORZA C. SCORZA JV. 1972. Acute myocarditisin rats inoculated with Trypanosoma cruzi study ofanimals sacrificed between the fourth and twenty ninthday after infection. Rev Inst Med Trop São Paulo 14:171-177.31. SELL P, BURTON M. 1981. I<strong>de</strong>ntification of Leishmaniaamastigotes and their antigens in formalin fixed tissueby immunoperoxidase staining. Trans R Soc TropMed Hyg 75: 461-468.32. SILVA AA, ROFFED E, MARINO AP, DOS SANTOSPV, QUIRICO-SANTOS T, PAIVA CN, LANNES-VIEIRA J. 1999. Chagasʹdisease encefalitis: intenseCD8+ lymphocytic infiltrate is restricted to the acutephase, but is not related to the presence of Trypanosomacruzi antigens. Clin Immunol 1: 56-66.33. SPINA-FRANCA A, LIVRAMENTO J, MACHADOL, YASUDA N. 1988. Trypanosoma cruzi antibodies inthe cerebrospinal fluid: a search using complement. ArqNeuropsiquiatr 4: 374-378.34. TORRICO F, VEGA CA, SUÁREZ E, TELLEZ T,BRUTUS L, RODRÍGUEZ P, TORRICO MC, SCH-NEIDER D, TRUYENS C, CARLIER Y. 2006. Arematernal re-infections with Trypanosoma cruzi associatedwith higher mobility and mortality of congenitalChagasʹdisease? Trop Med Int Health 11: 628-635.35. VAN ZON AA, ELING WM. 1980. Pregnancy associatedrecru<strong>de</strong>scence in murine malaria (Plasmodiumberghei). Tropenmed Parasitol 31: 402-408.36. VIEIRA G, MAGUIRE J, BITTENCOURT AL, SILVAFONTES JA. 1983. Doença <strong>de</strong> Chagas congĕnita apresentação<strong>de</strong> um caso paralisia cerebral. Rev Inst MedTrop São Paulo 25: 305-309.Agra<strong>de</strong>cimientos: Al Consejo <strong>de</strong> Desarrollo Científico,Humanístico y Tecnológico <strong>de</strong> la Universidad <strong>de</strong> losAn<strong>de</strong>s (CDCHT) proyecto C-1527-07-03-B por el apoyo alpresente trabajo <strong>de</strong> investigación.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 6-1517


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-24Characterization of cutaneous isolates of Leishmaniain Colombia by isoenzyme typing and kDNArestriction analysisURBANO J. 1 , SÁNCHEZ-MORENO M. 1 , E. OVALLE C.E. 2 , ROSALES M.J. 1 , CAMARGO Y.C. 2 , GUTIÉRREZ-SÁNCHEZ R. 3 and MARÍN C. 11Department of Parasitology. University of Granada, Severo Ochoa s/n, E-18071 Granada (Spain).2Centro Dermatológico Fe<strong>de</strong>rico Lleras Acosta, E.S.E., Bogotá, D. C., Colombia.3Department of Statistics, University of Granada, Severo Ochoa s/n, E-18071 Granada (Spain).ABSTRACTIn Colombia, leishmaniasis is an en<strong>de</strong>mic disease for which efforts are currently being ma<strong>de</strong> to establishthe geographic distribution and i<strong>de</strong>ntification of the species circulating in the country. Sixteen stocks ofLeishmania isolated from patients of the National Dermatology Institute of Bogotá (Colombia) have beencharacterized by means of isoenzymatic characterization and kDNA analysis by restriction enzymes. Theseisolates were compared with 8 reference stocks: L. braziliensis, L. guyanensis, L. panamensis, L. mexicana,L. amazonensis, L. colombiensis, L. peruviana, and L. chagasi. The statistical study of the results gave3 clusters. The dominant species was L. panamensis, with 44% and distributed throughout the country,followed by L. amazonensis with 25%, distributed preferentially along the Pacific coast and to the south ofthe country. L. braziliensis, with 19%, was distributed mainly in the centre and east of the country, while12% remained un<strong>de</strong>termined. None of the isolates were i<strong>de</strong>ntified as belonging to L. mexicana.Key words: Leishmaniasis, Colombia, isoenzymatic characterization, kDNA analysis by restrictionenzymes, PCR.RESUMENEn Colombia, la leishmaniasis es una enfermedad endémica para la cual actualmente se están <strong>de</strong>dicadomuchos esfuerzos para establecer la distribución geográfica y la i<strong>de</strong>ntificación <strong>de</strong> las especies circulantesen el país. Dieciséis aislados <strong>de</strong> Leishmania aisladas <strong>de</strong> pacientes <strong>de</strong>l Instituto Nacional <strong>de</strong> Dermatología<strong>de</strong> Bogotá (Colombia) han sido caracterizadas mediante estudio <strong>de</strong> isoenzimas y análisis por enzimas <strong>de</strong>restricción. Estos aislados fueron comparados con 8 cepas <strong>de</strong> referencia: L. braziliensis, L. guyanensis,Received: 21 December 2010. Accepted: 14 March 2011.Corresponding: Clotil<strong>de</strong> Marín Sánchez.Department of Parasitology.University of Granada, Severo Ochoa s/n, E-18071 Granada (Spain).Tel.: +34 958 242369; fax: +34 958 243174.E-mail address: cmaris@ugr.es.18


new Leishmania isolates from ColombiaL. panamensis, L. mexicana, L. amazonensis, L. colombiensis, L. peruviana, y L. chagasi. El estudioestadístico <strong>de</strong> los resultados mostró 3 grupos. La mayoría <strong>de</strong> los aislados, el 44%, fueron i<strong>de</strong>ntificadoscomo L. panamensis, que se distribuyen <strong>de</strong> manera bastante uniforme por el país, y como segunda especiepredominante aparece L. amazonensis con el 25%, distribuida preferentemente a lo largo <strong>de</strong> la costa<strong>de</strong>l Pacífico y en el sur <strong>de</strong>l país. L. braziliensis, con el 19%, se distribuye principalmente en el centro yeste <strong>de</strong>l país, y el 12% restante no pudo ser <strong>de</strong>terminado. Ninguno <strong>de</strong> los aislados fue i<strong>de</strong>ntificado comoperteneciente a L. mexicana.Palabras clave: Leishmaniasis, Colombia, caracterización isoenzimática, análisis <strong>de</strong>l ADNk por enzimas<strong>de</strong> restricción, PCR.INTRODUCTIONThe diverse clinical forms of leishmaniasis constitutea serious public health problem worldwi<strong>de</strong>.According to the WHO, 350 million people are atrisk of contracting the disease, with nearly 12 millionpeople already infected, and some 2 millionnew cases yearly showing different clinical formsof leishmaniasis, classified in category I as anemerging disease without control (WHO, 2004).In Latin America, primarily in An<strong>de</strong>an countriesand those sharing the Amazon basin, the disease ispresent in three main clinical forms: cutaneous,mucocutaneous, and visceral (Herwaldt, 1999). InColombia, leishmaniasis is consi<strong>de</strong>red an en<strong>de</strong>micdisease throughout the country, except for somezones and the capital, Bogotá D.C. (Ovalle et al,2006). In 2005, the number of leishmaniasis casesrose by 3,794 (21.9%), i.e. 18,097 reported cases.Of these, 17,983 cases (99.4%), were cutaneous,60 cases (0.3%) mucocutaneous, and 54 (0.3%)visceral leishmaniasis (Zambrano, 2006).In the Americas, two taxonomic groups ofLeishmania exist, the subgenera Leishmania andViannia, which are also known as the BrazilensisComplex. This complex inclu<strong>de</strong>s the species L.brazilensis, L. peruviana, L. panamensis, L. lainsoniand L. guyanensis. The subgenus Leishmaniamay be further divi<strong>de</strong>d into species complexes: theMexicana Complex (L. mexicana, L. amazonensis,L. garnhami, L. aristi<strong>de</strong>si, and L. pifanoi), and theDonovani Complex (L. chagasi) (Lainson & Saw,1987). For more than 20 years efforts have beenma<strong>de</strong> to <strong>de</strong>termine the geographic distribution ofthe Leishmania species in Colombia. To date, numerousspecies of Leishmania have been i<strong>de</strong>ntified:L. braziliensis, L. guyanensis, L. panamensis,L. mexicana, L. amazonensis, L. chagasi, and otherLeishmania spp. remaining uncharacterized (Corredoret al, 1990; Saravia et al, 1998; Ovalle et al,2006).The marked phenotypic diversity of Leishmaniahas given rise to a complex taxonomy of morethan 20 species <strong>de</strong>scribed, most in Latin America(Lainson & Shaw, 1987). Given the epi<strong>de</strong>miologicalcomplexity in some regions in Colombian, it isnecessary to <strong>de</strong>termine the species in circulation(Lucas et al, 1998). Due to, the strongly heterogeneousdistribution of parasites, where the transmissioncycles of the different species can overlap andseveral species can be found at the same focal pointof the disease, broad human migration, as well astourism, can spread Leishmania beyond its traditionalecological distribution (Victoir et al, 2003).That is, the ability to distinguish between Leishmaniaspecies is crucial when prescribing treatmentas well as when <strong>de</strong>termining possible controlmeasures in epi<strong>de</strong>miological studies. Frequently,Leishmania species are i<strong>de</strong>ntified based on theirgeographical distribution and on clinical manifestationsof the resulting disease. However, geographicalorigin is an ina<strong>de</strong>quate criterion in non-en<strong>de</strong>micareas, as well as en<strong>de</strong>mic regions where multiplespecies of Leishmania may coexist. I<strong>de</strong>ntificationof the infectious species based on clinical symptomscan be problematic, because several speciescause both cutaneous and mucocutaneous diseasewhile others cause visceral and cutaneous disease(Schönian et al, 2003).Diverse characterization methods have beenapplied to the study of this genus, such as electrophoresisand isoenzymes (Chance & Walton, 1982;Shamsuzzaman et al, 2000; Belhadj et al, 2003;Rodríguez-González et al, 2006 and 2007), DNAanalysis of the kDNA (Gramiccia et al, 1992; Rodríguez-Gonzálezet al, 2006 and 2007), the tech-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-2419


URBANO J.et al.nique of randomly amplified polymorphic DNA(RAPD) (Tybairenc et al, 1993; Giuziani et al,2002).The National Dermatology Institute of BogotáD. C. (Colombia) attends patients from the entirecountry with different clinical forms of leishmaniasis,from which the etiological agent is isolated.The present study attempts provi<strong>de</strong> new data on thedistribution as well as the characterization of 16new Leishmania isolated obtained from patients ofthe National Institute of Dermatology (Colombia)during the period 1995-2005. The characterizationwas ma<strong>de</strong> in comparison with reference stocks: L.braziliensis, L. guyanensis, L. panamensis, L. mexicana,L. amazonensis, L. colombiensis, L. peruviana,and L. chagasi, by isoenzyme analysis and restrictionkDNA analysis using different restrictionendonucleases.MATERIALS AND METHODSParasite isolation and in vitro culture: The16 isolated were isolated from patients treated by<strong>de</strong>rmatologists in the special leishmaniasis clinic ofthe National Dermatology Institute of Bogotá D.C.(Colombia). All the patients had a confirmed diagnosisof cutaneous leishmaniasis, and their clinicalhistories were reviewed to gather information relatedto the clinical form: probable site of infection,patient’s age, sex, and origin (Table 1).The sample was taken by aspiration of the edgeof the cutaneous lesions characterized by multipleulcerated plaques with violet edges of differentsizes and at various locations of the patient’sanatomy. The sample was placed in Senekjie medium(Senekjie, 1943), incubated at 27ºC, andmonitored for 5 weeks. The parasites isolated werecultured in Schnei<strong>de</strong>r Drosophila medium (Sigma)supplemented to 10% with inactivated foetal bovineserum (LabClinics). Once in the logarithmicgrowth phase, these isolates were sent from theNational Dermatology Institute of Bogotá D.C. toour laboratory (Granada, Spain) and were culturedin vitro in MTL medium supplemented with 10%inactivated foetal bovine serum kept in an air atmosphereat 27ºC (Fernán<strong>de</strong>z-Ramos et al, 1999).As reference Leishmania stocks, we used L. peruvi-Table 1. Details of 16 Leishmania strain isolated from patients of the National Institute of Dermatology (BogotáD.C., Colombia) during the period 1995-2005Patient’ <strong>de</strong>tailsCo<strong>de</strong> Clinical manifestation Sex† Years Place of originLL001 Cutaneous F 31 GuaviareLL003 Cutaneous M 25 CaucaLL004 Cutaneous M 20 CasanareLL005 Cutaneous M 34 Valle <strong>de</strong>l CaucaLL008 Cutaneous M 20 Santan<strong>de</strong>rLL009 Cutaneous F 36 CundinamarcaLL012 Cutaneous M 39 CundinamarcaLL035 Cutaneous F 48 CundinamarcaLL092 Cutaneous M 24 CasanareLL104 Cutaneous M 50 VichadaLL106 Cutaneous M 38 GuaviareLL109 Cutaneous F 13 CundinamarcaLL110 Cutaneous M 20 VichadaLL113 Cutaneous M 33 Santan<strong>de</strong>rLL119 Cutaneous M 31 BoyacaLL125 Cutaneous M 55 Boyaca†F = female, M = male.20Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-24


new Leishmania isolates from Colombiaana (MHOM/PE/1984/LC26) from <strong>de</strong>partment ofLa Libertad (Peru), L. guyanensis (MHO/BR/1975/M4147) from the Brazilian Amazon, L. colombiensis(IHAR/CO/1985/CL500) from Colombia, L.brazilensis (MHOM/BR/1975/M2903) from Pará,Brazil, L. panamensis (MHOM/PA/1971/LS94)isolated in Canal Zone (Panama), L. mexicana(MHOM/BZ/1982/BEL21) from Belize, L. amazonensis(MHOM/BR/1973/PH8) from Brazil, andL. chagasi (MHOM/BR/1974/PP75 (M2682)). Thereference stocks and new isolates were maintainedin our laboratory by cryopreservation and a maximumof 4 subcultures in NNN medium modifiedwith a liquid phase of minimal essential medium(MEM) plus 10% inactivated foetal bovine serumkept in an air atmosphere at 27ºC.Isoenzyme characterization: Cru<strong>de</strong> homogenateswere obtained from 300 mL of culture mediumcontaining 2 x 10 7 cells.mL -1 . Cells were harvestedby centrifugation at 600 x g 10 min, washedtwice in a phosphate-buffered saline (pH 7.4), andresuspen<strong>de</strong>d in a hypotonic enzyme stabilizer solutioncontaining 2mM dithiothreitol, 2mME-aminocaproicacid, and 2mM EDTA (Fernán<strong>de</strong>z-Ramoset al, 1999). The samples were frozen at -80ºC for15 min and thawed at 25ºC. After several freezingthawingcycles, cell lysates were centrifuged at8000 x g for 20 min at 4ºC, and the supernatantswere stored in liquid nitrogen until used. The proteinconcentration was <strong>de</strong>termined using the Bradfordmethod and stored at a final concentration of1mg.mL -1 of protein.The enzymes were separated by isoelectricfocusing in a PhastSystem apparatus, using PhastgelIEF 3-9 (Pharmacia, Freiburg, Germany).The following enzymes were tested: malic enzyme(EM), glucose 6-phosphate <strong>de</strong>hydrogenase(G6PDH), isocitrate <strong>de</strong>hydrogenase (IDH), malate<strong>de</strong>hydrogenase (MDH), glucose phosphate isomerase(GPI), and superoxi<strong>de</strong> dismutase (SOD). Thestaining procedures are <strong>de</strong>scribed in Fernán<strong>de</strong>z-Ramos et al (1999).kDNA isolation: Promastigotes were collectedby centrifugation of 300 mL of culture medium,when their concentrations had reached about 2x 10 7 cells.mL -1 , after about 5 days. They werewashed twice in 50mL of 0.15M NaCl, 0.015Msodium citrate, and once with SE buffer (0.15MNaCl, 0.1M EDTA, pH 8.0). Kinetoplast DNA wasobtained according to the procedure <strong>de</strong>scribed byGonçalves (Gonçalves et al, 1984).Restriction-enzyme digestion and electrophoresisanalysis: The kDNA extracts (3 mg.mL - 1)were completely digested with restriction endonucleases(Hae III, BamH I, Hinf I, Hind III, EcoRI, and Msp I) according to the manufacturer’s prescribedbuffer conditions (Boehringer-Ingelheim,Barcelona, Spain). The digestion products wereelectrophoresed in 1.3% agarose slab gels as <strong>de</strong>scribe<strong>de</strong>lsewhere (Riou & Yot, 1977) and the fragmentsizes were estimated by comparing their mobilitieswith those of a 100-bp DNA lad<strong>de</strong>r (Gibco-BRL, Gaithersburg, USA). The gels were stainedwith ethidium bromi<strong>de</strong> (10 mg.mL -1 for 10 min)and photographed un<strong>de</strong>r UV light with an OlympusCamedia digital camera, C-4000 Zoom.Statistical study: The statistical methods werebased on individual hierarchical cluster analysis, selectingthe Eucli<strong>de</strong>an distance to the square as thebasis for measuring the associations between individuals.The Eucli<strong>de</strong>an distance was calculated bythe following grouping procedures of simple linkage(Rk 0.7355), average linkage among groups(Rk 0.7518), average linkage (Rk 0.7726), centroidmethod (Rk 0.7586), median method (Rk 0.7204),and the Ward method (Rk 0.7570). The copheneticcoefficient (Rk) measures the <strong>de</strong>gree of distortionbetween relationships, means in terms of originaldistances between individuals and those existing atthe end of the analysis. The one with the highest copheneticcorrelation was chosen as the optimal method.In the selection procedures, the average linkagebetween groups was consi<strong>de</strong>red using the coefficientRk of Rand, which is an in<strong>de</strong>x of the similarity betweenclassifications. This analysis was ma<strong>de</strong> withthe STATGRAPHICS program, version 5.0.Ethical consi<strong>de</strong>rations: All the patients atten<strong>de</strong>din the clinic of the National DermatologyInstitute of Bogotá were informed on the inclusionof the isolates in an institutional biological bank forsubsequent research. The protocol of the presentstudy was submitted to the ethical committee thatcatalogued it as risk-free research, according to theHelsinki Declaration.RESULTSA total of 16 new stocks of Leishmania speciesfrom patients in the National Dermatology InstituteRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-2421


URBANO J.et al.the rest of the reference stocks (Figure 2 C and D,lanes1). L. colombiensis was i<strong>de</strong>ntified with the endonucleasesHinf I and EcoR I (Figure 2 B and D,lane 3), and L. chagasi with EcoR I and Hind III(Figure 2 D and F, lane 8). The stocks belongingto L. braziliensis and L. guyanensis were i<strong>de</strong>ntifiedwith the endonuclease Hind III (Figure 2 F, lanes2 and 4), and finally the stocks of L. amazonensisy L. panamensis were uni<strong>de</strong>ntifiable with any ofthe 6 endonucleases. The 16 new isolates presentedtwo restriction patterns when their kDNA wassubmitted to the endonuclease BamH I: the isolatesLL001, LL003, LL004, LL005, LL008, LL012LL106, LL109; LL110, LL113, LL119, and LL125had profiles similar to those of the stocks L. panamensisand L. amazonensis (Figure 2 A; lanes: 9-13,15, and 19-24), while the rest of the isolates presenteda profile similar to that of L. braziliensis andL. guyanensis (Figure 2. A). When the kDNA of thenew isolates was digested by the endonuclease HinfI, it gave 5 different restriction patterns: the isolateLL004 presented 2 fragments similar to that of L.colombiensis, the isolates LL008, LL035, LL119,and LL125 a single fragment. There was no correspon<strong>de</strong>nceto the reference stocks (Figure 2B, lanes13, 16, 23, and 24), as happened with the isolatesLL012 and LL110, which presented 6 and 4 kDNAfragments, respectively, without correspon<strong>de</strong>nce tothe reference stocks (Figure 2 B, lanes 15 and 21).The rest of the isolates had a profile similar to thoseof L. peruviana, L. braziliensis, L. panamensis, L.amazonensis, and L. guyanensis (Figure 2 B). Withthe enzyme Hae III, 2 profiles related some of theisolates to some of the reference stocks, e.g. isolatesLL003, LL004, LL009, LL106, LL119, andLL125 to stocks L. braziliensis, L. panamensis andL. chagasi (Figure 2 C lanes 10-11, 14, 18-20, 23,and 24; lanes 4-5 and 8, respectively). The otherprofile, which inclu<strong>de</strong>d the group of the isolatesLL005, LL008, LL012, LL035, LL092, LL104,and LL113 (Figure 2 C, lanes 12, 13, 15-17, and22), resembled the profiles of the stocks L. colombiensisand L. amazonensis (Figure 2 C, lanes 3 and7); the isolates LL001 and LL110 presented a profilethat was similar to none of the reference stocks(Figure 2 C, lanes 9 and 21). With the enzyme EcoRI, the isolate LL008 presented a profile that did notresemble any of the reference stocks (Figure 2 D,lane 13), as occurred with the enzyme MspI, whichgave a different restriction pattern to the referencestocks for the isolates LL005 and LL109 (Figure2 E, lane 12 and 20). When the kDNA of the isolatesLL009 and LL012 was subjected to the actionof the enzyme Hind III, the profiles differed fromthose of the reference stocks (Figure 2 F, lanes 14and 15).DISCUSSIONIt is known that one technique alone makesthe exact i<strong>de</strong>ntification of an isolate difficult, andtherefore we analysed the results by the two techniquesused (Figure 3), grouping the isolates intothree large clusters. Cluster 1 in turn contained twosubclusters: on the one hand, L. chagasi, which,according to Lainson & Saw (1987) would formthe Donovani Complex (subcluster 1-1), whileSubcluster 1-2 was comprised of L. guyanensis,L. peruviana, and L. braziliensis, together withthe isolates LL104, LL092, and LL035. Phyloge-Figure 3. Dendrogram based on individual hierarchicalcluster analysis (Program Stat-Graphics version 5.0).24Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-24


new Leishmania isolates from Colombianetically, these are very close to L. braziliensis, andthus can be consi<strong>de</strong>red L. braziliensis. From thisanalysis, we <strong>de</strong>duce that L. peruviana and L. braziliensisare related, supporting the observation ofprevious authors who related the two species byisoenzyme studies (Sierra et al, 2006). Cluster 2is formed by another two subclusters: Subcluster2-1 would inclu<strong>de</strong> L. panamensis and the isolatesLL113, LL001, LL106, LL125, LL004, LL119,and LL009; and Subcluster 2-2 formed by L. colombiensis.Subcluster 1-2 and Cluster 2 wouldform the traditional Braziliensis Complex. Cluster3 would be composed of Subcluster 3-1, whichinclu<strong>de</strong>s L. amazonensis and the isolates LL003,LL005, LL109, and LL110, which we consi<strong>de</strong>r tobe L. amazonensis; Subcluster 3-2, composed ofthe isolates LL008 and LL012; and finally Subcluster3-3, formed by L. mexicana. This Cluster3 would form the Mexicana Complex. IsolatesLL008 and LL012 are loosely related to L. amazonensis,although they cannot be consi<strong>de</strong>red as thisspecies and perhaps would be a variation within thespecies or some other species of this same complexnot inclu<strong>de</strong>d in this study and therefore we do nothave the patterns for comparisons.Isolates LL003, LL004, LL005, LL008, andLL009, were classified at the level of a complex bymonoclonal antibodies, isoenzymatic analysis, andPCR (Ovalle et al, 2006). The results provi<strong>de</strong>d inthe present study partially agree with those of theprevious work in that the isolates LL003, LL005,and LL008 belong to the Mexicana complexand we can i<strong>de</strong>ntify them as L. amazonensis;and we i<strong>de</strong>ntify isolates LL004 and LL009 as L.panamensis.The dominant species in Colombia was L.panamensis (44%), followed by L. amazonensis(25%), and L .braziliensis (19%), with a portion yetto be <strong>de</strong>termined (12%). These data are consistentwith those reported by other authors (Corredor etal, 1990; Cupolillo et al, 1998; Ovalle et al, 2006).The small number of stocks analysed does not leadus to draw conclusions concerning the geographicdistribution of this species (Figure 4). Nevertheless,we can suggest that L. panamensis was distributeduniformly throughout the country, L. braziliensiswas located in the centre and east, while L. amazonensiswas found along the Pacific coast and in thesouth of the country. Until now, L. amazonensis hasbeen isolated at a very low percentage (GrimaldiFigure 4. Distribution map of the new isolates in Colombia.et al, 1989) and with a geographic distribution coinci<strong>de</strong>ntalwith our results. Despite that differentauthors have reported the presence of L. mexicanathroughout Colombia (Ovalle et al, 2006), we havenot i<strong>de</strong>ntified any new isolates as belonging to L.mexicana. This does not mean that the species L.mexicana does not exist in Colombia, but rather indicateus that the monoclonal antibodies or the isoenzymatictyping and even the PCR are of limitedvalue by themselves in differentiating L. amazonensisfrom L. mexicana. However, the combineduse of phenotypic and genotypic characteristics candifferentiate the two species. This leads us to conclu<strong>de</strong>that it is necessary to use several techniquesto i<strong>de</strong>ntify the species level, such as isoenzymaticanalysis together with a kDNA study by means ofendonucleases that in most cases i<strong>de</strong>ntify the specieslevel.REFERENCES1. BELHADJ S, PRATLONG F, HAMMAMI M, KA-LLEL K, DEDET JP, CHAKER E. 2003. Human cutaneouslesihmaniasis due to Leishmania infantum in theRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-2425


URBANO J.et al.Sidi Bourouis focus: epi<strong>de</strong>miological study and isoenzymaticcharacterization of the parasites. Acta Trop 85:83-86.2. BRUIJN DE MHL, BARRER DC. 1992. Diagnosisof the New World leishmaniasis: specific <strong>de</strong>tectionof species of the Leishmania braziliensis complex byamplification of kinetoplast DNA. Acta Trop 52: 145-158.3. CHANCE ML, WALTON BC. 1982. Biochemicalcharacterization of Leishmania. In: Biochemical characterizationof Leishmania (M.L. Chance, and B.C.Walton, Eds.). Proceed ings of a workshop held the Pan.Am. Health Org., Washing ton D.C. 1980. Undp/WorldBank/ WHO/TDR, STIDR.Geneve, Switzerland, pp.1-275.4. CORREDOR A, KREUTZER RD, TESH RB, BO-SHELL J, PALAU MT, CÁCERES E. 1990. Distributionand etiology of leishmaniasis in Colombia. Am. J.Trop Med Hyg 42: 206-214.5. CUPOLILLO E, MOMEN H, GRIMALDI G.Jr. 1998.Genetic diversity in natural populations of New WorldLeishmania. Memorias do Instituto Oswaldo Cruz 93:6663-668l.6. FERNÁNDEZ-RAMOS C, LUQUE F, FERNÁN-DEZ-BECERRA C, OSUNA A, JANKEVICIUSSI, JANKEVICIUS V, ROSALES MJ, SÁNCHEZ-MORENO M. 1999. Biochemical characterisation offlagellates isolated from fruits and seeds from Brazil.FEMS Microbiology Letters 170: 343-348.7. GONÇALVES AM, NEHME NS, MOREL CM. 1984.Trypanosomatid characterization by schizo<strong>de</strong>me analysis.In: Genes and antigens of parasites (A laboratorymanual) 2nd. Edn. (C.M. Morel, Ed). Fundaçao OswaldoCruz, Rio <strong>de</strong> Janeiro, Brazil., 95-109.8. GRAMICCIA M, SMITH DF, ANGELICI MC,RAEDY PD, GRADONI L. 1992. A kinetoplast DNAprobe diagnostic for L. infantum. Parasitology 105: 29-34.9. GRIMALDI G Jr, TESH RB, McMAHON-PRATTD. 1989. A review of the geographic distribution an<strong>de</strong>pi<strong>de</strong>miology of leishmaniasis in the New World. Am.J. Trop Med Hyg 41: 687-725.10. HERWALDT BL. 1999. Leishmaniasis. Lancet 354,1191-1199.11. GIUZIANI I, DELLAQI K, ISMAIL RB. 2002. Randomamplified polymorphic DNA technique for i<strong>de</strong>ntificationand differentiation of Old World Leishmaniaspecies. Am. J. Trop Med Hyg 66: 152-156.12. LAINSON R, SHAW JJ. 1987. Evolution, classificationand geographical distribution. In: The Leishmaniasisin Biology and Medicine. (W. Peters and R. Kendrick,Eds). London: Aca<strong>de</strong>mic Press. 1-120.13. LUCAS CM, FRANKE ED, CACHAY MI, TEJADAA, CRUZ ME, KREUZER RD. 1998. Geographicdistribution and clinical <strong>de</strong>scription of leishmaniasiscases in Peru. Am.J. Trop Med Hyg 59: 312-317.14. OVALLE CE, PORRAS L, REY M, RIOS M, CA-MARGO YC. 2006. Distribución geográfica <strong>de</strong> especies<strong>de</strong> Leishmania aisladas <strong>de</strong> pacientes consultantesal Instituto Nacional <strong>de</strong> Dermatología Fe<strong>de</strong>rico LlerasAcosta, E.S.E., 1995-2005. Biomédica 26: 145-151.15. RIOU G, YOT P. 1977. Heterogeneity of the kinetoplastDNA molecules of Trypanosoma cruzi. Biochemistry16: 2390-2396.16. RODRÍGUEZ-GONZÁLEZ I, MARÍN C, VARGASF, CÓRDOVA O, BARRERA M, GUTIÉRREZ-SÁN-CHEZ R, ALUNDA JM, SÁNCHEZ-MORENO M.2006. I<strong>de</strong>ntification and biochemical characterizationof Leishmania strains isolated in Peru, Mexico andSpain. Exp Parasitol 112: 44-51.17. RODRÍGUEZ-GONZÁLEZ I, MARÍN C, LONGONISS, MATEO H, ALUNDA JM, MINAYA G, GUTIÉ-RREZ-SÁNCHEZ R, VARGAS F, SÁNCHEZ-MORE-NO M. 2007. I<strong>de</strong>ntification of New World LeishmaniaSpecies From Peru By Biochemical Techniques andMultiplex PCR Assay. FEMS Microbiology Letters267: 9-16.18. SARAVIA NG, SEGURA I, HOLGUÍN AF, SANT-RICH C, VALDERRAMA L, OCAMPO C. 1998. Epi<strong>de</strong>miologic,genetic and clinical associations amongphenotypically distinct populations of Leishmania (Viannia)in Colombia. Am. J.Trop Med Hyg 59: 86-94.19. SENEKJIE HA. 1943. Biochemical Reactions, CulturalCharacteristics and Growth Requirements of Trypanosomacruzi. Am. J. Trop Med Hyg s1-23(5): 523-531.20. SHAMSUZZAMAN SM, FURUYA M, SHAMSUZ-ZAMAN C, KORENAGA M, HASHIGUCHI Y. 2000.Characterisation of Bangla<strong>de</strong>shi Leishmania isolatedfrom kala-azar patients by isoenzyme electrophoresis.ParasitolInt 49: 139-145.21. SIERRA D, OCHOA M, CALLE JI, GARCÍA COLO-RADO D, VÉLEZ ID. 2006. Leishmania (Leishmania)mexicana en el corregimiento <strong>de</strong> 2006. San Matías,municipio <strong>de</strong> Gómez Plata, Antioquia, Colombia. Biomédica26: 232-235.22. SCHÖNIAN G, NASEREDDIN A, DINSE N, SCH-WEYNOCH C, SCHALLIG H, PRESBER W, JAFFECL. 2003. PCR diagnosis and characterization ofLeishmania in local and imported clinical samples.Diagnostic Microbiol Inf Dis 47: 349-358.23. TYBAIRENC M, NEUBAUER K, BARNABE C,GUERRINI F, SKARECKEY D, AYALA FJ. 1993.Genetic characterization of six parasitic protozoa paritybetween random primer DNA typing and multilocusenzyme electrophoresis. Proceedings of the NationalAca<strong>de</strong>my of Sciences of the United States of America90: 1335-1339.24. WORLD HEALTH ORGANIZATION (WHO). 2004.Control of the leishmaniases. Report of the scientificworking group on leishmaniasis. Geneva, WHO/TDR/SWG.25. VICTOIR K, BAÑULS J, DE DONCKER S, CABRE-RA L, ÁLVAREZ E, ARÉVALO J. 2003. Direct I<strong>de</strong>ntificationof Leishmania species in biopsies from patientswith american tegumentary leishmaniasis. Trans RoySoc Trop Med Hyg 97: 80-87.26. ZAMBRANO P. 2006. Informe <strong>de</strong> leishmaniasis,Colombia semanas 1 a 52 <strong>de</strong> 2005. Informe QuincenalEpi<strong>de</strong>miológico Nacional, 11, 40-43.Acknowledgments: We wish to thank Encarnación Guerrerofor technical help in culture media preparation. Thiswork was supported by grants from the Project CGL-2006-27889-E and CGL-2008-03687-E of the Ministerio <strong>de</strong> Cienciay Tecnología (Spain).26Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 16-24


A. CLAVEL et al.INTRODUCCIÓNGiardia duo<strong>de</strong>nalis es un protozoo parásitoflagelado, enteropatógeno <strong>de</strong> distribución mundial.La infección en el hombre está causada por G.duo<strong>de</strong>nalis (sinónimo G. lamblia, G. intestinalis).Se han i<strong>de</strong>ntificado 7 genotipos, <strong>de</strong>nominados A(AI, AII), B, C, D, E, F, G (Monis et al, 2003;Eligio-García et al, 2005; Monis et al, 2009; Cacciòet al, 2010). En el hombre se han i<strong>de</strong>ntificado losgenotipos A y/o B, que también han sido <strong>de</strong>tectadosen una gran variedad <strong>de</strong> mamíferos (Monis et al,2009).Recientemente se ha <strong>de</strong>scrito el hallazgo en humanos,<strong>de</strong> los genotipos C, D, E y F cuyos hospedadoreshabituales son perros (C, D), rumiantes (E) ygatos (F) (Gelanew et al, 2007; Foronda et al, 2008;Traub et al, 2009; Feng y Xiao, 2011) <strong>de</strong>mostrandola capacidad zoonótica <strong>de</strong> este parásito.En algunos países tropicales y subtropicales,como Guatemala, el clima y las condiciones socioeconómicasfavorecen la alta prevalencia <strong>de</strong> lagiardiosis. Los estudios realizados en comunida<strong>de</strong>sguatemaltecas, señalan valores que oscilan entre el15 y el 30%, según se trate <strong>de</strong> ambientes rurales ourbanos respectivamente (Gupta et al, 1982; Farthinget al, 1986; An<strong>de</strong>rson et al, 1993; Jensen etal, 2009). En otros países <strong>de</strong> América Latina, lasprevalencias son similares. Así, en Argentina es <strong>de</strong>l4% en áreas rurales y <strong>de</strong>l 10 % en las áreas urbanas(Gamboa et al, 1998; Minvielle et al, 2004), enPerú, <strong>de</strong>l 23,8% (Pérez-Cordón et al, 2008) y enColombia <strong>de</strong> un 27,6% (Botero-Garcés et al, 2009).En todos los casos, los niños menores <strong>de</strong> 5 añosrepresentan el sector <strong>de</strong> población más afectado poresta parasitosis (Thompson, 2000; Adam, 2001).Teniendo en cuenta lo anteriormente comentado,se planteó como objetivo <strong>de</strong> este trabajo, <strong>de</strong>terminarlos genotipos <strong>de</strong> G. duo<strong>de</strong>nalis predominantesen los niños <strong>de</strong> ámbito urbano <strong>de</strong> Ciudad <strong>de</strong>Guatemala.MATERIAL Y MÉTODOSCuarenta y cuatro muestras <strong>de</strong> heces, <strong>de</strong> niñosproce<strong>de</strong>ntes <strong>de</strong> zonas marginales <strong>de</strong> la Ciudad <strong>de</strong>Guatemala (Guatemala), con eda<strong>de</strong>s comprendidasentre los 0 y los 5 años, fueron seleccionadas porhaber <strong>de</strong>tectado en ellas formas parasitarias correspondientesa G. duo<strong>de</strong>nalis. Dicho análisis se llevóa cabo en el Laboratorio Multidisciplinario <strong>de</strong> laFacultad <strong>de</strong> Ciencias Médicas <strong>de</strong> la Universidad <strong>de</strong>San Carlos <strong>de</strong> Guatemala (Guatemala), en el mes <strong>de</strong>julio <strong>de</strong>l año 2007, mediante observación microscópicaa partir <strong>de</strong> concentración con formalina-acetato<strong>de</strong> etilo. Alícuotas <strong>de</strong> las muestras fecales sinconservantes se enviaron, manteniéndolas a 4ºC, alLaboratorio <strong>de</strong> Parasitología <strong>de</strong>l Departamento <strong>de</strong>Microbiología, Medicina Preventiva y Salud Pública<strong>de</strong> la Facultad <strong>de</strong> Medicina <strong>de</strong> la Universidad <strong>de</strong>Zaragoza (España), don<strong>de</strong> se llevó a cabo el genotipado.El ADN se extrajo a partir <strong>de</strong> las muestras <strong>de</strong>heces por el método <strong>de</strong> Boom et al, 1990. Un fragmento<strong>de</strong>l gen tpi se amplificó por PCR, utilizandolos cebadores y condiciones <strong>de</strong>scritos por Amar etal, 2002. La diferenciación <strong>de</strong> los subgenotipos AIy AII se realizó mediante RFLP con la enzima <strong>de</strong>restricción RsaI <strong>de</strong> los amplicones <strong>de</strong>l genotipo A(Amar et al, 2002).RESULTADOS Y DISCUSIÓNTodas las muestras estudiadas correspon<strong>de</strong>n apacientes <strong>de</strong>l ámbito urbano, pertenecientes a familiasque viven en zonas satélites <strong>de</strong> la capital <strong>de</strong>Guatemala, cuyo nivel socioeconómico se pue<strong>de</strong>clasificar como medio/bajo, con disponibilidad <strong>de</strong>alcantarillado y <strong>de</strong> agua <strong>de</strong> red, no necesariamentepotable.Veintiocho (63,6%) <strong>de</strong> las 44 muestras estudiadascontenían G. duo<strong>de</strong>nalis genotipo B, 9 (20,5%)contenían G. duo<strong>de</strong>nalis genotipo AII, y las 7 restantes(15,9%) presentaron ambos genotipos, AII yB. El método utilizado no permite la <strong>de</strong>tección <strong>de</strong>otros genotipos <strong>de</strong> Giardia que podrían encontrarsepresentes, por lo que no po<strong>de</strong>mos asegurar su ausencia.Estos resultados son similares a los obtenidosen otros países <strong>de</strong> América Latina. Así, el genotipoB aparece como predominante en estudios realizadosen León, Nicaragua (76%) (Lebbad et al, 2008)y en Argentina (93%) (Minvielle et al, 2008), y elresto <strong>de</strong> las muestras pertenecen al genotipo AII.Por el contrario, Pérez Cordón et al, (2008) reportaron,en un estudio realizado en Perú, predominio<strong>de</strong>l genotipo AI, seguido por el genotipo BIV y luegopor el AII, resultados similares a los referidospor Cedillo-Rivero et al, (2003), en México, don<strong>de</strong>28Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 25-28


GENOTIPOS DE GIARDIA DUODENALIS EN NIÑOS DE GUATEMALAexistía un mayor porcentaje <strong>de</strong> muestras con genotipoA. El predominio <strong>de</strong>l genotipo B frente al A enlas infecciones humanas <strong>de</strong> Giardia no es algo exclusivo<strong>de</strong> las zonas mencionadas sino también <strong>de</strong>otros países, como Noruega, en los que la giardiosisno se consi<strong>de</strong>ra una enfermedad endémica, pero enlos que se han publicado brotes <strong>de</strong>bidos al genotipoB (Robertson et al, 2006) y recientemente en Españase ha <strong>de</strong>scrito también la prevalencia <strong>de</strong>l genotipoB sobre el A (Goñi et al, 2010). En este trabajo,Giardia genotipo B alcanza el 80%. No se conocenlas razones por las que los genotipos aparecen geográficamentelocalizados, sin embargo, si que pareceque el genotipo B presenta una mayor capacidad<strong>de</strong> diseminación, que pue<strong>de</strong> ser <strong>de</strong>bida a una mejoradaptación al medio. Por otra parte, el genotipo Bse ha <strong>de</strong>scrito asociado a infección asintomática enalgunos lugares (Sahagún et al, 2008), aspecto esteque facilitaría su mayor prevalencia, por la presencia<strong>de</strong> un importante reservorio <strong>de</strong> pacientes sanos.Por el contrario, el tratamiento <strong>de</strong> las infeccionesproducidas por el genotipo AII, asociado con sintomatología,haría que este genotipo, <strong>de</strong> transmisiónantroponótica disminuya su presencia. En este trabajono hemos podido comprobar una asociaciónentre sintomatología y genotipo <strong>de</strong> Giardia por nodisponer <strong>de</strong> datos respecto a la posible presencia<strong>de</strong> otros patógenos que pudieran causar los mismossíntomas.Es interesante señalar, que ninguno <strong>de</strong> estosestudios realizados en Centro y Sur <strong>de</strong> América<strong>de</strong>scribe la presencia <strong>de</strong> muestras con variosgenotipos. En este estudio, se ha <strong>de</strong>tectado una altaproporción <strong>de</strong> la combinación <strong>de</strong> genotipos AII+B(16%), aunque menor a la <strong>de</strong>tectada en otras zonasgeográficas en pacientes <strong>de</strong> la misma edad (Goñi etal, 2010).Esta infección pue<strong>de</strong> tener su explicación en lavía <strong>de</strong> transmisión, pudiendo pensar en una fuente<strong>de</strong> infección <strong>de</strong> origen medioambiental como lamás lógica. Una vez adquirida esta infección, latransmisión <strong>de</strong> persona a persona pue<strong>de</strong> incluir auno <strong>de</strong> los genotipos o a ambos. No existen, sinembargo, datos que confirmen esta posibilidad.Por ello, serán necesarios más estudios para po<strong>de</strong>rprofundizar en el origen <strong>de</strong> estas infecciones.Este trabajo <strong>de</strong> genotipificación <strong>de</strong> Giardia,que se llevó a cabo en Guatemala, sienta las basespara posteriores estudios que permitan <strong>de</strong>finir suevolución y ayu<strong>de</strong>n en el control <strong>de</strong> la giardiosis.REFERENCIAS1. ADAM R. 2001. Biology of Giardia lamblia. ClinMicrobiol Rev 14: 447-475.2. AMAR CFL, DEAR PH, PEDRAZA-DÍAZ S,LOOKER N, LINNANE E, MCLAUCHLIN J. 2002.Sensitive PCR-restriction fragment length polymorphismassay for <strong>de</strong>tection and genotyping of Giardiaduo<strong>de</strong>nalis in human feces. J Clin Microbiol 40: 446-452.3. ANDERSON TJ, ZIZZA CA, LECHE GM, SCOTTME, SOLOMONS NW. 1993. The distribution ofintestinal helminth infection in a rural village inGuatemala. Memorias do Instituto Oswaldo Cruz 88:53-65.4. BOOM R, SOL CJA, SALIMANS MMM, JANSENCL, WERTHEIM-VANDILLEN PME, VAN DER NO-ORDAA J. 1990. Rapid and Simple Method for Purificationof Nucleic Acids J Clin Microbiol 28: 495-503.5. BOTERO-GARCÉS JH, GARCÍA-MONTOYA GM,GRISALES-PATIÑO D, AGUIRRE-ACEVEDO DC,ALVAREZ-URIBE MC. 2009. Giardia intestinalis andnutritional status in children participating in the complementarynutrition program, Antioquia, Colombia,May to October 2006. Rev Inst Med Trop Sao Paulo51: 155-162.6. CACCIÒ SM, SPRONG H. 2010. Giardia duo<strong>de</strong>nalis:genetic recombination and its implications for taxonomyand molecular epi<strong>de</strong>miology. Exp Parasitol 124:107-112.7. CEDILLO-RIVERA R, DARBY J, ENCISO-MO-RENO J, ORTEGA-PIERRES G, EY PETER. 2003.Genetic homogeneity of axenic isolates of Giardiaintestinalis <strong>de</strong>rived fom acute and chronically infectedindividuals in Mexico. Parasitol Res 90: 119-123.8. ELIGIO-GARCÍA L, CORTES-CAMPOS A, JIMÉ-NEZ-CARDOSO E. 2005. Genotype of Giardia intestinalisisolates from children and dogs and its relationshipto host origin. Parasitol Res 97: 1-6.9. FARTHING M, MATA L, URRUTIA J, KRONMALR. 1986. Natural History of Giardia infection of infantsand children in rural Guatemala and its impact on physicalgrowth. The American Journal of Clinical Nutrition43: 395-405.10. FENG Y, XIAO L. 2011. Zoonotic potential and molecularepi<strong>de</strong>miology of Giardia species and giardiasis.Clin Microbiol Rev 24: 110-140.11. FORONDA P, BARGUES MD, ABREU-ACOSTAN, PERIAGO MV, VALERO MA, VALLADARESB, MAS-COMA S. 2008. I<strong>de</strong>ntification of Genotypesof Giardia intestinales of human isolates in Egypt.Parasitol Res 103: 1177-1181.12. GAMBOA MI, BASUALDO JA, KOZUBSKY L,COSTAS E, CUETO RUA E, LAHITTE HB. 1998.Prevalence of intestinal parasitosis within three populationgroups in La Plata, Argentina. Eur J Epi<strong>de</strong>miol 14:55-61.13. GELANEW T, LALLE M, HAILU A, POZIO E, CAC-CIÒ SM. 2007. Molecular characterization of humanisolates of Giardia duo<strong>de</strong>nalis from Ethiopia. ActaTrop 102: 92-99.14. GOÑI P, ALDANA DE, CLAVEL A, SERAL C, RE-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 25-2829


A. CLAVEL et al.MACHA MA, CASTILLO FJ. 2010. Prevalence ofGiardia duo<strong>de</strong>nalis assemblage B in humans in Zaragozaand León, Spain. Enferm Infecc Microbiol Clin28: 710-712.15. GUPTA M, URRUTIA J. 1982. Effect of periodicantiascaris and antigiardia treatment on nutritionalstatus of preschool children. The American Journal ofClinical Nutrition 36: 79-86.16. JENSEN L, MARLIN J, DYCK D, LAUBACH H.2009. Effect of tourism and tra<strong>de</strong> on intestinal parasiticinfections in Guatemala. J Community Health 34: 98-101.17. LEBBAD M, ANKARKLEV J, TELLEZ A, LEIVAB, ANDERSSON JO, SVÄRD S. 2008. Dominance ofGiardia assemblage B in León, Nicaragua. Acta Tropica106: 44-53.18. MINVIELLE MC, MOLINA N, POLVERINO D, BA-SUALDO J. 2008. First genotyping of Giardia lambliafrom human and animal feces in Argentina, SouthAmérica. Mem Inst Oswaldo Cruz, Río <strong>de</strong> Janeiro 103:98-103.19. MINVIELLE MC, PEZZANI BC, CORDOBA MA,DE LUCA MM, APEZTEGUIA MC, BASUALDOJA. 2004. Epi<strong>de</strong>miological survey of Giardia spp.and Blastocystis hominis in an Argentinian ruralcommunity. Korean J Parasitol 42: 121-127.20. MONIS PT, ANDREWS RH, MAYRHOFER G, EYPL. 2003. Genetic diversity within the morphologicalspecies Giardia intestinalis and its relationship to hostorigin. Infect Genet Evol 3: 29-38.21. MONIS PT, CACCIÓ SM, THOMPSON RCA. 2009.Variation in Giardia: towards a taxonomic revision ofthe genus. Trends in Parasitol 25: 93-100.22. PÉREZ-CORDÓN G, CORDOVA O, VARGAS E, VE-LASCO R, SEMPERE L, SÁNCHEZ M, ROSALESMJ. 2008. Prevalence of enteroparasites and genotypingof Giardia lamblia in Peruvian children. ParasitolRes 103: 459-465.23. ROBERTSON LJ, HERMANSEN L, GJERDE BK,STRAND E, ALVSVAG JO, LANGELAND N. 2006.Application and genotyping during an extensive outbreakof waterborn giardiasis in Bergen, Norway, duringautumn and winter 2004. Appl Environ Microbiol72: 2212-2217.24. SAHAGÚN J, CLAVEL A, GOÑI P, SERAL C, LLO-RENTE MT, CASTILLO FJ, CAPILLA S, ARIAS A,GÓMEZ-LUS R. 2008. Correlation between the presenceof symptoms and the Giardia duo<strong>de</strong>nalis genotype.Eur J Clin Microbiol Infect Dis 27: 82-83.25. THOMPSON RC 2000. Giardiasis as a re-emerginginfectious disease and its zoonotic potential Int JParasitol 30: 1259-1267.26. TRAUB RJ, INPANKAEW T, REID SA, SUTTHIKOR-NCHAI C, SUKTHANA Y, ROBERTSON ID, THMP-SON RC. 2009. Transmission cycles of Giardia duo<strong>de</strong>nalisin dog and humans in temple communities inBangkok-a critical evaluation of its prevalence usingthree diagnostic test in the field in absence of a goldstandard. Acta Trop 111: 125-132.Agra<strong>de</strong>cimientos: Este trabajo fue financiado por el proyectoFIS PI 09/1585 (Instituto Aragonés <strong>de</strong> Ciencias <strong>de</strong> laSalud). E. Aldana recibió una beca <strong>de</strong> la Fundación Carolinay <strong>de</strong> la Universidad San Carlos <strong>de</strong> Guatemala. Agra<strong>de</strong>cemosa Operon SA (Zaragoza, España), su colaboración en la importación<strong>de</strong> las muestras.30Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 25-28


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-34Risk factors and prevalence of IgG antibodies toToxoplasma gondii in domestic cats. La Matanza,Buenos Aires, ArgentinaLÓPEZ, C. 1 , DAPRATO B. 1 , ZAMPOLINI S. 2 , MAZZEO C. 2 , CARDILLO N. 1 , SOMMERFELT I. 11Facultad <strong>de</strong> Ciencias Veterinarias-Universidad <strong>de</strong> Buenos Aires.2Centro <strong>de</strong> Zooantroponosis <strong>de</strong> La Matanza, Provincia <strong>de</strong> Buenos Aires.ABSTRACTThe objective of this study was to estimate the prevalence of IgG antibodies anti Toxoplasma gondiiand i<strong>de</strong>ntify the risk factors present in a population of healthy cats. Blood samples were obtained fromcats that arrived at Surgery for neutering. Detection of IgG antibodies was carried out using indirectimmunofluorescence (IFAT) starting with a 1/25 dilution and successive dilutions in media until theendpoint. An epi<strong>de</strong>miological survey was carried out, obtaining information on age, gen<strong>de</strong>r, origin (catsfrom households with a responsible owner or stray cats) and the habits of the animals (where they <strong>de</strong>fecated,raw meat consumption, hunting habits, whether or not they stayed in the household and coexistence withother animals). A total of 513 cat blood samples were collected, obtaining a seroprevalence of 22.6% (IC0.18 - 0.26). Significant statistical association was found for the variable age (p = 0.003), with the habit ofwan<strong>de</strong>ring outsi<strong>de</strong> of the home (p = 0.0007) and the habit of hunting (p = 0.004). Of the animals sampled,77.4% were negative, with potential to become infected and shed oocysts into the environment. Theyrepresent a potential source of infection, especially for pregnant women and for inmunosuppressed people.Key words: Toxoplasma gondii; cats; seroprevalence; indirect inmunofluorescence antibody test.RESUMENEl objetivo fue estimar la prevalencia <strong>de</strong> IgG anti Toxoplasma gondii e i<strong>de</strong>ntificar los factores <strong>de</strong> riesgopresentes, en una población <strong>de</strong> felinos sanos. Las muestras <strong>de</strong> sangre se obtuvieron <strong>de</strong> felinos que ingresaronal Servicio <strong>de</strong> Cirugía para la esterilización quirúrgica. La <strong>de</strong>tección <strong>de</strong> anticuerpos IgG se realizó a través <strong>de</strong>la técnica <strong>de</strong> inmunofluorescencia indirecta (IFI) a partir <strong>de</strong> una dilución 1/25 y con diluciones sucesivas almedio hasta punto final. Se realizó una encuesta epi<strong>de</strong>miológica recolectándose datos <strong>de</strong> edad, sexo, origen(provenientes <strong>de</strong> una vivienda con tenedor responsable o recogidos <strong>de</strong> la vía pública) y hábitos <strong>de</strong>l animalRecibido: 9 <strong>de</strong> Febrero 2011. Aprobado: 15 <strong>de</strong> Mayo 2011.Correspon<strong>de</strong>ncia: Clara M. López. Área Salud Pública. Facultad <strong>de</strong> Ciencias Veterinarias-Universidad <strong>de</strong> BuenosAires. Chorroarín 280-(1427) Ciudad Autónoma <strong>de</strong> Buenos Aires-Argentina.Tel: +54 11 45248453E-mail: claramlopez@yahoo.com.ar31


C. LÓPEZ et al.(lugares <strong>de</strong> <strong>de</strong>fecación, consumo <strong>de</strong> carne cruda, predación, permanencia en la vivienda y convivencia conotros animales). Se recolectaron 513 muestras <strong>de</strong> sangre <strong>de</strong> felinos, obteniéndose una seroprevalencia <strong>de</strong>22,6% (IC 0,18 - 0,26). Se encontró asociación estadística significativa con la variable edad (p = 0,003),con el hábito <strong>de</strong> <strong>de</strong>ambular fuera <strong>de</strong> la vivienda (p = 0,0007) y el hábito <strong>de</strong> cazar (p = 0,004). El 77,4% <strong>de</strong>los animales muestreados fueron negativos, con capacidad potencial <strong>de</strong> infectarse y eliminar ooquistes almedio, representando una potencial fuente <strong>de</strong> infección particularmente para las mujeres embarazadas opersonas inmunocomprometidas.Palabras clave: Toxoplasma gondii, gatos, seroprevalencia, inmunofluorescencia indirecta.INTRODUCTIONToxoplasmosis is a zoonosis caused by parasitesthat is acknowledged worldwi<strong>de</strong>. In Argentina, it isestimated that the prevalence of serum antibodiesagainst the Toxoplasma gondii parasite in pregnantwomen varies between 21.5 and 60% (Schinchiriminiand Oller, 2007; Durlach et al, 2008). Thesedifferences would be attributed to the eating habits,to the different socioeconomic strata or environmentalcharacteristics. (Afonso et al, 2008; GilotFromont et al, 2009).In domestic and wild felines, <strong>de</strong>finitive hosts,both the intestinal (sexual) stage of the cycle andthe extra-intestinal (asexual) stage are carried out.In other warm bloo<strong>de</strong>d animals and in man onlythe extra-intestinal stage occurs (Acha and Szyfres,2003). Cats are the only hosts that excrete resistantoocysts into the environment with their faeces(Jones and Dubey, 2010), thus representing animportant source of infection.The probability of transmission of the parasiteto man is related to the presence of oocysts in theenvironment (environmental contamination) andwith the possibility of their coming into contactwith the human population (Afonso et al, 2008).Oocysts are rarely found in the faeces of animalswith parasitic infection (Dabritz et al., 2007;Schares et al, 2008; Jones and Dubey, 2010). Indirectinmunofluorescence (IFAT) is recommen<strong>de</strong>das serological assay (Ovalle et al, 2000) to recognizeif a cat is seronegative because of not havinghad contact with the parasite; or seropositive becauseof currently eliminating the agent or havingeliminated oocysts in the past (Elmore et al, 2010).I<strong>de</strong>ntifying seropositive animals would helpevaluation of environmental contamination in agiven geographical area (Lopes et al, 2008; Lucaset al, 1999; Dos Santoa et al, 2010). Negativeanimals that have not had contact with the agent,form the susceptible population and are capable ofgetting infected and of eliminating the agent intothe environment. In this way they represent a riskfor the human population that comes into contactwith them (Haddadza<strong>de</strong>h et al, 2006).The objective of this study was to estimate theprevalence of IgG antibodies anti T: gondii and toi<strong>de</strong>ntify the risk factors present in a population ofhealthy cats.MATERIALS AND METHODSBlood samples were obtained from clinicallyhealthy cats that arrived for surgical neutering byjugular vein puncture, at the Zoonosis Centre of theLa Matanza, Province of Buenos Aires, Argentina,from December 2007 to December 2008.The people responsible for the animal receivedinformation concerning the characteristics of thedisease and their consent was requested for bloodsampling. Those that accepted to participate completedan epi<strong>de</strong>miological survey consisting ofthe following data: age, gen<strong>de</strong>r, origin (householdcats or stray cats), habits of the animal (where they<strong>de</strong>fecated, raw meat consumption, hunting habits,whether or not they stayed in the household and coexistencewith other animals).Samples were processed immediately after collection,obtaining the serum after centrifugation,followed by storage at -20º C. IgG antibodies were<strong>de</strong>tected by indirect immunofluorescence (IFAT),starting with a 1/25 dilution, followed by successivedilutions until the endpoint. Sli<strong>de</strong>s with Toxoplasmagondii tachyzoites were provi<strong>de</strong>d by theNational Administration of Health Institutes and32Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-34


TOXOPLASMA GONDII IN DOMESTIC CATS. BS AIRES, ARGENTINALaboratories “Dr. Carlos G. Malbrán”. The anti-Cat IgG-FICT, produced in goat (Sigma) was usedin a dilution of 1/100. The presence or absence offluorescence was observed using a fluorescencemicroscope (Zeiss). Control serum for the IFATstandarization was supplied by ImmunoparasitologyLaboratory (National University of La Plata,Argentina).To process the information and carry out statisticalanalysis, a data base was ma<strong>de</strong> using theEPIINFO 3.5.1 programme (2008). Either the Chisquared test (c 2 ) or the Fisher’s exact test wereused to compare seroprevalence in relation to thesurveyed factors. A p value ≤ 0.05 was consi<strong>de</strong>redsignificant.RESULTSThe administrative area of La Matanza is thelargest municipality of the Province of BuenosAires (Argentina), having a total area of 325.71km 2 and approximately 1.250.000 inhabitants. Thesocioeconomic level is medium to medium-low(INDEC, 2001), with an estimated ratio of humanbeing/cat of 1/15 (Fernán<strong>de</strong>z et al, 1995).It is a municipality where the environmentalconditions inclu<strong>de</strong> humid areas with streams and theriver Matanza-Riachuelo. The climate is template,with an average temperature of 13 to 18° C, withregular rains (70 annual millimeters) (Municipalityof La Matanza, 2009).A total of 513 cat blood samples were collected,obtaining a seroprevalence of 22.6% (IC 0.18-0.26). Of the animals sampled, 87% (n = 446)came from households with responsible ownersand 13% were collected from the public places(by protectionists from an ONG) with the aim ofgiving them away in adoption or taking them to arefuge. A statistically significant association wasfound between the origin of the animal (householdor public places) and a seropositive result (21%and 34.3% respectively) (c 2 = 6.35; p = 0.011).The proportion of seropositive individuals wassignificantly higher in animals found on the publicplaces (z = 2.38, p = 0.008, IC 95%: 0.01-0.26).Distribution according to gen<strong>de</strong>r and age showedthat 40.7% of the population that requiredsurgical neutering was un<strong>de</strong>r 1 year old and 82.3%were female.Specific prevalence by age and gen<strong>de</strong>r ispresented in Table 1.The variable age was categorized as un<strong>de</strong>r andover 1 year old, and the 19 animals of unknownage were separated. A statistically significantassociation was found (c 2 = 13.87, p = 0.003),with the proportion of seropositive animals beingsignificantly greater in the over 1 year old age groupwhen compared to those un<strong>de</strong>r 1 year old (z = 3.70,p = 0.001; IC95%: 0.069-0.209). No associationwas found between seroprevalence and gen<strong>de</strong>r (p >0.05).Analysis of the habits of the animals was carriedout using the information of the animals withowners (n = 446). The results according to the differentvariables studied are presented in Figure 1.Cats were classified according to whether theyused a specific place to <strong>de</strong>fecate or not. Cat traylitter, earth or sand was used by 83%. No significantassociation was found between the place used to<strong>de</strong>fecate and seroprevalence (p > 0.05).The variable of raw meat consumption wasclassified as either consumption or non consumption.Raw meat was consumed by 54.2% of the cats, andno statistically significant association was foundwith seroprevalence (p > 0.05).With regard to the habit of hunting (present orabsent), 43% respon<strong>de</strong>d that their animals hunted,AgeTable 1. IgG antibody prevalence in the feline population according to age and gen<strong>de</strong>r.La Matanza, Bs. As. (2008)Females(n)Prevalence(%)Males(n)Prevalence(%)Total(n)Prevalence(%)< 1 year 175 14,8 34 11,8 209 14,3>1 year 230 28,3 55 38,2 285 28,4Without data 17 29,4 2 0 19 26,3Total 422 21,6 91 27,5 513 22,6Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-3433


C. LÓPEZ et al.Figure 1. IgG antibody prevalence in the cat populationaccording to habits of <strong>de</strong>fecation, raw meat consumption,hunting, permanence within the household and coexistencewith other animals. La Matanza, Bs. As. (2008).Figure 2. Percentage of IgG antibody titres in the catpopulation with responsible owners according to agegroup. La Matanza, Bs. As. (2008).and a statistical association was found (p= 0.004).Seroprevalence was significantly higher in cats thathabitually hunted (z = 2.82, p = 0.002, IC 95%:0.03-0.18).A 32% manifested that their cats remained allthe time within their home, while the remainingowners allowed their cat’s access to the outsi<strong>de</strong>.The difference in seroprevalence was significant(p = 0.0007), with the probability of being positivegreater in the group that was free to roam outsi<strong>de</strong>the dwelling (z = 3.23, p 0.0006, IC 95%: 0.06-0.21).A 90% of the cats coexisted with other animals(cats or dogs) and no significant association wasfound with seroprevalence (p > 0.05).Of the total of positive samples (n = 116) 76%correspon<strong>de</strong>d to cats belonging to homes.A 39% presented titres that were lower than1/100, 51% were between 1/200 and 1/800 and10% were equal to or greater than 1/1600. Thepercentages of titres found by age group arepresented in Figure 2.Differences can be found in the titres un<strong>de</strong>r1/100, where the proportion of animals un<strong>de</strong>r 1year old was significantly greater than those over1 year old (z = 2.47, p = 0.006, IC95% 0.05-0.54).Titres over 1/200 did not show differences withregard to age group.DISCUSSIONVarious authors have studied seroprevalence incats, observing variable results which have beenattributed to the different characteristics of thepopulations un<strong>de</strong>r study, the geographical area andthe laboratory methods used (García-Marquez et al,2007).Using indirect immunofluorescence, reportedseroprevalences have varied between 17.7% (Lucaset al, 1999) and 36% (Moro et al, 2004; Haddadza<strong>de</strong>het al, 2006; De Craeye et al, 2008;) inhousehold cats and 36.9% (Moro et al, 2004) to90% (Haddadza<strong>de</strong>h et al, 2006) in stray animals.The IgG antibody prevalence’s found in this study(20.8% for animals with a responsible owner and34.3% for cats collected on the public places) aresimilar to those reported in the references. Previousstudies in Argentina reported a 25% seroprevalenceusing the same technique, but without specifyingif the animals were strays or not (Venturini et al,1995); and a 19.5% using indirect hemoagglutinationin animals with owners (Fernan<strong>de</strong>z et al,1995). In this study 22.6% global seroprevalencewas observed, showing that these values have notchanged over the years in the cat population, <strong>de</strong>spitethe health strategies implemented in the lastten years.The variable gen<strong>de</strong>r did not show a significantassociation with seroprevalence, similar to that reportedby other authors (Lucas et al, 1999; Haddadza<strong>de</strong>het al, 2006; Lopes et al, 2008). Antibodyprevalence in animals over a year old was significantlygreater (28.4%) compared to those un<strong>de</strong>r ayear old (14.3%), coinciding with that reported inother studies (Moro et al, 2004; Lopes et al, 2008)and being attributed to the higher probability of exposurethroughout their lifetime.34Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-34


TOXOPLASMA GONDII IN DOMESTIC CATS. BS AIRES, ARGENTINANo significant differences were found with regardto <strong>de</strong>fecation habits. A 17% of the cats studieddid not use a specific place to <strong>de</strong>fecate, a potentiallyrisky situation for humans that share the environmentwith them. Soil contamination <strong>de</strong>pendson the concentration of the infected faeces and thesurvival and spreading of the oocysts, which in turnis regulated by the local environment conditions(Afonso et al, 2008).Approximately half the population un<strong>de</strong>r studyconsumed raw meat; nevertheless this fact did notshow a significant association with seroprevalence.Some authors have found differences when comparingraw meat consumption with consumption ofconcentrates (Lucas et al, 1999; Lopes et al., 2008).The findings in our study could be attributed to thefact that the cat population belonging to low socioeconomiclevels is frequently fed homema<strong>de</strong> food,and the way it is prepared and/or preserved couldinfluence the inci<strong>de</strong>nce of infection (Jones andDubey, 2010; Lucas et al, 1999; García-Marquez etal, 2007).The access to the outsi<strong>de</strong> and the habit of huntingboth showed significant association with theprevalence of antibodies, coinciding with resultsobtained by other authors (Lucas et al, 1999; Moroet al, 2004; Lopes et al, 2008). Free roaming offersa greater possibility of consuming oocysts presentin the environment or in infected intermediaryhosts (Dubey and Jones, 2008).Finding low titres in animals un<strong>de</strong>r a year oldcoinci<strong>de</strong>s with that reported in other studies (Lucaset al, 1999) and is attributed to the shorter time ofexposure.Knowing the prevalence of circulating antibodiesallows i<strong>de</strong>ntification of animals that have beenin contact with the parasite (Elmore et al, 2010),and this is consi<strong>de</strong>red of greater epi<strong>de</strong>miologicalsignificance than searching for oocysts in faeces(Dubey and Jones, 2008). It is estimated that a millionoocysts are eliminated per naturally infectedcat at the initial infection stage (Dabritz et al, 2007;Dubey, 2009). A 77.4% of the animals sampledwere negative, having the potential capacity to becomeinfected and eliminate oocysts to the environment(Ovalle et al, 2000), suggesting the need toperiodically control this group as it represents a potentialsource of infection, particularly for pregnantwomen or for immunosuppressed people.The area un<strong>de</strong>r study possesses the climaticconditions (temperature and humidity) that favourthe survival of the oocysts (Dumetre and Dar<strong>de</strong>,2003; Afonso et al, 2006; Elmore et al, 2010; Jonesand Dubey, 2010). This would allow one to consi<strong>de</strong>rthat an important environment contaminationexists and that this would increase the risk to thehuman population that shares that physical spaceand therefore common sources of exposure (Afonsoet al, 2008; Gilot Fromont et al. 2009).Research carried out in Argentina in pregnantwomen show seroprevalences that vary between20.6% (Schinchirimini and Oller, 2007) and 51.7%(Durlach et al, 2008) <strong>de</strong>pending on the eating habits,socioeconomic level, environment conditionsand the presence of a <strong>de</strong>finitive host. This scenariomakes it necessary to pay attention to the behaviourpatterns of the human population and i<strong>de</strong>ntify theexisting environmental conditions in or<strong>de</strong>r to recommendinstructive and educational activities to<strong>de</strong>crease the risk of infection in man.REFERENCES1. ACHA P, SZYFRES B. (2003) Zoonosis y enfermeda<strong>de</strong>stransmisibles comunes al hombre y a los animales.Vol. N°1, Nº3, 53-98. 3° Edición OrganizaciónPanamericana <strong>de</strong> la Salud.2. AFONSO E, LEMOINE M, POULLE ML, RAVATMC, ROMAND S, THULLIEZ P, VILLENA I,AUBERT D, RABILLOUD M, RICHE B, GILOTFROMONT E. (2008). Spatial distribution of soilcontamination by Toxoplasma gondii in relation to cat<strong>de</strong>fecation behaviour in an urban area. Int J Parasitol,38: 1017-1023.3. AFONSO E, THULLIEZ P, GILOT-FROMONTE. (2006) Transmission of Toxoplasma gondii in anurban population of domestic cats (Felis catus). Int. J.Parasitol 36: 1373-1382.4. DABRITZ H, MILLER M, ATWILL R, GARDNERI, LEUTENEGGER C, MELLI A, CONRAD P.(2007). Detection of Toxoplasma gondii- like oocystsin cat feces and estimates of the environmental oocystbur<strong>de</strong>n. JAVMA, 231: (11), 1676-1684.5. DABRITZ H, MILLER M, GARDNER I, PACKHAMA, ATWILL R, CONRAD P. (2008) Risk factors forToxoplasma gondii infection in wild ro<strong>de</strong>nts fromcentral coastal California and a review of T gondiiprevalence in ro<strong>de</strong>nts. J Parasitol 94 (3): 675-683.6. DE CRAEYE S, FRANCART A, CHABAUTY J, DEVRIENDT V, VAN GUCHT S, LEROUX I, JONGERTE. (2008). Prevalence of Toxoplasma gondii infectionin Belgian house cats. Vet. Parasitol 157: 128-132.7. DOS SANTOS T, NUNES C, RUI LUVIZOTTOM, MOURA A, ZANETTI LOPES W, COSTA A,BRESCIANI K. (2010) Detection of Toxoplasma gondiiRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-3435


C. LÓPEZ et aloocysts in environmental samples from public schools.Vet Parasitol, doi: 10.1016/J.vetpar 2010.02.045.8. DUBEY J. (2009). History of the discovery of the lifecycle of Toxoplasma gondii. Int. J. Parasitol, 39: 877-882.9. DUBEY J, JONES J. (2008) Toxoplasma gondiiinfection in humans and animals in the United States.International Journal for Parasitology, 38: 1257-1278.10. DUMETRE A, DARDE ML. (2003). How to <strong>de</strong>tectToxoplasma gondii oocysts in environmental samples?FEMS Microbiol Rev, 27: 651-661.11. DURLACH R, KAUFER F, CARRAL L, FREULERC, CERIOTTO M, RODRÍGUEZ M, et al. (2008).Consenso argentino <strong>de</strong> toxoplasmosis congénita. RevistaArgentina <strong>de</strong> Zoonosis y Enfermeda<strong>de</strong>s InfecciosasEmergentes. 5: (4), 109-123.12. ELMORE S, JONES J, CONRAD P, PATTON S,LINDSAY D, DUBEY J. (2010) Toxoplasma gondii:epi<strong>de</strong>miology, feline clinical aspects, and prevention.Trends in Parasitology. 26: (Issue 4), 190-196.13. FERNÁNDEZ F, OUVIÑA G, CLOT E, FERNANDESGUIDO R, CODONI C. (1995). Prevalence ofToxoplasma gondii antibodies in cats in the westernpart of Great Buenos Aires, Argentina, 1993. Vet.Parasitol 59: 75-79.14. GARCÍA-MARQUEZ L, GUTIÉRREZ-DÍAZ M,CORREA D, LUNA-PASTEN H, PALMA J. (2007).Prevalence of Toxoplasma gondii antibodies and therelation to risk factors in cats of Colima, Mexico. JParasitol. 93 (6): 1527-1528.15. GILOT FROMONT E, RICHE B, RABILLOUD M.(2009). Toxoplasma seroprevalence in a rural populationin France: <strong>de</strong>tection of a household effect. BMCInfectious Diseases. vol 9: 76. http://www.biomedcentral.com/1471-2334/9/76.16. Instituto Nacional <strong>de</strong> Estadísticas y Censos. (INDEC).http://www.in<strong>de</strong>c.gov.ar17. HADDADZADEH H, KHAZRAIINIA P, ASLANIM, REZAEIAN M, JAMSHIDI S, TAHERI M,BAHONAR A. (2006). Seroprevalence of Toxoplasmagondii infection in stray and household cats in Teheran.Vet Parasitol 138: 211-216.18. JONES J, DUBEY J. (2010). Waterborne toxoplasmosis- Recent <strong>de</strong>velopments. Exp Parasitol. 124: 10-25.19. LOPES A, CARDOSO L, RODRIGUES M. (2008).Serological survey of Toxoplasma gondii infection indomestic cats from northeastern Portugal. Vet Parasitol155: 184-189.20. LUCAS S, HAGIWARA M, SOUZA LOUREIRO V,IKESAKI J, BIRGEL E. (1999). Toxoplasma gondiiinfection in Brazilian domestic outpatient cats. Ver.Inst. Med. Trop. S. Paulo 41. (4): Julio-Agosto.21. MORO G, MONTOYA A, JIMENEZ S, FRISUELOSC, MATEO M, FUENTES I. (2004) Prevalence of antibodiesto Toxoplasma gondii and intestinal parasites instray, farm and household cats in Spain. Vet Parasitol126: 249-255.22. Municipalidad <strong>de</strong> La Matanza. Buenos Aires. (http://www.lamatanza.gov.ar)23. OVALLE F, GARCÍA A, THIBAUTH J, LORCA M.(2000). Frecuencia <strong>de</strong> anticuerpos anti Toxoplasmagondii en gatos <strong>de</strong> la ciudad <strong>de</strong> Valdivia, Chile. BolChile Parasitol 55: (3-4). Julio.24. SCHARES G, GLOBOKAR VRHOVEC M, PANT-CHEV N, HERRMANN D, CONRATHS F. (2008).Occurrence of Toxoplasma gondii and Hammondiahammondi oocysts in the faeces of cats from Germanyand other European countries. Vet Parasitol 152: 34-45.25. SCHINCHIRIMINI M, OLLER E. (2007). Seroprevalencia<strong>de</strong> Toxoplasmosis en mujeres embarazadasatendidas en el Hospital Provincial Neuquén y Centros<strong>de</strong> Salud. Rev Argentina <strong>de</strong> Zoonosis y Enfermeda<strong>de</strong>sInfecciosas Emergentes. 4 (3): 109-112.26. VENTURINI M, DI LORENZO C, CASTELLANOM, UNZAGA J, VENTURINI L. (1995). Detección <strong>de</strong>anticuerpos anti Toxoplasma gondii en gatos mediantelas pruebas <strong>de</strong> inmunofluorescencia y <strong>de</strong> aglutinación<strong>de</strong> látex. Vet Arg 12 (111): 48-50.Acknowledgements: This study was supported by Universidad<strong>de</strong> Buenos Aires, Secretaría <strong>de</strong> Ciencia y Técnica (SubsidioV029).36Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 29-34


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-41Prevalencia <strong>de</strong> Blastocystis sp en niños yadolescentes <strong>de</strong> comunas periurbanas <strong>de</strong>la ciudad <strong>de</strong> Córdoba, ArgentinaDÍAZ CAJAL, M.A. 1 , VARENGO, H.T. 1 , MARINI, V. 1 y ORSILLES, M.A. 21Cátedra <strong>de</strong> Parasitología, Facultad <strong>de</strong> Ciencias Químicas, Universidad Católica <strong>de</strong> Córdoba, Argentina.2Área Investigación en Enfermeda<strong>de</strong>s Transmisibles y Emergentes, Facultad <strong>de</strong> Ciencias Químicas, UniversidadCatólica <strong>de</strong> Córdoba, Argentina.ABSTRACTPREVALENCE OF BLASTOCYSTIS SP IN CHILDREN AND ADOLESCENTS OFPERIURBAN COMMUNITIES OF CÓRDOBA CITY, ARGENTINAThe objective of the present study was to learn the distribution of Blastocystis sp in children andadolescents of periurban communities of Cordoba city, Argentina. 204 individuals aged 0-21 from thecommunes Los Cedros and Villa <strong>de</strong>l Prado were inclu<strong>de</strong>d. The socio-environmental characteristics wereevaluated by means of a survey, and the parasitological analysis was performed by means of a macroscopicand microscopic examination. The characteristics of the communes were: rural work and brick manufactureas a source of income for their inhabitants, lack of drinking water and <strong>de</strong>ficit of environmental sanitation.74% of individuals were infected with enteroparasites; 33% with one species and 41% with more thanone species. Blastocystis sp was found in 39% of cases and with a higher prevalence among poliparasitedchildren over 5 yr old. This microorganism was significantly associated to infection with Giardia lamblia,Entamoeba coli and Enterobius vermicularis in poliparasited individuals. These findings show a highprevalence of enteroparasites and Blastocystis sp as a main intestinal protozoan in preschool and schoolchildren in these periurban communes. These data could help to establish and consolidate epi<strong>de</strong>miologicalcontrol and vigilance programmes as well as to intensify the educational work carried out with the membersof these communes in or<strong>de</strong>r to avoid transmission, dissemination and persistence of parasitic infections.Key words: Intestinal parasites, Blastocystis sp, protozoan.RESUMENEl objetivo <strong>de</strong> este estudio fue conocer la distribución <strong>de</strong> Blastocystis sp en niños y adolescentes <strong>de</strong>Recibido: 13 <strong>de</strong> Abril 2011. Aprobado: 29 <strong>de</strong> Mayo 2011.Correspon<strong>de</strong>ncia: Orsilles, Miguel Ángel. Área Investigación en Enfermeda<strong>de</strong>s Transmisibles y Emergentes, Facultad<strong>de</strong> Ciencias Químicas, Universidad Católica <strong>de</strong> Córdoba. Avenida Armada Argentina 3555, (5016),Córdoba, Argentina.E-mail: cqhemato@uccor.edu.ar37


M. A. DÍAZ CAJAL et al.Comunas periurbanas <strong>de</strong> la ciudad <strong>de</strong> Córdoba, Argentina. Se incluyeron 204 individuos <strong>de</strong> 0 a 21 años <strong>de</strong>las Comunas Los Cedros y Villa <strong>de</strong>l Prado en quienes se evaluaron características socioambientales y serealizó análisis parasitológico (examen macroscópico y microscópico). Las Comunas se caracterizaron portrabajo rural y fabricación <strong>de</strong> ladrillos como fuente <strong>de</strong> ingresos <strong>de</strong> sus miembros, carencia <strong>de</strong> agua potable ydéficit <strong>de</strong> saneamiento ambiental. El 74 % <strong>de</strong> los individuos estuvo parasitado con una (33%) o más (41%)especies <strong>de</strong> enteroparásitos. Blastocystis sp estuvo presente en el 39% <strong>de</strong> los casos y con mayor prevalenciaen niños poliparasitados mayores <strong>de</strong> 5 años. Este microorganismo estuvo significativamente asociado ainfección por Giardia lamblia, Entamoeba coli y Enterobius vermicularis. Estos hallazgos evi<strong>de</strong>ncian unaelevada prevalencia <strong>de</strong> enteroparásitos y <strong>de</strong> Blastocystis sp como principal protozoo intestinal en individuos<strong>de</strong> edad pre-escolar y escolar <strong>de</strong> estas Comunas periurbanas. Estos datos podrían ayudar a establecer yconsolidar programas <strong>de</strong> control y vigilancia epi<strong>de</strong>miológica así como intensificar el trabajo educativo alos miembros <strong>de</strong> estas Comunas a fin <strong>de</strong> evitar la transmisión, diseminación y persistencia <strong>de</strong> infecciónparasitaria.Palabras clave: Parásitos intestinales, Blastocystis sp, protozoo.INTRODUCCIÓNLas enfermeda<strong>de</strong>s parasitarias intestinales constituyenun problema <strong>de</strong> salud pública en numerosospaíses. Aunque afectan a todos los grupos etarios,la población infantil es la más perjudicada <strong>de</strong>bidoa su inmadurez inmunológica y al poco <strong>de</strong>sarrollo<strong>de</strong> hábitos higiénicos. En la mayoría <strong>de</strong> estas infecciones,tanto las producidas por protozoos comopor helmintos, la vía digestiva es el mecanismo <strong>de</strong>entrada más frecuente. Los mecanismos <strong>de</strong> transmisión<strong>de</strong> los enteroparásitos guardan relación consus respectivos ciclos evolutivos. La presencia ytransmisión efectiva <strong>de</strong> un parásito es consecuencia<strong>de</strong> un entorno que le resulta favorable, por ello suepi<strong>de</strong>miología posee un marcado <strong>de</strong>terminante ambiental.La infección pue<strong>de</strong> producirse por la contaminaciónfecal <strong>de</strong>l suelo, el agua y los alimentos(Schulz y Kroeger, 1992; Córdoba et al., 2002), las<strong>de</strong>ficientes condiciones <strong>de</strong> vida, la falta <strong>de</strong> hábitoshigiénicos a<strong>de</strong>cuados y un bajo nivel <strong>de</strong> instrucción(Ejezie et al, 1987; Kasprzak et al, 1989). Debido aello, la Organización Mundial <strong>de</strong> la Salud consi<strong>de</strong>raa la parasitosis una <strong>de</strong> las principales causas <strong>de</strong>morbilidad estrechamente ligada a la pobreza.Actualmente, un área <strong>de</strong> interés lo constituyenlos parásitos oportunistas o emergentes como elBlastocystis sp. Este microorganismo es un protozoointestinal anaerobio cuyo modo <strong>de</strong> transmisiónpue<strong>de</strong> ser <strong>de</strong> humano a humano, <strong>de</strong> animal a humanoy <strong>de</strong> animal a animal a través <strong>de</strong>l contagiointerpersonal, ingestión <strong>de</strong> alimentos o agua contaminadosy falta <strong>de</strong> saneamiento ambiental (Doyleet al, 1990; Logar et al, 1994; Stenzel y Boreham,1996). Es el enteroparásito más frecuente enheces humanas y la prevalencia <strong>de</strong> esta infecciónen países en vías <strong>de</strong> <strong>de</strong>sarrollo alcanza entre 30%hasta más <strong>de</strong>l 50% (Amato et al, 2004; Díaz et al,2006). La infección por este protozoo no parecerestringirse a condiciones climáticas, grupos socioeconómicosni áreas geográficas. Blastocystissp es un microorganismo polimórfico que presentaseis formas principales: avacuolar, vacuolar, multivacuolar,granular, ameboi<strong>de</strong> y quística, siendo laforma vacuolar la que se observa mayoritariamenteen las heces (Zierdt, 1991; Velásquez et al, 2005).Los estudios moleculares han i<strong>de</strong>ntificado al menos10 subtipos en humanos y animales (Stensvold etal, 2007 y 2009).En cuanto al potencial patogénico <strong>de</strong> Blastocystissp no hay un consenso <strong>de</strong>finido. Algunos autoressugieren que se consi<strong>de</strong>re patogénico únicamenteen personas sintomáticas, especialmente niños, ocuando el número <strong>de</strong> microorganismos exceda <strong>de</strong>cinco por campo en el examen microscópico <strong>de</strong>heces (Cirioni et al, 1999; Giacometti et al, 1999;Graczyk et al, 2005). Recientes datos indican quela patogenicidad <strong>de</strong>l parásito <strong>de</strong>pen<strong>de</strong> <strong>de</strong>l subtipo;siendo el uno y siete los más prevalentes entrepacientes con síntomas mientras que el subtipo 3predominan en portadores asintomáticos (Eroglu etal, 2009).En Argentina, las condiciones económicas <strong>de</strong>los últimos años han favorecido un marcado incre-38Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-41


BLASTOCYSTIS EN NIÑOS Y ADOLESCENTESmento <strong>de</strong> la pobreza y por en<strong>de</strong>, un impacto negativoen las condiciones <strong>de</strong> vida. Las infecciones porenteroparásitos no constituyen motivo <strong>de</strong> <strong>de</strong>nunciaobligatoria y los datos con que se cuenta provienen<strong>de</strong> estudios realizados por instituciones <strong>de</strong> salud y/ogrupos <strong>de</strong> investigación. La ciudad <strong>de</strong> Córdoba experimentóuna marcada expansión con numerososasentamientos en los distintos Departamentos quecircundan la capital lo que han dado origen al GranCórdoba. Esta conurbación representa la segundaaglomeración urbana <strong>de</strong> Argentina en cuanto a poblacióny superficie se refiere. Debido a la falta <strong>de</strong>registros actualizados <strong>de</strong> enfermeda<strong>de</strong>s parasitariasen comunas periurbanas <strong>de</strong> la ciudad <strong>de</strong> Córdoba,este estudio tuvo como objetivos <strong>de</strong>tectar parásitosintestinales, conocer la distribución <strong>de</strong> Blastocystissp en niños y adolescentes <strong>de</strong> las Comunas Los Cedrosy Villa <strong>de</strong>l Prado, y <strong>de</strong>terminar relaciones conla edad, sexo y condiciones socioambientales.MATERIAL Y MÉTODOSTipo <strong>de</strong> investigación: Fue <strong>de</strong>scriptiva, prospectivay <strong>de</strong> corte transversal realizada entre abril<strong>de</strong> 2009 y noviembre <strong>de</strong> 2010 y se incluyeron individuossin evi<strong>de</strong>ncia <strong>de</strong> enfermedad parasitariaintestinal que asistieron voluntariamente al Dispensario<strong>de</strong> las Comunas.Áreas <strong>de</strong> estudio: La cobertura geográficacorrespondió a las Comunas Los Cedros (31°31’34.90” latitud sur 64°16’55.31” latitud oeste)y Villa <strong>de</strong>l Prado (31°37’03.62” latitud sur64°23’26.75” latitud oeste) ubicadas a 14 km y a25 km al suroeste <strong>de</strong> la ciudad <strong>de</strong> Córdoba en elDepartamento <strong>de</strong> Santa María. Estas Comunastienen aproximadamente 2000 habitantes con unapoblación cercana a los 900 niños y adolescentesconforme a los datos <strong>de</strong>l censo 2001. Cuentan conuna escuela primaria a la que asisten 270 alumnos,un Instituto <strong>de</strong> Enseñanza Media y a<strong>de</strong>más, un dispensario.No tienen agua potable y sus habitantesse <strong>de</strong>dican a la fabricación <strong>de</strong> ladrillos y a tareas <strong>de</strong>servicios en la ciudad <strong>de</strong> Córdoba y Alta Gracia.Muestra: Se incluyeron 204 individuos (133 <strong>de</strong>Los Cedros y 71 <strong>de</strong> Villa <strong>de</strong>l Prado) <strong>de</strong> 0 a 21 años(104 mujeres y 100 varones). Los mismos fueronestratificados en tres grupos etarios según afinidadbiológica <strong>de</strong> acuerdo a la Organización Mundial <strong>de</strong>la Salud en: Grupo 1: 0 a 4 años, Grupo 2: 5 a 11años y Grupo 3: 12 a 21 años.Evaluación coproparasitológica: En una primeraconsulta se instruyó a los padres o tutorespara la recolección <strong>de</strong> las muestras necesarias parael coproparasitológico y para el método <strong>de</strong> Grahamacompañado <strong>de</strong> una explicación verbal. A<strong>de</strong>más, seentregó impresos gráficos <strong>de</strong>scriptivos y materialnecesario para la recolección <strong>de</strong> las muestras.Se recolectaron muestras seriadas por al menos5 días durante una semana en frascos <strong>de</strong> boca anchay tapa a rosca, recogiendo una porción <strong>de</strong> cada<strong>de</strong>posición diaria. Se utilizó como conservador unasolución <strong>de</strong> formol al 5% para el coproparasitológicoy formol al 10% para el método <strong>de</strong> Graham.La <strong>de</strong>tección <strong>de</strong> parásitos se realizó por medio<strong>de</strong>:- Examen macroscópico: Mediante filtrado condoble gasa a fin <strong>de</strong> buscar la presencia <strong>de</strong> Helmintosadultos o restos <strong>de</strong> los mismos (proglóti<strong>de</strong>s).- Examen microscópico: Se realizó en muestrasseriadas formoladas a través <strong>de</strong> un examendirecto por concentración <strong>de</strong> Ritchie y <strong>de</strong> Willis(Schulz y Kroeger, 1992).- Escobillado anal: Por la técnica <strong>de</strong> Graham a fin<strong>de</strong> buscar la presencia <strong>de</strong> Enterobius vermicularis(Córdoba et al, 2002).Las muestras <strong>de</strong> materia fecal que no fueronremitidas en tiempo y forma, o en los casos don<strong>de</strong>los padres o tutores no respondieron a la encuestasocioambiental, no fueron incluidas en este estudio.Evaluación socioambiental: A cada padre o tutorse le realizó una encuesta en la que se consi<strong>de</strong>rarondatos ambientales a fin <strong>de</strong> recabar informaciónsobre: el tipo <strong>de</strong> vivienda, eliminación <strong>de</strong> excretas,abastecimiento <strong>de</strong> agua potable, saneamiento y presencia<strong>de</strong> animales domésticos (perro, gato).Análisis estadístico: Para el análisis <strong>de</strong> losresultados se utilizaron frecuencias relativas (%),prueba <strong>de</strong> Chi cuadrado y test exacto <strong>de</strong> Fisher conun margen <strong>de</strong> seguridad <strong>de</strong> 95% para <strong>de</strong>mostrar lain<strong>de</strong>pen<strong>de</strong>ncia entre las variables: parasitosis, sexoy edad. Los datos fueron analizados utilizando losprogramas SPSS 15.1 y GraphPad Prism 5.00. Unap < 0,05 fue consi<strong>de</strong>rada estadísticamente significativa.Aspectos éticos: Para la realización <strong>de</strong> esteestudio se respetaron todas las normas nacionalese internacionales (Helsinki 2002, CIOMS, BuenasRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-4139


M. A. DÍAZ CAJAL et al.Prácticas Clínicas y Resolución 5330 <strong>de</strong>l ANMAT)referidas a la investigación en seres humanos. Losindividuos fueron invitados a participar en esteestudio <strong>de</strong> investigación y, luego <strong>de</strong> brindarles lainformación pertinente, fueron incluidos quienesmanifestaron su consentimiento por escrito.RESULTADOSPrevalencia <strong>de</strong> enteroparásitos: El 74% (150/204) <strong>de</strong> los niños y adolescentes estuvo parasitado.Cuando se analizó la relación entre parasitosisy grupo etario, el Grupo 2 (5 a 11 años) evi<strong>de</strong>nció elmayor porcentaje <strong>de</strong> parasitosis (80 %, p < 0,05) enrelación a los Grupos 1 (0 a 4 años) (72%) y Grupo3 (12 a 21 años) (58 %) (Tabla 1).No hubo variación significativa en la presencia<strong>de</strong> parásitos entre mujeres y varones (mujeres: 37%vs varones: 37%) y no se evi<strong>de</strong>nciaron asociacionesestadísticamente significativas entre parasitosis ysexo en los distintos grupos etarios (p = 0,29).La prevalencia <strong>de</strong> monoparasitados y poliparasitadosfue <strong>de</strong> 33% y 41%, respectivamente. Elporcentaje <strong>de</strong> mujeres y varones monoparasitadoso poliparasitados fue el mismo (16% y 21%, respectivamente).No hubo diferencia significativaentre mono y poliparasitados por grupo etario (p =0,15) y entre mono o poliparasitados con el sexo (p= 0,52 y p = 0,12 respectivamente).Las especies i<strong>de</strong>ntificadas, incluyendo patógenosy comensales, fueron: Blastocystis sp, Enterobiusvermicularis, Giardia lamblia, Entamoebacoli, Endolimax nana, Chilomastix mesnilii, Hymenolepisnana e Iodamoeba butschlii (Tabla 2). Enel 61% <strong>de</strong> los individuos parasitados se <strong>de</strong>tectaronprotozoos y en el 40% se <strong>de</strong>tectaron helmintos.Prevalencia <strong>de</strong> Blastocystis sp: el protozoo<strong>de</strong> mayor prevalencia (39%) fue Blastocystis sp,observado principalmente en su forma vacuolar. Lesiguieron en or<strong>de</strong>n <strong>de</strong> prevalencia Giardia lamblia(22%) y Entamoeba coli (17%). La Figura 1muestra la prevalencia <strong>de</strong> Blastocystis sp asociadoo no a otros enteroparásitos en los distintos gruposetarios. Los niños con eda<strong>de</strong>s entre 0 y 4 añosevi<strong>de</strong>nciaron mayor prevalencia <strong>de</strong> monoinfeccióncon Blastocystis sp. En niños mayores <strong>de</strong> 5 años,la prevalencia <strong>de</strong> infección con Blastocystis sp conotras especies parasitarias fue dos veces mayorque aquellos individuos infectados solamente conBlastocystis sp. Estas prevalencias fueron similaresen ambos sexos.Hubo asociación estadística significativa parala coexistencia <strong>de</strong> Blastocystis sp-Giardia lamblia(p < 0,01), Blastocystis sp-Entamoeba coli (p


BLASTOCYSTIS EN NIÑOS Y ADOLESCENTESTabla 2. Prevalencia <strong>de</strong> especies <strong>de</strong> enteroparásitos según grupos <strong>de</strong> edad en niños y adolescentes <strong>de</strong>las Comunas <strong>de</strong> Villa <strong>de</strong>l Prado y Los Cedros. Córdoba, ArgentinaTotal(n= 204)0-4 años(n= 64)Prevalencia (%)5-11 años(n= 102)12-21 año(n= 38) sProtozoosBlastocystis sp 39 39 42 29Giardia duo<strong>de</strong>nalis 22 30 15 26Entamoeba coli 17 12 18 21Endolimax nana 8 5 10 8Chilomastix mesnilii 3 3 5 0Iodamoeba butschlii 2 3 2 0HelmintosEnterobius vermicularis38 20 54 26Hymenolepis nana 2 2 3 3Condición socioambiental: Las calles <strong>de</strong> lasComunas son <strong>de</strong> tierra y las viviendas correspon<strong>de</strong>nfundamentalmente a casas con techos <strong>de</strong> ladrillo ypiso <strong>de</strong> cemento (89%). El baño está ubicado <strong>de</strong>ntro<strong>de</strong> la mayoría <strong>de</strong> las viviendas (73%) sin sistema<strong>de</strong> arrastre <strong>de</strong> agua y sin conexión a <strong>de</strong>sagüe <strong>de</strong>red pública (cloacas). En el 27% <strong>de</strong> las viviendas,la eliminación <strong>de</strong> excretas es a cielo abierto. Laprincipal forma <strong>de</strong> abastecimiento <strong>de</strong> agua es através <strong>de</strong> bidones con agua potabilizada por laComuna.DISCUSIÓNLa parasitosis intestinal constituye un serioproblema <strong>de</strong> salud pública en aquellos ambientescaracterizados por la pobreza, precariedad <strong>de</strong> lasviviendas, prácticas sanitarias ina<strong>de</strong>cuadas y hacinamiento(Fontbonne et al, 2001; Gamboa et al,2003). En este contexto, nos propusimos evaluar lapresencia <strong>de</strong> enteroparásitos en niños y adolescentes<strong>de</strong> Comunas periurbanas <strong>de</strong> la ciudad <strong>de</strong> Córdobaasí como la prevalencia <strong>de</strong> Blastocystis sp.Los resultados obtenidos <strong>de</strong>muestran una elevadaprevalencia (74 %) <strong>de</strong> parasitosis intestinales en lasComunas <strong>de</strong> Villa <strong>de</strong>l Prado y <strong>de</strong> Los Cedros. Estehallazgo es similar a lo informado en estudios realizadosen distintas regiones <strong>de</strong> la Argentina, talescomo Buenos Aires (Zonta et al, 2007), Corrientes(Milano et al, 2007), Chaco (Matzkin et al, 2001),Mendoza (Salomón et al, 2007), Salta (Menghi etal, 2007) y Misiones (Navone et al, 2006), tantoen zonas rurales, periurbanas y urbanas. Los parásitosintestinales resultaron más frecuentes en niños<strong>de</strong> 0 a 11 años con una disminución a medida queaumenta la edad. Resultados similares han sido informadospreviamente (Guignard et al, 2000; Costamagnaet al, 2002; Milano et al, 2007; Solano etal, 2008).En nuestro estudio, hubo una mayor prevalencia<strong>de</strong> protozoos en relación a los helmintos a diferencia<strong>de</strong> lo que fue <strong>de</strong>tectado en otros estudios (Navoneet al, 2006; Requena et al, 2007). Esta diferenciaen la distribución <strong>de</strong> los enteroparásitos pue<strong>de</strong> serconsecuencia <strong>de</strong> las condiciones ambientales quecaracterizan a las distintas regiones estudiadas <strong>de</strong>nuestro país, como es el caso <strong>de</strong> la provincia <strong>de</strong> Misionesdon<strong>de</strong> se observaron elevadas prevalencias<strong>de</strong> geohelmintos, favorecidas por las condiciones<strong>de</strong> suelo que caracterizan a esta región (Navone etal, 2006).El protozoo encontrado con mayor frecuencia(39%), tanto en mujeres como varones, fue Blastocystissp. La prevalencia mundial <strong>de</strong> este parásitovaría en márgenes muy amplios (0,3% hasta54,0%) <strong>de</strong>bido a que la infección está estrechamenteligada a un <strong>de</strong>ficiente saneamiento básico,hacinamiento y malnutrición. Hallazgos similaresa los encontrados en este estudio han sido informa-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-4141


M. A. DÍAZ CAJAL et al.dos previamente en ciuda<strong>de</strong>s en vías <strong>de</strong> <strong>de</strong>sarrollo(Matzkin et al, 2001; Soriano et al, 2005; Menghiet al, 2007; Milano et al, 2007). Con respecto a laedad, se observó que los niños menores <strong>de</strong> 5 añostuvieron mayor prevalencia <strong>de</strong> monoinfección conBlastocystis sp mientras que los niños mayores <strong>de</strong>5 años manifestaron mayor prevalencia <strong>de</strong> poliparasitismo.Blastocystis sp estuvo asociado con otrosenteroparásitos en el 28% <strong>de</strong> la población estudiada.La infección asintomática con Blastocystissp es común (Taamasri et al, 2000 y 2002) y porello, la habilidad <strong>de</strong> este parásito para causarenfermedad es bastante controvertido. Numerosasmanifestaciones clínicas han sido <strong>de</strong>scriptas (Doyleet al, 1990; Giacometti et al, 1999) y asociadas alnúmero <strong>de</strong> parásitos. Sin embargo, la eliminación<strong>de</strong> Blastocystis sp en materia fecal es irregular ydiscontinua, por lo cual el número <strong>de</strong> formas porcampo no pue<strong>de</strong> relacionarse con sintomatología(Stenzel et al, 1996). A<strong>de</strong>más, Blastocystis spcompren<strong>de</strong> un grupo <strong>de</strong> organismos genéticamentediversos, alguno <strong>de</strong> los cuales pue<strong>de</strong> causar infecciónaguda o crónica en individuos inmunocompetentes.Por ello, la expresión <strong>de</strong> síntomas parece <strong>de</strong>pen<strong>de</strong>r<strong>de</strong>l genotipo <strong>de</strong> parásito y <strong>de</strong>l huésped, el estadoinmune <strong>de</strong>l huésped y <strong>de</strong> la edad (Boorom et al,2008).En este estudio, todos los sujetos incluidos fueronasintomáticos lo que indica la posibilidad <strong>de</strong> infecciónsin enfermedad parasitaria. En este contexto,la presencia <strong>de</strong> este parasito indica <strong>de</strong>ficientescondiciones sanitarias. La transmisión <strong>de</strong> Blastocystissp por vía hídrica pareciera ser el factor principal<strong>de</strong> la aparición <strong>de</strong> este protozoo (Leelayoovaet al, 2004). La <strong>de</strong>tección <strong>de</strong> coinfección con otrosparásitos intestinales que se transmiten por vía oralfecalrefuerza este modo <strong>de</strong> transmisión, esto es,por la ingestión <strong>de</strong> agua, alimentos contaminadoscon excremento <strong>de</strong> animales, así como a través <strong>de</strong>manos sucias.La evaluación socioambiental <strong>de</strong> las Comunas<strong>de</strong> Villa <strong>de</strong>l Prado y <strong>de</strong> Los Cedros permitió <strong>de</strong>terminarque las poblaciones presentan condicionessanitarias y ambientales <strong>de</strong>sfavorables, que sumadoa las posibles malas prácticas <strong>de</strong> higiene, favoreceríauna mayor infección por enteroparásitos. Estoqueda <strong>de</strong>mostrado por la elevada prevalencia <strong>de</strong>enteroparásitos encontrada en este trabajo. Por otrolado, la falta <strong>de</strong> conocimiento sobre la presencia yforma <strong>de</strong> contagio <strong>de</strong> los parásitos serían los motivosprincipales para el grado <strong>de</strong> poliparasitismo<strong>de</strong>tectado (41%). La elevada y sostenida prevalencia<strong>de</strong> enteroparásitos en poblaciones que se multiplicanconsi<strong>de</strong>rablemente, <strong>de</strong>termina un númeroelevado <strong>de</strong> personas con parasitosis intestinal laque produce un aumento progresivo <strong>de</strong> la carga parasitariaambiental que, a su vez, se constituye enfuente <strong>de</strong> infección para más personas. Por último,a pesar <strong>de</strong> que existe medicación antiparasitaria,su administración no sería suficiente para lograr laerradicación <strong>de</strong>finitiva ya que es necesario asociaral tratamiento medidas <strong>de</strong> higiene y sanidad básicaspara interrumpir los diferentes ciclos biológicos <strong>de</strong>cada parásito y su propagación.En conclusión, nuestro estudio <strong>de</strong>terminó unaelevada prevalencia <strong>de</strong> enteroparásitos y <strong>de</strong> Blastocystissp como el principal protozoo intestinal enniños y adolescentes <strong>de</strong> Comunas periurbanas <strong>de</strong>la provincia <strong>de</strong> Córdoba. Esta situación refleja unarelación directa con las condiciones socioambientales<strong>de</strong>sfavorables que facilitarían los procesoscontinuos <strong>de</strong> infestación. Estos datos pue<strong>de</strong>n ayudara establecer y consolidar programas <strong>de</strong> controly vigilancia epi<strong>de</strong>miológica así como intensificar eltrabajo educativo a los miembros <strong>de</strong> estas Comunasa fin <strong>de</strong> evitar la transmisión, diseminación y persistencia<strong>de</strong> infección parasitaria.REFERENCIAS1. AMATO NETO V, ALARCÓN RSR, GAYIKA E, FE-RREIRA SC, BECERRA CR, SANTOS GA. 2004.Elevada porcentagem <strong>de</strong> blastocistose em escolares <strong>de</strong>Sao Paulo, SP. Rev Soc Bras Med Trop, 37: 354-356.2. BOOROM KF, SMITH H, NIMRI L, VISCOGLIOSIE, SPANAKOS G, PARKAR U. et al. 2008. Oh myaching gut: irritable bowel syndrome, Blastocystis, andasymptomatic infection. Parasit Vectors, 21: 1-40.3. CIRIONI O, GIACOMETTI A, DRENAGGI D, AN-CARANI F, SCALISE G. 1999. Prevalence and clinicalrelevance of Blastocystis hominis in diverse patientcohorts. Eur J Epi<strong>de</strong>miol, 15: 389-393.4. CÓRDOBA A, CIARMELA ML, PESAN B, GAM-BOA MI, DE LUCA MM, MINVIELLE M. et al. 2002.Presence of intestinal parasites in public places fromurban areas (Argentina). Parasitol Latinoam, 57: 25-29.5. COSTAMAGNA S, GARCÍA S, VISCIARELLI E,CASAS N. 2002. Epi<strong>de</strong>miología <strong>de</strong> las parasitosis enBahía Blanca (Provincia <strong>de</strong> Buenos Aires) Argentina -1994/1999. Parasitol Latinoam, 57: 103-110.6. DÍAZ AI, RIVERO RZ, BRACHO MA, CASTELLA-NOS SM, ACURERA E, CARCHI LM. et al. 2006.Prevalence of intestinal parasites in children of Yukpa42Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-41


BLASTOCYSTIS EN NIÑOS Y ADOLESCENTESethnia in Toromo, Zulia State, Venezuela. Rev MedChile, 134: 72-78.7. DOYLE PW, HELGASON MM, MATHIAS RG,PROCTOR EM. 1990. Epi<strong>de</strong>miology and pathogenicityof Blastocystis hominis. J Clin Microbiol, 28: 116-121.8. EJEZIE GC, ONYEZILI NI, OKEKE GC, ENWONWUCO. 1987. Ijanikin: a study of environmental health in arural Nigerean community. J Hyg Epi<strong>de</strong>miol MicrobioImmunol, 31: 163-172.9. EROGLU F, GENC A, ELGUN G, KOLTAS IS. 2009.I<strong>de</strong>ntification of Blastocystis hominis isolates fromasymptomatic and symptomatic patients by PCR.Parasitol Res, 105: 1589-1592.10. FONTBONNE A, FREESE-DE-CARVALHO E,ACIOLI MD SÁ GA, Y CESSE EAP. 2001. Fatores<strong>de</strong> risco para poliparasitismo intestinal em umacomunida<strong>de</strong> indígena <strong>de</strong> Pernambuco, Brasil. CadSaú<strong>de</strong> Pública, 17: 367-373.11. GAMBOA MI, BASUALDO JA, CÓRDOBA MA,PESAN BC, MINVILLE MC, LÍATE HB. 2003.Distribution of intestinal parasitoses in relation toenvironmental and sociocultural parameters in LaPlata, Argentina. J Helminthol, 77: 15-20.12. GIACOMETTI A, CIRIONI O, FIORENTINI A,FORTUNA M, SCALISE G. 1999. Irritable bowelsyndrome in patients with Blastocystis hominisinfection. Eur J Clin Microbiol Infect Dis, 18: 436-439.13. GRACZYK TK, SHIFF CK, TAMANG L, MUNSAKAF, BEITIN AM, MOSS WJ. 2005. The associationof Blastocystis hominis and Endolimax nana withdiarrheal stools in Zambian school-age children.Parasitol Res, 98: 38-43.14. GUIGNARD S, ARIENTI H, FREYRE L, LUJAN H,RUBINSTEIN H. 2000. Prevalence of enteroparasitesin a resi<strong>de</strong>nce for children in the Córdoba province,Argentina. Eur J Epi<strong>de</strong>miol, 16: 287-293.15. KASPRZAK W, MAZUR T, KARLEWICZOWA R.1989. Prevalence of Entamoeba histolytica and otherintestinal protozoa among the inhabitans of Pozmanprovince over a period of 30 years. Wiad Parazytol, 35:535-545.16. LEELAYOOVA S, RANGSIN R, TAAMASRI P,NAAGLOR T, THATHAISONG U, MUNGTHIN M.2004. Evi<strong>de</strong>nce of waterborne transmission of Blastocystishominis. Am J Trop Med Hyg., 70: 658-662.17. LOGAR J, ANDLOVIC A, POLJSAK-PRIJATELJ M.1994. Inci<strong>de</strong>nce of Blastocystis hominis in patients withdiarrhoea. J Infect, 28: 151-154.18. MATZKIN RJ, GALVAN M, MIRANDA OA, MERI-NO D, BALBACHÁN S. 2001. Parasitosis entéricas enuna población escolar periurbana <strong>de</strong> Resistencia, Chaco,Argentina. Doc Medical Rev Científica, 1: 2-4.19. MENGHI CI, IUVARO FR, DELLACASA MA,GATTA CLK. 2007. Investigación <strong>de</strong> parásitos intestinalesen una comunidad aborigen <strong>de</strong> la provincia <strong>de</strong>Salta. Medicina (Buenos Aires), 67, 705-708.20. MILANO AM, OSCHEROV EB, PALLADITO AC,BAR AR. 2007. Enteroparásitos infantil en un áreaurbana <strong>de</strong>l nor<strong>de</strong>ste argentino. Medicina (BuenosAires), 67: 238-242.21. NAVONE GT, GAMBOA MI, OYHENART EE, OR-DEN AB. 2006. Parasitosis intestinales en poblacionesMbyá-Guaraní <strong>de</strong> la Provincia <strong>de</strong> Misiones, Argentina:aspectos epi<strong>de</strong>miológicos y nutricionales. Cad. Saú<strong>de</strong>Pública, Rio <strong>de</strong> Janeiro, 22: 1089-1100.22. REQUENA I, JIMÉNEZ Y, RODRÍGUEZ N,SANDOVAL M, ALCALA F, BLANCO Y. et al. 2007.Enterobius vermicularis en pre-escolares <strong>de</strong> un áreasuburbana en San Félix, Estado Bolívar, Venezuela.Invest Clin, 48, 277-286.23. SALOMÓN MC, TONELLI RL, BORREMANS CG,BERTELLO D, DE JONG LI, JOFRÉ CA. et al. 2007.Prevalencia <strong>de</strong> parásitos intestinales en niños <strong>de</strong> laciudad <strong>de</strong> Mendoza, Argentina. Parasitol Latinoam, 62:49-53.24. SCHULZ S, KROEGER A. 1992. Soil contaminationwith Ascaris lumbricoi<strong>de</strong>s eggs as an indicator of environmentalhygiene in urban areas of northeast Brazil. JTrop Med Hyg, 95: 95-103.25. SOLANO L, ACUÑA I, BARÓN MA, MORÓN DESALIM A, SÁNCHEZ A. 2008. Influencia <strong>de</strong> lasparasitosis intestinales y otros antece<strong>de</strong>ntes infecciosossobre el estado nutricional antropométrico <strong>de</strong> niños ensituación <strong>de</strong> pobreza. Parasitol Latinoam, 63: 12-19.26. SORIANO SV, MANACORDA AM, PIERANGELINB, NAVARRO MC, GIAYETTO AL, BARBIERILM. et al. 2005. Parasitosis intestinales y su relacióncon factores socioeconómicos y condiciones <strong>de</strong> hábitaten niños <strong>de</strong> Neuquén, Patagonia, Argentina. Parasitollatinoam, 60: 154-161.27. STENSVOLD AR,SURESH GK, TAN KSW, THOMP-SON RCA, TRAUB RJ, VISCOGLIOSI, E. et al. 2007.Terminology for Blastocystis subtipes - a consensus.Trends Parasitolol, 23: 93-96.28. STENSVOLD CR, NIELSEN HV, SMITH HV. 2009.Pursuing the clinical impact of Blastocystis-diagnosticlimitations. Trends Parasitol, 25: 23-29.29. STENZEL DJ, BOREHAM PF. 1996. Blastocystis hominisrevisited. Clin Microbiol Rev, 9: 563-584.30. TAAMASRI P, LEELAYOOVA S, RANGSIN R,NAAGLOR T, KETUPANYA A, MUNGTHIN M.2002. Prevalence of Blastocystis hominis carriage inThai army personnel based in Chonburi, Thailand. MilMed, 167: 643-646.31. TAAMASRI P, MUNGTHIN M, RANGSIN R, TON-GUPPRAKARN B, AREEKUL W, LEELAYOOVA S.2000. Transmission of intestinal blastocystosis relatedto the quality of drinking water. Southeast Asian J TropMed Public Health, 31: 112-117.32. VELÁSQUEZ V, CALDERA R, WONG W, CERME-ÑO G, FUENTES M, BLANCO Y. et al. 2005. Elevadaprevalência <strong>de</strong> blastocistose em pacientes do Centro <strong>de</strong>Saú<strong>de</strong> <strong>de</strong> Soledad, Estado Anzoátegui, Venezuela. RevSoc Bras Med Trop, 38: 356-357.33. ZIERDT CH. 1991. Blastocystis hominis - Past and Future.Clin Microbiol Rev, 4: 61-69.34. ZONTA ML, NAVONE GT, OYHENART EE. 2007.Parasitosis intestinales en niños <strong>de</strong> edad preescolary escolar: situación actual en poblaciones urbanas,periurbanas y rurales en Brandsen, Buenos Aires,Argentina. Parasitol Latinoam, 62: 54-60.Agra<strong>de</strong>cimientos: Los autores expresan su agra<strong>de</strong>cimientoal Vicerrectorado <strong>de</strong> Medio Universitario <strong>de</strong> la UniversidadCatólica <strong>de</strong> Córdoba por el apoyo financiero para larealización <strong>de</strong> este estudio.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 35-4143


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-48Detection of Anaplasma platys and other pathogens inectoparasites from urban hosts in Northeast ArgentineOSCHEROV E. B. 1 , MILANO A. M. F. 1 , LOBO B. 2 , ANDA P. 2 , ESCUDERO R. 21Laboratory of Biologia <strong>de</strong> los Parasitos, Facultad <strong>de</strong> Ciencias Exactas y Naturales y Agrimensura, UniversidadNacional <strong>de</strong>l Nor<strong>de</strong>ste, Corrientes, Argentine.2Laboratory of Espiroquetas y Patógenos Especiales, Servicio <strong>de</strong> Bacteriología, Centro Nacional <strong>de</strong> Microbiología,Instituto <strong>de</strong> Salud Carlos III, Madrid, Spain.ABSTRACTThe main aim of the present study was to assess the rate of arthropod-borne bacteria in ticks andfleas collected from domestic dogs in an urban area of Corrientes, Northeastern Argentina. For themolecular analyses we selected a total of 79 Rhipicephalus sanguineus, one Amblyomma tigrinum and 15Ctenocephali<strong>de</strong>s felis. Three sets of duplex PCR were used, one targeting Anaplasma/Ehrlichia and Coxiella,another one Bartonella and Francisella, and a third one targeting Borrelia and Rickettsia. Positive sampleswere confirmed by hybridization using reverse line blotting and/or automated sequencing. Anaplasmaplatys, A. phagocytophilum, Borrelia sp. and the spotted fever group of Rickettsias were <strong>de</strong>tected in R.sanguineus and Francisella-like endosymbionts in A. tigrinum. Two specimens of C. felis were positive forR. felis and Bartonella spp., respectively. It has to be highlighted that the arthropod specimens tested werecollected form dogs in a human environment and they are well known as agents of severe human zoonoses.Key words: arthropod vectors, zoonoses, Anaplasma platys, Rickettsia felis, Bartonella.RESUMENEl objetivo <strong>de</strong>l presente estudio fue <strong>de</strong>tectar la presencia <strong>de</strong> patógenos en garrapatas y pulgas <strong>de</strong>canes domésticos en un área urbana <strong>de</strong> Corrientes, Nor<strong>de</strong>ste <strong>de</strong> Argentina. Para el análisis molecularfueron seleccionados 79 ejemplares <strong>de</strong> Rhipicephalus sanguineus, uno <strong>de</strong> Amblyomma tigrinum y 15 <strong>de</strong>Ctenocephali<strong>de</strong>s felis. Fueron utilizados tres sets duplex <strong>de</strong> PCR, dirigidos contra el genoma <strong>de</strong> Anaplasma/Ehrlichia y Coxiella, Bartonella y Francisella, y Borrelia y Rickettsia, respectivamente. Las muestraspositivas fueron confirmadas por hibridación utilizando un soporte <strong>de</strong> línea reversa y/o secuenciación.Anaplasma platys, A. phagocytophilum, Borrelia sp. y el grupo <strong>de</strong> las fiebres manchadas Rickettsia fueron<strong>de</strong>tectados en R. sanguineus y Francisella como endosimbiontes en A. tigrinum. Dos ejemplares <strong>de</strong> C. felisfueron positivos para R. felis y Bartonella spp., respectivamente. Se <strong>de</strong>staca que los artrópodos evaluadosRecibido: 25 <strong>de</strong> Febrero <strong>de</strong> 2011. Aprobado 12 <strong>de</strong> Mayo <strong>de</strong> 2011.Correponding: Elena Beatriz Oscherov, Laboratorio <strong>de</strong> Biología <strong>de</strong> los Parásitos, Departamento <strong>de</strong> Biología,Facultad <strong>de</strong> Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional <strong>de</strong>l Nor<strong>de</strong>ste.Campus Universitario. Avenida Libertad 5470. 3400 Corrientes, Argentina.E-mail: ebosche@exa.unne.edu.ar44


ANAPLASMA PLATYS, RICKETTSIA FELIS, ARGENTINEfueron colectados <strong>de</strong> perros domésticos, conviviendo con humanos y los patógenos <strong>de</strong>tectados son bienconocidos como agentes <strong>de</strong> zoonosis graves.Palabras clave: Artrópodos vectores, zoonosis, Anaplasma platys, Rickettsia felis, BartonellaINTRODUCTIONThe Public Health importance of the haematophagousectoparasites, ticks (Arachnida: Parasitiformes)and fleas (Insecta: Siphonaptera), stemsfrom that they parasitize both wild and domesticreservoirs and humans and have become one of themost important vectors of human pathogens worldwi<strong>de</strong>,including viruses, bacteria, protozoa, cestodsand nemato<strong>de</strong>s (Guglielmone & Nava, 2006; Labrunaet al, 2007).The rickettsiosis caused by Rickettsia felis isconsi<strong>de</strong>red an emerging zoonosis. In Argentina,R. felis has been recently <strong>de</strong>tected in fleas(Ctenocephali<strong>de</strong>s felis) from domestic dogs (Navaet al, 2007). Also, a serological study performedin Jujuy, Northwest Argentina, found antibodiesagainst spotted fever and typhus groups (using R.rickettsii and R. typhi antigens), whose possiblevector would be Amblyomma cajennense (Ripollet al, 1999); more recently, R. parkeri has been<strong>de</strong>tected in 7.6% of A. triste specimens collectedin the lower Paraná River Delta (Nava et al, 2008),and R. rickettsii in A. cajennense in the provinceof Jujuy and in a patient retrospectively studied(Paddock et al, 2008); finally, R. massiliae has been<strong>de</strong>tected in the area both in vectors (Ciccutin et al,2004) and in a patient (García-García et al, 2010).Ehrlichia chaffeensis has been recently <strong>de</strong>tectedin Argentinian A. parvum (Tomassone et al, 2008).Canine ehrlichiosis, transmitted by Rhipicephalussanguineus, was previously <strong>de</strong>scribed in Chileand, recently, Anaplasma platys was i<strong>de</strong>ntified asits causative agent in the area (Abarca et al, 2007).Finally, previous serological surveys in humans inBrazil and Argentina found anti-anaplasma/ehrlichiaantibodies (Ripoll et al, 1999; Calic et al, 2004).Taking into account all these antece<strong>de</strong>nts, theobjective of the present study was to assess theoccurrence of arthropod-borne pathogens in ticksand fleas collected from domestic dogs in an urbanarea of the province of Corrientes, NortheastArgentina.MATERIAL AND METHODSThis study was performed in Santa Ana <strong>de</strong> losGuacaras, Corrientes, Argentina (27º 27’ S, 58º 45’W). It is a village characterized by unpaved streetsand extensive areas covered in autochthonousvegetation. It has 1497 permanent resi<strong>de</strong>nts.There is little variation between summer (mean:27º C) and fall (mean: 16º C) temperatures in thearea, with 5-6 days below freezing, <strong>de</strong>termininga mesothermal climate. The pluviosity is of up to1500 mm per year, with frequent rainfalls in falland scarce in January (Carnevalli, 1994).Seventy four dogs (Canis familiaris) from 45houses were inclu<strong>de</strong>d in the study. Ticks and fleaswere collected with tweezers and preserved in96º ethanol at room temperature until use; fromheavily parasitized animals, only 1 sample ofectoparasites was collected, following a humaneprotocol ethically approved by our institution.Specimens were sent to the Laboratorio <strong>de</strong> Biología<strong>de</strong> los Parásitos, Facultad <strong>de</strong> Ciencias Exactasy Naturales y Agrimensura, of the UniversidadNacional <strong>de</strong>l Nor<strong>de</strong>ste. Specimens were studiedun<strong>de</strong>r magnification with a Leica Zoom 2000stereomicroscope, i<strong>de</strong>ntified at the species levelusing taxonomic keys, and counted and classifiedby sex and stage.For the molecular analyses, only one or twonon-engorged ticks were selected from each animal,making a total of 79 R. sanguineus and a femalespecimen of A. tigrinum. Adults were testedindividually and nymphs from the same host werepooled in groups of 6 and tested together. Fifteenspecimens of C. felis, collected from 15 dogs werealso studied. The methodology used consisted of 3sets of duplex PCR, targeting Anaplasma/Ehrlichiaand Coxiella (16S rRNA and IS1111, respectively),Bartonella and Francisella (16S-23S rRNA ITSand lpnA), and Borrelia and Rickettsia (16S rRNAand 5S-23S rRNA ITS), respectively, as <strong>de</strong>scribe<strong>de</strong>lsewhere (Barandika et al, 2008; Toledo et al,2009a; Toledo et al, 2009b) (Table 1). PositiveRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-4845


ANAPLASMA PLATYS, RICKETTSIA FELIS, ARGENTINETable 1. Sequences of primers and probes used in this study.Bacterium Oligonucleoti<strong>de</strong> Target gene Sequence (5´-3’)a ReferencePrimersA. phagocytophilum 16S/AEFmod 16S rRNA CAGAACGAACGCTRGCGGYARG (Anda et al., 2006)Ehrlichia spp. 16S/AE-Rmod 16S rRNA b-GCRTTACKCACCCGTCTGCCAC (Anda et al., 2006)Bartonella P24Emod 16S rRNA CCTTCAGTTMGGCTGGATC (García-Esteban etal., 2008)16S-R 16S rRNA b-GCCYCCTTGCGGTTAGCACAGCA (García-Esteban etal., 2008)Borrelia BORF 16S rRNA CGCTGGCAGTGCGTCTTAA (Gil et al., 2005)16S3B 16S rRNA b-GCGGCTGCTGGCACGTAATTAGC (Gil et al., 2005)Coxiella burnetii Trans 1 htpAB TATGTATCCACCGTAGCCAGTC (Bandarika et al.,2008)Trans 2 htpAB b-CCCAACAACACCTCCTTATTC (Bandarika et al.,2008)Francisella spp. FT593 lpnA GYAGGTTTAGCKAGCTGTTCTAC (Escu<strong>de</strong>ro et al.,2008)FT825 lpnA b-GGAGCYTGCCATTGTAATCTTAC (Escu<strong>de</strong>ro et al.,2008)Rickettsia RCK/23-5-F 23S-5S rRNA GATAGGTCRGRTGTGGAAGCAC (Jado et al., 2006)RCK/23-5-R 23S-5S rRNA b-TCGGGAYGGGATCGTGTGTTTC (Jado et al., 2006)ProbesA. phagocytophilum P-PHA 16S rRNA a-GGMTTATTCTTTATAGCTTGCT (Anda et al., 2006)E. chaffeensis P-CHA 16S rRNA a-ATTGCTTATAACCTTTTGGTT (Anda et al., 2006)E. ewingii P-EWI 16S rRNA a-GAACAATTCCTAAATAGTCTC (Anda et al., 2006)A. platys P-PLA 16S rRNA a-GATTTTTGTCGTAGCTTGCTATG (Anda et al., 2006)Bartonella S-BART16S 16S rRNA a-CTCGCCCTTAGTTGCCAGCATT (García-Esteban etal., 2008)Borrelia P-16S-BOR 16S rRNA a-GAGGAATAAGCTTTGTAGGAAAT-GACA(Gil et al., 2005)F. tularensis P-FRAG lpnA a-TAAAATAAAAGCAACTGTATATA-CARC(Escu<strong>de</strong>ro et al.,2008)Coxiella burnetii C. burnetii htpAB a-GCAAGAATACGGACTCACGA (Bandarika et al.,2008)Rickettsia spp. GP-RICK 23S-5S rRNA a-TAGCTCGATTGRTTTACTTTG (Jado et al., 2006)SFG Rickettsia GP-SFG 23S-5S rRNA a-ACTCACAARGTTATCAGGT (Jado et al., 2006)R. felis P-FEL 23S-5S rRNA a-TAATGTTATACCGTGGTCCCGC (Jado et al., 2006)a: b: biotin modification; a: C6 aminolink modificationDISCUSSIONIn Argentina, the study of tick-borne pathogenshas intensified during the last <strong>de</strong>ca<strong>de</strong>, <strong>de</strong>tectingantibodies against spotted fever group rickettsiae inpatients (Ripoll et al, 1999; Seijo et al, 2007), aswell as R. rickettsii and R. typhi in A. cajennense(Ripoll et al, 1999), R. massiliae in R. sanguineus(Cicuttin et al, 2004), E. chaffeensis en A. parvumand A. cajennense (Tomassone et al, 2008) and R.parkeri in A. triste (Nava et al, 2008). In this studywe ad<strong>de</strong>d A. platys, A. phagocytophilum, BorreliaRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-4847


E.B. OSCHEROV et al.PathogensTable 2. Arthropod-borne bacteria <strong>de</strong>tected in Rhipicephalus sanguineus sorted by stageNymphsn = 40Malen = 17Femalen = 7TotalPositive (%)Anaplasma platys 2 pools (2-12a) 4 1 7-17 (10.9-26.6)aA. phagocytophilum 0 2 0 2 (3.1)Borrelia sp. 0 1 1 2 (3.1)SFG Rickettsia 0 3 0 3 (4.7)Total 2 pools (2-12 a) 10 2 14-24 (21.9-37.5)aa: Maximum number of positive and percentages would correspond to the case in which all the six nymphs fromeach pool were positivesp. and SFG Rickettsia found in R. sanguineus.We were unable to confirm whether the Borrelia<strong>de</strong>tected in 1 specimen belongs to B. burgdorferisensu lato or not. Further studies will be performedto confirm this point. Also, the vectorial role of R.sanguineus for this Borrelia could not be directlyinferred from these data and it needs to be furtherassessed, although these findings confirm thatBorrelia sp. is circulating in Argentina.A. platys is the causative agent of canine anaplasmosis,infecting platelets with the subsequentproduction of thrombocytopenia (Dumler et al,2001). Evi<strong>de</strong>nce of the zoonotic potential of A.platys is scarce, although some authors suggest ahypothetical pathogenic role for A. platys in humans,based on serological results (Abarca et al,2008). However, this has not been further confirmed.A. phagocytophilum infects granulocytes,causing human granulocytic anaplasmosis (Abarcaet al, 2008). In consultations ma<strong>de</strong> at health primaryassistance and veterinarian centers of thestudy area, no information about suspected cases ofthe diseases studied here was obtained; serologicalstudies would be nee<strong>de</strong>d to assess their impact onhuman and veterinarian health.The <strong>de</strong>tection of R. felis in C. felis is the secondcitation for this agent in Argentina and the first inthe Corrientes province. This pathogen was foundby Nava et al, (2007) in fleas collected from dogs inthe Santa Fe province. Also, in México, Brazil andUruguay C. felis specimens were found infected byR. felis (Zavala-Velázquez et al, 2002; Horta et al,2005; Venzal et al, 2006). The distribution of thisrickettsiosis is wi<strong>de</strong>, with human cases reported indifferent continents (Nava et al, 2007; Horta et al,2005; Pérez-Arellano et al, 2005). However, therehave been no reports of human cases in Argentina,probably due to un<strong>de</strong>rdiagnosis.No previous reports were found regardingBartonella spp. in C. felis in Argentina. Its <strong>de</strong>tectiontogether with R. felis in C. felis has been previously<strong>de</strong>scribed in Spain and the Democratic Republic ofthe Congo (Blanco et al, 2006; Sackal et al, 2008),highlighting the risk of a possible simultaneoustransmission of both pathogens by the same bite.Finally, based on 16S rRNA sequences, severalorganisms have been classified as probable membersof the Francisellaceae family, including theso-called Francisella-like endosymbionts (FLEs)(Sun et al, 2000; Scoles, 2004). There are no publisheddata regarding the pathogenic role of FLEsto humans, although their pathogenicity to guineapigs and hamsters was <strong>de</strong>monstrated earlier (Burgdorferet al, 1973). These data provi<strong>de</strong> the first <strong>de</strong>scriptionof a member of the Francisellaceae familycirculating in Argentina.It has to be highlighted that the arthropodspecimens tested in this study were collectedform dogs in a human environment and are wellknown as agents of severe human zoonoses suchas spotted fevers, haemolytic processes and typhuslikediseases in several parts of America. Giventheir importance in human disease, a more throughinvestigation is necessary, along with actions tocontrol the vectors.REFERENCES1. ABARCA K, LÓPEZ J, GONZÁLEZ P, DABANCHJ, TORRES M, SOLARI V, et al. 2008. Evi<strong>de</strong>nciaserológica <strong>de</strong> exposición humana a Anaplasma sp. enSantiago, Chile. Rev Chil Infect, 25: 358-361.48Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-48


ANAPLASMA PLATYS, RICKETTSIA FELIS, ARGENTINE2. ABARCA K, LÓPEZ J, PERRET C, GUERRERO J,GODOY P, VELOZ A, et al. 2007. Anaplasma platys indogs, Chile. Emerg Infect Dis, 13: 1392-1395.3. ANDA P, ESCUDERO R, RODRÍGUEZ-MORENO I,JADO I, JIMÉNEZ-ALONSO MI. 2006. Method andkit for the <strong>de</strong>tection of bacterial species by means ofDNA. U.S. patent WO/2006/136639.4. BARANDIKA JF, HURTADO A, GARCÍA-SAN-MARTÍN J, JUSTE RA, ANDA P, GARCÍA-PÉREZAL. 2008. Prevalence of tick-borne zoonotic bacteria inquesting adult ticks from northern Spain. Vector BorneZoonotic Dis, 8: 829-835.5. BLANCO JR, PÉREZ-MARTÍNEZ L, VALLEJO M,SANTIBÁÑEZ S, PORTILLO A, OTEO JA. 2006.Prevalence of Rickettsia felis and Bartonella spp. inCtenocephali<strong>de</strong>s canis from La Rioja (Northern Spain).Ann N Y Acad Sci, 1078: 270-274.6. BURGDORFER W, BRINTON LP, HUGHES LE.1973. Isolation and characterization of symbiontsfrom the Rocky Mountain wood tick, Dermacentoran<strong>de</strong>rsoni. J Invertebrate Pathol, 22: 424-434.7. CALIC SB, GALVÃO MAM, BACELLAR F, ROCHACM, MAFRA CL, LEITE RC, WALKER DH. 2004.Human ehrlichiosis in Brazil: First suspect cases. BrazJ Infect Dis, 8: 259-262.8. CARNEVALLI R. 1994. Fitogeografía <strong>de</strong> la Provincia<strong>de</strong> Corrientes. Inst Nac Tec Agrop Corrientes, Argentina.9. CICUTTIN GL, RODRÍGUEZ VARGAS M, JADOI, ANDA P. 2004. Primera <strong>de</strong>tección <strong>de</strong> Rickettsiamassiliae en la ciudad <strong>de</strong> Buenos Aires. Resultadospreliminares. Rev Argentina Zoonosis, 1: 8-10.10. DUMLER JS, BARBET AF, BEKKER CP, DASCHGA, PALMER GH, RAY SC, et al. 2001. Reorganizationof genera in the families Rickettsiaceae and Anaplasmataceaein the or<strong>de</strong>r Rickettsiales: unifications ofsome species of Ehrlichia with Anaplasma, Cowbriawith Ehrlichia and Ehrlichia with Neorickettsia, <strong>de</strong>scriptionsof six new species combinations and <strong>de</strong>signationof Ehrlichia equi and HE agent’ as subjectivesynonyms of Ehrlichia fhagocytophila. Int J Syst EvolMicrobiol, 51: 2145-2165.11. ESCUDERO R, TOLEDO A, GIL H, KOVÁCSOVÁK, RODRÍGUEZ-VARGAS M, JADO I, et al. 2008.Molecular method for discrimination between Francisellatularensis and Francisella-like endosymbionts.J Clin Microbiol, 46: 3139-3143.12. GARCÍA-ESTEBAN C, GIL H, RODRÍGUEZ-VARGAS M, GERRIKAGOITIA X, BARANDIKAJF, ESCUDERO R, et al. 2008. Molecular methodfor Bartonella species i<strong>de</strong>ntification in clinical an<strong>de</strong>nvironmental samples. Appl Environ Microbiol, 46:776-779.13. GARCÍA-GARCÍA JC, PORTILLO A, NÚÑEZ MJ,SANTIBÁÑEZ S, CASTRO B, OTEO JA. 2010.A patient from Argentina infected with Rickettsiamassiliae. Am J Trop Med Hyg, 82: 691-692.14. GIL H, BARRAL M, ESCUDERO R, GARCÍA-PÉREZ AL, ANDA P. 2005. I<strong>de</strong>ntification of a newBorrelia species among small mammals in en<strong>de</strong>micLyme disease areas in northern Spain. Appl EnvironMicrobiol, 71: 1336-1345.15. GUGLIELMONE AA, NAVA S. 2006. Las garrapatas<strong>de</strong>l género Amblyomma como parásitos <strong>de</strong> humanos enla Argentina. In: Temas <strong>de</strong> Zoonosis III. Buenos Aires:Asociación Argentina <strong>de</strong> Zoonosis, 269-277.16. HORTA MC, PINTER A, CORTÉZ A, SOARES RM,GENNARI SM, SCHUMAKER TTS, et al. 2005.Rickettsia felis (Rickettsiales: Rickettsiaceae) inCtenocephali<strong>de</strong>s felis felis (Siphonaptera: Pulicidae)in the States of São Paulo, Brazil. Arq Bras Med VetZootec, 57: 321- 325.17. JADO I, ESCUDERO R, GIL H, JIMÉNEZ-ALONSOMI, SOUSA R, GARCÍA-PÉREZ AL, et al. 2006. Amolecular method for the i<strong>de</strong>ntification of Rickettsiaspecies in clinical and environmental samples. J ClinMicrobiol, 44: 4572-4576.18. LABRUNA MB, MCBRIDE JW, CAMARGO LMA,AGUIAR DM, YABSLEY MJ, DAVIDSON WR, et al.2007. A preliminary investigation of Ehrlichia speciesin ticks, humans, dogs and capybaras from Brazil. VetParasitol, 143: 189-195.19. NAVA S, ELSHENAWY Y, EREMEEVA ME,SUMNER JW, MASTROPAOLO M, PADDOCK CD.2008. Rickettsia parkeri in Argentina. Emerg InfectDis, 14: 1894-1897.20. NAVA S, PÉREZ-MARTÍNEZ L, VENZAL JM,PORTILLO A, SANTIBÁÑEZ S, OTEO JA. 2007.Rickettsia felis in Ctenocephali<strong>de</strong>s felis from Argentina.Vector Borne Zoonotic Dis, 8: 465-466.21. PADDOCK CD, FERNÁNDEZ S, ECHENIQUE GA,SUMNER JW, REEVES WK, ZAKI SR, et al. 2008.Rocky Mountain spotted fever in Argentina. Am J TropMed Hyg, 78: 687-692.22. PÉREZ-ARELLANO JL, FENOLLAR F, ANGEL-MORENO A, BOLAÑOS M, HERNÁNDEZ M,SANTANA E, et al. 2005. Human Rickettsia felisinfection, Canary Islands, Spain. Emerg Infect Dis, 11:1961-1964.23. RIPOLL CM, REMONDEGUI CE, ORDONEZ G,ARAZMENDI R, FUSARO H, HYMAN, et al. 1999.Evi<strong>de</strong>nce of rickettsial spotted fever and ehrlichialinfections in a subtropical territory of Jujuy, Argentina.Am J Trop Med Hyg, 6: 350-354.24. SACKAL C, LAUDISOIT A, KOSOY M, MASSUNGR, EREMEEVA ME, KARPATHY SE, et al. 2008.Bartonella spp. and Rickettsia felis in fleas, DemocraticRepublic of Congo. Emerg Infect Dis, 14: 1972-1974.25. SCOLES GA. 2004. Phylogenetic analysis of theFrancisella-like endosymbionts of Dermacentor ticks.J Med Entomol, 41: 277-286.26. SEIJO A., PICOLLO M., NICHOLSON W.,PADDOCK C. 2007. Rickettsial spotted fever in theParaná Delta. An emerging disease. Medicina (BuenosAires), 67: 723-726.27. SUN LV, SCOLES GA, FISH D, O’NEILL SL. 2000.Francisella-like endosymbionts of ticks. J InvertebrPathol, 76: 301-303.28. TOLEDO A, JADO I, OLMEDA AS, CASADO-NISTAL MA, GIL H, ESCUDERO R, ANDA P. 2009a.Detection of Coxiella burnetii in ticks collected fromCentral Spain. Vector Borne Zoonotic Dis, 9: 465-468.29. TOLEDO A, OLMEDA AS, ESCUDERO R, JADOI, VALCÁRCEL F, CASADO-NISTAL MA, RODRÍ-GUEZ-VARGAS M, GIL H, ANDA P. 2009b Tickbornezoonotic bacteria in ticks collected from centralRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-4849


E.B. OSCHEROV et al.Spain. Am J Trop Med Hyg, 81: 67-74.30. TOMASSONE L, NÚÑEZ P, GÜRTLER RE, CEBA-LLOS LA, OROZCO MM, KITRON UD. et al. 2008.Molecular <strong>de</strong>tection of Ehrlichia chaffeensis in Amblyommaparvum ticks, Argentina. Emerg Infect Dis, 14:1953-1955.31. VENZAL JM, PÉREZ-MARTÍNEZ L, FELIX ML,PORTILLO A, BLANCO JR, OTEO JA. 2006. Prevalenceof Rickettsia felis in Ctenocephali<strong>de</strong>s felis andCtenocephali<strong>de</strong>s canis from Uruguay. Ann N Y AcadSci, 1078: 305-308.32. ZAVALA-VELÁZQUEZ JE, ZABALA-CASTROJE, VADO-SOLÍS I, RUIZ-SOSA JA, MORON CG,BOUYER DH. et al. 2002. I<strong>de</strong>ntification of Ctenocephali<strong>de</strong>sfelis fleas as host of Rickettsia felis, the agentof spotted fever rickettsiosis in Yucatan, México. VectorBorne Zoonotic Dis, 2: 69-75.Acknowledgements: The authors are grateful to FrankM. Hodgkins for reviewing the English version of thismanuscript. This study was supported by grants from theSecretaría General <strong>de</strong> Ciencia y Técnica, UniversidadNacional <strong>de</strong>l Nor<strong>de</strong>ste, Argentina and from INIA (FAU2006-00002-C04-04), Spain.In memorian <strong>de</strong>l Sr. Víctor Muñoz Flores(Q.E.P.D.)1949 - Enero 2011El jueves 13 <strong>de</strong> febrero falleció en forma trágica a los62 años el Profesor Asociado Víctor Muñoz Flores,quien fuera un docente y académico ejemplar <strong>de</strong> laFacultad <strong>de</strong> Medicina <strong>de</strong> la Universidad <strong>de</strong> Chile.Nació y se crío en Antofagasta, posteriormente setraslado a Santiago don<strong>de</strong> se recibió <strong>de</strong> TecnólogoMédico, carrera a la cual le <strong>de</strong>dicó gran parte <strong>de</strong> suvida. Des<strong>de</strong> sus inicios académicos siempre estuvorelacionado con la disciplina <strong>de</strong> Parasitología,en un comienzo en la Se<strong>de</strong> Oriente dirigida porel profesor Dr. Hernán Reyes y <strong>de</strong>spués en laSe<strong>de</strong> Norte a cargo <strong>de</strong>l suscrito. Por sus méritosacadémicos y su constante esfuerzo llegó a serProfesor Asociado <strong>de</strong> la Facultad <strong>de</strong> Medicina <strong>de</strong>la Universidad <strong>de</strong> Chile. Su <strong>de</strong>dicación, alegría <strong>de</strong>vivir, espíritu <strong>de</strong> lucha, siempre con una sonrisa,le valieron <strong>de</strong> admiración <strong>de</strong> sus alumnos, <strong>de</strong> suspares y <strong>de</strong> todos los académicos <strong>de</strong> la Facultad <strong>de</strong>Medicina. Su tenacidad lo llevó a ser elegido comotesorero <strong>de</strong> la Sociedad Chilena <strong>de</strong> Parasitología,como tal colaboró siempre en esta disciplina. Comomuestra po<strong>de</strong>mos referirnos al último SimposioInternacional <strong>de</strong> Parasitología efectuado <strong>de</strong>l 18 al19 <strong>de</strong> Noviembre <strong>de</strong> 2010 en el auditorio LorenzoSazíe <strong>de</strong> la Facultad <strong>de</strong> Medicina, allí participó nosólo como tesorero <strong>de</strong> SOCHIPA sino como maestro<strong>de</strong> ceremonia y expositor, lo que es fiel reflejo <strong>de</strong>lcarácter <strong>de</strong> Víctor Muñoz, es <strong>de</strong>cir, solidario, buenamigo y gran colaborador. Estaba muy contento<strong>de</strong> participar en el libro <strong>de</strong> Parasitología Humana<strong>de</strong>l cual el suscrito es su editor. Nunca pensé queVíctor Muñoz podría pasar a mejor vida antes queel texto se publicara, pero así es la vida.Con la ida <strong>de</strong> Víctor Muñoz la Facultad <strong>de</strong>Medicina pier<strong>de</strong> a un excelente académico, muyquerido por sus alumnos y colegas <strong>de</strong> la Carrera <strong>de</strong>Tecnología, <strong>de</strong> la asignatura <strong>de</strong> Parasitología y <strong>de</strong> laSociedad Chilena <strong>de</strong> Parasitología.Le damos a su esposa e hijos nuestro mássentido pésame, esperando que el tiempo atenúe eldolor <strong>de</strong> su pronta partida.Prof. Dr. Werner Apt B.Presi<strong>de</strong>nteSociedad Chilena <strong>de</strong> Parasitología50Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 42-48


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-57Serological <strong>de</strong>tection of Trichinella spiralis andTrichinella britovi in wild boar by ELISA usingan excretor-secretor antigen and a cru<strong>de</strong> antigenGAMITO-SANTOS J.A., BLANCO-CIUDAD J., SUÁREZ-LÓPEZ I., SERRANO-AGUILERA F.J.and PÉREZ-MARTÍN J.E.Parasitology, Animal Health Department, Veterinary Faculty, 10071 Cáceres, Spain.ABSTRACTThe enzyme-linked immunosorbent assay (ELISA) method is extensively used in epi<strong>de</strong>miologicalstudies in or<strong>de</strong>r to establish Trichinella negligible areas. In this study, we examined the sensitivity obtainedby the ELISA method using different antigens and the two Trichinella species found in Spain. We analyzedthe humoral evolution that is produced with the Excretor-Secretor (ES) and Cru<strong>de</strong> Larval (CWE) antigens,in two species of Trichinella. The results confirm greater precocity and persistence of antibodies when facedwith higher infective doses and better <strong>de</strong>tection of Trichinella spp. when using the antigen homologous tothe infected species. The sensitivity obtained with ELISA is at least equal to that of digestion and greater ifTrichinella britovi antigens are used. We have <strong>de</strong>monstrated a distinct kinetic pattern in the two species ofTrichinella studied. Our results support the usefulness of this method in epi<strong>de</strong>miological surveillance andits optimization for the use as a serological test in the <strong>de</strong>tection of this zoonosis.Key words: Trichinella, ELISA, Excretor-Secretor antigen, Cru<strong>de</strong> antigen, wild boar, Spain.RESUMENEl método ELISA (enzyme-linked immunosorbent assay) es muy utilizado en estudios epi<strong>de</strong>miológicospara establecer áreas libres <strong>de</strong> Trichinella. En este estudio, vemos la sensibilidad que se obtiene por el métodoELISA utilizando diferentes antígenos y las dos especies <strong>de</strong> Trichinella presentes en España. Analizamos laevolución humoral que se produce ante los antígenos Excretor-Secretor (ES) y Bruto Larvario (CWE) y enlas dos especies <strong>de</strong> Trichinella. Para esto, utilizamos 22 jabalíes encuadrados en cuatro grupos: infectadoscon 200 larvas <strong>de</strong> Trichinella spiralis/Trichinella britovi, infectados con 1.000 larvas <strong>de</strong> T. spiralis/T.britovi, infectados con 20.000 larvas <strong>de</strong> T. spiralis/T. britovi y grupo control. Los resultados concluyen unamayor precocidad y persistencia <strong>de</strong> anticuerpos ante dosis infectivas más elevadas y una mejor <strong>de</strong>tección<strong>de</strong> Trichinella al utilizar el antígeno homólogo a la especie infectante. La sensibilidad que se obtiene conReceived: 20 December 2010. Accepted: 15 February 2011.Corresponding: J E Pérez MartínE-mail: juanerpm@gmail.comTelephone: 34-927257115, Fax: 34-92725711051


J. A. GAMITO SANTOS et al.el ELISA es como mínimo igual a la <strong>de</strong> la digestión y, mayor si se utiliza antígenos <strong>de</strong> T. britovi. Hemosevi<strong>de</strong>nciado un diferente patrón cinético en las dos especies <strong>de</strong> Trichinella estudiadas. Nuestros resultadosavalan la utilidad <strong>de</strong> este método en vigilancia epi<strong>de</strong>miológica y su optimización para su utilización comotest serológico en la <strong>de</strong>tección <strong>de</strong> esta zoonosis.Palabras clave: Trichinella, ELISA, Antígeno Excretor-Secretor, Antígeno bruto larvario, jabalí,España.INTRODUCTIONImmunological diagnostic techniques are beingused with greater frequency in the study of diseases.In the case of trichinellosis, immunologicaldiagnosis is not used as the method of reference;according to Regulation 2075/2005 of the EuropeanUnion, the official method is magnetic artificialdigestion. The first studies were promising, serologicalmethods being found to be superior to directmethods (Van Knapen et al, 1980, 1981a,b, 1984).The high sensitivity <strong>de</strong>tected surpasses that of otherserological techniques (Van Knapen et al, 1976).However, in spite of all this, following <strong>de</strong>ficienciesfound in terms of possible cross-reactivity, false negatives,etc., these authors arrive at the conclusion thatELISA should be accepted only in epi<strong>de</strong>miologicalstudies. The antigen of choice for the study of trichinellosisin swine has been the excretor-secretor T. spiralis(Murrell et al, 1986; Van <strong>de</strong>r Leek et al, 1992;Reiterová et al, 1999; Gamble 1996, 1998; Nöckleret al, 1995; Kapel et al, 1998; Ribicich et al, 2000).In terms of superiority of one antigen over another,there is no unanimity. Thus Gamble et al, (1983) statedthat it is better to use the ES antigen rather thanthe cru<strong>de</strong> antigen, given that while with the latteralmost 9% of false positive animals were obtained,with the former type of antigen this does not occur.These results are also confirmed by other researcherssuch as Arriaga (1989a, b) or Bolás Fernán<strong>de</strong>z et al.(1993). On the other hand, Lind et al, (1991) arriveat the conclusion that the cru<strong>de</strong> antigen is more sensitive,given that earlier sero-conversions are obtainedthan with other more purified antigens, pointing outthat with the latter the sensitivity of the techniquecould be reduced.We carried out an ELISA using Excretor-Secretor antigen and cru<strong>de</strong> Antigen of the twospecies of Trichinella found in Spain: T. spiralisand T. britovi. Our study focused on wild boar, animportant species that can act as a source of bothwild and domestic trichinellosis and for which thereare few previous studies.MATERIALS AND METHODSTest animals and blood recovery22 wild boars from various estates from theregion of Cáceres (Spain), of both sexes, aged between2 and 4 months at the beginning of the experiment,weighing between 3.95 and 22 kg, wereused in the experiment. They were captured accordingto authorized methods with the required officialpermits.For the duration of the experiment the animalswere held in the facilities <strong>de</strong>signed for infectiousand contagious diseases in the Clinical Hospital ofthe Veterinary Faculty of Cáceres, the University ofExtremadura (Spain).The two isolates used were obtained from wildboars shot in hunts that took place in the AutonomousRegion of Extremadura (Spain). For T. spiralis, (T1)the isolate ISS-512, from a wild boar shot in 1997in Deleitosa (Cáceres, Spain) was used, and for T.britovi (T3), the isolate ISS-308, from a wild boarshot in 1993 in Carrascalejo (Cáceres, Spain). Bothisolates were maintained by periodic passage inSwiss NBC mice. The infectious dose was appliedto the wild boars through a gastric tube. The dosesadministered and the division into groups are shownin Table 1.Blood samples were collected by jugular venipuncture.Wild boars were anesthetized usingblowgun. We use Zoletil 100® whose compositionper milliliter is: Teletamina 50 milligram and Zolacepam50 milligram. We inject 10 milligram per kilogramof weight. From each wild boar blood wastaken on days -5, 0, 5, 10, 15, 20, 25, 30, 40, 50, 60,75, 90, 105 and 125 d.pi (days post infection). Serawere isolated by centrifugation and frozen at -60º Cuntil used.52Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-57


DETECTION OF TRICHINELLA SPP. IN WILD BOAR BY ELISATable 1. Distribution in groups and dosesGroups Wild boar Species Dose1 1, 2 & 3 T. spiralis 2002 4, 5 & 6 T. spiralis 1,0003 7, 8 & 9 T. spiralis 20,000Control A, B, C & D ******* *******4 13, 14 & 15 T. britovi 2005 16, 17 & 18 T. britovi 1,0006 19, 20 & 21 T. britovi 20,000Larval recovery and countingThe numbers of muscle larvae were <strong>de</strong>terminedin the diaphragm. Muscles were examined by theartificial digestion procedure for the presence of T.spiralis or T. britovi. We digested approximately25g of muscular tissue, with the exception of lowinfection loads for which the tissue digested wasincreased. The larvae were isolated and the muscularload was calculated in larvae per gram (LPG).Preparation of antigens• Preparation of cru<strong>de</strong> muscle larva antigen.We followed the gui<strong>de</strong>lines proposed by theCEE workgroup on trichinellosis (Ruitenberg etal, 1976), with slight modifications. The larvaeobtained following artificial digestion werecleaned of tissue residues with 10 washes in PBS(Phosphate Buffer Saline) to which one gramof streptomycin sulphate and 1,000,000 I.U. ofpenicillin G sodium per liter of PBS was ad<strong>de</strong>d.For approximately 30 seconds, sedimentationof the larvae was carried out using gentlecentrifugation, aspirating the supernatant witha vacuum pump. They were then homogenizedin PBS with ultrasound at 4º C for one hour.With this, the soluble fraction of the antigenwas obtained through centrifugation at 2,000gdiminishing the insoluble part. In or<strong>de</strong>r to<strong>de</strong>termine protein concentration, a modifiedversion of the Bradford method (CoomassiePlus Protein Assay, of Pierce), was carried out,according to commercial instructions.• Preparation of E/S antigen.The obtaining of larvae 1, and the post washwith sterile antibiotic PBS were carried out as<strong>de</strong>scribed for cru<strong>de</strong> larva antigen. They werethen transferred to a RPMI 1640 Mediumsupplemented with L-Glutamine and with 20mM HEPES, to which penicillin (500 I.U./ ml)and streptomycin (500 I.U./ml) were ad<strong>de</strong>din the ratio of 5,000 larvae 1/ml. The culturewas incubated in a heater at 37º C with 90%humidity and 10% CO 2for 48 hours. At 24and 48 hours, the viability of the larvae waschecked through observation of the culturein an inverted microscope, those displayingmore than 5% <strong>de</strong>ad larvae being discar<strong>de</strong>d.The medium was then centrifuged at 1,000g,obtaining and filtering the supernatant througha sterile membrane of 0.20 µm pore diameter.The protein content was assessed.ELISA testAn indirect double-antibody micro-ELISA(enzyme-linked immunosorbent assay) method wasused in or<strong>de</strong>r to <strong>de</strong>tect circulating antibodies fromthe serum of the wild boars.Micro-ELISA 96-well flat bottomed polystyreneplates (Corning Incorporated), of 300 µl capacity,were used. The protocol used was based on thestandardization carried out by Pérez Martín etal, (1994). In each well, 100 µl of antigen at aconcentration of 3µg/ml was placed, dissolved ina 0.1 M carbonate buffer pH 9.6. They were thenincubated with forced air at 37 ºC for 4 hours.Following the incubation, washing was carriedout with a solution of 0.01 M PBS pH 7.2-7.3 with0.05% Tween-20 (PBS-Tw20), with the help of anautomatic washer (AM60 Multi-Reagent Washer,Dinex Technologies), performing three washes of30 seconds. Following the first wash, 5% bovineserum albumin (BSA) was ad<strong>de</strong>d (200 µl) in PBSpH 7.2, the plates being incubated at 37 ºC for30 minutes. A further wash was then carried out.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-5753


J. A. GAMITO SANTOS et al.Once the plates were coated, we filled each wellwith 100µl of prediluted serum. This predilutionwas obtained by diluting the serum in PBS-Tw20 to 1/1000. We incubated the serum in thewells for 45 minutes at 37 ºC and then washedit. Following this step we ad<strong>de</strong>d 100 µl ofimmuno-conjugate (anti-pig IgG conjugate withperoxidase) per well, diluted to 1/25000 in PBS-Tw20. It was incubated again for 45 minutes at37 º C, being washed three more times. Finally,100µl of substrate was ad<strong>de</strong>d per well (0.01%3,3´, 5,5´- Tetramethylbenzidine dihydrochlori<strong>de</strong>in a 0.1 M pH 5 citrate buffer, also adding 3µl/ml ofH 2O 2of vol. 10) and incubated at 37ºC in darknessfor approximately 8-10 minutes. The reaction wasstopped by applying 50 µl of H 2SO 43N per well.We carried out a measurement of the plates usingthe spectrophotometer (MRX Microplate Rea<strong>de</strong>r,Dinex Technologies), at a wavelength (λ) of 450nm.The percentage of reactivity was expressed inaccordance with Pérez Martín et al, (1994) according%reactivity = [ ODsample -ODnegative control] x 100ODpositivecontrol - ODnegativecontrolto the formula:Diagnostic limits used in the studyThe diagnostic limits used in this study wereobtained from the analysis of 1,000 wild boarsshot in various hunts in the Autonomous Region ofExtremadura (Spain).From statistical data from the Junta <strong>de</strong>Extremadura on animals shot in previous years, wecalculated an average of 11,902 wild boars huntedper season, this being used as a reference for thecalculation of the representative sample.90% and 99% confi<strong>de</strong>nce limits are obtainedwith the help of the average and the standard<strong>de</strong>viation of the wild boars studied. Thus:• 90% is the Average of the Reactivity percentage+1,645 x Standard Deviation (DS). This isthe limit up to which the serum is consi<strong>de</strong>rednegative (cut-off 1).• 99% is the Average of the Reactivity percentage+3 x Standard Deviation (DS). This is the limitfrom which the serum is consi<strong>de</strong>red positive(cut-off 2).• Between both limits, the wild boars areTable 2. Confi<strong>de</strong>nce limits99% confi<strong>de</strong>ncelimit(cut-off 2 value)consi<strong>de</strong>red doubtful.Diagnostic limits used for ELISA are shown inTable 2.RESULTS% Reactivity90% confi<strong>de</strong>ncelimit(cut-off 1 value)ES T1 Antigen 47.41% 29.71%ES T3 Antigen 51.16% 30.77%Cru<strong>de</strong> T1 Antigen 37.97% 22.92%Cru<strong>de</strong> T3 Antigen 45.48% 25.82%Artificial digestionThe results obtained are shown in Table 3.All the wild boars of the experiment wereparasitized with larvae 1 Trichinella spp., with theexception of number 17, infected with T. britovi,for which no larva was <strong>de</strong>tected using artificialdigestion.Wild boar number 19 showed a negative resultin digestion, although a humoral reaction wasobserved. On carrying out trichinelloscopy, weobserved calcified cysts which, due to infectioneffects, would lead to this animal being consi<strong>de</strong>redpositive.ELISAThe results of the humoral evolution are shownin Figures 1, 2, 3 and 4.The four wild boars inclu<strong>de</strong>d in the controlgroup were free from Trichinella followingartificial digestion of more than 500g of muscletissue, and were shown to be negative for the fourantigens used by the ELISA technique throughoutthe experiment.In groups 3 and 6, higher infective doses wereapplied (20,000 larvae 1) and we have obtainedhigher infective loads. In groups 3 and 6 serologicalresponse increase from 15 d.p.i. and the globalreactivity was significantly higher than in otherinfected groups. In groups 2, 3 and 6, we obtain thehighest persistence of high reactivity, up until the54Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-57


DETECTION OF TRICHINELLA SPP. IN WILD BOAR BY ELISATable 3. Artificial digestion resultsGroups and doses Wild boar l.p.g. a1 1 0.28T. spiralis 2 0.15(200 L1) 3 0.322 4 4.49T. spiralis 5 91.16(1,000 L1) 6 134.513 7 1276.19T. spiralis 8 206.77(20,000 L1) 9 1673.064 13 0.12T. britovi 14 0.04*(200 L1) 15 0.45 16 0.48**T. britovi 17 0(1,000 L1) 18 0.26 19 0T. britovi 20 203.28(20,000 L1) 21*** 196.35* The larvae were <strong>de</strong>tected only in abdominal muscles(following standard procedure, on non-<strong>de</strong>tection oflarvae in the diaphragm, we analyzed the rest of themuscles using artificial digestion).** The larvae were <strong>de</strong>tected only in inter-costal muscles.*** Died at 30 days PI. Thus, it has not been inclu<strong>de</strong>din humoral evolution graphics.al.p.g., larvae per gram muscle tissueFigure 1. Antibody level of groups of wild boarsmeasured by ELISA employing cru<strong>de</strong> antigen from T.spiralis.Figure 2. Antibody level of groups of wild boars measuredby ELISA employing cru<strong>de</strong> antigen from T. britovi.Figure 3. Antibody level of groups of wild boars measuredby ELISA employing ES antigen from T. spiralis.Figure 4. Antibody level of groups of wild boars measuredby ELISA employing ES antigen from T. britovi.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-5755


J. A. GAMITO SANTOS et al.Table 4. Sensitivity found <strong>de</strong>pending of the techniqueTechnique Wild Boar SensitivityDigestion method(5 gr.)1 2 3 4 5 6 7 8 9 13 14 15 16 18 19 20+ - + + + + + + + - - + + - - + 68.75 %ES T1 Antigen - + - - + + + + + - + - + + + + 68.75 %40 d.piES T1 Antigen - + - + + + + + + - D - - D D D 68.75 %125 d.piES T3 Antigen - + D + + + + + + - + + + + + + 87.5 %40 DPIES T3 Antigen - + D + + + + + + D + D D D + + 93.75 %125 d.piCru<strong>de</strong> T1 Antigen- + - + + + + + + - + + + + + + 81.25 %40 d.piCru<strong>de</strong> T1 - + - + + + + + + D - - - + + D 68.75 %Antigen 125d.piCru<strong>de</strong> T3 Antigen- + D + + + + + + - + + + + + + 87.5 %40 d.piCru<strong>de</strong> T3 - + D + + + + + + + D D D + + + 93.75 %Antigen 125d.piD, doubtful; d.pi, days post infection; ES, Excretor Secretor; T1, T. spiralis; T3, T. britovi.end of the experiment. Other groups reach levels ofdoubtful with some of the antigens used.We observed greater precocity and persistenceof antibodies using antigens homologous to theinfected species. This can be seen in figure 3 and4 where we observed greater precocity and higherpersistence of antibodies in groups of wild boars infectedwith T. britovi (groups 4, 5 and 6) as opposedto the ES T3 Antigen (Figure 4). This precocityand persistence is lower if we compare these samegroups as opposed to the ES T1 Antigen (Figure 3).The sensitivity found at 40 and 125 d.pi for eachantigen is displayed in Table 4.DISCUSSIONThe results obtained show a greater susceptibilityof wild boar to T. spiralis. This finding in wild boaris in accordance with results published by Kapel in2001 and Gamito-Santos et al, (2009).The immunoenzymatic diagnostic techniquesare more sensitive than artificial digestion, coincidingwith studies un<strong>de</strong>rtaken in porcine livestock,such as that of Van Knapen et al. (1980, 1981a,b,1984), Mad<strong>de</strong>n and Murrell (1990) or that of Nöckleret al, (2000). Thus, with ES T1 Antigen at 40d.pi, and ES T1 Antigens and cru<strong>de</strong> T1 Antigen,both at 125 d.pi, the same sensitivity as digestionis obtained. The rest surpass digestion in terms ofsensitivity.Assessing both antigens, in our study ES T1Antigen is less sensitive than the cru<strong>de</strong> T1 Antigenat 40 d.pi, contradicting studies by Gamble et al, in1983 and corroborating other studies in pigs suchas that of Lind et al, (1991), Bolás Fernán<strong>de</strong>z etal, (1993) or Pozio et al, (2003). ES T3 Antigenand cru<strong>de</strong> T3 Antigen have the same sensitivity at40 d.pi as at 125 d.pi. We agree with Serrano et al,(1992) in a study of pigs.We have <strong>de</strong>monstrated a ten<strong>de</strong>ncy for serologicalresponse to be more intense and earlier in wildboars infected with 20,000 larvae 1 (groups 3 and6) in comparison to those infected with 200 larvae 156Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-57


DETECTION OF TRICHINELLA SPP. IN WILD BOAR BY ELISA(groups 1 and 4). In fact, the greatest <strong>de</strong>lay in positivityof an infected wild boar with 20,000 larvae1, was placed at 40 d.p.i using ES T1 Antigen. Onaverage, wild boars infected with 200 L1 are normallypositive around 40-50 d.pi, ups and downsbeing produced in the kinetics, attributable to thelow infection load and the idiosyncrasy of the animalitself. These results do not coinci<strong>de</strong> with thoseobtained by Smith (1987) or Van <strong>de</strong>r Leek et al,(1992); for them, pigs infected with a dose of 100L1 reached positivity at 79-86 d.pi and at 49-54 d.pirespectively. These differences are due fundamentallyto the animal study is different. We are talkingabout research on pigs and not wild boars. Inaddition, the methodology of the ELISA techniquecan vary as can the diagnostic limit, type of antigenused and the variability of the phenomenon studied.Wild boars infected with 20,000 L1 (groups 3 and6) are positive around 15-20 d.pi coinciding withstudies in pigs by Ruitenberg et al. (1976), Ruitenbergand Van Knapen (1977), Van Knapen etal, (1980), Kociecka (1981), Rapic et al, (1981),Gamble et al, (1983, 1989), Takada et al, (1985),Serrano et al, (1992) or Kapel and Gamble (2000).We agree with Møller et al, (2005), that <strong>de</strong>tectedseroconversion in wild boar infected with 10,000L1 around 21 d.pi.We observed a lower humoral response in wildboars infected with T. spiralis so we can <strong>de</strong>ducethat this species is less immunogenic in wild boar.The greater adaptation of T. spiralis in wild boar isseen to Gamito-Santos et al, (2009).In general, we observed two types of kineticsthat correspond <strong>de</strong>pending on the species ofTrichinella that infected the wild boar. Thus, inwild boars infected with T. spiralis (groups 1, 2and 3), the increase in antibodies is constant fromthe first week post-infection until the end of theexperiment. Therefore, the maximum response inthe production of antibodies was found from 30-40d.pi until the end of the experiment. In wild boarsinfected with T. britovi (groups 4, 5 and 6), a clearpeak in the production of antibodies around day 30-50 p.i. was observed, later <strong>de</strong>creasing until the endof the experiment. We coinci<strong>de</strong> with a study carriedout by Kapel (2001) in wild boar. The kinetic ofantibodies according to the species of Trichinellahas been studied in pigs by Kapel and Gamble(2000). They consi<strong>de</strong>red unlike our study that T.spiralis and T. britovi have the same kinetic patron;the level of antibodies increasing from between 21and 35 d.pi and remaining stable until experimentend (week 40 post infection). These differencesin the kinetics of antibodies could be explainedby the distinct larval behavior of the two speciesof Trichinella. Thus, when faced with T. spiralis,the organism responds gradually and it is capableof forming a cyst in musculature and remainingviable. On the other hand, T. britovi provokes amore intense immune reaction, that possibly givesrise to fewer larvae getting to the muscle, or beingcalcified and <strong>de</strong>stroyed once formed into cysts.A better <strong>de</strong>tection of antibodies using thehomologous antigen is also reflected in studies inpigs such as that by Kapel and Gamble (2000).The presence of infection in our wild boars byprotozoa (Balantidium coli and Sarcocystis spp.),acanthocephala (Macracanthorhynchus hirudinaceus)and nemato<strong>de</strong>s (Metastrongylus spp., Strongylidaspp., Ascarops strongylina and Oesophagostomum<strong>de</strong>ntatum), although able to producea slight increase in the percentage of reactivity,did not affect the final result of the technique, notcausing even one false positive result. No cross reactivitywas found and thus we coinci<strong>de</strong> with authorssuch as Ruitenberg et al, (1975), Taylor andKenny (1978), Rapic et al, (1981), Van Knapen etal, (1984), Navarrete et al, (1991), Serrano et al,(1992), Bolás Fernán<strong>de</strong>z et al, (1993), Frontera etal, (2007) or Kořínková et al, (2008) who indicatethat the effect of other infections in the result of thisimmunoenzymatic technique is zero or very slight.With our results we can affirm that the ELISAimmunoenzymatic technique has greater sensitivitythan artificial digestion and it is useful in epi<strong>de</strong>miologicalsurveillance. In investigation, we mustcontinue studying for the validation of a serologicaltest for the official <strong>de</strong>tection of Trichinella in wildboar.REFERENCES1. ARRIAGA C, MUÑIZ E, MORILLA A, ORTEGA‐PIERRES MG. 1989a. Evaluation of purified surfacestichosomal components of Trichinella spiralis musclelarvae for diagnosis of swine trichinellosis. In: Trichinellosis.(Tanner, C.E.; Martínez Fernán<strong>de</strong>z, A.R.; BolásFernán<strong>de</strong>z, F., Eds.). C.S.I.C. Press. Madrid. España.,182‐187.2. ARRIAGA C, MUÑIZ E, MORILLA A, ORTEGA‐PIERRES MG. 1989b. Trichinella spiralis: recognitionRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-5757


J. A. GAMITO SANTOS et al.of muscle larva antigens during experimental infection ofswine and its potential use in diagnosis. Exp Parasitol 69:363-372.3. BOLÁS-FERNÁNDEZ F, ALBARRÁN-GÓMEZ E,NAVARRETE I, MARTÍNEZ-FERNÁNDEZ AR. 1993.Dynamics of Porcine Humoral Responses to ExperimentalInfections by Spanish Trichinella Isolates: Comparisonof Three Larval Antigens in ELISA. J Vet Med 40:229-238.4. EUROPEAN COMMUNITY, 2005. Regulation (EC)No 2075/2005 of the European Parliament and of theCouncil of 5 December 2005 laying down specific ruleson official controls for Trichinella in meat. Off. J. EC, L338, 60-82.5. FRONTERA E, ALCAIDE M, BOES J, HERNÁNDEZS, DOMÍNGUEZ-ALPÍZAR JL, REINA D. 2007. Concurrentinfection with Trichinella spiralis and other helminthsin pigs. Vet Parasitol 146: 50-57.6. GAMBLE HR. 1996. Detection of trichinellosis in pigsby artificial digestion and enzyme immunoassay. J FoodProt 59: 295-298.7. GAMBLE HR. 1998. Sensitivity of artificial digestionand enzyme immunoassay methods of inspection fortrichinae in pigs. J Food Prot 61: 339-343.8. GAMBLE HR, ANDERSON WR, GRAHAM CE,MURRELL KD. 1983. Diagnosis of swine trichinosisby enzyme‐linked immunosorbent assay (ELISA) usingand excretory‐secretory antigen. Vet Parasitol 13 (4):349‐361.9. GAMBLE HR, RAPIC D, MARINCULIC A, MU-RRELL KD. 1989. Factors influencing the efficacy of excretory‐secretoryantigens in the serodiagnosis of swinetrichinellosis. In: Trichinellosis. (Tanner, C.E.; MartínezFernán<strong>de</strong>z, A.R.; Bolás Fernán<strong>de</strong>z, F., Eds.). C.S.I.C.Press. Madrid. España., 202‐209.10. GAMITO-SANTOS JA, GÓMEZ L, CALERO-BER-NAL R, ROL-DÍAZ JA, GONZÁLEZ RUIBAL L,GÓMEZ-BLÁZQUEZ M, PÉREZ MARTÍN JE. 2009.Histopathology of trichinellosis in wild boar. Vet Parasitol165: 165-169.11. KAPEL CMO, WEBSTER P, LIND P, POZIO E,HENRIKSEN SA, MURRELL KD, NANSEN P. 1998.Trichinella spiralis, T. britovi and T. nativa: infectivity,larval distribution in muscle, and antibody response afterexperimental infection of pigs. Parasitol Res 84 (4): 264-271.12. KAPEL CM. 2001. Sylvatic and domestic Trichinellaspp. in wild boars; infectivity, muscle larvae distribution,and antibody response. J Parasitol 87 (2): 309-314.13. KAPEL CMO, GAMBLE HR. 2000. Infectivity, persistenceand antibody response to domestic and sylvaticTrichinella spp. in experimentally infected pigs. Int JParasitol 30 (2): 215-221.14. KOCIECKA W. 1981. Clinical picture of trichinellosis asrelated to the species and strain of Trichinella and to theintensity of invasion. W Parazyt 27(3): 399-482.15. KOŘÍNKOVÁ K, KOVAŘČÍK K, PAVLÍČKOVÁ Z,SVOBODA M, KOUDELA B. 2008. Serological <strong>de</strong>tectionof Trichinella spiralis in swine by ELISA (enzyme-linkedimmunosorbent assay) using an excretorysecretory(E/S) antigen. Parasitol Res 102: 1317-1320.16. LIND P, ERIKSEN L, HENRIKSEN SA, HOMAN WL,VAN KNAPEN F, NANSEN P, STAHL-SKOV P. 1991.Diagnostic tests for Trichinella spiralis infection in pigs.A comparative study of ELISA for specific antibodyand histamine release from blood cells in experimentalinfections. Vet Parasitol 39: 241-252.17. MADDEN KB, MURRELL KD. 1990. Inmunodiagnosisof nemato<strong>de</strong> infections and prospects for vaccination,with especial reference to Trichinella spiralis. Rev SciTech OIE 9(2): 519-532.18. MØLLER LN, PETERSEN E, GAMBLE HR, KAPELCMO. 2005. Comparison of two antigens for <strong>de</strong>monstrationof Trichinella spp. antibodies in blood andmuscle fluid of foxes, pigs and wild boars. Vet Parasitol132: 81-84.19. MURRELL KD, ANDERSON WR, SCHAD GA, HAN-BURY RD, KAZACOS KR, GAMBLE HR, BROWN J.1986. Field evaluation of the enzyme‐linked immunosorbentassay for swine trichinosis: Efficacy of the excretory‐secretoryantigen. Am J Vet Res 47 (5): 1046‐1049.20. NAVARRETE I, CALERO R, REINA D, SERRANOFJ. 1991. Programas <strong>de</strong> acciones contra la trichinellosis.Servicio <strong>de</strong> Publicaciones Universidad <strong>de</strong> Extremadura.Cáceres/Badajoz.21. NÖCKLER K, POZIO E, VOIGT WP, HEIDRICH J.2000. Detection of Trichinella infection in food animals.Vet Parasitol 93: 335-350.22. NÖCKLER K, VOIGT WP, PROTZ D, MIKO A,ZIEDLER K. 1995. Intravitale Diagnostik <strong>de</strong>r Trichinellosebeim Schwein mit <strong>de</strong>m indirekten ELISA [indirectELISA for the diagnosis of trichinellosis in living pigs].Berl Münch Tierärztl Wochenschr 108: 167-174.23. PÉREZ-MARTÍN JE, SERRANO F, REINA D, NA-VARRETE I. 1994. Evolution of swine humoral responseto CWE and ES antigens in ligth Trichinella infection byELISA test. In: Trichinellosis (Campbell, W.C.; Pozio,E.; Bruschi, F., Eds.). Istituto Superiore di Sanitá Press.Roma., 359-364.24. POZIO E, GÓMEZ-MORALES MA, DUPOUY-CA-MET J. 2003. Clinical aspect, diagnosis and treatment oftrichinellosis. Expert Rev Anti-infect Ther 1(3): 471-482.25. RAPIC D, DZACULA N, ZUKOVIC M. 1981. A studyof the cross reaction between trichinellosis and metastrongylosisin pigs by Enzyme Linked ImmunosorbentAssay (ELISA). Vet Arch 51: 223‐227.26. REITEROVÁ K, DUBINSKÝ P, KLIMENKO VV,TOMAŠOVIČOVÁ O, DVOROŽŇÁKOVÁ E. 1999.Comparison of Trichinella spiralis larva antigens for the<strong>de</strong>tection of specific antibodies in pigs. Vet Med-Czech44: 1-5.27. RIBICICH M, MIGUEZ M, FRANCA A, BASSON, GAMBLE RH, SANTILLAN G, MOLINA V,GUARNERA E. 2000. Evaluation of ELISA test for thediagnosis of porcine trichinellosis. Pig J 46: 24-34.28. RUITENBERG EJ, STEERENBERG PA, BROSI BJM,BUYS J. 1975. ELISA (enzyme‐liked immunosorbentassay) as preventive and representative control methodfor the <strong>de</strong>tection of Trichinella spiralis infections inslaughter pigs. W Parazyt 21(4‐5): 747‐751.29. RUITENBERG EJ, STEERENBERG PA, BROSI BJM,BUYS J. 1976. Reliability of the enzyme‐linked immunosorbentassay (ELISA) for the serodiagnosis of Trichinellaspiralis infections in conventionally raised pigs. JImmunol Methods 101(2): 57-70.30. RUITENBERG EJ, VAN KNAPEN F. 1977. En-58Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 49-57


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-64Immunisation of rabbits with house dust miteextract does not protect against infection byGraphidium strigosumCUQUERELLA M., FAWZI E.M., PARAMIO R. and ALUNDA J.M. 11Departamento <strong>de</strong> Sanidad Animal, Facultad <strong>de</strong> Veterinaria, Universidad Complutense <strong>de</strong> Madrid, 28040 Madrid, Spain.ABSTRACTThe effect of prior immunisation of rabbits with house dust mite extract (DpSE) on the challenge with750 L3 of Graphidium strigosum, and the effect of immunisation with DpSE on a chronic gastric infectionof rabbits with G. strigosum were studied. Immunisation did not provoke any significant variation in thehaematological (packed cell volume, leukocyte and eosinophil counts) and parasitological (prepatency period,parasite egg output and parasite bur<strong>de</strong>n) parameters <strong>de</strong>termined in the infected rabbits. However, immunisationwith DpSE elicited a significant increase in IgG levels against both DpSE and G. strigosum soluble extract(ASE Gs). Higher levels of circulating anti-ASE Gs antibodies in immunised rabbits with a chronic helminthinfection could be related to the cross-reactivity between DpSE and ASE Gs (ELISA and Western blotting).Key words: Graphidium strigosum, rabbits, house dust mite extract, helminths, Westernblotting.RESUMENSe ha estudiado el efecto <strong>de</strong> la inmunización previa <strong>de</strong> conejos con extracto <strong>de</strong> ácaro <strong>de</strong>l polvo (DpSE)sobre la infestación con 750 L3 <strong>de</strong> Graphidium strigosum, así como el efecto <strong>de</strong> la inmunización al seradministrada en conejos con una infestación crónica por G. strigosum. La inmunización no provocóvariaciones significativas en los parámetros hematológicos (valor hematocrito, recuentos <strong>de</strong> leucocitosy eosinófilos) y parasitológicos (duración <strong>de</strong>l período <strong>de</strong> prepatencia, eliminación fecal <strong>de</strong> huevos <strong>de</strong>lhelminto, carga parasitaria) <strong>de</strong>terminados en los conejos infestados. Sin embargo, la inmunización conDpSE indujo un incremento significativo <strong>de</strong> los niveles <strong>de</strong> Ig G séricos tanto frente a DpSE como frente aun extracto soluble <strong>de</strong> adultos <strong>de</strong> G. strigosum (ASE Gs). Los niveles elevados <strong>de</strong> anticuerpos circulantesanti-ASE Gs podrían estar relacionados con la antigenicidad cruzada entre DpSE y ASE Gs (ELISA yWestern blotting).Palabras clave: Graphidium strigosum, rabbits, house dust mite extract, helminths, Western blotting.Received: 28 January 2011. Accepted: 15 February 2011.Correspon<strong>de</strong>nce: J.M. Alunda. Dpto. Sanidad Animal. Facultad <strong>de</strong> Veterinaria. Universidad Complutense <strong>de</strong> Madrid.28040 Madrid, Spain.E-mail: jmalunda@vet.ucm.es.Phone: +34 91 3943701. Telefax: +34 91 394390860


IMMUNISATION WITH MITE EXTRACT AGAINST GRAPHIDIUMINTRODUCTIONHelminth infections, particularly gastrointestinal(GI) infections, which are among the mostprevalent human diseases (Horton, 2003), are alsoof primary concern in the veterinary field becauseof the large number of animals affected and thepathogenicity linked to some parasitic species thatinfect livestock. Ostertagia infections, for example,are an important constraint for cattle breedingin temperate regions in both hemispheres; whiletrichostrongylid infections in sheep and goats, particularlyby Haemonchus contortus, are found allover the world and un<strong>de</strong>r certain circumstancesare often the limiting factor for profitable smallruminant production (Waller, 1994). With the notableexception of zoonotic and parasitic infectionsfound in pets, low-level multispecific GI infectionsin livestock, where maximum economic output ataffordable cost is the goal, tend to be the rule inmost management systems. Un<strong>de</strong>r these prevailingconditions, it is expected that inter-specific interactions(synergy, antagonism) would appear, thusaffecting pathogenicity and the immune responseelicited.The potential interest of interactions betweenparasitic populations affecting the same animal hosthas been recognised (Petney and Andrews, 1998;Lello et al., 2004; Bor<strong>de</strong>s and Morand, 2009), althoughthe mechanisms involved are unclear. Forexample, it has been reported that the infestationof lambs with the nasal bot Oestrus ovis affects GIhelminths living in the abomasum (H. contortus;Terefe et al, 2005; Yacob et al, 2008) and the smallintestine (Trichostrongylus colubriformis; Yacobet al., 2004, 2006). The disappearance of myasistherefore induces a down-regulation of the hostresponse against the helminth infection related toan unspecific eosinophilic response (Yacob et al,2006). To the best of our knowledge, no informationon the effect of skin parasitism or skin parasiteproducts on a helminth infection has been reportedto date, <strong>de</strong>spite the frequency of mite infestationsand helminth infections in livestock. The aetiologicalagent of sarcoptic mange, Sarcoptes scabiei,presents cross-reactivity with the house dust miteDermatophagoi<strong>de</strong>s pteronyssinus (Hejduk et al,2010). On these grounds, a soluble extract of thismite (DpSE) was used to <strong>de</strong>termine its effect onthe experimental infection of rabbits by the gastricnemato<strong>de</strong> Graphidium strigosum. As part of theexperiment, immunisation was carried out, eitherprior to infection with the nemato<strong>de</strong> or on animalswith a chronic helminth infection.MATERIAL AND METHODSParasites: An isolate of the gastric nemato<strong>de</strong> G.strigosum recently obtained from naturally infectedwild rabbits in the Autonomous Community of Madrid(Spain) and maintained in our animal facilitiesby serial passage in donor rabbits was employed forthe experimental helminth infections. Third-stagelarvae (L3) were obtained by coproculture (26 C,10 days), Baermannized and kept un<strong>de</strong>r refrigerationuntil used. Rabbits were infected experimentallyusing a bucoesophagic catheter as <strong>de</strong>scribedpreviously (Cuquerella and Alunda, 2009).Experimental animals and <strong>de</strong>sign: Twenty-twotwo-month-old female New Zealand X CaliforniaGiant rabbits (average weight: 2 kg) were purchasedfrom a local animal supplier (Granja SanBernardo, Spain). Coproscopic analysis showed aslight intestinal Eimeria infection; therefore the animalswere treated with Solprim® (sulfamethoxazole+ trimetoprim) (Almirall). Rabbits were maintainedin individual cages with water and pelletedfeed (Harlan) ad libitum for the entire experiment.The effect of prior immunisation of rabbits withD. pteronyssinus extract (DpSE) on the challengewith G. strigosum (Experiment 1), and the effectof the immunisation on a chronic gastric helminthinfection (Experiment 2) were evaluated. Immunisationwas performed by subcutaneous injectionof 100 µg (100 µL) of DpSE (Inmunotek, batch7Y01L) in physiological saline (100 µL). The animalswere randomly allocated to four groups. Inexperiment 1, group 1 (5 rabbits) was inoculatedwith DpSE once a week for three consecutiveweeks (-3, -2, -1), whereas rabbits in group 2 (6animals) were kept untreated; one week later bothgroups (group 1 and group 2) were infected with750 L3 of G. strigosum. The infection was allowedto progress and all animals were euthanised at week16 post-infection. In experiment 2, rabbits in group4 (5 animals) were infected with the same numberof G. strigosum L3, whereas rabbits in group 3 (6animals) were used as the uninfected control. Bothgroups were inoculated with DpSE at weeks 18, 19Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-6461


M. CUQUERELLA et al.and 20 of the experiment. Rabbits (groups 3 and 4)were euthanised at week 26 of the experiment.Parasitological <strong>de</strong>terminations: The faecal eggoutput of G. strigosum was evaluated using a modifiedMcMaster technique (MAFF, 1971). Stomachswere removed immediately after euthanasia,opened, the contents collected, and adult wormsrecovered from the gastric mucosa and counted.Haematological parameters, ELISA and Westernblotting: Weekly blood samples were obtainedfrom all animals by venipuncture of the marginalvein of the ear, with and without anticoagulant.Packed cell volume (PCV), the leukocyte and eosinophilcounts were <strong>de</strong>termined using standardlaboratory techniques (Schalm et al, 1981). Serumspecificantibody levels against D. pteronyssinuswere <strong>de</strong>termined using ELISA. Optimal assay conditionswere <strong>de</strong>termined in a checkerboard manner.Polystyrene microtitre plates were coated with dustmite antigen (DpSE) (1 µg/mL) or adult solubleextract of G. strigosum (ASE Gs) (5µg/mL) and incubatedat 4 C overnight. Rabbit sera were used at1:100 dilution. Alkaline phosphatase-labelled goatanti-rabbit IgG (Sigma) at 1:1000 was used as secondantibody, with 1,4-p-nitrophenyl phosphate (1mg/mL, Boehringer Mannheim) as substrate. Microtitreplates were read at 405 nm and results weregiven as optical <strong>de</strong>nsity (OD) values. ASE Gs andDpSE were fractionated by polyacrylami<strong>de</strong> (12%)gel electrophoresis un<strong>de</strong>r <strong>de</strong>naturing and reducingconditions (SDS-PAGE), as <strong>de</strong>scribed by Cuquerellaand Alunda (2009). Proteins were electroblottedonto Immobilon P (Millipore) membranes.Membrane strips were incubated with rabbit sera(1:100) and the second antibody was peroxidaselabelledgoat anti-rabbit IgG (Sigma). The colourreaction was carried out with 0.5 mg/mL 4-chloro-1-naphthol (Bio Rad).Statistical analysis: Haematological, serologicaland parasitological data were analysed using meanand standard <strong>de</strong>viations. Inter-group comparisons to<strong>de</strong>termine significant differences (PCV, eosinophiland leukocyte counts, IgG, epg) were performedusing a repeated measures GLM analysis, one- andtwo-way ANOVA, post hoc Duncan’s multiplerange test, and a T-test. Statistical analysis wascarried out using SPSS software. Differences wereconsi<strong>de</strong>red significant when P < 0.05.RESULTSEffect of prior immunisation of rabbits withD. pteronyssinus extract on the challenge with G.strigosum.The prepatent period of infection was long (over6 weeks), and maximum epg counts were reachedat week 12 post-infection in both groups of animals(Figure 1). Wi<strong>de</strong> variations in epg values were foundwithin each experimental group, with no significantdifferences between rabbits immunised with DpSE(Group 1) and non-immunised rabbits (Group2). PCV values remained in the physiologicalrange and there was no significant variation ineosinophil counts, irrespective of immunisationor the helminth infection administered. Leukocytecounts in peripheral blood increased throughout theexperimental period (not shown).The immunisation of Group 1 rabbits withthree DpSE inoculations elicited a significant (PFigure 1. Faecal egg output of G.strigosum during the experimentalperiod for DpSE-immunised rabbits(filled squares) and non-immunisedrabbits (empty squares) (experiment1). Data are given as average ± standard<strong>de</strong>viation.62Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-64


IMMUNISATION WITH MITE EXTRACT AGAINST GRAPHIDIUMTable 1. Serum IgG response against G. strigosumsoluble extract in rabbits from experiment 1, asestimated by ELISA. G-1: animals immunisedwith dust house mite extract (DpSE) and challengedwith G. strigosum larvae (week 0). G-2: rabbitsnon-immunised and challenged. Values aremeans ± standard <strong>de</strong>viation.Week Group 1 Group 2-4 0 00 0.537 ± 0.30 0.076 ± 0.10 *4 0.531 ± 0.49 0.228 ± 0.10 *8 0.626 ± 0.36 0.238 ± 0.10 *9 0.579 ± 0.25 0.309 ± 0.1312 0.655 ± 0.27 0.538 ± 0.29* Statistically significant (P 0.05)nemato<strong>de</strong> bur<strong>de</strong>ns and female/male ratios wereobserved upon euthanisation of the animals (Figure2a).Effect of immunisation with D. pteronyssinusextract on a chronic helminth infection (G. strigosum)Figure 3 shows the faecal egg output (epg) ofGroup 4 rabbits subjected to a chronic infection withG. strigosum and immunised with dust mite extract(DpSE). The prepatent period of the infection waslong (6-8 weeks) and an increase of epg counts wasobserved over the experimental period. Uninfectedcontrol rabbits (Group 3) did not show any helmintheggs during this period. None of the animalsdisplayed significant <strong>de</strong>viations of PCV valuesor leukocyte counts (not shown). Examination ofthe animals after euthanisation at week 26 postinfectionshowed an absence of nemato<strong>de</strong>s in thecontrol rabbits, and that the average gastric bur<strong>de</strong>nof helminths in Group 4 (Figure 2b) was higherthan the one found in the previous experiment,although the differences were not significant.Infection of Group 4 rabbits with the helminthwas accompanied by a steady increase in anti-G.strigosum serum IgG antibodies up to week 17post-infection (Table 2). Immunisation of rabbitsfrom both groups with DpSE (weeks 18, 19 and 20)elicited a significant (P < 0.05) response against dustmite extract when compared to pre-immunisationvalues but no differences were observed betweenthe groups (F = 46.98, P = 0.751). Interestingly, inthe infected group (Group 4) there was a significantincrease (P < 0.05) in the anti-ASE Gs IgG responsefollowing immunisation with DpSE (weeks 21 and23 post-infection). Sera from uninfected and DpSEFigure 2. Adult parasite bur<strong>de</strong>ns of G.strigosum in the stomachs of infectedrabbits at the end of experiment 1(Groups 1 & 2; G-1 and G-2) (Figure2a) and experiment 2 (Group 4;G-4) (Figure 2b). White columns:total bur<strong>de</strong>n; black columns: malehelminths; grey columns: femalehelminths. Data are given as average± standard <strong>de</strong>viation.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-6463


M. CUQUERELLA et al.Table 2. Serum IgG response against G. strigosum soluble extract (ASE Gs) and D. pteronyssinus (DpSE),along the experimental period, of rabbits immunised with DpSE (weeks 1 8, 19 and 20) with a chronic infectionwith the helminth (Group 4) or uninfected control animals (Group 3), as estimated by ELISA. Meanoptical <strong>de</strong>nsity values ± standard <strong>de</strong>viationGroup 4 Group 3Week IgG anti-ASE Gs IgG anti-DpSE IgG anti-DpSE0 -4 0.028 ± 0.16 -8 0.082 ± 0.51 0.038 ± 0.02 0.055 ± 0.0117 0.244 ± 0.55 0.053 ± 0.03 0.050 ± 0.0121 0.729 ± 0.42 a 0.408 ± 0.19 b 0.433 ± 0.17 b23 0.604 ± 0.45 a 0.356 ± 0.19 b 0.277 ± 0.09 bDifferent superscripts within each row represent statistically significant differences (P < 0.05).Figure 3: Faecal egg output of G.strigosum during the experimentalperiod for rabbits immunised withhouse dust mite extract (Dp SE).Arrows: days of immunisation withDp SE (experiment 2). Data are givenas average ± standard <strong>de</strong>viation.immunised rabbits (Group 3) cross-reacted withASE Gs in ELISA (not shown). Western blottinganalysis (Figure 4) showed that soluble extractof the nemato<strong>de</strong> was recognised only by infectedrabbits (Figure 4A, lanes 4 & 5), whereas noninfectedand DpSE immunised animals did notreact with the helminth extract. However, pooledsera from infected and non-immunised rabbitsreacted with dust mite extract (ca. 72 KDa) (Figure4B, lane 2’).DISCUSSIONThe experimental infections of rabbits with G.strigosum showed long prepatent periods, as observedin previous trials with this nemato<strong>de</strong> species(Nickel and Haupt, 1986). The lack of significantvariations in the haematological parameters (leukocytes,PCV) <strong>de</strong>termined during the experimentalinfections is in agreement with the low pathogenicityassociated with mo<strong>de</strong>rate parasite bur<strong>de</strong>ns inthis host-parasite mo<strong>de</strong>l (Cuquerella and Alunda,2009). The comparable parasite egg output valuesfrom Groups 1 and 2, and the similar gastricadult helminth bur<strong>de</strong>ns at the end of the experimentprovi<strong>de</strong>d evi<strong>de</strong>nce of the lack of effect of prior immunisationwith house dust mite extract on the helminthchallenge. Similarly, immunisation (DpSE)of animals with a previously established chronicnemato<strong>de</strong> infection had no apparent effect on thefinal number of gastric helminths or the epg patternfound (Group 4). Moreover, the absence of intergroupdifferences in the haematological parameters,irrespective of the treatment received by theanimals (immunisation and/or nemato<strong>de</strong> infection),supports the non-significant effect of the heterologousimmunisation (DpSE) on this gastric helminthinfection.Information concerning the effect of heterolo-64Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-64


IMMUNISATION WITH MITE EXTRACT AGAINST GRAPHIDIUMFigure 4. 4A: Immune recognition patterns (Western blotting) of adult soluble extracts of G. strigosum (ASE Gs) inexperimental rabbits. Lane 1: pooled sera from uninfected control rabbits; lane 2: pooled sera from immunised anduninfected rabbits (group 1, week 0); lane 3: pooled sera from immunised and uninfected control rabbits (Group 3,week 21); lane 4: positive control rabbit (infected with G. strigosum); lane 5: pooled sera from infected (G. strigosum)and immunised rabbits (Group 4, week 21). 4B: Immune recognition patterns (Western blotting) of house dust miteextract (DpSE) in experimental rabbits. Lane 1’: immunised and uninfected rabbits (Group 3, week 23); lane 2’: pooledsera from infected and non-immunised rabbits (Group 4, week 12); lane 3’: positive control rabbit (immunised withDpSE); lane 4’: negative control rabbit. MW: molecular weight markers in kilodaltons.gous immunisation on GI helminth populations isvery scarce. It has been shown that infestations ofO. ovis (nasal bot) in sheep induce lower <strong>de</strong>velopmentand fertility in H. contortus (Terefe et al,2005; Yacob et al, 2008) and t. colubriformis (Yacobet al, 2006). Moreover, some evi<strong>de</strong>nce of interactionhas been found in Sarcoptes infestations andGI helminth parasitism (Balestrieri et al, 2006). Inour experiment, it is interesting to note that, <strong>de</strong>spitethe limited numbers of experimentally immunisedand infected rabbits, inoculation of dust mite extractinduced an increase in serum-specific antibodiesagainst the helminth. This increase was foundboth when immunisation was administered beforeinfection (Group 1) and, particularly, in chronicallyinfected animals (Group 4). The lack of effect ofthese antibodies against helminth <strong>de</strong>velopment isconsistent with the limited role played by IgG antibodiesin other parasitic infections with gastric helminths(e.g. H. contortus in lambs, Gómez-Muñozet al, 1999).At least two reasons, which are not necessarilymutually exclusive, could account for the observedincrease in antibody response against ASEGs after immunisation with DpSE, namely crossantigenicityof the extracts and immune modulationinduced by DpSE inoculation. Apparently, ASE Gsand dust mite extract share some antigenic components.However, <strong>de</strong>spite Western blotting not beinga quantitative technique, we found that the <strong>de</strong>greeof cross-reactivity was low. On the other hand, ithas been shown that helminth infections induce animmune modulation involving, among other mechanisms,Th2 and regulatory responses (i.e. Maizelset al, 2009; Figueiredo et al, 2010). In addition,some findings are consistent with protection againstenteric infections (viral and bacterial) elicited byallergic sensitisation (Black, 2005). The possibilityof host immune modulation by immunisation withDpSE has not been specifically addressed in ourexperiments. Whatever the un<strong>de</strong>rlying mechanismand its relative contribution (cross antigenicity and/or immunomodulation), our results make a strongcase for exploring the possibility of inducing a protectiveresponse against GI helminths with heterologoussubcutaneous immunisation, using differentschedules and adjuvants.REFERENCES1. Balestrieri A, Remonti L, Ferrari N, Fer-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-6465


M. CUQUERELLA et al.rari A, Lo Valvo T, Robetto S, Orusa R.2006. Sarcoptic mange in wild carnivores and its cooccurrencewith parasitic helminths in the Western ItalianAlps. Eur J Wildl Res 52: 196-201.2. Black PN. 2005. Does atopy protect against entericinfections? Allergy 60: 30-34.3. Bor<strong>de</strong>s F, Morand S. 2009. Coevolution betweenmultiple helminth infestations and basal immune investmentin mammals: cumulative effects of polyparasitism?Parasitol Res 106: 33-37.4. Cuquerella M, Alunda JM. 2009. Immunobiologicalcharacterization of Graphidium strigosumexperimental infection in rabbits (Oryctolagus cuniculus).Parasitol Res 104: 371-376.5. Figueiredo CA, Barreto ML, RodriguesLC, Cooper PJ, Silva NB, Amorim LD, Alcantara-NevesNM. 2010. Chronic intestinal helminthinfections are associated with immune hyporesponsivenessand induction of a regulatory network. Infect Imm78: 3160-3167.6. Gómez-Muñoz MT, Cuquerella M, Gómez-Iglesias LA, Mén<strong>de</strong>z S, Fernán<strong>de</strong>z-PérezFJ, <strong>de</strong> la Fuente C, Alunda JM. 1999. Serumantibody response of Castellana sheep to Haemonchuscontortus infection and challenge: relationship toabomasal worm bur<strong>de</strong>ns. Vet Parasitol 15:7. Hejduk G, Hofstätter K, Löwenstein M,Peschke R, Miller I, Joachim A. 2010. Characterisationof Sarcoptes scabiei antigens. Parasitol Res.DOI 10.1007/s00436-010-2063-z.8. Horton J. 2003. Human gastrointestinal helminthinfections: are they now neglected diseases? TrendsParasitol 19: 527-531.9. Lello J, Boag B, Fenton A, StevensonIR, Hudson PJ. 2004. Competition and mutualismamong the gut helminths of a mammalian host. Nature428: 840-844.10. Maizels RM, Pearce EJ, Artis D, YazdanbakhshM, Wynn TA. 2009. Regulation of pathogenesisand immunity in helminth infections. J ExpMed 206: 2059-2066.11. Ministry of Agriculture, Fisheries andFood, MAFF. 1971. Manual of Veterinary ParasitologicalLaboratory Techniques, HMSO, London.12. Nickel EA, Haupt W. 1986. Experimental studieson the course and consequences of infection withGraphidium strigosum (Nematoda, Trichostrongylidae)in Oryctolagus cuniculus (domestic rabbit). AngewParasitol 27: 215-219.13. Petney TN, Andrews RH. 1998. Multiparasitecommunities in animals and humans: frequency,structure and pathogenic significance. Int J Parasitol28: 377-393.14. SCHALM OW, JAIN NC, CARROL EJ. 1981. HematologíaVeterinaria. Edit. Hemisferio Sur S.A. BuenosAires, Argentina.15. Terefe G, Yacob HT, Grisez C, Prevot F, DumasE, Bergeaud JP, Dorchies Ph, Hoste H,Jacquiet P. 2005. Haemonchus contortus egg excretionand female length reduction in sheep previouslyinfected with Oestrus ovis (Diptera: Oestridae) larvae.Vet Parasitol 128: 271-283.16. Waller PJ. 1994. The <strong>de</strong>velopment of anthelminticresistance in ruminant livestock. Acta Tropica 56: 233-243.17. Yacob HT, Dorchies Ph, Jacquiet Ph,Bleuart C, Prevot F, Grisez C, BergeaudJP, Hoste H. 2004. Concurrent parasitic infections ofsheep: Depression of Trichostrongylus colubriformispopulations by a subsequent infection with Oestrusovis. Vet Parasitol 121: 297-306.18. Yacob HT, Terefe G, Jacquiet Ph, Hoste H,Grisez C, Prévot F, Bergeaud JP, DorchiesPh. 2006. Experimental concurrent infection of sheepwith Oestrus ovis and Trichostrongylus colubriformis:Effects of parasitic treatments on interactions betweenparasite populations and blood eosinophilic responses.Vet Parasitol 137: 184-188.19. Yacob HT, Basazinew BK, Basu AK. 2008.Experimental concurrent infection of Afar Breed goatswith Oestrus ovis (L1) and Haemonchus contortus(L3): Interaction between parasite populations, changesin parasitological and basic haematological parameters.Exp Parasitol 120: 180-184.Acknowledgements: English revision by Valerie Stacey isacknowledged. EMF has a predoctoral stu<strong>de</strong>ntship from theSpanish Ministry of Science and Innovation .This researchwas partially fun<strong>de</strong>d by CICYT (AGL2006-10589 grant).66Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 58-64


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-73Cystic echinococcosis in cattle in UruguayHERNÁNDEZ Z. 1 , FERRAGUT G. 2 , IRABUENA O. 2 and CABRERA P. 31Parasitología, Facultad <strong>de</strong> Veterinaria Regional Norte Universidad <strong>de</strong> la República. Rivera 1350 Salto, Uruguay.2Laboratorio <strong>de</strong> Inmunología Regional Norte - Salto U. <strong>de</strong> la República. Uruguay.3Parasitología, Facultad <strong>de</strong> Veterinaria Universidad <strong>de</strong> la República. Uruguay.ABSTRACTIn Uruguay the Echinococcus granulosus sheep strain, agent of cystic echinococcosis, mainly occursin the sheep - dog cycle, but cattle are commonly infected. The objective of this work was to study thecharacteristics of the presence of the larva of E. granulosus in cattle in the northwestern region in Uruguay.Livers and lungs of 1987 slaughtered animals were examined. Metacesto<strong>de</strong>s were found in 10.8% and66.7% of cattle and herds, respectively. Larvae were more frequently found in lungs followed by the liverand localization in both organs simultaneously. The number of larvae per animal showed an over-disperseddistribution. Among the metacesto<strong>de</strong>s, 97.6% were un<strong>de</strong>r 10 cm, 28% located <strong>de</strong>ep in the parenchyma, andhyaline unilocular presentations prevailed compared to caseous septate and calcified presentations. Theproportion of fertile hydatid cysts was estimated at 12% and the viability of protoscolices at 85%, but thesefeatures were not associated with the organ and did not <strong>de</strong>pend on the size of the larvae. Infection ratesand fertility of the cysts support the participation of cattle in the epi<strong>de</strong>miology of cystic echinococcosis inUruguay.Key words: Echinococcus granulosus, cattle, epi<strong>de</strong>miology, Uruguay.RESUMENEn Uruguay Echinococcus granulosus cepa ovina, agente <strong>de</strong> la echinococcosis quística, se presentaprincipalmente en un ciclo ovino - perro, pero los bovinos se encuentran comúnmente infectados. Este trabajotiene como objetivo estudiar las características <strong>de</strong> la presentación <strong>de</strong> las larvas <strong>de</strong> E. granulosus en bovinosen la región noroeste <strong>de</strong> Uruguay. Se examinaron postmortem los hígados y pulmones <strong>de</strong> 1987 bovinos. Losmetacesto<strong>de</strong>s se encontraron en el 10,8% y 66,7% <strong>de</strong> los bovinos y tropas bovinas respectivamente. En lospulmones se ubicaron más frecuentemente, seguido por el hígado y las localizaciones simultáneas en ambosórganos. El número <strong>de</strong> larvas por bovino presentó una distribución sobredispersa. En los metacesto<strong>de</strong>s el97,6% fueron menores <strong>de</strong> 10 cm, el 28% ubicados profundamente en el parénquima y predominaron laspresentaciones uniloculares hialinas con respecto a las tabicadas caseificadas y calcificadas. Se estimó unRecibido: 20 <strong>de</strong> Febrero <strong>de</strong> 2011. Aprobado 22 <strong>de</strong> Mayo <strong>de</strong> 2011.Corresponding: Zully Hernán<strong>de</strong>z Russo, Departamento <strong>de</strong> Parasitología Facultad <strong>de</strong> Veterinaria Regional Norte,Universidad <strong>de</strong> la República. Rivera 1350, Salto Uruguay. Tel 598 473 34816 int 133; Fax: 598 47322154E-mail address: zhernan@unorte.edu.uy67


Z. HERNÁNDEZ et al.12 % <strong>de</strong> quistes hidáticos fértiles y un 85% <strong>de</strong> viabilidad <strong>de</strong> los protoescólices, pero estas características noestán asociadas al órgano ni <strong>de</strong>pen<strong>de</strong>n <strong>de</strong>l tamaño <strong>de</strong> las larvas. Los índices <strong>de</strong> infección y fertilidad quísticaavalan la participación <strong>de</strong> los bovinos en la epi<strong>de</strong>miología <strong>de</strong> la echinococcosis quística en Uruguay.Palabras clave: Echinococcus granulosus, bovinos, epi<strong>de</strong>miología, Uruguay.INTRODUCTIONCystic echinococcosis is a parasitic zoonosiscaused by Echinococcus granulosus and is associatedwith a predator prey relationship between finaland intermediate host. Cystic echinococcosis inUruguay occurs in an en<strong>de</strong>mic state affecting publichealth, economic and social areas. The sheepstrain has been i<strong>de</strong>ntified and involves primarilysynanthropic hosts and involves the dog and domesticungulates, acci<strong>de</strong>ntally infecting man (Cabreraet al, 1995; FAO, 2007).National studies indicate a prevalence of cysticechinococcosis in cattle of 6.5% and in adult sheepof 18% (Cabrera et al, 2003, 2005). Records showa 4.3% of positive dogs <strong>de</strong>tected by coproantigenand, in rural areas, a 1 to 3% of infected humans<strong>de</strong>tected by ultrasound examination (Comision <strong>de</strong>Zoonosis, 2008).The main cycle reported is the sheep - dog cycle,but cattle is commonly infected and represent apotential reservoir for the infection of the dog. Theaim of this work was to study the characteristics ofthe presence of the larva of E. granulosus in cattlein the northwestern region in Uruguay.MATERIALS AND METHODSThe study was conducted on cattle from differentfarms of the northwest region of Uruguay (30º - 33ºSL and 54º - 58º WL), covering an area of 55451km 2 , which represents 31.5% of the total area ofthe country. In this area the main source of incomeis represented by beef cattle (78%), followed bysheep (11%), forestation (4%), cereal and industrialcrops (3.2%), dairy cattle (1.9%) and horticulture(1.4%) (Ministerio <strong>de</strong> Gana<strong>de</strong>ría, Agricultura yPesca, 2000).Climate patterns correspond to a mo<strong>de</strong>rateclimate with an average temperature of 18.3ºC andaverage annual rainfall of 1330 mm (DirecciónNacional <strong>de</strong> Meteorología, 1996).Sample <strong>de</strong>scription: All of the animals belongingto 60 troops herds were examined post mortemat the slaughterhouse “La Caballada” in 2004. Thesampling was random, cluster and single-stage. Atotal of 1987 animals were analyzed, 94% werecomplete <strong>de</strong>ntition and 6% were four to six teeth.Parasitological examination: Livers and lungswith lesions were removed and i<strong>de</strong>ntified by troopsherd and animal for further evaluation and confirmationof diagnosis at the Northern Regional Laboratory,Universidad <strong>de</strong> la República. Visualization,palpation and cuts of the respective parenchymawere performed and macro and microscopic morphologicalcharacteristics of the pathologic findingswere recor<strong>de</strong>d. For each herd the topographiclocation of the lesions were mapped for each animal,discriminated by costal and mediastinal faceof the left and right lung and the visceral and diaphragmaticface of the liver, as well as the number,size, location and evolutionary stage of cystic larvaenumber. The evolution of the cysts were classifiedas hyaline, caseous, calcified, hemorrhagic,unilocular or loculated. Fertility was <strong>de</strong>termined bythe presence of protoscolices and their viability byvital staining with eosin 0.1%. Histopathologicalexamination was used where macroscopic diagnoseof some pathologies was difficult to perform.Statistical analysis: The confi<strong>de</strong>nce level ofcystic echinococcosis prevalence in the samplewas estimated at 95% in cattle. The E. granulosuslarva frequency distributions were <strong>de</strong>scribed andthe measures of the summary of the characteristics(topographic location, number, size, evolutionarystage, fertility and viability) were estimated. Theassociations between the evolutionary stage andfertility of hydatid cysts and the organ in which theywere located were tested by χ 2 and for the viabilityassociation of protoscolices and the parasited organthe exact test of Fisher was used.Logistic regression was used to study the possibleinfluence of the size factor of the hydatid cystson the <strong>de</strong>pen<strong>de</strong>nt variables fertility and viability ofprotoscolises. The significance level was an alpha68Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-73


CYSTIC ECHINOCOCCOSIS IN CATTLE IN URUGUAYof 0.05 and the Statgraphics plus version 5.1 programwas used.RESULTSPrevalence of cystic echinococcosis in cattle:The prevalence of cystic echinococcosis in thesample was 10.8% (CI: 9.4% - 12.1%) and 66.7%(CI: 54.8% - 78.6%) in cattle and herds, respectively.Characteristics of the of E. granulosus larvain cattleTopographic location of the E. granulosuslarvae: The total number of cattle infected accordingto the topographical location of the hydaticcysts is shown in Table 1. Eighty % of the cattle hadlocations in lungs, 16.27% in liver and 3.72% inliver and lung simultaneously. In turn, the distributionof the animals according to the topographicallocation of the metacesto<strong>de</strong>s in each organ was asfollows, 149 in the right lung (137 in the costal faceand 12 in the mediastinal face), 103 in the left lung(95 in costal face and eight in mediastinal face) and48 in liver (38 in the visceral face and 10 in diaphragmaticface).Of the 541 analyzed hydatid cysts, 480 werelocated in the lung, of which 281 were in the rightlung (254 in the costal face and 27 in mediastinalface) and 199 were in the left lung (179 in thecostal face and 20 in the mediastinal face) and theremaining 61 were located in the liver (50 in thevisceral face and 11 in the diaphragmatic face).Twenty-eight % of the metacesto<strong>de</strong>s were located<strong>de</strong>eply in the corresponding parenchyma (invisibleat inspection from the surface).Number of larvae of E. granulosus per animal:The number of metacesto<strong>de</strong>s per animal wasbetween one and 60, and 61.4% of the cattle showedonly one cyst and 3.3% had more than eight. Themean number of lesions was 2.51 (Table 2).Size of the E. granulosus larvae: The size ofTable 1. Distribution of the animals according tothe topographic location of hydatid cystsLocation ofhydatic cysts*Number ofanimalsRelative frequency(%)1 78 36.282 2 0.933 39 18.144 1 0.475 26 12.096 5 2.331,3 44 20.471,5 3 1.403,5 1 0.475,6 4 1.861,2,3 2 0.931,2,5 1 0.471,3,5 2 0.931,2,3,4 6 2.791,2,3,4,5,6 1 0.471: costal face right lung, 2: mediastinal face right lung,3: costal face left lung, 4: mediastinal face left lung, 5:visceral face liver, 6: diaphragmatic face liver.Table 2. Distribution of the total number of animalsaccording to the number of hydatid cystshostedNumberofcystsNumber ofanimalsRelativefrequency(%)Accumulatedrelativefrequency%1 132 61.40 61.402 50 23.26 84.653 14 6.51 91.164 2 0.93 92.095 6 2.79 94.886 1 0.47 95.357 2 0.93 96.288 1 0.47 96.7412 1 0.47 97.2113 1 0.47 97.6714 1 0.47 98.1427 1 0.47 98.6033 1 0.47 99.0742 1 0.47 99.5360 1 0.47 100.00Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-7369


Z. HERNÁNDEZ et al.Table 3. Distribution of hydatid cysts according to size (cm)Size Number of cysts Relative frequency (%) Accumulated relativefrequency (%)0 - 2 259 47.88 47.882 - 4 164 30.31 78.194 - 6 54 9.98 88.176 - 8 33 6.10 94.278 - 10 18 3.33 97.6010 - 12 5 0.92 98.5212 - 14 2 0.37 98.8914 - 16 5 0.92 99.8216 - 18 0 0.00 99.8218 - 20 1 0.18 100.00Over 20 0 0.00 100.00the larvae of E. granulosus varied between 0.5 to20.0 cm of diameter with an average of 3.34 (±2.76). The percentage of metacesto<strong>de</strong>s un<strong>de</strong>r 10 cmwas 97.6% (Table 3).Evolutionary stage of the larvae of E. granulosus:The evolutionary stages of the larvae of E.granulosus taking the cyst and the animal as unit ofanalysis are summarized in Tables 4 and 5, respectively.The majority of the animals (85.6%) had metacesto<strong>de</strong>sin a single evolutionary form, while 1.4%hosted larvae in four different states.A significant association between the evolutionarystage of hydatid cysts and the organ where theyare located was found (Table 6).Fertility of the larva of E. granulosus andviability of protoscolices: The proportion offertile hydatid cysts was estimated at 12% and theviability of protoscolices at 85%. The proportionsof fertile and infertile hydatid cysts did not differsignificantly between liver and lung locations, sofertility was not correlated with the organ (Table7), nor did it <strong>de</strong>pend on the size of the larvaeaccording to the logistic regression mo<strong>de</strong>l (χ 2 =1.52; p = 0.2168).The viability of protoscolices did not differsignifficantly between the parasitized organs;therefore, viability was not associated with theorgan (Fisher’s exact test p = 1.000), nor did it<strong>de</strong>pend on the size of the larvae according to thelogistic regression mo<strong>de</strong>l (χ 2 = 0.26; p = 0.6088).Table 4. Evolutionary stages of hydatid cystsEvolutionary stageNumber ofcystsDISCUSSIONRelativefrequency(%)Unilocular hyaline 256 47.32Unilocular caseous 122 22.55Unilocular calcified 75 13.86Unilocular hemorrhagic17 3.14Septate hyaline 10 1.85Septate caseous 27 4.99Septate calcified 26 4.81Septate hemorrhagic 8 1.48Prevalence of cystic echinococcosis in cattle:In this study, the percentage of cattle presentingcystic echinococcosis (10.8%) was lower thanbefore the National Programme for Control ofHydatidosis was instated in 1990 (64.8%). Cabreraet al, (2005) found a 6,5% of the cattle positiveto hydatid cyst, but it was lower in the complete<strong>de</strong>ntition population than in our study (67% vs 94%,respectively). Cystic echinococcosis in 66.7% ofthe herds could be explained by the continuity ofthe en<strong>de</strong>mic state of the parasite and that 33.3% ofthe herds contained animals from different origens.70Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-73


CYSTIC ECHINOCOCCOSIS IN CATTLE IN URUGUAYTable 5. Distribution of animals as per the evolutionarystage of the metacesto<strong>de</strong>sEvolutionarystage *Number ofanimalsRelative frequency(%)1 66 30.702 43 20.003 33 15.354 8 3.725 7 3.266 14 6.517 10 4.658 3 1.401,2 6 2.791,3 1 0.471,4 4 1.861,8 1 0.472,3 5 2.332,6 1 0.472,8 1 0.473,7 1 0.473,8 1 0.474,7 2 0.931,2,3 1 0.471,2,6 2 0.931,6,7 1 0.472,3,5 1 0.472,3,4,7 1 0.472,3,7,8 1 0.472,4,6,7 1 0,47*1: Unilocular hyaline, 2: unilocular caseous, 3: unilocularcalcified , 4: unilocular hemorrhagic, 5: septatehyaline, 6: septate caseous, 7: septate calcified, 8:septate hemorrhagic.The prevalence of echinococcosis in cattle in Chileis 22%, in Brazil 25% and in the en<strong>de</strong>mic regionof Argentina 7% (Muñoz and Sievers, 2005; Moroand Schantz, 2006). The difficulty of comparinginfection rates among countries is due to thevariability in the epi<strong>de</strong>miological, social, technicaland economic conditions, which <strong>de</strong>pends on theage of the animals, the levels of exposure and thematurity and viability of eggs (Njoroge et al, 2002;Bardonnet et al, 2003; Azlaf and Dakkak, 2006).Characteristics of the larva of E. granulosusin cattleTopographic location of the larvae of E.granulosus: The location of hydatid cysts showedthe same topographical distribution, consi<strong>de</strong>ring asthe analytical unit either the total number of cattleor the metacesto<strong>de</strong>s.The higher frequency of parasitized lungscompared to liver in cattle, as well as the infectionof both organs being less common than the uniquepresentations, is in accordance with other studies(Njoroge et al, 2002; Bardonnet et al, 2003; Muñozand Sievers, 2005). However, Azlaf and Dakkak(2006) showed that most of the cattle presented cystsin the liver and the lungs simultaneously. Sheep, incomparison, show higher rates of infection in theliver than in lungs (Cabrera et al, 2003; Scala etal, 2006). However, Dueger and Gilman (2001)in Peru, reported as the lungs as main locationif infection for the sheep, which was attributedto a variation of the strain of E. granulosus withpulmonary tropism and/or to an increase in capillarydilation and pulmonary blood volumes as a resultof living at high altitu<strong>de</strong>s. Likewise, Tassinari dosSantos et al, (2008) found the majority of cysts inlungs after experimental infection in young sheep.The differences in localization between sheep andcattle could be due to anatomical and physiologicalfactors of the host, to the parasite’s ability to passthe tisular barriers and to resist the inflammatoryand immune responses, and to the strain involved.The higher number of hydatid cysts in the rightlung could be explained by its greater size andnumber of lobes than the left lung (in a ratio of 3-2),as well as the tracheal bronchus and its respectivevessels have a second smaller branch in the rightlung (Dyce et al, 1999).Number of larvae of E. granulosus per animal:The number of hydatid cysts per animal agreeswith the over-dispersed distribution <strong>de</strong>scribed forE. granulosus. In this distribution few hosts holda large load of metacesto<strong>de</strong>s (3.3% of the animalshad more than eight cysts) and a large proportion ofthe population had a very limited number of parasites(61.4% of the animals showed only one cyst)(Gemmell and Lawson, 1986; Christodoulopouloset al, 2008).Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-7371


Z. HERNÁNDEZ et al.Table 6. Evolutionary stage of hydatid cysts according to the parasitized organEvolutionary stage*1 2 3 4 5 6 7 8 TotalLiver 31 8 4 0 7 10 0 2 62Lung 223 106 69 17 3 15 26 6 465Total 254 114 73 17 10 25 26 8 527* 1: Unilocular hyaline, 2: unilocular caseous , 3: unilocular calcified, 4: unilocular hemrrhagic, 5: septate hyaline ,6: septate caseous, 7: septate calcified, 8: septate hemorrhagic χ 2 = 64.25; p = 0.0001.Table 7. Fertility and infertility of hydatid cysts according to the parasitized organInfertile Fertile TotalLiver 32 7 39Lung 217 27 244Total 249 34 283c 2 = 1.51; p = 0.2196.The mean number of 2.51 (minimum one,maximum 60) metacesto<strong>de</strong>s per animal is similarto the average of three found by Bardonnet et al.(2003), and Capuano et al, (2006) mentionned anaverage of 4.3 (minimum one, maximum 45) perbuffalo (Bubalus bubalis). In sheep the averagereported by Scala et al, (2006) was 5.3 (minimumone, maximum 114) and Cabrera et al, (1995)found that the number of cysts increased with age,reaching an average of 4.69 at 54 months.Size of the larvae of E. granulosus: The thoroughnessof the diagnostic technique of palpationand visualization in the present study revealed that47.9% of the larvae were smaller than two cm and28% were located <strong>de</strong>eply in the parenchyma. Muñozand Sievers (2005) consi<strong>de</strong>r the absence of hydatidcysts smaller than 10 mm in adult cattle tobe due to the <strong>de</strong>velopment of immunity which preventsformation of new cysts in constant reinfections.However, in this study we found a 18.7% ofcystic structures of Echinococcus spp. of less than1 cm and Sakamoto and Cabrera (2003) reportedsizes of 1 mm in the same age groups.Evolutionary stage of the larvae of E. granulosus:Among the evolutionary stages of cysticechinococcosis unilocular presentations prevailedover the septate, when consi<strong>de</strong>ring either the totalnumber of cysts (86.9% vs 13.1%) or the totalnumber of parasitized animals (181 vs 48 animals).The classification of hydatid cyst in adult catlle <strong>de</strong>scribedby Sakamoto and Cabrera (2003), showed58% of unilocular cysts, followed by 22% polymorphics,0.5% multicystics and 1.5% involutedcysts.The most frequent evolutionary stage of unilocularcysts was hyaline (47.3%), followed bycaseous (22.5%), calcified (13.9%) and hemorrhagic(3.1%), whereas the distribution of septatecysts was caseous (4.9%), calcified (4.8%), hyaline(1.8%) and hemorraghic (1.48%).The higher frequency of unilocular hyalinehydatid cysts could indicate recent infection ofcattle and/or the slow evolution of the larvae.The possible acquired immunity after the naturalintake of oncospheres does not seem to preventthe <strong>de</strong>velopment of the metacesto<strong>de</strong>s, especiallyconsi<strong>de</strong>ring that over 90% of the animals hadcomplete <strong>de</strong>ntition. In this regard, Cabrera et al.(1995), Torgerson et al, (2003) showed no evi<strong>de</strong>nceof protective immunity induced by the parasite insheep and cattle due to natural infections. A highproportion of viable cysts in cattle in which thebovine strain was involved was found by Thompsonand Mac Manus (2002) and Torgerson et al, (2003).The association of evolutionary stage with ageof the animal could not be established due to the72Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-73


CYSTIC ECHINOCOCCOSIS IN CATTLE IN URUGUAYage composition of the cattle population, but it wassignificantly correlated with the organ. Dueger andGilman (2001) found 13% and 5% of calcified and<strong>de</strong>generated cysts, respectively, in sheep, whichincreased with the age. Likewise Cabrera et al,(2003) showed 29% calcified and 71% hyalinecysts in young sheep, while 34% of the cysts werecalcified and 65% hyaline in adults. Muñoz andSievers (2005) found 28% of abscessed or alteredcystic larvae which 67% in lungs in cattle. Scalaet al, (2006) reported in sheep, 4.5% caseous and57.5% calcified cysts mainly in the liver. The highproportion of calcified cysts and the early <strong>de</strong>ath ofmetacesto<strong>de</strong> in horses, suggest that the strain of E.granulosus is not adapted to this species (Azlaf andDakkak, 2006).The presence of metacesto<strong>de</strong>s in different evolutionarystages in the same animal could be dueto the time of acquiring the infection and/or therelationship host-parasite. The <strong>de</strong>velopment of themetacesto<strong>de</strong> after ingestion of the eggs varies andreflects the heterogeneity in the genetics, immunology,physiology and nutrition that influences thesusceptibility of individuals, and possibly the intrinsicand extrinsic features of the parasite (Breijoet al, 2008).Fertility of the larva of E. granulosus: Thefertility of metacesto<strong>de</strong>s in cattle in this study(12%) was close to that reported by Cabrera etal, (1995) (13.5%) in sheep aged 54 months inUruguay. However, higher rates of fertility havebeen registered in sheep than in other animal speciesin the same geographical area of different countries(Dalimi et al, 2002; Muñoz and Sievers, 2005). M’rad et al, (2005) reported fertility rates of 67% and47% in sheep and cattle respectively, therefore thesheep strain seems very adapted to cattle, whichconstitute a host of high risk for contamination ofdogs and, consequently, for human infection.Cystic fertility in cattle in the region was 21.3%in Argentina and 26% in Chile (Schantz et al, 1995,Muñoz and Sievers, 2005).The susceptibility to infection and cysticfertility are consi<strong>de</strong>red key factors in <strong>de</strong>terminingthe importance of intermediate hosts in themaintenance and spread of the life cycle andcan affect the stability of the parasite. Witht thisstudy we have shown that prevalence and cysticfertility rates in cattle were similar to those ofsheep (Cabrera et al, 1995; Cabrera et al, 2003).Variations in fertility among and within differentanimal species <strong>de</strong>pend on the strain, geography,ecology, host, organic location and type of cysts(Thompson, 1995).Andresiuk et al, (2005) suggest that the G1 genotypemay have epi<strong>de</strong>miological and phenotypicadaptations; in Spain it is mainly transmitted betweensheep and dogs and in Argentina cattle seemsto be the main intermediate host. The size and externalappearance of bovine cysts was similar inboth regions, while hyaline cysts reached 2.4% and46.3% and fertile cysts 1.5% and 10.7% in Spainand Argentina, respectively.The low prevalence, fertility, viability and calcificationof cysts in cattle could be explained bythe sheep strain which is not well adapted (Schantzet al, 1995; Bardonnet et al, 2003). However, thehigh proportion of viable and fertile cysts with rateshigher than 90%, and which are primarily locatedin lungs in cattle, might indicate correspondance tothe bovine strain (Thompson and Mc Manus, 2002,Torgerson et al, 2003).The fertility of the larva of E. granulosus incattle was not associated with the organ in whichit is located, nor did it <strong>de</strong>pends on the size of thecyst. Ponce Gordo and Cuesta Ban<strong>de</strong>ra (1998)confirmed the lack of relation between cyst size,location, viability and fertility. However, Scala etal, (2006) and Muñoz and Sievers (2005) showedfertile cysts mainly in lungs of sheep and cattle. Onthe other hand, Dueger and Gilman (2001) reported47 to 59% of cystic fertility in sheep and for everycentimeter increase of the size of the larvae, theprobability of protoscolices increased 7.5 timesand only 4% of <strong>de</strong>generated cyst were associatedwith living protoscolices. Regarding the time of<strong>de</strong>velopment of protoscolices, research has shownthat it usually requires at least one year and due tothe slow growth of larvae in sheep only 50% reachfertility at six years (Gemmell and Roberts, 1995).Muñoz and Sievers (2005) <strong>de</strong>monstrated thathydatid cysts in cattle generate protoscolices whenthey reach a diameter of 15-20 mm, at 5-6 monthsafter eating the eggs, and in young categories allcysts un<strong>de</strong>r 10 mm were infertile.Viability of protoscolices: The viability of theprotoscolices (85%) is consistent with other studies(Dalimi et al, 2002; Muñoz and Sievers, 2005). Theproportion of animals with viable and fertile cystsis an indicator of the significance of the species asRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-7373


Z. HERNÁNDEZ et al.propitious intermediate host in the transmission ofthe disease.REFERENCES1. ANDRESIUK M, PONCE GORDO F, CUESTA BAN-DERA C, ELISSONDO M, DOPCHIZ M, ROSSIN M,DENEGRI G. 2005. Echinococcus granulosus: posiblesadaptaciones fenotípicas en relación con la importanciaepi<strong>de</strong>miológica <strong>de</strong>l hospedador. XVII CongresoLatinoamericano <strong>de</strong> Parasitología, 23-26 <strong>de</strong> noviembre,Mar <strong>de</strong>l Plata, Argentina, p 271.2. AZLAF R, DAKKAK A. 2006. Epi<strong>de</strong>miological studyof the cystic echinococcosis in Morocco. Vet Parasitol137: 83-93.3. BARDONNET K, BENCHIKH–ELFEGOUN MC,BART JM, HARRAGA S, HANNACHE N, HADDADS, DUMON H, VUITTON DA, PIARROUX R. 2003.Cystic echinococcosis in Algeria: cattle act as reservoirsof a sheep and may contribute to human contamination.Vet Parasitol 116: 35-44.4. BREIJO M, ANESETTI G, MARTÍNEZ L, SIM R,FERREIRA A. 2008. Echinococcus granulosus: Theestablishment of the metacesto<strong>de</strong> is associated withcontrol of complement-mediated early inflammation.Exp Parasitol 118: 188-196.5. CABRERA P, HARAN G, BENAVIDES U, VALLE-DOR S, PERERA G, LLOYD S, GEMMELL M,BARAIBAR M, MORANA A MAISSONAVE J,CARBALLO M. 1995. Transmission dynamics ofEchinococcus granulosus, Taenia hydatigena and Taeniaovis in sheep in Uruguay. Int J Parasitol 25: 807-813.6. CABRERA P, IRABEDRA P, ORLANDO D, RISTA L,HARAN G, VIÑALS G, BLANCO M, ALVAREZ M,ELOLA S, MOROSOLI D, MORAÑA A, BONDADM, SAMBRÁN Y, HEINZEN T, CHANS L, PIÑEYROL, PEREZ D, PEREYRA I. 2003. National prevalenceof larval echinococcosis in sheep in slaughtering plantsOvis aries as an indicator in control programmes inUruguay. Acta Tróp 85: 281-285.7. CABRERA P, IRABEDRA P, ORLANDO D, DOSSANTOS C, CHAPPUIS E, ALVAREZ M, ELOLA S,BLANCO M, AGUIRRE J, ZAMORA C, MUTTESR, MORAÑA A, PEREYRA I, LAZANEO H. 2005.Estudio <strong>de</strong> la prevalencia nacional <strong>de</strong> Echinococcusgranulosus en bovinos en playa <strong>de</strong> faena. 12°International symposium of the world associationof veterinary laboratory diagnosticians. 16-19 <strong>de</strong>noviembre, Montevi<strong>de</strong>o, Uruguay.8. CAPUANO F, RINALDI L, MAURELLI M, PERU-GINI A, VENEZIANO V, GARIPPA G, GENCHI C,MUSELLA V, CRINGOLI G. 2006. Cystic echinococcosisin water buffaloes: Epi<strong>de</strong>miological survey andmolecular evi<strong>de</strong>nce of ovine (G1) and buffalo (G3)strains. Vet Parasitol 137: 262-268.9. CHRISTODOULOPOULOS G, THEODOROPOU-LOS G, PETRAKOS G. 2008. Epi<strong>de</strong>miological surveyof cesto<strong>de</strong>-larva disease in Greek sheep flocks. VetParasitol 153: 368-373.10. COMISIÓN ZOONOSIS. 2008. Diagnóstico <strong>de</strong>situación 2004. www.zoonosis.gub.uy11. DALIMI A, MONTAMEDI GH, HOSSEINI M,MOHAMMADIAN B, MALAKI H, GHAMARI Z,GHAFFARI FAR F. 2002. Echinococcosis/hydatidosisin western Iran. Vet Parasitol 105: 161-171.12. DIRECCIÓN NACIONAL DE METEOROLOGÍA.1996. Normales climatológicas. Período 1961-1990.Ed. Ministerio <strong>de</strong> Defensa Nacional. Montevi<strong>de</strong>o, p 20.13. DUEGER E, GILMAN R. 2001. Prevalence, intensityand fertility of ovine cystic echinococcosis in thecentral Peruvian An<strong>de</strong>s. Trans Roy Soc Trop Med Hyg95: 379-383.14. DYCE K, SACK W, WENSING C. 1999. AnatomíaVeterinaria. Mc Graw Hill Interamericana Editores.México. 2° ed., 952p.15. FAO. 2007. Estimación <strong>de</strong>l aspecto económico <strong>de</strong>la equinococosis quística en el cono sur (Argentina,Brasil, Chile y Uruguay). Organización <strong>de</strong> las NacionesUnidas para la Agricultura y la Alimentación. OficinaRegional para América Latina y el Caribe FAO/RLC.16. GEMMELL MA, LAWSON JR. 1986. Epi<strong>de</strong>miologyand control of hydatid disease. En: Thompson RCA(ed). The biology of Echinococcus and hydatid disease.George Allen and Unwin. London, U.K., Cap. 7, pp.189-216.17. GEMMELL M, ROBERTS M. 1995. Mo<strong>de</strong>lling Echinococcuslife cycles. En: Thompson RCA and LymberyAJ (eds). Echinococcus and hydatid disease. CAB International,Wallingford, UK, Cap 8, pp 333-354.18. M’ RAD S, FILISETTI D, OUDNI M, MEKKI M,BELGUITH M, NOURI A, SAYADI T, LAHMAR S,CANDOLFI E, AZAIEZ R, MEZHOUD H, BABBAH. 2005. Molecular evi<strong>de</strong>nce of ovine (G1) and camel(G6) strains of Echinococcus granulosus in Tunisiaand putative role of cattle in human contamination. VetParasitol 129: 267-272.19. MINISTERIO DE GANADERÍA, AGRICULTURA YPESCA. 2000. Censo General Agropecuario. GráficaDigital. Montevi<strong>de</strong>o, vol 2, p 121.20. MORO P; SCHANTZ P. 2006. Cystic echinococcosisin the Americas. Parasitol Int 55: S181-S186.21. MUÑOZ J, SIEVERS G. 2005. Study of the fertilityand viability of bovine hidatid cysts in Chile. ParasitolLatinoamer 60: 69-73.22. NJOROGE EM, MBITHI PMF, GATHUMA JM, WA-CHIRA TM, GATHURA PB, MAGAMBO JK, ZEYH-LE E. 2002. A study of cystic echinococcosis in slaughteranimals in three selected areas of northern Turkana,Kenya. Vet Parasitol 104: 85-91.23. PONCE GORDO F, CUESTA BANDERA C. 1998.Observations on the Echinococcus granulosus horsestrain in Spain. Vet Parasitol 76: 65-70.24. SAKAMOTO T, CABRERA P. 2003. Immunohistochemicalobservations on cellular response in unilocularhydatid lesions and lymph no<strong>de</strong>s of cattle. Acta Tróp85: 271-279.25. SCALA A, GARIPPA G, VARCASIA A, TRANQUIL-LO V, GENCHI C. 2006. Cystic echinococcosis inslaughtered sheep in Sardinia (Italy). Vet Parasitol 135:33-38.26. SCHANTZ PM, CHAI J, CRAIG PS, ECKERT J,JENKINS DJ, MACPHERSON CNL, THAKUR A.74Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-73


CYSTIC ECHINOCOCCOSIS IN CATTLE IN URUGUAY1995. Epi<strong>de</strong>miology and control of hydatid disease. In:Echinococcus and hydatid disease. Ed. RCA Thompsonand AJ Lymbery. CAB International, Wallingford, UK,Cap. 7, pp. 233-331.27. TASSINARI DOS SANTOS H, FAGUNDES DOSSANTOS A, MOISINHO A, PEREIRA M, FIGUEIRE-DO M. 2008. Infecção experimental em ovinos comEchinococcus granulosus: viabilida<strong>de</strong> dos ovos, quantida<strong>de</strong>e localização dos cistos hidáticos. 35 CongressoBrasileiro <strong>de</strong> Medicina Veterinaria, 19-22 <strong>de</strong> octubre,Gramado, Brasil.28. THOMPSON RCA. 1995. Biology and systematics ofEchinococcus. In: Echinococcus and hydatid disease.Ed. Thompson RCA, Lymbery AJ, Wallingford, Oxon,UK, CAB International, Cap 1, pp. 1-50.29. THOMPSON R, MC MANUS D. 2002. Towards a taxonomicrevision of the genus Echinococcus. TRENDSin Parasitology 18: 452-457.30. TORGERSON P, BURTISURNOV K, SHAIKENOVB, RYSMUKHAMBETOVA A, ABDYBEKOVA A,USSENBAYEV A. 2003. Mo<strong>de</strong>lling the transmissiondynamics of Echinococcus granulosus in sheep andcattle in Kazakhstan. Vet Parasitol 114: 143- 153.Acknowledgements: We would like to thank the RegionalNorte Salto, Universidad <strong>de</strong> la República for their supportand for providing the facilities. We are very grateful to theTechnicians and staff at the "La Caballada" Slaughterhousefor facilitating the study and particularly to Prof. LuisLavarello for his support with the statistical analysis and theProf. Silvia Gallo and Dr. Elize van Lier for her assistancewith the translation.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 65-7375


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84Epi<strong>de</strong>miology and approach treatment of humancystic echinococcosis: case seriesDOPCHIZ M.C. 1,2 , ALBANI C. 1,2 , RIVA E. 2,3 , ELISSONDO M.C. 1,2 , LAVALLÉN C.M. 1,2 and DENEGRI G. 1,21Laboratorio <strong>de</strong> Zoonosis Parasitarias, Departamento <strong>de</strong> Biología, Facultad <strong>de</strong> Ciencias Exactas y Naturales,Universidad Nacional <strong>de</strong> Mar <strong>de</strong>l Plata, Mar <strong>de</strong>l Plata, Buenos Aires, Argentina.2Consejo Nacional <strong>de</strong> Investigaciones Científicas y Técnicas (CONICET), Argentina.3Departamento <strong>de</strong> Sanidad Animal y Medicina Preventiva, Facultad <strong>de</strong> Ciencias Veterinarias, Universidad Nacional<strong>de</strong>l Centro <strong>de</strong> la Provincia <strong>de</strong> Bs Aires, Tandil, Bs Aires, Argentina.ABSTRACTCystic echinococcosis (CE) is a zoonoses of worldwi<strong>de</strong> distribution caused mainly by the metacesto<strong>de</strong>Echinococcus granulosus. In Argentina, its distribution reaches en<strong>de</strong>mic levels. The aims of this study wereto investigate the trends in confirmed cases of human CE recor<strong>de</strong>d in “Hospital Privado <strong>de</strong> Comunidad”(HPC) in Mar <strong>de</strong>l Plata city during a period of 28 years (1974-2002) and to study <strong>de</strong>mographic and clinicalcharacteristics of cases together with epi<strong>de</strong>miological factors associated with the disease. Clinical recordsof operated and/or diagnosed patients were reviewed with regard to this disease. One hundred and fifteencases (57.4% women; mean age 61.3 + 17.1 years) were inclu<strong>de</strong>d in this retrospective study, 80% of whichlived in urban areas. In 76.5% of the cases, ultrasonography was used to diagnose the disease. Hepaticlocation was the most frequently seen. Ninety point four per cent of the total diagnosed CE patients receivedany approach due to illness, 47.1% received surgical treatment and 19.2% pharmacological treatment. Themean length of hospital stay was 15 days. The average inci<strong>de</strong>nce for the period 1997-2001 was 3.6 and 1.3in HPC and Official Notification respectively. Our study showed that since the permanence of CE in theregion is mainly due to the natural transmission of the parasite in the absence of control and preventionmeasures, health authorities should implement the necessary strategies in the study area.Key words: Cystic echinococcosis, Echinococcus granulosus, Epi<strong>de</strong>miology, Treatment, Zoonoses.RESUMENLa echinococosis quística (EC) es una zoonosis <strong>de</strong> distribución mundial, causada principalmentepor el metacesto <strong>de</strong> Echinococcus granulosus. En Argentina, su distribución alcanza niveles endémicos.Received: 30 December 2010. Accepted 05 <strong>de</strong> Mayo 2011.Corresponing: Dra. Marcela Cecilia DopchizLaboratorio <strong>de</strong> Zoonosis Parasitarias, Departamento <strong>de</strong> Biología, Facultad <strong>de</strong> Ciencias Exactas yNaturales, Universidad Nacional <strong>de</strong> Mar <strong>de</strong>l Plata. Funes 3350, 7600, Mar <strong>de</strong>l Plata, Buenos Aires,Argentina. Tel 54 0223 475 2426 int450, Fax: 54 0223 475-3150.E-mail: mdopchiz@mdp.edu.arSponsorships: This work was supported by Fundación Roemmers and Universidad Nacional <strong>de</strong>Mar <strong>de</strong>l Plata (15/E353), Argentina.76


CYSTIC ECHINOCOCCOSIS: EPIDEMIOLOGY AND TREATMENTLos objetivos <strong>de</strong> este estudio fueron investigar las ten<strong>de</strong>ncias en los casos confirmados <strong>de</strong> EC humanosregistrados en el Hospital Privado <strong>de</strong> Comunidad (HPC) <strong>de</strong> la ciudad <strong>de</strong> Mar <strong>de</strong>l Plata durante un período<strong>de</strong> 28 años (1974-2002) y estudiar las características <strong>de</strong>mográficas y clínicas <strong>de</strong> los casos, junto con losfactores epi<strong>de</strong>miológicos asociados a la enfermedad. Se revisaron todas las historias clínicas <strong>de</strong> pacientesoperados y/o diagnosticados. Ciento quince casos (57,4% mujeres, promedio <strong>de</strong> edad 61,3+17,1 años)fueron incluidos en este estudio retrospectivo, el 80% <strong>de</strong> los cuales vivía en zonas urbanas. En el 76,5%<strong>de</strong> los casos, se utilizó la ultrasonografía para diagnosticar la enfermedad. La localización hepática fuela más frecuente. Noventa punto cuatro por ciento <strong>de</strong>l total <strong>de</strong> pacientes diagnosticados con EC recibióalgún tratamiento <strong>de</strong>bido a la enfermedad, el 47,1% recibió tratamiento quirúrgico y 19,2% tratamientofarmacológico. La media <strong>de</strong> días <strong>de</strong> internación fue <strong>de</strong> 15 días. La inci<strong>de</strong>ncia promedio para el período1997-2001 fue <strong>de</strong> 3.6 y 1.3 en HPC y según Notificación Oficial respectivamente. Nuestro estudio mostróque la permanencia <strong>de</strong> la EC en la región se <strong>de</strong>be principalmente a la transmisión natural <strong>de</strong>l parásitoen ausencia <strong>de</strong> medidas <strong>de</strong> control y prevención. Se recomienda que las autorida<strong>de</strong>s <strong>de</strong> salud <strong>de</strong>bieranimplementar las estrategias necesarias en el área <strong>de</strong> estudio.Palabras clave: Echinococcosis quística, Echinococcus granulosus, Zoonosis, Epi<strong>de</strong>miología, Tratamiento.INTRODUCTIONCystic echinococcosis (CE) is an infection ofhumans and herbivorous animals caused by thelarval stage of the parasite Echinococcus granulosus(Batsch 1786), which has worldwi<strong>de</strong> importanceand a broad distribution (Thompson, 2002; Xiao etal, 2005; FAO, 2007). This parasite requires twomammalian hosts to complete its life cycle. Thehermaphroditic adult commonly <strong>de</strong>velops in thedog’s or fox’s intestine, whereas the metacesto<strong>de</strong>larva (hydatid cyst containing protoscolecesproduced by asexual multiplication) <strong>de</strong>velops inthe viscera of many ungulates and man. The CEhas spread to all continents and is an importantpublic health and economic problem in many areasthroughout the world, including the Pampas region.Three provinces of central Argentina are located inthis region: Buenos Aires, the south of Santa Fe andCórdoba (MSAL-OPS, 2009).The southeast of the Buenos Aires province hasimportant touristic centres which result attractiveto el<strong>de</strong>rly people. The economic and geographicalstructure contributes to the high immigration. Theresult is that people from 60 years-old represent the60% of the population pyramid.This area also constitutes an excellent agriculturalregion with abundant extensive breeding ofbovine cattle and ovine livestock. Close contact betweenman, dog and livestock, home slaughteringfor human consumption and feeding dogs with offalare wi<strong>de</strong>spread habits that ensure the maintenanceof the parasite’s cycle in Buenos Aires rural areas.In urban areas the transmission is favored by poorsanitary conditions in some slaughter houses andillegal home slaughtering. Thus, climate and socioculturalfactors contribute to the en<strong>de</strong>mic status ofCE in the southeast of Buenos Aires province. Inen<strong>de</strong>mic regions the major part of infections is acquiredduring childhood but can occur at any age.Human infection has socio-economic consequencesrelated to costs of hospitalization and diagnosis,surgical fees, loss of working days, disability andmortality. Livestock infection reduces yield andquality of meat, milk and wool. The precise quantificationof losses caused by CE <strong>de</strong>pends on theknowledge about the rates of infection in humanand animal populations (Batelli, 2001).The most commonly used in<strong>de</strong>x of humaninfection is the review of hospital records of CEcases. Although this method has limitations, dataof annual rates have proved to be of great value forproviding epi<strong>de</strong>miological information that can beuseful to show the disease evolution (Pierangeli etal, 2007).Brunetti and co-workers (2010) proposed a newCE classification which summarizes the previouslygiven by Gharbi et al, (1981) and WHO-IWGE(1996). The aim was to establish an expert consensusfor diagnosis and treatment of CE in humansRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-8477


M. C. DOPCHIZ et al.and facilitate the interpretation of epi<strong>de</strong>miologicaland clinical studies through the world. This classificationdivi<strong>de</strong>s the cyst type in 3 groups: undifferentiated:CL (cyst lesion), actives: CE1 and CE3which may be differentiated into CE3a (with <strong>de</strong>tache<strong>de</strong>ndocyst) and CE3b (predominantly solidwith daughter vesicles) and inactive CE4 and CE5.CE1 and CE3a are early stages and CE4 and CE5late stages (Brunetti et al, 2010).More than 2000 cases of human CE are reportedin South America every year (Eckert and Deplazes,2004). In Argentina, the CE is a notifiable diseaseand confirmed cases are reported weekly to theMinistry of Health of the Nation by completingthe official form (C2 Form). The global annualinci<strong>de</strong>nce of surgical/treatment cases of human CEin Argentina in 2004 was one per 100000 inhabitantsaccording to official reports (Echegoyen, 2004).However, national inci<strong>de</strong>nce rates of surgical casesdo not show an accurate picture since the wholepopulation is consi<strong>de</strong>red, including a large numberof people with low risk of infection (FAO, 2007).In Argentina, CE is wi<strong>de</strong>spread and some areasare consi<strong>de</strong>red en<strong>de</strong>mic. In 2001, 355 cases werenotified using the C2 form, of which 46.5% camefrom Patagonian provinces, 38% from the centralprovinces (Buenos Aires, Córdoba, San Luis andMendoza) and 15.5% from the northern provincesof Argentina (MSAL, 2001). In Buenos Aires, 294new cases were reported between 1997 and 2001,with an annual inci<strong>de</strong>nce rate of 0.3/100000 in2000 and 4/100000 in 2001 (MSAL, 2001).Epi<strong>de</strong>miological studies of CE were carried outin the south east region of Buenos Aires showing aserious situation in health centres in Mar <strong>de</strong>l Platacity due to the number of diagnosed cases between1992-1998 (Elissondo et al, 2002; 2003). Thereare case studies on pediatric CE and CE in adultpeople in two state hospitals covering the period1992-2002 (Dopchiz et al, 2007; 2009). However,there have not been cases of CE reported in privatehospitals of reference for over 10 years. The diseaseis also en<strong>de</strong>mic in the region for cattle and pigs.Prevalence according to post-mortem inspectionin abattoirs ranged between 12% to 16% for cattleand pig respectively. E. granulosus antigens werealso <strong>de</strong>tected in dog’s feces, in fields and squaresfrom General Pueyrredón district (Dopchiz, 2006;Dopchiz et al., 2002).Although there have been cases of CE, there arecurrently no provincial control programmes.In or<strong>de</strong>r to gain a better knowledge about theepi<strong>de</strong>miology of hydatidosis in the southeast ofBuenos Aires province, the purposes of this studywere to investigate the trends in confirmed casesof human CE recor<strong>de</strong>d in“Hospital Privado <strong>de</strong>Comunidad” (HPC) in Mar <strong>de</strong>l Plata city duringa period of 28 years (1974-2002) and to study<strong>de</strong>mographic and clinical characteristics of casestogether with epi<strong>de</strong>miological factors associatedwith the disease.MATERIAL AND METHODSStudy area and population The study areawas in Mar <strong>de</strong>l Plata and its surrounding, a majortourist sea town located in General Pueyrredón,on the southeast coast of Buenos Aires province,Argentina (38° S; 57°33´W) (Figure 1).The study was carried out in HPC, a 240-bedacute hospital which serves more than 20% of thepopulation from the study area, 61% of whom areol<strong>de</strong>r than 60 years. The hospital currently offersservices in the three levels of care that correspondto a general acute hospital, a service of preventiveFigure 1. Geographic proce<strong>de</strong>nce of the examined cases.78Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84


CYSTIC ECHINOCOCCOSIS: EPIDEMIOLOGY AND TREATMENTmedicine and a special program for the el<strong>de</strong>rly.During summer, the hospital also serves retiredpeople in transit and those affiliated to other medicalinstitutions that have pre-paid contracts with theHospital Foundation. HPC is also a referencecentre for patients from several areas counties thatcompound the Sanitary Region VIII.The total population consi<strong>de</strong>red for this studyconsisted in 20% of the population of the regionestimated in 2002 to be 207764 inhabitants, ofwhich 99727 were males and 108037 females(INDEC, 2001).Study <strong>de</strong>sign and data collection: A retrospective,observational and analytical study of casesseries was carried out in HPC. Data was obtainedfrom secondary information source. The inclusioncriterion was to consi<strong>de</strong>r all the medical records ofpatients of HPC with CE confirmed between 1974and 2002. A data file was completed for each patient,containing personal information: age and occupationat hospitalary admission, sex, domicile,origin (rural/urban), diagnostic methods, number,characteristics and location of cysts as well as typeof treatment received. When was possible the cyststype was classified according to proposed fromBrunetti et al, (2010). All records were provi<strong>de</strong>d forthe statistics service with permission of Teachingand Investigation Department.Data analysis: The mean annual inci<strong>de</strong>nce(MAI) of CE in HPC was calculated using datafrom the National Population and HouseholdCensus, 2001 (INDEC, 2001). Official notification(ON) records were used to compare the MAI of CEbetween 1998 and 2002 with the MAI of CE in HPCduring the same period (INE, 2002). For analyticalpurposes, the population was divi<strong>de</strong>d by age groupsof 10 years each and in some cases the study periodwas restricted to a span of five years: 1997–2001.Epi Info 2000 (Centers for Disease Control,Atlanta, USA) was used for single variate analysis.Differences between groups were compared bythe Chi-square (χ 2 ) test or the Kruskal Wallis testin case of non parametric distribution and it wasconsi<strong>de</strong>red statistically significant when p < 0.05.Linear regression studies were un<strong>de</strong>rtaken using theR statistical software (R Development Core Team,2007). Differences in cyst location frequencies andage media were analyzed by Stu<strong>de</strong>nt’s t test. Fromanalysis of media comparison between two groupsthe F statistic was obtained.RESULTSIn this retrospective, observational and analyticalstudy of cases series, a total of 115 patient recordswith confirmed CE in HPC were i<strong>de</strong>ntifiedand examined over the 28 year period (1974-2002).The average inci<strong>de</strong>nce for the period was 1,98 per100000 inhabitants when the total population wasconsi<strong>de</strong>red.Distribution of cases by sex, occupation, ageand place of resi<strong>de</strong>nce: Women represented 57.4%of cases although did not show any statisticallysignificant difference by sex (c 2 = 2.44; p = 0.12).According to reading of the records at time of thestudy, the most prevalent occupations were: retired(23.5%), homemaker (20.9%), rural worker(5.2%), stu<strong>de</strong>nt (3.5%), several occupations, like:truck driver, tra<strong>de</strong>r, employed, gastronomic worker,freelancer, metalworker, hairdresser, plumber(24.3%).Age and sex distribution and the male/femaleratio by age groups are shown in Figure 2. Theage of the cases ranged from 9 to 86 years, witha mean age of 61.3 ± 17.1 years and a median of65 years. Age groups 60-69 and 70–79 were themost frequents and represented 28% and 29%respectively of the total number of cases. Agegroups between 60 and 89 showed the highest MAI.The male/female ratio among total cases was0.74, while the gen<strong>de</strong>r ratio in the population was0.93 showing no gen<strong>de</strong>r significative differences(χ 2 = 1.39, p>0.05).Distribution of the cases by place of resi<strong>de</strong>nceindicated that 80% of the patients lived in an urbanFigure 2. Distribution of the 115 CE cases by humanCE cases by age, sex and mean annual inci<strong>de</strong>nce (MAI).*was calculated consi<strong>de</strong>ring 20% of Sanitary RegionVIII population using data from the National Populationand Household Census, 2001 (INDEC, 2001).Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-8479


M. C. DOPCHIZ et al.Table 1. Distribution of the 115 cases of CE by cystlocation diagnosed in HPC during 1974-2002Location Frequency %Liver 90 78.3Lung 8 7.0Liver - othera 6 5.2Bone 4 3.5Epigastric 1 0.9Gallblad<strong>de</strong>r 1 0.9Hypochondric 1 0.9Lung - liver 1 0.9Liver - kidney 1 0.9Peritoneum 1 0.9Soft tisúes 1 0.9Total 115 100aothers: hypochondric, groin, pelvis, pleura, gallblad<strong>de</strong>r.area, 18% in a rural area and 2% on the outskirts ofurban areas.Cyst location, diagnostic techniques and treatmentchose: To diagnose the disease, ultrasonographyalone or combined with other diagnostictechniques was the chosen method in 76.5% of thepatients. In 34.8% of the cases, a combination ofaxial computed tomography and ultrasonographywas used. The use of X-ray alone or combined withother diagnostic techniques was the chosen methodin 13.1% of the patients. The immunological techniquesof Arco5 or latex were used with others imagenologictechnics in 21.7% of the patients. Othersdiagnostic methods used in lower proportion werenuclear magnetic resonance, fluoroscopy and cholecystography.As regards cyst location, the average ratioliver-lung infection was 11:1. Eighty eight (76.5%)patients presented only 1 cyst, 16 (13.9%) patients2 cysts, 8 (7%) patients 3 cysts and 3 (2.67%)patients multiple cysts (Table 1).Ninety point four per cent of the total diagnosedCE patients received any approach due to illness,47.1% received surgical treatment and 19.2% pharmacologicaltreatment. All patients who receiveddrug therapy un<strong>de</strong>rwent surgery except one withCE4 type cyst who received albendazole for threecycles of thirty days. Table 2 summarizes the typeof treatment received. In 77.4% of diagnosed patients,it was possible to obtain information aboutthe cyst type. Within this group, 100% of the patientswith cyst type CE1 and CE3b were operatedand 33.4% and 52.6% received drug treatment respectively.To the type CE4 20% (2/10) of the casesreceived surgical and drug treatment. Interestingly70% and 88.7% of the cases with cyst type CE4 andCE5 respectively received the watch and wait approach.In relation to patients with cysts type CE5,11.3% were operated and none received drug treatment.Nine point six per cent of the total diagnosedCE patients not received treatment due to illness.The cysts of one of those patients were typified.The approach received for the CE patientstreated was analyzed consi<strong>de</strong>ring the most frequentlocalizations (liver and lung). Eighty seven pointseven per cent (79/90) and 100% (8/8) patients withliver and lung localization respectively were treatedfor CE. For liver localization, in 86% of the caseswas possible to obtain information about the cysttype. Within this group, 100% of the patients withTable 2. Distribution of the diagnosed and treated cases of CEaccording cysts type and the approach carried out in HPC during 1974-2002Approach Cyst type a TotalCE1 CE3b CE4 CE5 N/CSurgical6 19 2 6 16 49TreatmentWatch and- - 7 47 - 54waitNº Cases 6 19 10 53 16 104a patients with at least one cyst type based on Brunetti et al., 2010.N/C non classified80Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84


CYSTIC ECHINOCOCCOSIS: EPIDEMIOLOGY AND TREATMENTcyst type CE1 and CE3b were operated and 100%and 38.5% received drug treatment respectively.To the type CE4 20% (2/10) of the cases receivedsurgical and drug treatment. Interestingly 62.5%and 86.9% of the cases with cyst type CE4 and CE5received the watch and wait approach. In relation topatients with cysts type CE5 in liver localization,13% were operated and none received drugtreatment. In reference to eight patients with lunglocalization, in seven of them (87.5%) was possibleto obtain information about the cyst type. Withinthis group, all of the patients with cyst type CE1and CE3b were operated and one and two receiveddrug treatment respectively.Analysis of age-group distribution of treatedpatients by cyst type classification showed statisticallysignificative differences (X (3) Kruskal-Wallis=23.4, p < 0.00001). When the age-group were analyzedseparately we found only statically significativedifferences between cyst type CE4 and CE5 (F= 4.37, p < 0,05) and also when we analyzed CE1+ CE3b and CE4 + CE5 differences (X (1) Kruskal-Wallis =17.5, p < 0.00001) (Figure 3).The mean number of operations per patient was1.7, with a range from 1 to 8 making a total of 82surgeries, and one non operated patient receivedpharmacological treatment with albendazole.Forty nine per cent of the treated patients wereadmitted into the hospital and stayed for differentperiods, ranging from four to 50 days with a meanof 15 days (25th percentile = 8; 75th percentile =20). From a total of 115 patients, 13.9% died ofother diseases like cancer, general <strong>de</strong>terioration,cardio-respiratory arrest, acute bronchitis. In fourcases, cause of <strong>de</strong>ath was not filed in the medicalrecords.Figure 3. Boxsplot by age of CE treated cases accordingto the cyst type classification in HPC. The ends of thebox represent the first and third quartile, - - - -: range, º:extreme value, ______ :Age mean a patients with at leastone cyst classified according to Brunetti et al, 2010.Figure 4. Annual inci<strong>de</strong>nce of human CE registered and annual inci<strong>de</strong>nce according to on in the study region.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-8481


M. C. DOPCHIZ et al.Temporal distribution of HPC and ON cases:MAI of CE in HPC and from the ON during theperiod covered by this study was shown in Figure4. MAI in HPC ranged between zero to 5.3, whenvariations of MAI were analyzed within 5 yearsperiod, a significant increase was <strong>de</strong>terminedbetween 1974 and 2002 (c 2 = 4.3 p < 0.01). Theanalysis showed a positive correlation in the MAIthrough the time (Pearson* = 0.0671, p < 0.0001CI 95%).The average inci<strong>de</strong>nce for the period 1997–2001was 3.6 and 1.3 in HPC and ON respectively. HPCinci<strong>de</strong>nce was significantly different comparedwith the ON (c 2 = 6.86 p < 0.01).DISCUSSIONThe present study is a retrospective, observationaland analytical study of cases series of humanCE epi<strong>de</strong>miological data carried out in the HPCof Mar <strong>de</strong>l Plata city and surrounding areas, in theBuenos Aires province.The HPC is an important hospital in this areawhich attends 20% of Mar <strong>de</strong>l Plata´s populationand also is an important reference centre for patientsfrom several surrounding areas.The average annual inci<strong>de</strong>nce of CE for the1974-2002 period was 1.98 per 100000 inhabitantsin the HPC. This rate could be un<strong>de</strong>r-estimated andthe number of cases could be higher as it only reflectssymptomatic cases that reach medical attention orsurgery and represents a small proportion of theactual number of cases. This situation could be dueto CE is a chronic disease and frequently generatesasymptomatic cases that can represent up to 60% ofthe total number of cases (Pawlowski et al, 2001;Fri<strong>de</strong>r and LarriAge-group distribution showed thatthe etiological agent was present in all age groups.The finding of a low frequency in children in HPCdoes not reflect the situation because for the period1993-2002 were reported 44 cases of pediatric CE(Dopchiz et al, 2009). The most diagnosticated agegroup was 60-89 years-old since it evi<strong>de</strong>nced thehighest frequencies and MAI. This could be due tothe slow course of <strong>de</strong>velopment for the CE and alsocoinci<strong>de</strong>s with the age pyramid of the populationin the studies area, which is constituted for a highpercentage of adult people (INDEC, 2001).In the case of human CE, the high frequencyof exposure at an early age could be explainedby behavioral characteristics (close child-dogrelationship). The potential of parasitism as abiological phenomenon is related primarily toecological barriers and then to phylogenetic and/or physiological constraints (Wisnivesky, 2003;Denegri, 2008).Although the distribution of cases by sexshowed no statistically significant differences,women cases had more frequency. This agrees withElissondo et al, (2002; 2003) and Dopchiz et al,(2007), who studied this illness in health centres inthe same region. These results also are consistentwith reports from Palestine, Iraq, Jordan, UnitedKingdom, China, Middle East and North Africa(Dowling and Torgerson, 2000; Saeed et al, 2000;Abu-Hasan et al, 2002; Al Qaoud et al, 2003; Yanget al, 2006). However, this finding contrasts withrecent reports from pediatric study in the sameregion (Dopchiz et al, 2009) and in Kyrgystanwhere CE is an emerging disease and the numberof surgical cases in adult men is higher than inwomen (Torgerson et al, 2003). In the presentstudy, we observed that within the female group,most of the cases occurred in women who didhousehold chores; while within the male group,retired workers presented most of the cases. Morethan a matter of gen<strong>de</strong>r, CE infection is closelyrelated to people with high risk factors such ascontaminated soil or contact with infected dogswith parasite eggs. Nonetheless, the transmissionof this illness through water and ina<strong>de</strong>quatewashing of raw vegetables cannot be ruled out,since zoonotic parasites have been reported tobe present in vegetables for human consumption(Slifko et al, 2000, Martínez Fernán<strong>de</strong>z, 2002). CEis generally consi<strong>de</strong>red a rural disease because ofthe characteristics of its transmission cycle, whichinvolves dogs and domestic herbivorous animals(cattle, sheep, pigs and so on) (McManus et al,2003). This study reported that the occupationsof 21% of the study patients were unknown dueto the fact that in many cases the anamnesis wasincomplete. To find association between occupationand the adquisition time of the disease must beavailable the information of the occupation at thetime of first diagnosis and in this study are notgiven in the records.With respect to the distribution of the patientsaccording to their place of resi<strong>de</strong>nce, it was ob-82Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84


CYSTIC ECHINOCOCCOSIS: EPIDEMIOLOGY AND TREATMENTserved that the majority of them lived in urbanareas. It is possible that urban resi<strong>de</strong>nts may havebeen in contact with E. granulosus eggs in the city.Dopchiz (2006) and Dopchiz et al, (2002) reportedthe presence of antigens of E. granulosus in soilsamples from squares and dogs feces in Mar <strong>de</strong>lPlata city. We cannot ruled out the possibility thatthe disease was diagnosed in people who have acquiredit previously while they lived in other regions,and later settled down in this city.Ultrasound alone or in combination with othertechniques (such as axial computed tomography,immunological techniques etc.) is the method mostfrequently used to diagnose the disease. Ultrasoundis wi<strong>de</strong>ly known because of its low cost, speed inobtaining results and high sensitivity and specificity(Eckert and Deplazes, 2004; Fri<strong>de</strong>r and Larrieu,2010). In this study, serological techniques havebeen little used.The cysts had more frequently a hepatic locationfollowed by pulmonary and hepatic-other locations(Table 1), in agreement with other studies inArgentina (Elissondo et al, 2002; 2003; Pierangeliet al, 2007; Dopchiz et al, 2007; 2009) and othercountries throughout the world as Palestine, Australia,Chile, Iraq, Jordan, China and Kyrgystan(Jenkins and Power, 1996; Aliaga and Oberg, 2000;Saeed et al, 2000; Abu-Hasan et al, 2002; Al-Qaou<strong>de</strong>t al, 2003; Torgerson et al, 2003; Yang et al,2006). In reference to the liver/lung ratio found inthis study, it is one of the highest values reportedby Larrieu and Fri<strong>de</strong>r (2001) in a bibliographicalreview consi<strong>de</strong>ring 9770 hydatidosis patients fromUruguay, Argentina, Tanzania, New Zealand, Israel,Jordan, Australia, Bulgaria, Turkey and Iran.They informed a general ratio of 2.5:1, which inclu<strong>de</strong>dvalues ranging from 0.89:1 to 12:1. In manycases, the resistance shown by the liver tissue surroundingthe cyst <strong>de</strong>termines a slow growth or evenavoids the growth for many years. Therefore, thisexplains the high percentage of hepatic cysts thatremain asymptomatic while supporting a balanceparasite/host during the hosts’ life (Fri<strong>de</strong>r 2002;Fri<strong>de</strong>r and Larrieu, 2010). The lungs show lowresistanceto the growth of the hydatid cyst due totheir elasticity. This situation allows a proportionalincrease of the cyst size, and its consequence is themanifestation of clinical symptomatology in a greatpercentage of the total cases (Salviti et al, 2002).Studies of longitudinal follow up by ultrasonographyin patients with asymptomatic hydatid cysts,have <strong>de</strong>monstrated that in a period of 14 years, 67%of the carriers persisted without <strong>de</strong>veloping symptoms(Fri<strong>de</strong>r et al, 1999).To date there is no better approach of treatmentfor CE. Treatment indications are complex and arebased on cyst characteristics, available medical/surgical expertise and equipment, and adherence ofpatients to long-term monitoring.In this study the CE diagnosed cases were divi<strong>de</strong>din treated and untreated for the disease. Surgerywas the chosen method in 47% of the treatedpatients while pre and post-surgical chemotherapytreatment was relatively limited in the health centre.It is important to note that in the years of thisstudy drug use was relatively new and very limited.In addition, the availability of albendazole was verylimited in Argentina. The application of disease approachwas significant in relation to the cyst typeand localization. In general most of the patientswith cyst type CE1 and CE3b received any surgicalor drug treatment and with cyst type CE4 andCE5 un<strong>de</strong>rwent the watch and wait approach. Thissituation coinci<strong>de</strong>s with the stage specific treatmentsuggested by Brunetti et al. (2010).As regards to the treatment strategy the worldwi<strong>de</strong>experts propose that although surgery must becarefully evaluated in relation with other options, itis the first choice for complicated cyst. In the liver,it is indicated for: (1) removal of large CE2-CE3bcysts with multiple daughter vesicles; (2) single livercysts situated superficially, that may be brokenspontaneously or as a result of trauma when protoscolicesare not available; (3) infected cysts, whenprotoscolices are not available; (4) cysts communicatingwith the biliary tree and (5) cysts exertingpressure on adjacent vital organs. With regard tothe drug treatment benzimidazole (BMZ) are indicatedfor inoperable patients with liver or lung CE;patients with multiple cysts in two or more organs,or peritoneal cysts. Small (< 5 cm) CE1 and CE3acysts in the liver and lung respond favorably toBMZ alone (Vutova et al, 1999; Dogru et al, 2005).However not all the cases need surgical or drugtreatment. It has seen that when inactive cysts arenot complicated, mostly CE4 and CE5 cyst type,the best option is a long-term follow-up of patientswith US imaging (Fri<strong>de</strong>r and Larrieu, 2010).If we take into account the length of hospitalstay, the total number of operations and the numberRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-8483


M. C. DOPCHIZ et al.of operations per patient, we can observe the highcost of this disease for the institution and the importantsocial impact (Larrieu et al, 2004; FAO 2007).The annual inci<strong>de</strong>nce values for the entireregion had a positive correlation through thestudy period. More over the inci<strong>de</strong>nce value wassignificantly higher in 2002 when it was comparedwith 1974 year. At a certain period of time, theinci<strong>de</strong>nce values can increase or <strong>de</strong>crease and theymight be used as indicators of the efficiency ofcontrol programmes. This fact is shown by manyauthors in the worldwi<strong>de</strong> literature. For the last<strong>de</strong>ca<strong>de</strong> variable annual inci<strong>de</strong>nces were <strong>de</strong>scribedin the Patagonic provinces of Argentina like Tierra<strong>de</strong>l Fuego, Chubut, Neuquen, and Rio Negro. Allof them, are provinces un<strong>de</strong>r control programs andthese inci<strong>de</strong>nce values are <strong>de</strong>creasing (Larrieu etal, 2000; Eckert et al, 2001; Pierangeli et al, 2007;Zanini et al, 2009). The above mentioned indicatesthe progress achieved in control programs that were<strong>de</strong>signed for and are being implemented in theseregions. However, <strong>de</strong>spite the existence of controlprograms, CE remains an important public healthproblem in several countries of South America.In Chile MAI is stable since 1992 (between 2 and2.5/100000) although values up to 38.5/100000were reported in the IX Region of Araucania,bounding with Neuquén, in the 1991-1998 period(Aliaga and Oberg, 2000). In Uruguay annualinci<strong>de</strong>nce was 6.5/100000 in 1997; in Perú (1992)1.1 and in Rio Gran<strong>de</strong> do Sul, Brazil (1991) 0.54(Eckert et al, 2001).It is important to note that although CE is a diseaseof obligatory notification in Argentina, not allcases are reported, as we showed in Figure 4 wherethe MAI was compare between the HPC and theON. Whereas data from public hospitals are systematicallyrecor<strong>de</strong>d in Mar <strong>de</strong>l Plata, private hospitalsfail in notification to the sanitary authorities.Thus <strong>de</strong>ficiencies in official records should also betaken into account. Despite the above mentionedlimitations, data of annual inci<strong>de</strong>nce remain a usefultool to evaluate the regional epi<strong>de</strong>miologicalsituation of the disease (Jenkins and Power, 1996).The fact that in this study inci<strong>de</strong>nce rates hadan increased growth show that CE is transmittednaturally in the absence of control and preventionmeasures. This conclusion is supported by previouslypublished results for the study area wherewere shown new pediatric cases, high prevalencerate in cattle and presence of eggs parasites (Dopchiz,2006, Dopchiz et al, 2009).In or<strong>de</strong>r to have a real view of the situation of thiszoonoses and if there is actual disease transmission,more epi<strong>de</strong>miological studies must be conducted toknow the characteristics of the local transmissioncycle in the bovine cattle, in other intermediatehosts as well as in the <strong>de</strong>finitive host, and to knowbetter the cultural behaviours of the communities.REFERENCES1. ABU-HASAN N, DARAGMEH M, ADWAN K, AL-QOUAD K, ABDEL-HAFEZ SK. 2002. Human cysticechinococcosis in the West Bank of Palestine: surgicalinci<strong>de</strong>nce and seroepi<strong>de</strong>miological study. Parasitol Res88: 107-112.2. AL-QAOUD KM, CRAIG PS, ABDEL-HAFEZSK. 2003. Retrospective surgical inci<strong>de</strong>nce and casedistribution of cystic echinococcosis in Jordan between1994 and 2000. Acta Trop 87: 207-214.3. ALIAGA F, OBERG C. 2000. Epi<strong>de</strong>miología <strong>de</strong> lahidatidosis humana en la IX Región <strong>de</strong> la Araucanía,Chile. 1991-1998. Bol Chile Parasitol 55: 54-58.4. BATTELLI G. 2001. Socio-economic impact of theEchinococcus granulosus infection. In: WHO/OIEManual on echinococcosis in humans and animals(Eckert, J.; Gemmell, M.A.; Meslin, F.X. andPawlowski, Z., Eds). Geneva, Paris. 225-229.5. BRUNETTI E, KERN P, VUITTON DA. 2010.Writing Panel for the WHO-IWGE. Expert consensusfor the diagnosis and treatment of cystic and alveolarechinococcosis in humans. Act Trop 114: 1-16.6. DENEGRI G. 2008. Fundamentación epistemológica<strong>de</strong> la parasitología. Epistemologic Foundation of Parasitology)(Bilingual Edition). Editorial <strong>de</strong> la UniversidadNacional <strong>de</strong> Mar <strong>de</strong>l Plata (EUDEM)-EditorialMartin, Mar <strong>de</strong>l Plata, Argentina, 208 pp.7. DOGRU D, KIPER N, OZCELIK U, YALCIN E, GOC-MEN A. 2005. Medical treatment of pulmonary hydatiddisease: for which child? Parasitol Int 54: 135-138.8. DOPCHIZ MC. 2006. Aspectos epi<strong>de</strong>miológicos <strong>de</strong> lahidatidosis/echinococcosis en el su<strong>de</strong>ste <strong>de</strong> la provincia<strong>de</strong> Buenos Aires. Mar <strong>de</strong>l Plata, Buenos Aires, Argentina,PhD Thesis, Universidad Nacional <strong>de</strong> Mar <strong>de</strong>l Plata,Martín press, Mar <strong>de</strong>l Plata, Argentina, 201 pp.9. DOPCHIZ MC, ELISSONDO MC, ANDRESIUKMV, MAIORINI E, GUTIERREZ A, MUZULIN P,ROSENZVIT M, LAVALLÉN CM, DENEGRI G.2009. Study of hydatidosis pediatric cases in the Southeastregion of the Buenos Aires province, Argentina.Rev Argent Microbiol 41: 105-111.10. DOPCHIZ MC, ELISSONDO MC, DENEGRI G. 2002.Consi<strong>de</strong>raciones epi<strong>de</strong>miológicas <strong>de</strong> la hidatidosisechinococcosisen el su<strong>de</strong>ste <strong>de</strong> la provincia <strong>de</strong> BuenosAires. In: Situación <strong>de</strong> la hidatidosis-echinococcosis enla República Argentina (Denegri, G.; Elissondo, M.C.and Dopchiz M.C., Eds). Martin, Mar <strong>de</strong>l Plata. 65-75.84Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84


CYSTIC ECHINOCOCCOSIS: EPIDEMIOLOGY AND TREATMENT11. DOPCHIZ MC, ELISSONDO MC, ROSSIN MA,DENEGRI G. 2007. Hydatidosis cases in one of Mar<strong>de</strong>l Plata City Hospitals, Buenos Aires, Argentina. RevSoc Bras Med Trop 40(6): 635-639.12. DOWLING PM, TORGERSON PR. 2000. A crosssectional survey to <strong>de</strong>termine the risk factors associatedwith human cystic echinococcosis in an en<strong>de</strong>mic areaof mid-Wales. Ann Trop Med Parasitol 94: 241-245.13. ECHEGOYEN MC. 2004. Situación <strong>de</strong> los Países. Argentina.In: Informe <strong>de</strong>l Proyecto Subregional ConoSur <strong>de</strong> Control y Vigilancia <strong>de</strong> la hidatidosis. Argentina,Brasil, Chile y Uruguay (Pan American Health Organization,Eds), Montevi<strong>de</strong>o, Uruguay, PHAO. 28-30.14. ECKERT J, DEPLAZES P. 2004. Biological, epi<strong>de</strong>miological,and clinical aspects of echinococcosis, azoonosis of increasing concern. Clin Microbiol Rev 17:107-135.15. ECKERT J, SCHANTZ PM, GASSER RB, TOR-GERSON PR, BESSONOV AS, MOVSESSIAN SO,THAKUR A, GRIMM F, NIKOGOSSIAN MA. 2001.Geographic distribution and prevalence. In: WHO/OIE Manual on echinococcosis in humans and animals(Eckert, J.; Gemmell, M.A.; Meslin, F.X. and Pawlowski,Z., Eds). Geneva, Paris. 101-143.16. ELISSONDO MC, DOPCHIZ MC, DENEGRI G.2002. Human hydatidosis in Mar <strong>de</strong>l Plata, BuenosAires province, Argentina, (1992-1995): A preliminarystudy. Parasitol Latinoam 57: 124-128.17. ELISSONDO MC, DOPCHIZ MC, DENEGRI G.2003. Retrospective study of human hydatid diseasein health centers of Mar <strong>de</strong>l Plata city, Buenos Airesprovince, Argentina, (1996-1998). Rev Iber Parasitol63: 17-22.18. FAO, Proyecto Cono Sur <strong>de</strong> Vigilancia y Control <strong>de</strong>Hidatidosis: Argentina, Brasil, Chile y Uruguay. 2007.Estimación <strong>de</strong>l impacto económico <strong>de</strong> la Equinococosisquística en el Cono Sur (Argentina, Brasil, Chile yUruguay). [Cited 2007 Jul 15] Available from: http://www.paho.org/spanish/ad/dpc/vp/hidatidosis-impactoecon-07-fao.pdf19. FRIDER B. 2002. Aporte <strong>de</strong> la ultrasonografía alconocimiento <strong>de</strong> la hidatidosis. In: Situación <strong>de</strong> lahidatidosis-echinococcosis en la República Argentina(Denegri, G.; Elissondo, M.C. and Dopchiz, M.C.,Eds). Martin, Mar <strong>de</strong>l Plata. 79-106.20. FRIDER B, LARRIEU E. 2010. Treatment of liverhydatidosis: How to treat an asymptomatic carrier?World J Gastroenterol 16: 4123-4129.21. FRIDER B, LARRIEU E, ODRIOZOLA M. 1999.Long-term outcome of asymptomatic liver hydatidosis.J Hepatol 30: 228-231.22. GHARBI HA, HASSINE W, BRAUNER MW, DU-PUCH K. 1981. Ultrasound examination of the hydaticliver. Radiology 139: 459-463.23. INDEC (Instituto Nacional <strong>de</strong> Estadísticas y Censos<strong>de</strong> la República Argentina). 2001. Censo Nacional<strong>de</strong> Población, Hogares y Viviendas. [Cited 2002 Sept12] Available from: http://www.in<strong>de</strong>c.gov.ar/censo2001s2_2/ampliada_in<strong>de</strong>x.asp?mo<strong>de</strong>=0724. INE (Instituto Nacional <strong>de</strong> Epi<strong>de</strong>miología). 2002.Notificación Epi<strong>de</strong>miológica Región Sanitaria VIIIINE 1998-2002. Ministerio <strong>de</strong> Salud <strong>de</strong> la Nación,Argentina 43 pp.25. JENKINS DJ, POWER K. 1996. Human hydatidosis inNew South Wales and the Australian Capital Territory,1987-1992. Med J Aust 164: 18-21.26. LARRIEU E, BELLOTO A, ARÁMBULO III P,TAMAYO H. 2004. Echinococcosis quística: Epi<strong>de</strong>miologíay control en América <strong>de</strong>l Sur. Parasitol Latinoam59: 82-89.27. LARRIEU EJ, COSTA MT, CANTONI G, LABANCHIJL, BIGATTI R, PÉREZ A, ARAYA D, MANCINI S,HERRERO E, TALMON G, ROMERO S, THACURA. 2000. Control program of hydatid disease in theprovince of Río Negro Argentina. 1980-1997. Bol ChilParasitol 55: 49-53.28. LARRIEU EJ, FRIDER B. 2001. Human cysticechinococcosis: contributions to the natural history ofthe disease. Ann Trop Med Parasitol 95: 679-687.29. MARTÍNEZ FERNÁNDEZ AR. Agua y transmisiónalimentaria. In: Monografía XI: La Salud, priorida<strong>de</strong>n el VI Programa <strong>de</strong> Medio Ambiente <strong>de</strong> la UniónEuropea (Villanua Fungairiño, L., Ed). Madrid, RealAca<strong>de</strong>mia Nacional <strong>de</strong> Farmacia press; 2002 [cited2006 Jul 22]. Available from: http://www.ranf.com/publi/mono/011/011htm, 45 pp.30. MCMANUS DP, ZHANG WLIJ, BARTLEY PB.2003. Echinococcosis. J Lancet 362: 1295-1304.31. MSAL (Ministerio <strong>de</strong> Salud <strong>de</strong> la Nación) 2001.Boletín Epi<strong>de</strong>miológico Nacional. 2000-2001. [Cited2002 May 5] Available from: http://www.msal.gov.ar/htm/site/estadísticas.asp.32. MSAL-OPS (Ministerio <strong>de</strong> Salud <strong>de</strong> la Nación –Oraganización Panamericana <strong>de</strong> la Salud). 2009.Norma técnica y manual <strong>de</strong> procedimientos para elcontrol <strong>de</strong> la hidatidosis en la República Argentina.MSAL-OPS press. 50 pp.33. PAWLOWSKI ZS, ECKERT DA, VUITTON DA, AM-MANN RW, KERN P, CRAIG PS, DAR KF, DE ROSAF, FILICE C, GOTTSTEIN B, GRIMM F, MACPHER-SON CNL, SATO N, TODOROV T, UCHINO J, VONSINNER W, WEN H. 2001. Echinococcosis in humans:clinical aspects, diagnosis and treatment. In: WHO/OIE Manual on echinococcosis in humans and animals(Eckert, J.; Gemmell, M.A.; Meslin, F.X. and Pawlowski,Z., Eds). Geneva, Paris. 20-66.34. PIERANGELI NB, SORIANO SV, ROCCIA I, GI-MÉNEZ J, LAZZARINI LE, GRENÓVERO MS,MENESTRINA C, BASUALDO JA. 2007. Heterogeneousdistribution of human cystic echinococcosis aftera long-term control program in Neuquén, PatagoniaArgentina. Parasitol Int 56: 149-155.35. R Development Core Team 2007. R: A language an<strong>de</strong>nvironment for statistical computing. R Foundationfor Statistical Computing, Vienna, Austria, [Cited 2007Jun 7] Available from: http://www.R-project.org.36. SAEED I, KAPEL C, SAIDA LA, WILLINGHAML, NANSEN P. 2000. Epi<strong>de</strong>miology of Echinococcusgranulosus in Arbil province, Northern Iraq, 1990-1998. J Helminthol 74: 83-88.37. SALVITTI JC, MERCAPIDE CH, SUSTERSIC J,DEL CARPIO M, ODRIOZOLA M, PEREYRA R,PÉREZ A 2002. Tratamiento <strong>de</strong> la hidatidosis humana.In: Situación <strong>de</strong> la hidatidosis-echinococcosis en laRepública Argentina (Denegri, G.; Elissondo, M.C. andDopchiz, M.C., Eds). Martin, Mar <strong>de</strong>l Plata. 205-214.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-8485


M. C. DOPCHIZ et al.38. SLIFKO TR, SMITH HV, ROSE JB. 2000. Emergingparasite zoonoses associated with water and food. Int JParasitol 30: 1379-1393.39. THOMPSON RCA. 2002. Rediscovering parasitesusing molecular tools-towards revising <strong>de</strong> taxonomyof Echinococcus, Giardia and Criptosporidium. Int JParasitol 32: 493-496.40. TORGERSON PR, KARAEVA RR, CORKERI N, AB-DYJAPAROV TA, KUTTUBAEV OT, SHAIKENOVBS. 2003. Human cystic echinococcosis in Kyrgystan:an epi<strong>de</strong>miological study. Acta Trop 85: 51-61.41. VUTOVA K, MECHKOV G, VACHKOV P, PETKOVR, GEORGIEV P, HANDJIEV S, IVANOV A, TODO-ROV T. 1999. Effect of mebendazole on human cysticechinococcosis: the role of dosage and treatment duration.Ann Trop Med Parasitol 93: 357-365.42. WHO-Informal Working Group on Echinococcosis.1996. Gui<strong>de</strong>lines for treatment of cystic and alveolarechinococcosis in humans. Bull. WHO 74, 231-242.43. WISNIVESKY C. 2003. Ecología y epi<strong>de</strong>miología<strong>de</strong> las infecciones parasitarias, Libro UniversitarioRegional, Cartago 398 pp.44. XIAO N, QIU J, NAKAO M, LI T, YANG W, CHENX, SCHANTZ PM, CRAIG PS, ITO A. 2005. Echinococcusshiquicus n. sp., a taeniid cesto<strong>de</strong> from Tibetanfox and plateau pika in China. Int J Parasitol 35: 69345.YANG YR, CHENG L, YANG SK, PAN X, SUN T,LI X, HU S, ZHAO R, CRAIG PS, VUITTON DA,MCMANUS DP. 2006. A hospital-based retrospectivesurvey of human cystic and alveolar echinococcosis inNingxia Hui Autonomous Region, PR China. Acta Trop97: 284-291.46. ZANINI F, SUÁREZ C, PÉREZ H, ELISSONDO MC.2009. Epi<strong>de</strong>miological surveillance of cystic echinococcosisin rural population of Tierra <strong>de</strong>l Fuego, Argentina,1997-2006. Parasitol Int 58: 69-71.Acknowledgments: The authors express there gratitu<strong>de</strong> toDr. Maxit from the “Hospital Privado <strong>de</strong> Comunidad”. Wealso thank Lic. Natalia Fre<strong>de</strong>s and Dr. Nahuel Farias fortheir contribution in statistics and Prof. Liliana Bordoni andDr. Edmundo Larrieu for revising critical this manuscript.This study formed part of the doctoral thesis of Dr. MarcelaDopchiz.86Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 74-84


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-92Hipocromia y diagnóstico <strong>de</strong> talla en niños yadolescentes con parasitosis intestinales <strong>de</strong>lMunicipio Guacara. Estado Carabobo. VenezuelaACUÑA I. 1 y MORÓN DE SALIM A. 21Médico Pediatra, Magíster en Nutrición, Profesor <strong>de</strong>l Departamento <strong>de</strong> Morfología, Escuela <strong>de</strong> CienciasBiomédicas y Tecnológicas. Facultad <strong>de</strong> Ciencias <strong>de</strong> la Salud. Universidad <strong>de</strong> Carabobo. Investigador Asociado <strong>de</strong>lINVESNUT. Se<strong>de</strong> Valencia.2Bióloga, Magíster en Bioquímica Nutricional y Metabolismo. Profesor Titular. Departamento <strong>de</strong> Bioquimica.Escuela <strong>de</strong> Ciencias Biomédicas y Tecnológicas. Facultad <strong>de</strong> Ciencias <strong>de</strong> la Salud. Universidad <strong>de</strong> Carabobo.Investigador Asociado <strong>de</strong>l INVESNUT. Se<strong>de</strong> Valencia.ABSTRACTHIPOCROMIA AND STATURE IN CHILDREN AND ADOLESCENTS INFECTED BYINTESTINAL PARASITISM IM GUACARA COUNTY ; STATE OF CARABOBO, VENEZUELAIt was <strong>de</strong>termine the presence or no of hypochromia and diagnosis of stature in children and adolescentsfrom Guacara Municipality, State Carabobo, Venezuela, and the relationship with types and combinationsof parasites. In 395 children, infant, preschool, school and teen, attending at three rural hospitals wereevaluated, without disease apparent, aged between 1 and 18 years. Haematological, parasitological andsocio-economic were done. Haematological by automated counter, Beckman Coulter, mo<strong>de</strong>l Ac.T 5diff;copro-parasitological a stool from children, by direct method and Kato-Katz; socioeconomic Graffaraccording Mén<strong>de</strong>z Castellano. Was found: median age 6.64 ± 1.78; 51.4% male, 48.6% female; etariogroup predominance pre-school 30.9% and 25.6% teenagers; socio-economic strata IV (69.1%). Parasitizedpopulation 77,2% with prevalence of Blastocystis hominis 34.4% in pre-school (31.1%), adolescents(27.7%). Found significant relationship between hypochromia and parasites, type being B. hominis themore closely related to this condition (42.3%). Type of parasite by etario group: Giardia lamblia in nursing36.4%, combination G. lamblia and B. hominis in pre-school, 47.1%, Endolimax nana in school 40,45%,combination of E. nana and B. hominis in teenage 34.5%. No significant relationship between parasitism,type of parasite and diagnosis of stature. We conclu<strong>de</strong>d that in preschool children from low socioeconomicthe parasitic intestinal by B. hominis are prevalent and significantly related hypochromia, but not withstature.Key words: Hypochromia, socioeconomic level, Blastocystis hominis, Giardia lamblia.Recibido: 30 <strong>de</strong> Agosto <strong>de</strong> 2010. Aprobado: 16 <strong>de</strong> Abril <strong>de</strong> 2001.Correspon<strong>de</strong>ncia: Dra. Iraima AcuñaINVESNUT. Apartado postal 3458. Valencia 2002-A, Venezuela.E-mail: ciberfamilia14@hotmail.com87


I. ACUÑA y A. MORÓN DE SALIMRESUMENSe estudió la presencia <strong>de</strong> hipocromía y diagnóstico <strong>de</strong> talla, en niños y adolescentes <strong>de</strong>l MunicipioGuacara, Estado Carabobo, Venezuela, y su relación con tipos y combinaciones <strong>de</strong> parásitos. Se examinaron395 niños, entre lactantes, preescolares, escolares y adolescentes, que asistieron a tres ambulatorios rurales<strong>de</strong> Guacara, sin enfermedad aparente, edad entre 1-18 años. Se les realizó evaluación hematológica,parasitológica y socioeconómica. Hematológica, contador hematológico automatizado, marca BeckmanCoulter, mo<strong>de</strong>lo Ac.T 5diff; copro-parasitológica una muestra <strong>de</strong> heces por niño, método directo y Kato-Katz; socioeconómica Graffar según Mén<strong>de</strong>z Castellano. Se obtuvo: edad promedio 6,64 ± 1,78 años; 51,4%género masculino y 48,6% femenino; predominio <strong>de</strong> preescolares 30,9%, adolescentes 25,6%; estratosocioeconómico predominante IV (69,1%). Población parasitada 77,2% con prevalencia <strong>de</strong> Blastocystishominis 34,4%; preescolares (31,1%), adolescentes (27,7%); con p < 0,05 entre los grupos etarios. Seencontró relación significativa entre hipocromía y tipo <strong>de</strong> parásitos, siendo el B. hominis el más relacionadocon esta condición (42,3%) y entre tipo <strong>de</strong> parásito y grupo etario: Giardia lamblia en lactantes 36,4%;combinación G. lamblia y B. hominis en preescolares, 47,1%; Endolimax nana en escolares 40,45%,combinación <strong>de</strong> E. nana y B. hominis en adolescentes 34,5%. No hubo relación significativa entre parasitosis,tipo <strong>de</strong> parásito y diagnóstico <strong>de</strong> talla. Se concluye que en preescolares <strong>de</strong> bajo nivel socioeconómico, lasparasitosis intestinales por B. hominis son prevalentes y relacionadas significativamente con hipocromía,mas no con la talla.Palabras clave: Parasitosis, hipocromía, nivel socioeconómico, Blastocystis hominis, Giardia lamblia.INTRODUCCIÓNLa prevalencia <strong>de</strong> las parasitosis intestinales enniños y adolescentes venezolanos, no se diferencia<strong>de</strong> las registradas en otros países latinoamericanoscon características climáticas, condiciones <strong>de</strong> insalubridady pobreza semejantes (Simoes et al, 2000).La pobreza y las condiciones sanitarias <strong>de</strong>ficientesson uno <strong>de</strong> los mayores agentes <strong>de</strong> infección porenteroparásitos los cuales a través <strong>de</strong> diferentes mecanismos,privan al organismo <strong>de</strong> nutrientes. Estudiosa nivel nacional refieren altas inci<strong>de</strong>ncias <strong>de</strong>infestaciones parasitarias en comunida<strong>de</strong>s escolares,que a pesar <strong>de</strong> su baja mortalidad, pue<strong>de</strong>n ocasionarimportantes problemas sanitarios y sociales<strong>de</strong>bido a su sintomatología y complicaciones. Lasparasitosis intestinales se producen en el hombrecuando sus hábitos y costumbres se interrelacionancon los ciclos <strong>de</strong> vida <strong>de</strong> los enteroparásitos, presentándosemás comúnmente, durante los primerosaños <strong>de</strong> vida cuando aún no se han adquirido loshábitos higiénicos y no se ha <strong>de</strong>sarrollado la inmunidadfrente a los diferentes tipos <strong>de</strong> parásitos. (Riveroet al, 2000, Guevara et al, 2003).Las enteroparasitosis pue<strong>de</strong>n transcurrir asintomáticasdurante largo tiempo, aunque también pue<strong>de</strong>nllegar a provocar cuadros digestivos, inclusivecon repercusión en el crecimiento y <strong>de</strong>sarrollo <strong>de</strong>niños y adolescentes, por pérdida <strong>de</strong>l apetito con unefecto <strong>de</strong>letéreo sobre el metabolismo <strong>de</strong> las proteínas.Un mecanismo involucrado es el efecto queproducen sobre la absorción intestinal <strong>de</strong> nutrientes,<strong>de</strong>bido a un aumento en la velocidad <strong>de</strong>l tránsitointestinal por lesiones <strong>de</strong> la mucosa y por reducción<strong>de</strong> la secreción <strong>de</strong> sales biliares (Marquezet al, 2005, Michelli y De Donato, 2001, Marcos etal, 2003, Ibáñez et al, 2004, Bórquez et al, 2004,Quihui-Cota et al, 2004). Las infestaciones porÁscaris lumbricoi<strong>de</strong>s, Trichuris trichiura y Giardialamblia pue<strong>de</strong>n acelerar el tránsito intestinal yalterar el equilibrio <strong>de</strong> nitrógeno, lo que producemalabsorción e intolerancia a azúcares y vitaminas.Las infecciones helmínticas pue<strong>de</strong>n producir malnutriciónproteinocalórica, siendo los niños preescolareslos más susceptibles a este tipo <strong>de</strong> <strong>de</strong>snutrición(Northrop-Clewes et al, 2001).La disminución <strong>de</strong>l crecimiento en niños, ha sidoasociada con infestaciones por G. lamblia, mientrasque la infestación por T. trichiura se ha asociadocon déficit <strong>de</strong> peso para la talla y con déficit <strong>de</strong>talla para la edad (Sackey et al, 2003, Simsek etal, 2004). El objetivo <strong>de</strong>l presente trabajo fue el88Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-92


HIPOCROMIA Y TALLA Y SU RELACIÓN CON PARASITOSIS INTESTINALES<strong>de</strong> evaluar la inci<strong>de</strong>ncia <strong>de</strong> parasitosis, sus tiposy combinaciones y su relación con la presencia ono <strong>de</strong> hipocromía y diagnóstico <strong>de</strong> talla, en niñosy adolescentes <strong>de</strong>l Municipio Guacara <strong>de</strong>l EstadoCarabobo.MATERIAL Y MÉTODOInvestigación <strong>de</strong>scriptiva, <strong>de</strong> corte transversal y<strong>de</strong> observación <strong>de</strong> campo, cuya población estuvoconstituida por niños lactantes, preescolares, escolaresy adolescentes, que asistieron a tres ambulatoriosrurales <strong>de</strong>l Municipio Guacara <strong>de</strong>l EstadoCarabobo, Venezuela. Cada representante fue informadosobre los objetivos <strong>de</strong>l estudio, así como,los beneficios que le aportaría a su hijo la participaciónen la investigación. La información fuedada sin presiones ni distingo <strong>de</strong> raza o condiciónsocioeconómica y se mantuvo en estricta confi<strong>de</strong>ncialidadla i<strong>de</strong>ntificación <strong>de</strong> los participantes; losdatos recolectados en el estudio fueron utilizadoscon fines científicos y para beneficio <strong>de</strong> los niñosparticipantes. El estudio recibió la aprobación <strong>de</strong>lComité <strong>de</strong> Ética <strong>de</strong> la Universidad <strong>de</strong> Carabobo yla participación <strong>de</strong> los niños se obtuvo por consentimientoescrito <strong>de</strong> los padres o representantes.La muestra estuvo representada por 395 niños,sin enfermedad aparente, con eda<strong>de</strong>s entre 1 y 18años. A todos los niños se les realizó evaluación hematológicay parasicológica. En ayuno se tomaron3 ml <strong>de</strong> sangre periférica, mediante punción venosa;se <strong>de</strong>positaron 2 ml en tubos <strong>de</strong> vidrio que contenían25 μl <strong>de</strong> EDTA como anticoagulante, paralas <strong>de</strong>terminaciones hematológicas: hemoglobina,hematocrito, concentración <strong>de</strong> hemoglobina corpuscularmedia (CHCM) y volumen corpuscularmedio (VCM); los cuales se midieron en un contadorhematológico automatizado, marca BeckmanCoulter, mo<strong>de</strong>lo Ac.T 5diff.La evaluación copro-parasitológica se realizóen una sola muestra para cada niño o adolescenteparticipante mediante el método directo (soluciónsalina y lugol) y el método <strong>de</strong> concentración (Kato-Katz), el cual <strong>de</strong>termina el número <strong>de</strong> huevos <strong>de</strong>helmintos por gramo <strong>de</strong> heces y permite establecerla intensidad <strong>de</strong> infestación parasitaria; que segúnlos criterios <strong>de</strong> la Organización Mundial <strong>de</strong> la Saludse clasifican en infestaciones leves, mo<strong>de</strong>radas oseveras (Incani, 1996). Se consi<strong>de</strong>ró hipocromía avalores <strong>de</strong> CHCM inferiores al 32% (WHO 2001).Se <strong>de</strong>finió como normalidad en talla cuandoésta se encontraba por encima <strong>de</strong>l percentil 10 ymenor o igual al percentil 90; riesgo <strong>de</strong> talla bajaa todo valor ubicado por encima <strong>de</strong>l percentil 3 ymenor o igual al percentil 10; talla baja leve todovalor menor o igual al percentil 3 y por encima <strong>de</strong>- 3 <strong>de</strong>sviaciones estándar; talla baja mo<strong>de</strong>rada todovalor menor o igual a


I. ACUÑA y A. MORÓN DE SALIMTabla 1. Distribución <strong>de</strong> frecuencia <strong>de</strong> parasitosisy tipos <strong>de</strong> parásitos en la población en estudio (n =395). Municipio <strong>de</strong> Guacara, VenezuelaParasitosis n %Niños parasitados 305 77,2Niños no parasitados90 22,8Tipo y combinaciones <strong>de</strong> parásitos en niños parasitados(n = 305)Blastocystis hominis105 34,4Endolimax nana55 18,0y BlastocyistishominisEndolimax nana 47 15,4Giardia lamblia y 17 5,6blastocystis hominisGiardia lamblia 11 3,6Otros tipos y combinaciones70 23,0el grupo <strong>de</strong> adolescentes (27,2%), y una relaciónsignificativa entre grupo etario y presencia o no <strong>de</strong>parásitos. El 9,2% <strong>de</strong> los parasitados presentaronanemia.La Tabla 3 muestra la presencia o no <strong>de</strong>hipocromía en la población parasitada, según tipoy combinaciones <strong>de</strong> parásitos. Según los análisisestadísticos aplicando las pruebas <strong>de</strong> Sommer yKendall, para p < 0,10, se encontró una relaciónestadísticamente significativa entre hipocromíay tipo <strong>de</strong> parásitos, siendo el B. hominis el másrelacionado con esta condición (42,3%).Hubo relación estadísticamente significativa entretipo <strong>de</strong> parásitos y grupos etarios, con predominio<strong>de</strong> G. lamblia en el grupo <strong>de</strong> lactantes (36,4%);<strong>de</strong> la combinación <strong>de</strong> G. lamblia y B. hominis en elgrupo <strong>de</strong> preescolares (47,1%); E. nana en el grupo<strong>de</strong> escolares (40,4%) y la combinación <strong>de</strong> E. nanay B. hominis en el grupo <strong>de</strong> adolescentes (34,5%)(Tabla 4).La Tabla 5 muestra la relación entre tipo y combinaciones<strong>de</strong> parásitos y diagnóstico <strong>de</strong> talla en lapoblación parasitada, don<strong>de</strong> se observa que por encima<strong>de</strong>l 75% <strong>de</strong> los niños parasitados se encontraban<strong>de</strong>ntro <strong>de</strong>l rango <strong>de</strong> talla normal; <strong>de</strong> igual formase encontró una relación estadísticamente significativaentre diagnóstico <strong>de</strong> talla y tipo y combinaciones<strong>de</strong> parasitosis.DISCUSIÓNLas parasitosis intestinales, en la mayoría <strong>de</strong> loscasos, son asintomáticas, lo que permite no sólo supersistencia en el individuo sino también su diseminación.Las condiciones <strong>de</strong>l sub<strong>de</strong>sarrollo favorecenlas llamadas “enfermeda<strong>de</strong>s <strong>de</strong> la pobreza”,siendo las parasitosis las <strong>de</strong> mayor prevalencia, <strong>de</strong>allí que estudios hayan apuntado que el nivel socioeconómicoestá estrechamente relacionado conla prevalencia <strong>de</strong> infestación por parásitos intestinales(Michelli y De Donato, 2001). En este estudiose encontró una alta prevalencia <strong>de</strong> parasitosisintestinales en la población infantil, similar a lareportada por otros autores a nivel nacional, principalmenteen los estratos socioeconómicos <strong>de</strong> pobrezarelativa (IV), (Rivero et al, 2000b, Barón etal, 2007, Solano et al, 2008); siendo el preescolarel grupo etario más afectado, hallazgo este que noTabla 2. Relación entre grupo etario y presencia o no <strong>de</strong> parasitosis. Municipio <strong>de</strong> Guacara, VenezuelaNiños conparasitosisNiños sinparasitosisχ 2 27,869: p < 0,005Grupos etariosLactantes Preescolares Escolares Adolescentes Totaln % n % n % n %53 17,4 95 31,1 74 24,3 83 27,2 30529 32,2 27 30 16 17,8 18 20 9090Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-92


HIPOCROMIA Y TALLA Y SU RELACIÓN CON PARASITOSIS INTESTINALESTabla 3. Hipocromía y Normocromía en la población con parasitosis (n = 305) según tipo y combinaciones <strong>de</strong>parásitos Municipio <strong>de</strong> Guacara, VenezuelaTipo y combinacionesHipocromíaNormocromía<strong>de</strong> parásitosn % n %Blastocystis hominis 30 42,3 75 32,1Endolimax nana y6 8,5 49 20,9Blastocyistis hominisEndolimax nana 5 7 42 17,9Giardia lamblia y7 9,9 10 4,3Blastocystis hominisGiardia lamblia 4 5,6 7 3Entamoeba coli y8 11,3 13 5,6Blastocystis hominisEntamoeba coli. 3 4,2 4 1,7Otros tipos y combinaciones8 11,3 34 14,5Total 71 100 234 100Kendall: 0,096 p = 0,05; Sommer: 0,089 p = 0,05; p < 0,10Tabla 4. Relación entre tipo y combinación <strong>de</strong> parásitos según grupo etario en la población parasitada(n = 305). Municipio <strong>de</strong> Guacara, VenezuelaTipo y combinación<strong>de</strong>parásitosBlastocystishominisEndolimaxnana yBlastocyistishominisGrupos etariosLactantes Preescolares Escolares Adolescentesn % n % n % n % Total22 21,0 33 31,4 20 19,1 30 28,6 1055 9,1 20 36,4 11 20,0 19 34,5 55Endolimax nana 8 17,0 14 29,8 19 40,4 6 12,8 47Giardia lamblia3 17,6 8 47,1 3 17,6 3 17,6 17yBlastocystishominisGiardia lamblia 4 36,4 5 45,5 2 18,2 0 0 11Otros tipos y 11 15,7 15 21,4 19 27,1 25 35,7 70combinacionesKendall: 0,107 p = 0,02; Somer: 0,107 p = 0,02coinci<strong>de</strong> con lo reportado por otros autores, quienesindican que la mayor prevalencia <strong>de</strong> parasitosisse presenta el grupo <strong>de</strong> edad escolar (Simoes et al,2000, Rivero et al, 2000b, Iannacone et al, 2006,).Esta prevalencia <strong>de</strong> infestaciones parasistarias principalmente<strong>de</strong>l tipo <strong>de</strong> protozoarios, encontrada enel grupo <strong>de</strong> preescolares pudo ser <strong>de</strong>bida a la falta<strong>de</strong> agua potable, a las ina<strong>de</strong>cuadas condiciones sa-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-9291


I. ACUÑA y A. MORÓN DE SALIMTabla 5. Relación entre tipo y combinaciones <strong>de</strong> parásitos y diagnóstico <strong>de</strong> talla en la población parasitada(n = 305). Municipio <strong>de</strong> Guacara, VenezuelaRiesgo <strong>de</strong>talla bajaTalla bajaLeveDiagnóstico <strong>de</strong> tallaTalla bajaMo<strong>de</strong>radaTallaNormalRiesgo <strong>de</strong>talla altaTallaaltan % n % n % n % n % n %Tipo y combinaciones<strong>de</strong> parásitosTotalBlastocystis hominis7 6,7 9 8,6 0 0 84 80,0 5 4,8 0 0 105Endolimax nana y 5 9,1 1 1,8 2 3,6 47 85,5 0 0 0 0 55Blastocyistis hominisEndolimax nana 6 12,8 4 8,5 0 0 33 70,2 2 4,3 2 4,3 47Giardia lamblia y 2 11,8 1 5,9 0 0 14 82,4 0 0 0 0 17Blastocystis hominisGiardia lamblia 1 9,1 1 9,1 1 9,1 8 72,7 0 0 0 0 11Otros tipos y combinaciones10 14,3 4 5,7 1 1,4 53 75,8 1 1,4 1 1,4 70Kendall:-0,032; Somer: -0,029.nitarias existentes don<strong>de</strong> viven, asi como tambienal consumo <strong>de</strong> alimentos contaminados con materiafecal, principal via <strong>de</strong> transmisión <strong>de</strong> este tipo <strong>de</strong>parásitos.El protozoario <strong>de</strong> mayor prevalencia encontradoen este estudio fue B. hominis, cuya infecciónha sido asociada principalmente a sintomatologíagastrointestinal inespecífica (Doyle et al, 1990, AlTawil et al, 1994). Barahona et al, (2002), y Deveraet al, 2003) pudieron <strong>de</strong>mostrar que el consumo <strong>de</strong>agua potable no hervida, con ausencia <strong>de</strong> medidasa<strong>de</strong>cuadas <strong>de</strong> saneamiento básico, son factores <strong>de</strong>riesgo <strong>de</strong>terminantes importantes en la prevalencia<strong>de</strong> B. hominis consi<strong>de</strong>rado como un patógeno potencial,especialmente en niños y cuando el número<strong>de</strong> éste en muestras <strong>de</strong> heces exce<strong>de</strong> a cinco microorganismospor campo (400X), así como también,la aparición <strong>de</strong> enfermedad <strong>de</strong>pen<strong>de</strong>rá <strong>de</strong> la interacciónparásito y hospe<strong>de</strong>ro (Nimri, 1993, Devera etal, 2006).En el presente estudio B.s hominis representó,como parasitosis única el 34,4% y se relacionó <strong>de</strong>manera significativa con la presencia <strong>de</strong> hipocromía,sugiriendo un papel patógeno más que <strong>de</strong> comensalintestinal; sin embargo, no ha sido reportadauna relación estadísticamente significativa entreblastoscitosis y anemia. En cuanto a G. lambia,se ha sugerido que en países en <strong>de</strong>sarrollo, noindustrializados, su inci<strong>de</strong>ncia es 4 veces mayorque la reportada en los países industrializados,siendo el parásito más frecuentemente encontrado(De Abreu et al, 2002, Simsek et al, 2004). Enel presente estudio, en el grupo <strong>de</strong> lactantes, seevi<strong>de</strong>nció un alto grado <strong>de</strong> infestación parasitariapor G. lamblia, lo cual pue<strong>de</strong> estar relacionadocon la introducción <strong>de</strong> fórmulas infantiles, <strong>de</strong>bidoa la escasa o nula lactancia materna. La mayorprevalencia <strong>de</strong> giardiasis sola y en combinacióncon blastocistosis encontrada en el grupo <strong>de</strong>preescolares probablemente se <strong>de</strong>ba a que ambosparásitos comparten el mismo mecanismo <strong>de</strong>transmisión, agua y alimentos contaminados. Laalta prevalencia <strong>de</strong> E. nana encontrada en el grupo<strong>de</strong> escolares y en combinación con B. hominis en elgrupo <strong>de</strong> adolescentes, es semejante a la reportadapor otros autores (Salomón et al, 2007), quienesreportaron altas prevalencias <strong>de</strong> este protozoarioen todos los grupos <strong>de</strong> eda<strong>de</strong>s, principalmente enescolares y adolescentes.Entre los parásitos asociados con B. hominis,hallados en este estudio fueron: E. nana en elgrupo <strong>de</strong> adolescentes y G. lamblia en el grupo<strong>de</strong> preescolares; siendo G. lamblia el parasitoreportado por otros investigadores como el más92Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-92


HIPOCROMIA Y TALLA Y SU RELACIÓN CON PARASITOSIS INTESTINALESfrecuentemente asociado con B. hominis (Mercadoet al, 2003, Hol<strong>de</strong>r et al, 2006); su asociaciónpudiera <strong>de</strong>berse a algún sinergismo en el mecanismo<strong>de</strong> daño, incluso en el mecanismo <strong>de</strong> transmisión.Hol<strong>de</strong>r et al, (2006) afirman que B. hominis seasocia aun más frecuente con otros parásitos patógenostales como Entamoeba histolytica y Cristoporidumparvum, lo cual dificulta con exactitudconocer su potencial patogénico.Investigadores han reportaron que las asociacionesparasitarias más frecuentes, son la <strong>de</strong> B. hominiscon E. nana y con G. lamblia, (Beauchampet al, 1995, Mayo y Moreno, 1997). Estas asociacionessugieren un modo similar <strong>de</strong> transmisión(oro-fecal), lo cual es <strong>de</strong> gran importancia epi<strong>de</strong>miológica,ya que su presencia indica ingestión <strong>de</strong>alimentos y/o agua contaminada con materias fecales,lo cual permite la implementación <strong>de</strong> medidassanitarias específicas para su control.Los entero-parásitos pue<strong>de</strong>n llegar a provocara<strong>de</strong>más cuadros digestivos <strong>de</strong> mal absorción intestinal,tránsito acelerado, reducción <strong>de</strong> las sales biliaresy lesiones en la mucosa intestinal (Guevara etal, 2003, Márquez et al, 2005), aunque sigue siendocontroversial si estas alteraciones influyen sobreel estado nutricional y crecimiento <strong>de</strong> los niños, <strong>de</strong>bidoa la diversidad <strong>de</strong> eda<strong>de</strong>s, estado nutricional,tipo <strong>de</strong> parásitos e intensidad <strong>de</strong> las parasitosis enlos grupos estudiados (Dickson et al, 2000). En esteestudio se encontró una relación estadísticamentesignificativa entre parasitosis y alteración en la talla,lo cual no coinci<strong>de</strong> con lo reportado por otrosautores (Solano et al, 2008), pudiendo consi<strong>de</strong>rarsela combinación y tipo <strong>de</strong> parásito un factor contribuyentemás no <strong>de</strong>terminante, en el cual influyea<strong>de</strong>más la ingesta alimenticia, estado nutricional yfactores socioeconómicos entre otros.Se concluye que B. hominis es el parásito másprevalente en la población estudiada y su presenciase relacionó significativamente con hipocromíay trastornos <strong>de</strong> talla, por lo que, se pue<strong>de</strong> inferir,que este parásito pue<strong>de</strong> ser consi<strong>de</strong>rarlo comopotencial patógeno intestinal, pudiendo conducircomo factor contribuyente a alteraciones en la tallae hipocromía.REFERENCIAS1. AL- TAWIL Y, GILGER M, GOPALAKRISHMA G,LANGSTON C, BOMMER K. 1994. Invasive Blastocystishominis infection in a child. Arch, Pediatr. Adolesc.Med 148: 882-885.2. BARAHONA L, MAGUINA C, NAQUIRA C,TERASHIMA A, TELLO R. 2002. Sintomatología yfactores epi<strong>de</strong>miológicos asociados al parasitismo porBlastocystis hominis. Parasitol Latinoam 57(3- 4): 96-102.3. BARÓN M, SOLANO L, PÁEZ M, PABÓN M. 2007.Estado nutricional <strong>de</strong> hierro y parasitosis intestinal enniños <strong>de</strong> Valencia, Estado Carabobo, Venezuela AnalesVenezolanos <strong>de</strong> Nutrición 20 (1): 5-11.4. BEAUCHAMP S, FLORES T, TARAZÓN S. 1995.Blastocystis hominis: Prevalencia en alumnos <strong>de</strong> unaEscuela Básica. Maracaibo, Estado Zulia, Venezuela.Kasmera 23: 43-67.5. BÓRQUEZ C, LOBATO I, MONTALVO MT,MARCHANT P, MARTÍNEZ P. 2004. Enteroparasitosisen niños escolares <strong>de</strong>l Valle <strong>de</strong> Lluta. Arica-Chile.Parasitol. Latinoam. 59: 175-178.6. DE ABREU J, SANTOS C, BORNO S, MONTILLAME, ARENAS O, DINI GOLDING E. 2002. Deficiencia<strong>de</strong> vitamina A en niños <strong>de</strong>snutridos mo<strong>de</strong>rados <strong>de</strong> unapoblación urbano-marginal <strong>de</strong> Caracas. An Venez Nutr15(2): 76-86.7. DEVERA R, CERMEÑO J, BLANCO Y, BELLO M,GUERRA X, SOUSA M, MAITAN E. 2003. Prevalencia<strong>de</strong> blastocitosis y otras parasitosis intestinales en unacomunidad rural <strong>de</strong>l Estado Anzoátegui, Venezuela.Parasitol Latinoam 58: 95-100.8. DEVERA R, MAGO Y, AL RUMHEIN F. 2006.Parasitosis intestinales y condiciones socio-sanitariasen niños <strong>de</strong> una comunidad rural <strong>de</strong>l Estado Bolívar,Venezuela Rev Biomed 17: 311-313.9. DICKSON R, AWASTHI S, WILLIAMSON P,DEMELLWEEK C, GARNER P. 2000. Effects oftreatment for intestinal helminth infection on growthand cognitive performance in children: systematicreview of randomised trials. BMJ 320 (7251): 1697-1701.10. DOYLE O, HELGASON M, MATHIAS R, PROC-TOR E. 1990. Epi<strong>de</strong>miology and pathogenicity of Blastocystishominis. J. Clin. Microbiol. 28: 116-121.11. GUEVARA Y, DE HARO I, CABRERA M, GARCÍADE LA TORRE G, SALAZAR SCHETTINO P. 2003.Enteroparasitosis en poblaciones indígenas y mestizas<strong>de</strong> la Sierra <strong>de</strong> Nayarit, México. Parasitol Latinoam 58:30-34.12. HENRÍQUEZ G. 1999. Evaluación <strong>de</strong>l estado nutricional.en: Nutrición en Pediatría. Centro <strong>de</strong> AtenciónNutricional Infantil Antímano (CANIA); pág 29.13. HOLDER R, ZELADA A, JÉREZ Y. 2006. Pacientescon Blastocystis hominis atendidos en el HospitalPediátrico Docente William Soler. La Habana Cuba.Julio 2006. Disponible en: Disponible en: http://www.<strong>revista</strong>ciencias.com/publicaciones/14. IANNACONE J, BENITES M, CHIRINOS L. 2006.Prevalencia <strong>de</strong> infección por parásitos intestinales enescolares <strong>de</strong> primaria <strong>de</strong> Santiago <strong>de</strong> Surco, Lima, Perú.Parasitol. Latinoam. 61: 54-62 FLAP.15. IBÁÑEZ NH, JARA CC, GUERRA AM, DÍAZ EL.2004. Prevalencia <strong>de</strong>l enteroparasitismo en escolares<strong>de</strong> comunida<strong>de</strong>s nativas <strong>de</strong>l Alto Marañon, Amazonas,Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-9293


I. ACUÑA y A. MORÓN DE SALIMPeru. Rev Peru Med Exp Salud Pública. 21: 126-133.16. INCANI RN 1996. (Comp.). Parasitología. Universidad<strong>de</strong> Carabobo. Facultad <strong>de</strong> Ciencias <strong>de</strong> la Salud.Departamento <strong>de</strong> Parasitología. Valencia. Venezuela.Segunda Edición; p. 23-44.17. MARCOS L, MACO V, TERASHIMA A, SAMALVI-DES E, MIRANDA E, GOTUZZO E. 2003. Parasitosisintestinal en poblaciones urbanas y rural en Sandia,Departamento <strong>de</strong> Puno. Perú. Parasitol. Latinoam 58:35-40.18. MARQUEZ SMT, BANDEIRA C, DE CUADROSRM. 2005. Prevalencia <strong>de</strong> enteroparasitoses en Concordia,Santa Catarina, Brazil. Parasitol Latinoam. 60:78-81.19. MAVO L, MORENO A. 1997. Prevalencia <strong>de</strong> Blastocystishominis en pacientes atendidos en el LaboratorioClínico <strong>de</strong> la Escuela <strong>de</strong> Bioanálisis, L:U:Z, en el lapso1992-1995. Trabajo especial <strong>de</strong> grado. Escuela <strong>de</strong> Bioanálisis,Facultad <strong>de</strong> Medicina, Universidad <strong>de</strong>l Zulia,Maracaibo, Venezuela. 1997: 42.20. MÉNDEZ-CASTELLANO H. DE MÉNDEZ M. 1994.Sociedad y estratificación. Método Graffar- Mén<strong>de</strong>zCastellano. Caracas. Venezuela. p 7-35.21. MICHELLI E, DE DONATO M. 2001. Prevalencia<strong>de</strong> Blastocystis hominis en habitantes <strong>de</strong> Rio Caribe,Estado Sucre, Venezuela. Saber. 13: 105-112.22. MERCADO R, CASTILLO D, MUÑOZ V, SANDO-VAL L, JERCIC M I, GIL JC, UETA MT, SCHENO-ME H. 2003. Infecciones por protozoos y helmintosintestinales en pre-escolares y escolares <strong>de</strong> la Comuna<strong>de</strong> Colina, Santiago, Chile.23. NIMRI L. 1993. Evi<strong>de</strong>nce of an epi<strong>de</strong>mic of Blastocystishominis infections in preschool children in NorthernJordan. J. Clin. Microbiol. 31: 2706-270824. NORTHROP-CLEWES CA, ROUSHAM EK, MAS-CIE-TAYLOR CN, LUNN PG. 2001. Anthelmintictreatment of rural bangla<strong>de</strong>shi children: effect on hostphysiology, growth, and biochemical status. Am J ClinNutr 73(1): 53-60.25. QUIHUI-COTA L, VALENCIA ME, CROMPTONDW T. 2004. Prevalence and intensity of intestinalparasitic infections in relation to nutritional status inMexican schoolchildren. Trans Roy Soc Trop MedHyg. 98: 653-659.26. RIVERO Z, CHOURIO G, DÍAZ I, CHENG R,RUCSÓN G. 2000a. Enteroparasitosis en escolares<strong>de</strong> una Institución Pública <strong>de</strong>l Municipio Maracaibo,Venezuela. Invest. Clin. 41: 27-57.27. RIVERO RODRÍGUEZ Z, CHOURIO-LOZANO G,DÍAZ I, CHENG R, RUCSON G. 2000b. Enteroparásitosen escolares <strong>de</strong> una institución pública <strong>de</strong>l municipioMaracaibo, Venezuela. Inves Clín 41: 37-57.28. SACKEY ME, WEIGEL MM, ARMIJOS RX. 2003.Predictors and nutritional consequences of intestinalparasitic infections in rural ecuadorian children. J. TropPediatr 49(1):17-23.29. SALOMÓN M, TONELLI R, BORREMANS C,BERTELLO D, DE JONG L, JOFRÉ C, ENRÍQUEZ V,CARRIZO L, COSTAMAGNA S. 2007. Prevalencia<strong>de</strong> parásitos intestinales en niños <strong>de</strong> la Ciudad <strong>de</strong>Mendoza, Argentina. Parasitol. Latinoam. 62 (1-2):30. SIMOES M, RIVERO Z, CEDEÑO G, LUGO M,MALDONADO A, CHACÍN I, PARRA M, MÉNDEZY, MARQUINA M. 2000. Prevalencia <strong>de</strong> enteroparasitosisen una Escuela Urbana en el Municipio San Francisco,Estado Zulia, Venezuela. Kasmera. 28: 27-34.31. SIMSEK Z, ZEYREK FY, KURCER MA. 2004.Effect of giardia infection on growth and psychomotor<strong>de</strong>velopment of children aged 0-5 years. J Trop Pediatr50(2): 90-93.32. SOLANO RL, ACUÑA GI, BARON MA, MORÓNDE SALIM A, SÁNCHEZ JA. 2008. Asociaciónentre pobreza e infestación parasitaria intestinal enpreescolares, escolares y adolescentes <strong>de</strong>l sur <strong>de</strong>Valencia Estado Carabobo-Venezuela. Kasmera, 36,(2): 137-147.33. WORLD HEALTH ORGANIZATION (WHO) (2001).Iron <strong>de</strong>ficiency anaemia. Assessment prevention andcontrol. a gui<strong>de</strong> for programme managers. Report ofWHO/UNICEF/UNU. 2001. Geneva: document WHO/nhd/01.3.[en línea] 2001. http://www.who.int/nut/documents/ida_assessment_prevention_control.pdf94Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 85-92


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100Anemia ferropriva e sua correlaçao comparasitos intestinais em uma populaçãoda área periurbana <strong>de</strong> ManausMOTTA DE OLIVEIRA C.L. 1 , ANTUNES FERREIRA W. 2 , DA MATA A. 3 e VALE BARBOSA M G. 41Centro Universitário Nilton Lins, Fundação <strong>de</strong> Hematologia e Hemoterapia do Amazonas - HEMOAM - (AM) eSecretaria Municipal <strong>de</strong> Saú<strong>de</strong> - SEMSA.2Fundação <strong>de</strong> Dermatologia e Venereologia Tropical Alfredo da Mata FUAM - (AM). Felicien Gonçalves Vasquez- Fundação <strong>de</strong> Dermatologia e Venereologia Tropical. FUAM - (AM)3Fundação <strong>de</strong> Hematologia e Hemoterapia do Amazonas - HEMOAM - (AM).4Fundação <strong>de</strong> Medicina Tropical do Amazonas - FMTAM - (AM).ABSTRACTANEMIA OF IRON DEFICIENCY AND YOUR CORRELATION WITH INTESTINALPARASITES IN A POPULATION OF THE AREA NEAR URBAN OF MANAUSAccording to the WHO more than two billion people are infected with some worm type or parasite.Is consi<strong>de</strong>red that 60% of those infections can be responsible for <strong>de</strong>ficiencies nutrition’s, mainly lack ofiron and of vitamins. With the objective of associating the prevalence of Iron anaemia <strong>de</strong>ficiency with theoccurrence of intestinal parasites, in a population of the urban area, they were accomplished collection ofblood for evaluation of Iron <strong>de</strong>ficiency Anaemia and exam feces to <strong>de</strong>tect the intestinal parasites in patientsof the spontaneous <strong>de</strong>mand of a tertiary unit of health in Manaus. 400 samples were analyzed, in 271(67,75%) intestinal parasites were <strong>de</strong>tected, being 197 (49,25%) for protozoa and 148 (37%) for helminths.In the blood count of 83 (20.75%) samples, Hematocrit was below 35%, in 131 (32,75%), the Hemoglobinwas below 12%. In relation of Transferrin assay, 76 (19,3%) to the samples were with values above 360µg/dL, 14 (3,5%) they were with values of the concentration of the Iron below 40% and 14 (3,5%) with thevalues of smaller Ferritin than 12%., 14 (3,5%) they were with values of the concentration of the Iron bassof 40% and 14 (3,5%) with the values of smaller Ferritin than 12%.Key words: Anemia of iron <strong>de</strong>ficiency, Serum iron, Parasites intestinal. Survey.Recibido: 17 <strong>de</strong> Octubre<strong>de</strong> 2010. Aceptado: 13 <strong>de</strong> Abril <strong>de</strong> 2011.Este trabajo fue financiado pela Fundação <strong>de</strong> Amparo a Pesquisa do Estado do Amazonas - FAPEAM, SecretariaMunicipal <strong>de</strong> Saú<strong>de</strong> - SEMSA - Fundação <strong>de</strong> Hematologia e Hemoterapia do Amazonas, Diagnocel Comercio eepresentações Ltda e ABAM-Assessoria Bioquímica aplicada a Medicina. Forma parte da dissertação <strong>de</strong> MestradoAcadêmico em Biologia Urbana do primeiro autor, título: Parasitoses intestinais e fatores sócio-ambientais <strong>de</strong> umapopulação da área periurbana <strong>de</strong> Manaus, <strong>de</strong>senvolvido no Centro Universitário Nilton Lins, <strong>de</strong>fendido em 31/07/2008,65 pag.Correspon<strong>de</strong>ncia: Cecília Leite Motta <strong>de</strong> Oliveira - Rua Billie Holiday, 36, Condomínio Jardim Itapoã, bloco H, apto.601, CEP 69050-440.E-mail: cecília.motta@globo.com, telefone: (92) 88148462.95


C. L. MOTTA et al.RESUMOSegundo a Organização Mundial <strong>de</strong> Saú<strong>de</strong>, mais <strong>de</strong> dois bilhões <strong>de</strong> pessoas estão infectados com algumtipo <strong>de</strong> verme ou parasito. Estima-se que 60% <strong>de</strong>ssas infecções po<strong>de</strong>m ser responsáveis por <strong>de</strong>ficiênciasnutricionais, principalmente carência <strong>de</strong> ferro e <strong>de</strong> vitaminas. Com o objetivo <strong>de</strong> associar à prevalência <strong>de</strong>Anemia Ferropriva com a ocorrência <strong>de</strong> Parasitos Intestinais, em uma população da área urbana, foramrealizada coleta <strong>de</strong> sangue para dosagem <strong>de</strong> Anemia Ferropriva e exame coprocitológicos para <strong>de</strong>tectar osParasitos Intestinais em pacientes da <strong>de</strong>manda espontânea <strong>de</strong> uma unida<strong>de</strong> terciária <strong>de</strong> saú<strong>de</strong> em Manaus.Foram analisadas 400 amostras, em 271 (67,75%) <strong>de</strong>tectaram-se parasitos intestinais, sendo 197 (49,25%)por protozoários e 148 (37%) por helmintos. Foram registras 154 (38,5%) amostras monoparasitadas, 58(14,5%) biparasitadas e 12 (3%) poliparasitadas. No hemograma <strong>de</strong> 83 (20.75%) amostras o Hematócritoestava abaixo <strong>de</strong> 35%, em 131 (32,75%) a Hemoglobina estava abaixo <strong>de</strong> 12% 76 (19,3%) a dosagem <strong>de</strong>Transferrina estava com valores acima <strong>de</strong> 360 µg/dL, 14 (3,5%) estavam com valores da concentração doFerro abaixo <strong>de</strong> 40% e 14 (3,5%) com os valores <strong>de</strong> Ferritina menor que 12%.Palavras chaves: Anemia ferropriva, Parasitos intestinais, Brazil.INTRODUÇÃONas regiões on<strong>de</strong> a prevalência <strong>de</strong> parasitosintestinais é elevada, observa-se incidência <strong>de</strong> diferentesdoenças, como a obstrução intestinal (Ascarislumbricoi<strong>de</strong>s), a <strong>de</strong>snutrição (A. lumbricoi<strong>de</strong>se Trichuris trichiura), quadros <strong>de</strong> diarréia e máabsorção <strong>de</strong> nutrientes (Entamoeba histolytica eGiardia lamblia), anemia por <strong>de</strong>ficiência <strong>de</strong> Ferro(ancilostomí<strong>de</strong>os), cujos sinais e sintomas sofreminfluencia da intensida<strong>de</strong> da resposta imune e da relaçãoparasito-hospe<strong>de</strong>iro (Grilo et al, 2000).A Anemia Ferropriva (AF), é a diminuiçãoou ausência das reservas <strong>de</strong> Ferro, com baixaconcentração férrica no soro, fraca saturação daTransferrina, concentração da Hemoglobina baixae uma redução do Hematócrito. É <strong>de</strong>finida pelaOrganização Mundial <strong>de</strong> Saú<strong>de</strong> (OMS) como umprocesso patológico, em que a concentração <strong>de</strong>hemoglobina está abaixo do normal, entretanto,sabe-se que sua concentração no sangue po<strong>de</strong> variarconforme a ida<strong>de</strong>, sexo e altitu<strong>de</strong>. Em crianças comida<strong>de</strong> entre seis meses e seis anos, a OMS propôs olimite <strong>de</strong> normalida<strong>de</strong> em 11 g/dl (Chandra, 1973).A AF eleva o esforço cardíaco, para manutençãodos níveis normais <strong>de</strong> oxigenação, e reduz a capacida<strong>de</strong>física para o trabalho, resultando em sintomascomo dismenorréia, anorexia, cefaléia, vertigem,sonolência, fraqueza muscular, formigamento e, amaior seqüela, o aborto espontâneo. (Bashini et al,2003).Vários aspectos como ida<strong>de</strong>, sexo e carência<strong>de</strong> um ou mais nutrientes essenciais, necessários àformação da Hemoglobina (Hb) <strong>de</strong>vem ser consi<strong>de</strong>radosna caracterização <strong>de</strong> AF (Paiva et al, 2000;Silva L.M et al, 2001). Entre os <strong>de</strong>terminantes <strong>de</strong>ssetipo <strong>de</strong> anemia estão certos parasitos intestinais,que po<strong>de</strong>m reduzir em até 20%, o ferro ingeridona dieta, sendo que a causa orgânica imediata é a<strong>de</strong>ficiência <strong>de</strong> Ferro circulante (Grilo et al, 2000),cuja carência chega a ser responsável por 95% dasanemias. (Silva e Santos, 2001; Cantos et al, 2003).A <strong>de</strong>tecção da AF proveniente <strong>de</strong> parasitos intestinaispo<strong>de</strong> ser obtida com a dosagem da concentraçãodo Ferro corporal, especialmente a Ferritinano soro, que indica a situação dos <strong>de</strong>pósitos corporais<strong>de</strong> ferro, on<strong>de</strong> po<strong>de</strong> ser observado, se houveou não quelação pelos parasitos intestinais. Quandoisso ocorre, estes são exauridos, antes <strong>de</strong> ocorrerà diminuição da concentração da Hemoglobina,po<strong>de</strong>ndo ser caracterizada a <strong>de</strong>pleção das reservascorporais <strong>de</strong> Ferro sem Anemia, etapa inicial da <strong>de</strong>ficiência<strong>de</strong> Ferro. Devido a sua elevada especificida<strong>de</strong>,a concentração da Ferritina sérica, po<strong>de</strong> comprovara etiologia ferropriva da Anemia. (Neves etal, 2005).Desta forma a elevada prevalência <strong>de</strong> parasitosIntestinais po<strong>de</strong> contribuir para o <strong>de</strong>senvolvimento<strong>de</strong> diferentes doenças, cujos sinais e sintomas sofreminfluencia da intensida<strong>de</strong> da resposta imune eda relação parasito-hospe<strong>de</strong>iro, que po<strong>de</strong> culminarcom a morbida<strong>de</strong> e alterações físico-nutricionais,96Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100


ANEMIA FERROPRIVA E CORRELAÇAO COM PARASITOS INTESTINAISem crianças e adultos- (Grilo et al, 2000) Este quadro,po<strong>de</strong> ter relação com as condições <strong>de</strong> moradia,falta <strong>de</strong> tratamento <strong>de</strong> água e esgoto e se consolida,como um agravo à saú<strong>de</strong> pública (Chandra, 1973).O objetivo <strong>de</strong>sse estudo foi associar à prevalência<strong>de</strong> AF com a ocorrência <strong>de</strong> parasitos intestinais,em uma população da área urbana.MATERIAL E MÉTODOA pesquisa foi realizada em uma Unida<strong>de</strong>Básica <strong>de</strong> Saú<strong>de</strong> (UBS), localizada na ZonaNorte <strong>de</strong> Manaus Amazonas, on<strong>de</strong> são realizadoscerca <strong>de</strong> 35.000 procedimentos anuais, com umatendimento Laboratorial <strong>de</strong> 11.000 pessoas. Nessaregião existem problemas estruturais <strong>de</strong>ntre eles<strong>de</strong>ficiência <strong>de</strong> saneamento básico. A população<strong>de</strong> estudo foi constituída a partir da <strong>de</strong>mandaespontânea <strong>de</strong> pacientes que procuraram o Serviço<strong>de</strong> Saú<strong>de</strong> para a realização <strong>de</strong> Hemograma e examesparasitológicos <strong>de</strong> fezes, após consulta médica, noperíodo entre 12 <strong>de</strong> abril a 17 <strong>de</strong> julho <strong>de</strong> 2007 e queaceitaram e assinaram o Termo <strong>de</strong> ConsentimentoLivre e Esclarecido. Os pacientes com ida<strong>de</strong> inferiora 18 anos foram incluídos a partir da autorizaçãodos pais ou responsáveis. Foram excluídas aspessoas que não concordaram em participar doestudo, que fizeram uso <strong>de</strong> medicamentos contraHelmintos ou Protozoários e para o tratamento <strong>de</strong>Anemia em até 30 dias anterior à data do exame ouque não residiam na região próxima à UBS.Para a investigação <strong>de</strong> infestação por parasitosintestinais foi solicitado material para realização <strong>de</strong>exame coprológico e O exame parasitológico foirealizado através do método <strong>de</strong> sedimentação <strong>de</strong>Lutz et al (1934), sendo esse método o <strong>de</strong> escolhapor ser usado nas ativida<strong>de</strong>s <strong>de</strong> rotina do Laboratório.Após manipulação das amostras, as mesmasforam examinadas em duplicata, em microscópioóptico binocular, utilizando a solução parasitológica<strong>de</strong> Lugol (1% <strong>de</strong> Iodo Metálico + 2% <strong>de</strong> Io<strong>de</strong>to<strong>de</strong> potássio) para diferenciação morfológica dosparasitos e cistos <strong>de</strong> protozoários. Para o Controle<strong>de</strong> Qualida<strong>de</strong> utilizou-se amostras cegas.Para o Hemograma coletou-se 5 mL <strong>de</strong> sanguerealizado no Laboratório <strong>de</strong> Análises Clínicas(LAC) Fundação <strong>de</strong> Hematologia e Hemoterapiado Amazonas / FHEMOAM em contador automático(Pentra 120 Retic da ABX®), seguindo-se oprocedimento do fabricante Horiba, utilizando osvalores <strong>de</strong> referência padronizados por Moura et al(2004), que preconiza 40 a 54% para sexo masculino,37 a 47% para o feminino e 35 a 37% paracrianças.Para o diagnóstico <strong>de</strong> anemia foram utilizadosos valores <strong>de</strong> referência padronizados pelo CDC(1998), que preconizam a concentração <strong>de</strong> Hemoglobinainferior a 13 g/dL para homens, 12 g/dLpara mulheres e 11 g/dL para crianças na faixa etária<strong>de</strong> seis meses a seis anos, 6 a 14 anos 12 g/dL. Osdados obtidos foram submetidos à análise estatísticae os resultados dos testes foram entregues aos pacientese/ou responsáveis, para o retorno médico.O estudo do Ferro foi realizado no LAC/FHE-MOAM, em equipamento automatizado (Architect®da Abbott e AutoDelphia MC da PerkinElmer,respectivamente), através da dosagem <strong>de</strong>Ferro sérico, Capacida<strong>de</strong> total <strong>de</strong> ligação do Ferro,Saturação <strong>de</strong> Transferrina e Ferritina sérica. Emrelação ao ferro sérico os valores <strong>de</strong> referência foramos padronizados pelo fabricante (Diasys DiagnosticSystems GmbH & Co. KG.), metodologia:colorimétrico utilizando Ferene. Para o diagnóstico<strong>de</strong> anemia utilizou-se a concentração <strong>de</strong> Ferro séricoinferior a 40 µg/dl o preconizado por Lorenzi(Monteiro et al, 2000). Em relação à Ferritina, ametodologia utilizada foi Imunoturbidimetria e ovalor utilizado para o diagnóstico <strong>de</strong> A F foi inferiora 10 ng/mL.Para a dosagem da Transferrina, utilizou-semetodologia automatizada por imunoturbidimetria(Labtest Diagnóstica S.A.), com valores superioresa 410 µg/dL para a hipótese <strong>de</strong> anemia. A saturaçãoda Transferrina foi obtida pelo cálculo do Ferrosérico, dividido pela Transferrina, multiplicado por100 e para os casos com diagnóstico <strong>de</strong> AF foramconsi<strong>de</strong>rado os valores inferiores a 16%.Análise Estatística: Os dados foram analisadosutilizando-se o Teste do qui-quadrado <strong>de</strong> Pearsone o Teste exato <strong>de</strong> Fisher e o Teste t <strong>de</strong> Stu<strong>de</strong>ntconsi<strong>de</strong>rando-se significância no valor do p em 5%.RESULTADOSForam coletadas 400 amostras <strong>de</strong> fezes e <strong>de</strong>sangue total, <strong>de</strong>stas, 181 (45,25%) do sexo feminino,117 (29,25%) foram crianças e adolescentes nafaixa etária entre um e <strong>de</strong>zoito anos e 154 (38,5%)Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-10097


C. L. MOTTA et al.a faixa etária entre 19 e 85 anos (Tabela 1).Em 271 (67,75%) <strong>de</strong>tectaram-se parasitos intestinais,sendo 197 (49,25%) por protozoários e 148(37%) por helmintos. Foram registras 154 (38,5%)amostras monoparasitadas, 58 (14,5%) biparasitadase 12 (3%) poliparasitadas. Dentre as 154 amostrasmonoparasitadas, <strong>de</strong>tectou-se em 46 (11,50%)E. histolytica; nas 58 (15%) amostras biparasitadas,12 (3%) foram por E. histolytica e A. lumbricoi<strong>de</strong>s,9 (2,25%) por E. histolytica e E. vermicularis equatro (1%) por E. histolytica e G. lamblia. Nas 12(3%) amostras poliparasitadas, foram i<strong>de</strong>ntificadasG lamblia, E. histolytica e A. lumbricói<strong>de</strong>s (Tabela2).Com relação ao Hematócrito, 147 (36,75%)apresentaram valores abaixo do <strong>de</strong> referência, sendo35 (8,75%) pacientes crianças na faixa etária entreum e 12 anos, prevalecendo o sexo masculino, 98(24,5%) pacientes do sexo feminino com valoresabaixo <strong>de</strong> 37% e 14 (3.50%) do sexo masculinocom valores abaixo <strong>de</strong> 40%. Em 54/147 (13,5%)das amostras, foram i<strong>de</strong>ntificados monoparasitismopor helmintos e em 39 (9,75%) por protozoários ebiparasitismo em 15 (3,75%), prevalecendo o sexofeminino. (Tabela 3).Registrou-se dosagem <strong>de</strong> Hemoglobina apresentandovalores ≤ 11%, em 11 (2,75%) das amostras<strong>de</strong> crianças na faixa etária entre um e seis anos.Em 88 (22%) das amostras <strong>de</strong> pacientes do sexofeminino, valores ≤ 12% e em 32 (8%) pacientes dosexo masculino apresentaram valores ≤ 13% <strong>de</strong>stes(Tabela 3). Não se observou diferença significativaentre a presença <strong>de</strong> parasitos e a dosagem <strong>de</strong> Hemoglobina.Na dosagem <strong>de</strong> Ferro <strong>de</strong>tectaram-se valores 19 anos. Não foiobservada diferença significativa entre a presença<strong>de</strong> parasitos e a dosagem <strong>de</strong> Ferro (Tabela 5).Na dosagem <strong>de</strong> Ferritina foram encontradosvalores < 10ng/L, em 44 (11,00%) das amostrassendo 7 (1,6%) crianças na faixa etária entreum e doze anos (Tabela 4). Observou-se que 15(3,75%) estavam sem parasito intestinal e Ferritinaalteradas. Observou-se que não houve significânciaestatística entre Ferritina e poliparasitos (Tabela 5).Em relação à dosagem <strong>de</strong> Transferrina, 41 (10,25%)pacientes estavam com valores acima <strong>de</strong> 360 µg/dL,<strong>de</strong>stes, 17 (4,25%), eram crianças com ida<strong>de</strong> entreum e doze anos (Tabela 4). Observou-se que nãohouve significância estatística entre Transferrina ePoliparasitos (Tabela 5).Registrou-se Saturação da Transferrina apresentandovalores < 16%, em 81 (20,3%) das amostrassendo 37 (10,.25%) crianças na faixa etária entreum e doze anos. (Tabela 5).Na análise do Hemograma foram correlacionadasa prevalência <strong>de</strong> parasitos intestinais coma quantificação do Hematócrito, Hemoglobina,Transferrina, Ferro, Ferritina e Saturação da Transferrinae foram encontrados pacientes com dosagensanormais e presença <strong>de</strong> poliparasitos, <strong>de</strong>stacando-sea presença <strong>de</strong> parasitos patogênicos comoA. lumbricoi<strong>de</strong>s E. histolytica, G. lamblia e E. vermicularisconforme (Tabela 2).DISCUSSÃOA taxa <strong>de</strong> parasitos intestinais registrada nesseestudo é consi<strong>de</strong>rada alta e a faixa etária maisacometida é semelhante ao <strong>de</strong> outros estudos comoAraújo e Fernán<strong>de</strong>z em Eirunepé (AM), comTabela 1. Distribuição por faixa etária dos 400 participantes, atendidos no Posto UBS/PA MJ Sálvio Belotaconforme resultado parasitológicoFaixa etáriaPositivo% Feminino % Masculino %1 a 6 2.25 20 5 21 5.257 a 12 2.75 18 4.5 20 513 a 18 0.75 31 7.75 7 1.75> 19 4.75 112 28 42 10.5Total 10.5 181 45.25 90 22.598Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100


ANEMIA FERROPRIVA E CORRELAÇAO COM PARASITOS INTESTINAISTabela 2. Correlação dos parasitos patogênicos em relação à faixa etária e sexo dos pacientes atendidos noPosto UBS/PA MJ Sálvio BelotaEspéciesMonoparasitismoAscaris lumbricoi<strong>de</strong>s1 a 6 7 a 12 13 a 18 ≥ 19 TotalF M F M F M F M n %4 0 3 0 3 0 11 1 22 5.50Ancilostomí<strong>de</strong>os 1 1 0 2 0 2 13 5 24 6.00E. vermicularis* 2 3 3 1 1 0 8 1 19 4.75S. stercoralis* 0 0 1 0 0 0 2 6 9 2.25Trichuris trichiura 0 0 1 0 1 1 3 1 7 1.75Entamoeba histolytica3 1 2 4 8 1 18 9 46 11.50Giardia lamblia 3 4 1 4 2 0 7 6 27 6.75Biparasitismo 1 a 6 7 a 12 13 a 18 ≥ 19 TotalF M F M F M F M n %A. l + T trichiura 0 1 1 0 0 0 2 0 4 1E. h + A. L 0 3 1 1 1 0 4 2 12 3E. h + E. v 1 1 0 0 3 1 3 0 9 2.25G lamblia + E 0 0 1 0 1 1 1 0 4 1histolyticaPoliparasitismo 1 a 6 7 a 12 13 a 18 ≥ 19 TotalF M F M F M F M n %E h + Ancilostomi<strong>de</strong>os0 0 0 0 0 0 1 0 1 0.25+ E vG lamblia + E h 0 0 0 1 0 0 1 0 2 0.5+ E vG lamblia + E h 0 0 0 0 0 0 1 0 1 0.25+ S sG lamblia + E h 0 0 1 0 0 0 1 1 3 0.75+ A l*A l = Ascaris lumbricói<strong>de</strong>s, E.v=Enterobius vermicularis, S.stercoralis=Strongyloi<strong>de</strong>s stercoralis, H. nana= Hymenolepisnana, T. trichiura= Trichuris trichiura, E. h = Entamoeba histolytica, G. lamblia = Giardia lamblia64,41%, e o <strong>de</strong> Silva e Santos (2001). em BeloHorizonte, com taxas <strong>de</strong> 62,3%, caracterizando-acomo um grave problema <strong>de</strong> saú<strong>de</strong> pública, reafirmandoa necessida<strong>de</strong> <strong>de</strong> medidas <strong>de</strong> controle eprevenção a<strong>de</strong>quadas.Para se <strong>de</strong>terminar a prevalência <strong>de</strong> anemia emuma população, levam-se em conta entre outrosfatores, a ida<strong>de</strong>, a renda familiar e a escolarida<strong>de</strong>.A falta <strong>de</strong> saneamento básico, a precarieda<strong>de</strong> geraldas condições <strong>de</strong> habitação <strong>de</strong> pessoas que vivemna periferia das cida<strong>de</strong>s e na zona rural, concorrecom a produção, circulação e a infestação dasparasitoses intestinais e estas vão competir em nível<strong>de</strong> absorção orgânica, com o ferro disponível nadieta, para a produção da Hb ( Palupi et al, 1997). Aassociação <strong>de</strong> enteroparasitoses com anemia, po<strong>de</strong>comprometer a função cognitiva, da habilida<strong>de</strong> parao aprendizado e até atraso do crescimento Monteiroet al ( 2000).Nas regiões on<strong>de</strong> há alta freqüência <strong>de</strong> parasitointestinal e a população vive com uma dieta pobre<strong>de</strong> ferro, a AF está sempre presente (Queiroz eTorres, 2000).Não foi observada anormalida<strong>de</strong> em relação aRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-10099


C. L. MOTTA et al.Tabela 3. Descrição da contagem dos valores mínimos <strong>de</strong> referência do Hematócrito por faixa etária, sexodos pacientes parasitadosFaixaetária n= 400Criança(1 a 12)< 35%Adolescentes(13 a 18) e Mulheres< 37%Homens < 40% Helmintos Protozoários H+PF M F M M F M F M F M1 a 6 8 16 0 0 0 3 5 3 3 1 17 a 12 7 4 0 0 0 3 0 2 2 0 013 a 18 0 0 21 1 0 10 0 7 1 5 0≥ 19 0 0 77 0 13 30 3 20 1 7 1Total 15 20 98 1 13 46 8 32 7 13 2% 3,75 5 24,5 0,25 3,25 11,5 2 8 1,75 3,25 0,5(H+P) = Helmintos + ProtozoáriosTabela 4. Freqüência <strong>de</strong> Parasitismo com os valores <strong>de</strong> referência baixo do Hematócrito e Hemoglobina, porfaixa etária, sexo dos pacientes atendidos no Posto UBS/PA MJ Sálvio BelotaFaixaEtárian = 400Hematócrito %Crianças 360 µg/dLSaturação da Transferrina< 16 %F M F M F M F M1 a 6 5 8 1 3 6 1 6 137 a 12 1 3 0 0 5 5 9 913 a 18 2 0 0 0 5 1 5 1≥19 21 3 11 0 14 5 34 4Total 29 14 12 3 30 12 54 27% 7,2 3,5 3 0,8 7,5 3 14 6,8100Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100


ANEMIA FERROPRIVA E CORRELAÇAO COM PARASITOS INTESTINAISmedia percentual da concentração do Hematócritona população estudada, entretanto, registrou-sebaixa concentração na dosagem <strong>de</strong> Hemoglobina,em 32,5% do total dos pacientes, sendo que <strong>de</strong>stes,38,46 foram crianças e adolescentes, po<strong>de</strong>ndo-seinferir que essas pessoas, po<strong>de</strong>m ser diagnosticadascomo anêmicas. De acordo com a OMS, consi<strong>de</strong>raseAF quando a concentração <strong>de</strong> hemoglobina estáabaixo <strong>de</strong> 12 g/dL (13 g/dL para homem, 12 g/dLpara mulher e 11g/dL para crianças entre 6 mesesa 6 anos). Em pesquisas realizadas em crianças,<strong>de</strong> outras regiões, foram encontrados diferentesresultados no total da população avaliada, tais como82,8% em Pernambuco, 65,6% em Porto Alegre,54,0 no Rio <strong>de</strong> Janeiro (Demayor et al, 1989).A dosagem <strong>de</strong> Ferritina, Transferrina e Saturaçãodo Ferro, são indicadores dos <strong>de</strong>pósitos corporais<strong>de</strong> Ferro. Embora tenha sido registrada aocorrência <strong>de</strong> pessoas com alterações na dosagem<strong>de</strong> Ferritina, a maioria da população estudada, apresentouníveis normais. O nível da Ferritina séricaé mais preciso como um marcador da <strong>de</strong>ficiênciaou sobrecarga <strong>de</strong> ferro, não é sensível e específica,pelo fato <strong>de</strong> que além <strong>de</strong> refletir o estoque <strong>de</strong> ferrono organismo, também é uma proteína <strong>de</strong> fase aguda,po<strong>de</strong>ndo aumentar na inflamação aguda ou crônica,permitindo ainda, caracterizar a <strong>de</strong>pleção dasreservas corporais <strong>de</strong> ferro (Silva e Santos, 2001).O registro <strong>de</strong> quatro pacientes com Hemoglobinanormal e Ferritina bastante diminuída, sugere umaindicação <strong>de</strong> um estado <strong>de</strong> <strong>de</strong>pleção inicial dos<strong>de</strong>pósitos <strong>de</strong> Ferro, nesses pacientes, que ainda nãose refletiu na Hb. A correlação entre a presença <strong>de</strong>parasitos e a alteração nos níveis <strong>de</strong> Hemoglobinae Ferritina po<strong>de</strong>m levar a Anemia. Nesse estudo,42,4% dos pacientes estavam com Ferritina alterada(≤ 12) e foram positivos para A. lumbricoi<strong>de</strong>s, E.histolytica, ancilostomí<strong>de</strong>os e E. vermicularis.Observou-se que 45,5% dos casos <strong>de</strong> parasitismoque po<strong>de</strong>m causar anemia, como S. stercoralis,ancilostomí<strong>de</strong>os, G. lamblia, E. histolytica e T.trichiura, apresentaram Hb <strong>de</strong>ntro da normalida<strong>de</strong>,porém com Ferritina muito baixa, < 10, sugerindoque esses pacientes apresentam Ferropenia semAnemia. Nesse caso é possível que com o <strong>de</strong>correrdo tempo, se esses pacientes não forem tratados,possam <strong>de</strong>senvolver AF com alterações clínicolaboratoriais.Segundo Lorenzi (2003), os pacientes que apresentamFerritina ≤ 12, têm carência <strong>de</strong> Ferro, porém,casos <strong>de</strong> Ferritina entre 10 e 20 ng/mL, po<strong>de</strong>mnão ser consi<strong>de</strong>rados verda<strong>de</strong>iramente como casos<strong>de</strong>correntes <strong>de</strong> AF <strong>de</strong>vido à possibilida<strong>de</strong> <strong>de</strong> Anemiater origem em outras causas, como as AnemiasInflamatórias, Síndromes Displásicas, Tumores ouainda casos <strong>de</strong> AF em recuperação medular. Nesseestudo foi observada a ocorrência <strong>de</strong> pacientes comdosagem <strong>de</strong> Ferritina em níveis anormais, negativosno diagnóstico <strong>de</strong> parasitos intestinais, nessecaso é provável que outra etiologia possa ser a responsávelpela manutenção <strong>de</strong>sses níveis <strong>de</strong> Ferritina,entre 10 e 20.A freqüência <strong>de</strong> Anemia encontrada no presenteestudo foi inferior à estimativa da OrganizaçãoMundial <strong>de</strong> Saú<strong>de</strong> (OMS). Segundo Saloojee ePettifor (2001), em países sub<strong>de</strong>senvolvidos, meta<strong>de</strong>dos casos <strong>de</strong> Anemia existentes em crianças egestantes, principais grupos vulneráveis, é <strong>de</strong>correnteda <strong>de</strong>ficiência <strong>de</strong> Ferro (AF). Admite-se quea ocorrência <strong>de</strong> AF na infância, seja provenienteda combinação <strong>de</strong> necessida<strong>de</strong>s excepcionalmenteelevadas <strong>de</strong> Ferro, impostas pelo crescimento,dietas pobres nesse mineral e da alta freqüência <strong>de</strong>enfermida<strong>de</strong>s infecto-parasitárias.A <strong>de</strong>ficiência <strong>de</strong> Ferro ainda continua sendo umproblema <strong>de</strong> Saú<strong>de</strong> Pública, não só nos países em<strong>de</strong>senvolvimento, como nos países <strong>de</strong>senvolvidos.No Brasil, segundo dados da OMS, estima-se que a<strong>de</strong>ficiência <strong>de</strong> Ferro acomete cerca <strong>de</strong> 20% da populaçãofeminina e 5% da masculina, com tendênciasa ser mais elevadas nas regiões mais pobres,como o Norte e Nor<strong>de</strong>ste (Cancado et al, 2001).REFERENCIAS1. ARAÚJO CF, FERNÁNDEZ CL. Incidência <strong>de</strong> enteroparasitosesem localida<strong>de</strong>s atendidas pelo Comando daAeronáutica no Estado do Amazonas. RMAB. Jan/Dez.05; 55(1/2).2. BASHIRI A, BURSTEIN E, SHEINER E, MAZORM. Anemia during pregnancy and treatment withintravenous iron: review of the literature. European JObstrect Gynecol Reproductivel Biol. 2003; 110(1):2-7.3. CANTOS GA, DUTRA RL, HILSENDEGER T.Ocorrência <strong>de</strong> amostras intestinais em um laboratório<strong>de</strong> Criciúma/SC. Rev NewsLab. 2003; 56: 78-87.4. CANÇADO RD, CHIATTONE CS, LANGHI DM.Deficiência <strong>de</strong> ferro em doadores <strong>de</strong> sangue. Rev BrasHematol Hemoter. 2001; 23(2): 108-109.5. CDC - CENTERS FOR DISEASE CONTROL ANDPREVENTION. Recommendations to prevent andRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100101


C. L. MOTTA et al.control iron <strong>de</strong>ficiency in the United States. MMWR1998, 47 (No. RP-3). Atlanta (GA): CDC; 1998.6. CHANDRA RK. Reduced bactericidal capacity ofpolymorphs in iron <strong>de</strong>ficiency. Archives of Diseases inChildhood. 1973; 48: 864-866.7. DEMAYER EM, DALLMAN P, GURNEY JM, HA-LLBERG L, SOOD SK, SRIKANTIA SG. Preventingand controlling iron <strong>de</strong>ficiency anemia through primaryhealth care: a gui<strong>de</strong> for health administrators and programmemanagers. Geneva. World Health Organization.1989. 58 p.8. GRILO L P, CARVALHO L R, SILVA A C, VERRS-CHI ITN, SAWAYA AL. Influência das condiçõessócio-econômicas nas alterações nutricionais e na taxa<strong>de</strong> metabolismo <strong>de</strong> repouso em crianças escolares moradorasem favelas no município <strong>de</strong> São Paulo. Rev AssocMed Bras. 2000; 46: 7-14.9. LORENZI TF. Manual <strong>de</strong> Hematologia Propedêutica eClínica. 3ª Ed. São Paulo, SP: Medsi; 2003.10. LUTZ, 1919, HOFFMAN WA, PONS JA & JANERJL, 1934. The Sedimentation concentration method inschistosomiasis mansoni. Journal Public Health, PuertoRico, 2: 283-298, 1934.11. MONTEIRO CC, SZARFARC SC, MONDINI L.Tendência secular <strong>de</strong> anemia na infância na cida<strong>de</strong> <strong>de</strong>São Paulo (1984-1996). Rev Saú<strong>de</strong> Pub. 2000; 34(6):62-72.12. MOURA RA, WADA CS, PURCHIO A, ALMEIDATV. Técnicas <strong>de</strong> Laboratório. 3ª. Ed. São Paulo: EditoraAtheneu, 2004.13. NEVES MBP, SILVA EMK, MORAIS MB. Prevalênciae fatores associados à <strong>de</strong>ficiência <strong>de</strong> ferro em lactentesatendidos em um centro <strong>de</strong> saú<strong>de</strong>-escola em Belém,Pará, Brasil. Cad Saú<strong>de</strong> Pública. Rio <strong>de</strong> Janeiro, nov<strong>de</strong>z2005; 21(6): 1911-1918.14. PAIVA AA, RONDO PHC, GUERRA SSM. Parametersfor the assement of iron status. Rev Saú<strong>de</strong> Púb. 2000;34(4) 421-426.15. PALUPI L, SCHULTINK W, ACHADI E. Effectivecommunity intervention to improve haemoglobinstatus in pre-schoolers receiving once-weekly ironsupplementation. Am J Clin Nutr. 1997; 65: 1057-1061.16. QUEIROZ SS, TORRES MAA. Anemia ferropriva nainfância. J Pediat. 2000; 76(3): 298-304.17. SALOOJEE H, PETTIFOR JM. Iron <strong>de</strong>ficiency andimpaired child <strong>de</strong>velopment. Br J Nutr 2001; 323:1377-1378.18. SILVA LM, GIUGLIARI ERJ, AERTES DRGC.Prevalência e <strong>de</strong>terminantes <strong>de</strong> anemia em crianças<strong>de</strong> Porto Alegre, RS, Brasil. Rev Saú<strong>de</strong> Publica. 2001;35(1): 21-26.19. SILVA CG, SANTOS HA. Ocorrência <strong>de</strong> parasitosesintestinais da área <strong>de</strong> abrangência do Centro <strong>de</strong> Saú<strong>de</strong>Cícero I<strong>de</strong>lfonso da Regional Oeste da PrefeituraMunicipal <strong>de</strong> Belo Horizonte, Minas Gerais. RevBiologia e Ciências da Terra. 2001; 1(1). ISSN 1519-5228.Agra<strong>de</strong>cimentos: A FAPEAM-Fundação <strong>de</strong> Amparo a Pesquisano Amazonas, SEMSA-Secretaria Municipal <strong>de</strong> Saú<strong>de</strong>,FHEMOAM-Fundação <strong>de</strong> Hematologia e Hemoterapiado Amazonas, DIAGNOCEL Comércio e RepresentaçõesLtda, Laboratório Bioclínico e ABAM-Assessoria BioquímicaAplicada a Medicina, pelo apoio prestado na realizaçãodos testes laboratoriais. Aos professores, funcionários ealunos do Centro Universitário Nilton Lins, bem como todaa comunida<strong>de</strong> <strong>de</strong> Santa Etelvina e toda a equipe do Laboratóriodo Posto pela contribuição para a realização <strong>de</strong>stapesquisa.102Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 93-100


Artículo OriginalRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108Nematophagous fungi from Mexico with activityagainst the sheep nemato<strong>de</strong> Haemonchus contortusACEVEDO-RAMÍREZ P.M.C. 1 , QUIROZ-ROMERO H. 1 , VALERO-COSS R.O. 2 ,MENDOZA-DE GIVES P. 2 and GÓMEZ J.L 31Departamento <strong>de</strong> Parasitología, Facultad <strong>de</strong> Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma <strong>de</strong>México UNAM.2Laboratorio <strong>de</strong> Helmintología, CENID-Parasitología Veterinaria, Instituto Nacional <strong>de</strong> Investigaciones Forestales,Agrícolas y Pecuarias, Jiutepec, Morelos.3Departamento <strong>de</strong> Bioquímica, Facultad <strong>de</strong> Medicina, UNAM.ABSTRACTThe use of nematophagous fungi (NF) is a biological control alternative for gastrointestinal parasiticnemato<strong>de</strong>s (GIN) in ruminants. The aim to the present work was to isolate and to i<strong>de</strong>ntify nematophagousfungi with potential predatory activity against Haemonchus contortus larvae (L 3) in some regions ofMexico. Two hundred and fifty-nine samples from the soil, roots and ovine, caprine, bovine and porcinefeces were collected from diverse zones of the country. Samples were transferred into agar plates,sprinkling technique was carried out and H. contortus L 3were used to <strong>de</strong>termine in vitro nematophagousfungi predatory effect. Plates were incubated at room temperature and were revised un<strong>de</strong>r a stereoscopicmicroscope at 7, 14 and 28 days. The taxonomic i<strong>de</strong>ntification revealed the presence of seven species ofnematophagous fungi: Arthrobotrys oligospora, A. musiformis, A. kirghizica, A. brochopaga, A. conoi<strong>de</strong>s,A. superba and Monacrosporium gephyropagum. This is the first report on the presence of A. kirghizica andM. gephyropagum in Mexico. All species had predatory effect against H. contortus L 3however, A. conoi<strong>de</strong>sand M. gephyropagum showed the highest predatory activity with 93% and 83%, respectively.Key words: Nematophagous fungi, Arthobotrys, Monacrosporium, Haemonchus contortus.RESUMENEl propósito <strong>de</strong>l presente trabajo fue aislar e i<strong>de</strong>ntificar hongos nematófagos con potencial actividadcontra larvas 3<strong>de</strong> Haemonchus contortus en algunas regiones <strong>de</strong> México. Para ello se recolectaron 259muestras <strong>de</strong> suelos, raíces y excrementos <strong>de</strong> ovinos, caprinos, bovinos y porcinos en diferentes localida<strong>de</strong>s<strong>de</strong>l país. Estas muestras se transfirieron a placas Petri en <strong>de</strong>lgadas capas y larvas 3<strong>de</strong> H. contortus se usaronpara <strong>de</strong>terminar “in vitro” efectos nematófagos predatorios <strong>de</strong> hongos. Las placas Petri se incubaron atemperatura ambiente y se revisaron bajo microscopio estereoscópico a los 7, 14 y 28 días. La taxonomíaRecibido: 24 <strong>de</strong> Febrero <strong>de</strong> 2011. Aprobado: 08 <strong>de</strong> Mayo <strong>de</strong> 2001.Correspon<strong>de</strong>ncia: Av. Universidad 3000, Coyoacan, C.P. 04510, México D. F., México.Phone, fax : 52(55) 5622-5898.E-mail: hquiroz@unam.mx, pedrom<strong>de</strong>gives@yahoo.com, perlacevedoram@hotmail.com103


P. M. C. ACEVEDO et al.reveló la presencia <strong>de</strong> 7 especies <strong>de</strong> hongos nematófagos Arthrobotrys oligospora, A. musiformis, A.kirghizica, A. brochopaga, A. conoi<strong>de</strong>s, A. superba y Monacrosporium gephyropagum. Este es el primerinforme <strong>de</strong> A. kirghizica y M. gephyropagum en México. Todas las especies tuvieron efecto predatoriocontra l 3<strong>de</strong> H. contortus, sin embargo, A. coni<strong>de</strong>s y M. gephyropagum mostraron la mayor actividadpredatoria con un 93% y 83% respectivamente.Palabras clave: Nematophagus fungi, Arthrobotrys, Monacrosporium, Haemonchus contortus.INTRODUCTIONGastrointestinal nemato<strong>de</strong> (GIN) control isbased on the use of a therapeutic chemical strategy;nevertheless, the periodical and irrational useof anthelmintics, subtherapeutic doses administrationand short periods of applications, as well asthe scarce alternation of different family of drugs,have resulted in rapid appearance of parasites resistantto chemicals. Haemonchus is no the exception,there are resistant strains to bencimidazoles, imidazathiazolesand macrocyclic lactones, speciallyto ivermectin (Campos et al,1992; 2001; Torres etal, 2003; Encalada-Mena et al, 2008). Thus, the useof nematophagous fungi is a biological control alternativefor this parasite.Although in Mexico, some nematophagous fungispecies have been i<strong>de</strong>ntified (Lappe and Ulloa,1982; Llerandi-Juarez and Mendoza <strong>de</strong> Gives,1998); it remains as fundamental to perform studiesthat allow to know adittional genera and species ofnematophagous fungi with potential against GIN ofruminants. The aim of this work was to isolate andto i<strong>de</strong>ntify nematophagous fungi from diverse substratesof several localities in Mexico with predatoryactivity against H. contortus third stage larvae.MATERIAL AND METHODSArea of study. Material collection (soil, roots,and ruminant and pig feces) was carried out fromSeptember 2008 to June 2009 in several fe<strong>de</strong>ralentities of Mexico (Morelos, Puebla, Veracruz,Estado <strong>de</strong> México, Guanajuato, Sinaloa, Hidalgoand Distrito Fe<strong>de</strong>ral). Samples were collected andplaced into polyethylene bags for shipment andprocess at the laboratory.Sampling of different substrates for the isolationof nematophagous fungi. Samples consistingof soil, roots and ovine, bovine and caprine feceswere taken from the soil surface and from a <strong>de</strong>pthof 5 cm. Samples were collected from different localitiesof Mexico (Table 1). The collected materialwas placed in separate sterile plastic bags, with itsrespective i<strong>de</strong>ntification. They were sent to the laboratoryof Helmintology at CENID-PAVET and tothe Department of Parasitology at the Facultad <strong>de</strong>Table 1. Sampling collection site for predatory nematophagous fungi searchStudy areasJardines <strong>de</strong>l Cenid-Pavet, Jiutepec, MorelosRancho Experimental Las Margaritas, Hueytamalco, PueblaCentro <strong>de</strong> Enseñanza, Investigación y Extensión en Gana<strong>de</strong>ría Tropical(CEIEGT), Martínez <strong>de</strong> la Torre, VeracruzCentro <strong>de</strong> Enseñanza, Investigación y Extensión en Producción Agro-Silvo-Pastoril (CEiepasp), Chapa <strong>de</strong> Mota, Edo. <strong>de</strong> MéxicoCentro <strong>de</strong> Enseñanza, Práctica e Investigación en Producción y SaludAnimal (CEPIPSA); facultad <strong>de</strong> Estudios Superiores Zaragoza; TlapanSan Miguel <strong>de</strong> Allen<strong>de</strong>, GuanajuatoFacultad <strong>de</strong> Veterinaria <strong>de</strong> la Universidad Autónoma <strong>de</strong> Sinaloa, Culiacán,SinaloaIxmiquilpan, HidalgoClimate (García 1987)SemiwarmWarm tropical rainWarm tropical rainTemplate cool and log summerTemplate cool and long summerDry, warm summerDry, cool summerDry, semiwarm104Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108


NEMATOPHAGOUS FUNGI AGAINST HAEMONCHUS CONTORTUSMedicina Veterinaria y Zootecnia <strong>de</strong> la UniversidadNacional Autónoma <strong>de</strong> México for further analysis.Samples were stored at 4ºC until their processing(Su et al, 2007).Nematophagous fungi isolation. The soilsprinkling on water-agar plates technique <strong>de</strong>scribedby Barron, 1977 was used to isolate nematophagousfungi. Chloramphenicol (500 mg/L) was ad<strong>de</strong>d tothe culture media to avoid bacteria growth. The assaywas done by duplicate. Seven days after seeding,an aqueous suspension with an un<strong>de</strong>terminednumber of H. contortus larvae was ad<strong>de</strong>d, theywere incubated at room temperature for another7 days (Wyborn et al, 1969). For i<strong>de</strong>ntification offungal structure (rings, nets, conidia) as well as the<strong>de</strong>tection of trapped nemato<strong>de</strong>s, a stereoscopic microscopewas used for observation at 7, 14 and 28days of incubation.Taxonomic i<strong>de</strong>ntification of nematophagousfungi. Fungi i<strong>de</strong>ntification was carried out byobservation of morphometric characteristics un<strong>de</strong>ra light microscope. The taxonomic i<strong>de</strong>ntificationco<strong>de</strong>s published by Cooke and Godfrey (1964), VanOorschot (1985) and Rubner (1996) were used.Sheep faecal cultures to obtain Haemonchuscontortus infective larvae. For the obtainment ofH. contortus larvae, fecal samples from a sheep,previously infected with H. contortus L 3,were used.Feces were collected and a coproculture preparedduring 10 days at room temperature. Afterwards,larvae were collected using Baermann fondle werestored at 4ºC until their use (Hendrix, 1999).Evaluation of the in vitro trapping capabilityof nematophagous fungi against Haemonchuscontortus third stage larvae. Each fungus specieswas grown into Petri dishes of 6 cm in diameterwith agar-water medium. Plates were incubatedfor 3 weeks at room temperature (25-28°C). Afterthis period, one hundred H. contortus infectivelarvae were placed on the surface of each plateand incubated for 5 days at room temperature.Ten replicates were ma<strong>de</strong> for each fungus species;besi<strong>de</strong>s, agar-water dishes without fungus wereplaced and used as control. After 5 days, the surfaceof the Petri dishes were scrapped with a spatulaand washed with distilled water and the liquidwas collected into assay tubes and refrigerated for2 hours at 4ºC to allow larvae migrate to the tubebottom. The volume of the tubes was adjusted to 2mL where larvae were found. Ten aliquots of 20 µLwere taken and the recovered larvae were countedwith the aid of a stereoscopic microscope.Data interpretation. Statistical analyses.Recovered larvae were counted and a capture percentagewas estimated. A non-parametric U-Mann-Witney test was carried out to i<strong>de</strong>ntify trapping differencebetween species.RESULTSNematophagous fungi i<strong>de</strong>ntification: FromFigure 1. Arthobotrys oligospora. A: conidia (40X). B. Trapped larva (40X)..Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108105


P. M. C. ACEVEDO et al.Figure 2. Arthobotrys misifprmis. A: conidia (40X). B. Three-dimensional networks (10X).Figure 3. Arthobotrys kirghizica. A: conidia (40X). B. Three-dimensional networks (10X).Figure 4. Arthobotrys brochopaga. A: conidia, constrictor rings (10X). B. Trapped Haemonchus contortus (40X).106Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108


NEMATOPHAGOUS FUNGI AGAINST HAEMONCHUS CONTORTUSFigure 5. Monacrosporium gephyropagum. A: conidia (40X). B: Scalariform net (40X).the total of 259 samples, in 29 (11.2%) it waspossible to isolate nematophagous fungi belongingto 7 species. All species showed predatory effectagainst H. contortus infective larvae. In Table2, the number of collected samples that resultedpositive to predatory nematophagous fungi andcorresponding species is summarized.In Figures 1-7, the different nematophagousfungi i<strong>de</strong>ntified in different study areas of Mexicoare shown. The majority of the positive samplesfor nematophagous fungi were from warm weatherzones. In the temperate regions, positive sampleswere found only in the Distrito Fe<strong>de</strong>ral. In the lat-Figure 6. Arthrobotrys superba conidia (40X).Figure 7. Arthrobotrys conoi<strong>de</strong>s A: conidia (40X). B: Trapped Haemonchus contortus in three-dimensional network(10X).Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108107


P. M. C. ACEVEDO et al.Figure 8. Haemonchus contortus larvae 3 (L 3) trapping percentage by nematophagous fungi. Different species ofnematophagous fungi were in Petri dishes with agar-water (2%), at room temperature and after twenty-one days, 100 H.contortus L 3were ad<strong>de</strong>d. Seven days later, the dishes were washed and the surface scrapped. Free larvae were collectedand trapping percentage was calculated.StudyareasTable 2. Nematophagus fungi isolation in different study areasPositives samples/ Total samplesSpeciesSamples1 1/10 ArthrobotrysBovine feces colected gar<strong>de</strong>noligospora (Figure 1)2 6/47 A. musiformis (Figure 2) Soil from gar<strong>de</strong>n, <strong>de</strong>caying soilfrom coffee, orange tree and mintpot3 6/33 A. oligosporaA. musiformisA. kirghizica (Figure 3)Monacrosporium sp4 0/555 2/34 Arthrobotrys spA. brochopaga (Figure 4)6 40/9 A. oligosporaMonacrosporium gephyropagum(Figure 5)A. superba (Figure 6)A. conoi<strong>de</strong> (Figure 77 4/25 No i<strong>de</strong>ntifiedSoil from gar<strong>de</strong>n, <strong>de</strong>caying soilDecaying soilSheep feces colected from soilSoil from gar<strong>de</strong>nSheep feces with soilSoil from gar<strong>de</strong>n, compostSoil from gar<strong>de</strong>nSoil from gar<strong>de</strong>n8 1/15 A. oligospora Soil from gar<strong>de</strong>nTotal 29/259 (11,2%) 7 different speciester region, four different species were i<strong>de</strong>ntifiedand the highest quantity of samples with predatorynematophagous fungi was recor<strong>de</strong>d. A. oligosporawas the most frequent species observed, since it wasfound in several localities, followed by A. musiformis.A. brochopaga fungi (producer of constrictorrings) and A. kirghizica were i<strong>de</strong>ntified in samplescollected from Sinaloa and Veracruz, respectively.A. superba, A. conoi<strong>de</strong>s and Monacrosporium gephyropagumwere recor<strong>de</strong>d in the Distrito Fe<strong>de</strong>ral.108Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108


NEMATOPHAGOUS FUNGI AGAINST HAEMONCHUS CONTORTUSTrapping capability of nematophagous fungi:All the fungi species shown predatory effectagainst H. contortus infective larvae. There wasstatistical difference in trapping capability betweenspecies (P < 0.05). All species were different to thecontrol; there was no statistical difference betweenA. oligospora, A. kirghizica, A. brochopaga and A.musiformis, but A. conoi<strong>de</strong>s and M. gephyropagumstatistically differed from all other species (P


P. M. C. ACEVEDO et al.REFERENCES1. BARRON G. 1977. The nemato<strong>de</strong>-<strong>de</strong>stroying fungi.Canadian Biological Publications Ltd. Canada. 140 p.2. CAMPOS R, HERRERA D, QUIROZ R. 1992. Diagnósticoin vitro <strong>de</strong> Haemonchus contortus resistente alalbendazol, fenbendazol, oxfendazol y febantel en tresrebaños ovinos Tabasco o Pelibuey. Vet Mex 23, 51-56.3. COOKE RC, GODFREY BES. 1964. A key to the nemato<strong>de</strong>-<strong>de</strong>stroyingfungi. Transactions British MycologicalSociety. 47(1), 61-74.4. ENCALADA L, LÓPEZ M, MENDOZA P, LIÉBANOE, VÁZQUEZ V, VERA G. 2008. Primer informe enMéxico sobre la presencia <strong>de</strong> resistencia a ivermectinaen bovinos infectados naturalmente con nematodosgastrointestinales Vet. Méx. 39 (4).5. GARCÍA E. 1988. Modificaciones al sistema <strong>de</strong> clasificaciónclimática <strong>de</strong> Köppen. (Para adaptarlo a laRepública Mexicana). 4a ed. México.6. GONZÁLEZ-CRUZ M, MENDOZA DE GIVES P,QUIROZ-ROMERO H. Comparison of the trappingabililty of Arthrobotrys robusta and Monacrosporiumgephyropagum on infective larvae of Strongyloi<strong>de</strong>spapillosus. J. Helminthol. 1998; 72: 209-213.7. HENDRIX CM. 1999. Diagnóstico ParasitológicoVeterinario. Harcourt-Brace. 2nd Ed. España.8. KELLY P, GOOD B, HANRAHAN J, FITZPATRICKR, WAAL T. 2009. Screening for the presence of nematophagousfungi collected from Irish sheep pastures.Vet. Parasitol. 165: 345-349.9. LAPPE P, ULLOA M. 1982. Hongos <strong>de</strong>structores <strong>de</strong>nematodos en algunos suelos <strong>de</strong> México. Bol. Soc.Mex. Mic. 17, 99-113.10. LARSEN M, FAEDO M, WALLER P. 1994. Thepotential of nematophagous fungi to control the freelivingstages of nemato<strong>de</strong> parasites of sheep: surveyfor the presence of fungi in fresh faeces of grazinglivestock in Australia. Vet. Parasitol. 53: 275-281.11. LLERANDI- JUÁREZ R, MENDOZA DE GIVES P.1998. Resistence of chamydospores of nematophagousfungi to the digestive processes of sheep. J. Helminthology.72: 209-213.12. RUBNER A. 1996. Revision of predacious Hyphomycetesin the Dactylella-Monacrosporium complex. Taxonomy.Studies in Micology. 39: 134 pp.13. SAXENA G, LYSEK G. 1993. Observation of nematophagousfungi in natural soils by fluorescence microscopyand their correlation with isolation. Mycol.Res. 97(8): 1005-1011.14. SAXENA G. 2008. Observations on the occurrenceof nematophagous fungi in Scotland. Applied soilecology. 39: 352-357.15. SU H, HAO Y, MO M, ZHANG K. 2007. The ecologyof nematodo-trapping hyphomycetes in cattle dungfrom three plateau pastures. Vet. Parasitol. 144: 293-298.16. TORRES J, ROBERTS B, CANTO J, MARTÍNEZC, RODRÍGUEZ J, CANUL L, COB L, TIRADO F,AGUILAR A. 2003. Prevalence of sheep herds withgastrointestinal nemato<strong>de</strong>s resistant to benzimidazoles,imidazothiales and macrocyclic lactones in Yucatan. VInternational Seminar of Animal Parasitology, Yucatan,Mexico. 48-52.17. VAN OORSCHOT C. 1985. Taxonomy of the Dactylariacomplex V. A review of Arthrobotrys and alliedgenera. Studies in Micology, 26: 61-122.18. WALLER P, FAEDO M. The potential of nematophagousfungi to control the free-living stages of nemato<strong>de</strong>parasites of sheep: screening studies. Vet. Parasitol.1993; 49: 285-297.19. WYBORN CHE, PRIEST D, DUDDINGTON CL.1969. Selective technique for the <strong>de</strong>termination ofnematophagous fungi in soils. Soil Bid. Eiochem. 1,101-102.Acknowledgements: Special thanks to CONACYT for thescholarship granted to Perla Maria <strong>de</strong>l Carmen Acevedo-Ramirez, to Dr. Enrique Liebano for to provi<strong>de</strong> H. contortusL 3and to Ana Arana Contreras, Esau Villarreal Olvera,Karina Leon Lopez and Elvia Lopez Martinez for their kindcollaboration in the collection and handling of samples.110Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 101-108


Experiencia ClínicaRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 109-113Hallazgo <strong>de</strong> infección por nematodos <strong>de</strong>lgénero Thelazia (Boso, 1819) en un perro<strong>de</strong> Salamanca (España)DACAL V. 1 , VÁZQUEZ L., PATO F.J., FRANCISCO I., CAZAPAL-MONTEIRO C., ROMASANTA A.,ARIAS M.S., PANADERO R., DÍEZ-BAÑOS P., MORRONDO P., PAZ-SILVA A. y SÁNCHEZ-ANDRADE R.1Parasitología y Enfermeda<strong>de</strong>s Parasitarias, Departamento <strong>de</strong> Patología Animal, Facultad <strong>de</strong> Veterinaria <strong>de</strong> Lugo,Universidad <strong>de</strong> Santiago <strong>de</strong> Compostela, 27002-Lugo (España).ABSTRACTFINDING OF THE THELAZIA NEMATODE IN A DOG FROM SALAMANCA; SPAINHerein the case of one dog from San Martín <strong>de</strong>l Castañar (Salamanca, Spain) with itching in the lefteye which provoked a frequent scratching is presented. By the ocular examination five white worms inthe conjunctival sac were observed, and collected by means of a forceps after anaesthesia. The stainingwith cotton-blue lactophenol allowed the i<strong>de</strong>ntification of the worms as belonging to the genus Thelaziaspp. The presence of embryonated eggs in the uterus indicated all the specimens were females, hypothesissupported by the absence of the cloacal papilles belonging to the males. This finding un<strong>de</strong>rlines the need fortaking into account the infection by Thelazia in the differential diagnosis of ocular troubles affecting dogs,especially during the summer periods.Key words: Thelazia, dog, Spain, ocular itching.RESUMENSe presenta el caso <strong>de</strong> un perro <strong>de</strong> la localidad <strong>de</strong> San Martín <strong>de</strong>l Castañar (Salamanca, España) quemanifestaba prurito en el ojo izquierdo, que trataba <strong>de</strong> mitigar con el rascado continuo <strong>de</strong> la región ocular.La inspección ocular reveló la presencia <strong>de</strong> 5 nematodos <strong>de</strong> color blanquecino en el saco conjuntival, quefueron extraídos con ayuda <strong>de</strong> unas pinzas previa anestesia. Tras su obtención y tinción con lactofenol azul<strong>de</strong> algodón, se observó una cápsula bucal con una apertura hexagonal que condujo a su i<strong>de</strong>ntificación comoejemplares <strong>de</strong>l género Thelazia spp. La observación <strong>de</strong> huevos embrionados en el útero reveló que todoslos ejemplares eran hembras, aspecto que se corroboró por la ausencia <strong>de</strong> las papilas cloacales propias <strong>de</strong>los machos.Este hallazgo indica la necesidad <strong>de</strong> tener en cuenta la infección por Thelazia en el diagnósticodiferencial <strong>de</strong> trastornos oculares que aparezcan en cánidos, en especial en los períodos estivales.Palabras clave: Thelazia, cánidos, España, prurito ocular.Recibido: 21 <strong>de</strong> Noviembre <strong>de</strong> 2010. Aceptado: 23 <strong>de</strong> Marzo <strong>de</strong> 2011.Correspon<strong>de</strong>ncia: Sánchez-Andra<strong>de</strong> R.E-mail: rita.sanchez-andra<strong>de</strong>@usc.es111


V. DACAL et al.INTRODUCCIÓNLa thelaziosis es una infección causada por parásitosnematodos <strong>de</strong> la superfamilia Thelazioi<strong>de</strong>a,género Thelazia (Spirurida: Thelaziidae), cuyaslarvas son <strong>de</strong>positadas por moscas en la cavida<strong>de</strong>sorbital, saco conjuntival o conjuntiva <strong>de</strong> diferentesespecies <strong>de</strong> mamíferos silvestres y domésticos (cánidos,félidos, rumiantes y équidos), e incluso <strong>de</strong>seres humanos (Otranto y Traversa, 2005).Los parásitos se transmiten <strong>de</strong> un animal a otro,o <strong>de</strong>l animal al hombre, por diversas especies <strong>de</strong>moscas que pue<strong>de</strong>n actuar como hospedadoresintermediarios, por este motivo, la propagación <strong>de</strong>esta infección es <strong>de</strong> tipo estacional y se producecuando hay abundancia <strong>de</strong> vectores.Se han i<strong>de</strong>ntificado varias especies <strong>de</strong> Thelaziaen los sacos conjuntival y lagrimal <strong>de</strong> mamíferos.T. callipaeda (Railliet y Henry, 1910) transmitidapor Phortica variegata que infecta carnívoros yhumanos (Otranto et al, 2006).Los ejemplares machos <strong>de</strong> T. callipaeda tienenuna longitud <strong>de</strong> 7-12 mm, y las hembras 7-17 mm.(Otranto et al, 2006). Se han encontrado L-1 <strong>de</strong> T.callipaeda en las secreciones lagrimales <strong>de</strong> perrosinfectados <strong>de</strong> forma natural, esencialmente duranteel periodo estival, época que facilita el vuelo <strong>de</strong>las moscas y con ello la ingestión <strong>de</strong> larvas al<strong>de</strong>positarse alre<strong>de</strong>dor <strong>de</strong> los ojos y alimentarse <strong>de</strong>secreciones (Otranto et al, 2006). Los parásitos seobservan como hilos blancos en la conjuntiva o elsaco conjuntival.El ciclo se caracteriza porque las hembras <strong>de</strong>positanhuevos embrionados en el saco conjuntival <strong>de</strong>los mamíferos, don<strong>de</strong> eclosionan las larvas <strong>de</strong> primerestadio y se sitúan sobre la conjuntiva ocular,siendo ingeridas por moscas cuando se aproximanpara succionar las secreciones conjuntivales que lessirven <strong>de</strong> alimento.En el interior <strong>de</strong>l hospedador intermediariotienen lugar dos mudas, y los nematodos alcanzanla fase infectiva <strong>de</strong> larva <strong>de</strong> tercer estadio (L-3),que migra hacia la probósci<strong>de</strong> <strong>de</strong> las moscas y es<strong>de</strong>positada en el saco conjuntival cuando estosinsectos mero<strong>de</strong>an por las proximida<strong>de</strong>s <strong>de</strong>l ojo<strong>de</strong> nuevos hospedadores, y tras un periodo <strong>de</strong> 2-3semanas completa su <strong>de</strong>sarrollo hasta adulto ycomienza la oviposición (Otranto et al, 2004).La presencia <strong>de</strong> formas larvarias y adultas <strong>de</strong>lgénero Thelazia provocan la aparición <strong>de</strong> una serie<strong>de</strong> signos subclínicos o clínicos como lagrimeo ehipersecreción ocular, <strong>de</strong>bido a la presencia <strong>de</strong>pequeñas espinas cuniculares que posee dichonematodo, responsables <strong>de</strong>l daño mecánico enla conjuntiva y en el epitelio <strong>de</strong> la córnea. Comoresultado se originan alteraciones oculares entrelas que <strong>de</strong>stacan conjuntivitis, queratitis, opacidadcorneal y úlceras. Es importante tener en cuenta quela hipersecreción ocular estimula la aproximación<strong>de</strong> nuevos ejemplares <strong>de</strong> moscas que acu<strong>de</strong>n aalimentarse, facilitando <strong>de</strong> este modo la difusión <strong>de</strong>las larvas <strong>de</strong> primer estadio (L-1) y la continuidad<strong>de</strong>l ciclo <strong>de</strong> Thelazia.En el hombre estos nematodos se alojan en elsaco conjuntival y causan irritación, lagrimeo,conjuntivitis, que en ocasiones evolucionan haciala escarificación <strong>de</strong> la córnea e incluso su opacidad(Doezie et al, 1996; Cheung et al, 1998); noobstante, algunas infecciones se manifiestan sólopor sensación molesta como <strong>de</strong> cuerpo extraño enel ojo.En otros animales, el parásito se aloja bajola membrana nictitante y la sintomatología essimilar. La conjuntivitis se agrava muchas vecespor el prurito, que obliga a los animales a frotarsecontinuamente con la pata o contra diferentesobjetos. Las lesiones cornéales son más comunesen los animales que en el hombre, aunque no estábien establecido si se <strong>de</strong>ben a los parásitos o aotras causas concurrentes. La intensidad <strong>de</strong>l cuadroclínico es muy variable y <strong>de</strong>pen<strong>de</strong> <strong>de</strong> la especie <strong>de</strong>Thelazia, siendo T. rho<strong>de</strong>sii que afecta a ruminatesy es transmitida por Musca autumnalis la máspatógena (Ge<strong>de</strong>n y Stoffolano, 1982).CASO CLÍNICOEn septiembre <strong>de</strong> 2010, se recibió en una clínicaveterinaria <strong>de</strong> Salamanca un perro macho adulto<strong>de</strong> raza mestiza, <strong>de</strong> 11 años y 7 kg <strong>de</strong> peso, queresidía en la localidad <strong>de</strong> San Martín <strong>de</strong>l Castañar(Salamanca, España).Al realizar la anamnesis se averiguó que <strong>de</strong>s<strong>de</strong>hacía tres días el perro experimentaba un intensoprurito, que le llevaba a rascarse el ojo izquierdocon las extremida<strong>de</strong>s anteriores <strong>de</strong> forma reiterada.Se trataba <strong>de</strong> un cánido que residía en casa consus dueños, y que no convivía con ganado vacuno,aunque acudía con frecuencia al Pico Cervero112Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 109-113


INFECCIÓN POR THELAZIA EN UN PERRO DE SALAMANCA (ESPAÑA)Figura 1. Localización geográfica <strong>de</strong> la proce<strong>de</strong>ncia <strong>de</strong>l caso <strong>de</strong>scrito.(Peña <strong>de</strong> Francia; 1.700 metros sobre el nivel <strong>de</strong>lmar), acompañando a su propietaria en su trabajo<strong>de</strong> vigilancia contra-incendios en la comarca.(Figura 1).En esta zona situada al sur <strong>de</strong> la provincia <strong>de</strong>Salamanca no hay ganado doméstico, aunque enlas proximida<strong>de</strong>s se han <strong>de</strong>tectado abundantespoblaciones <strong>de</strong> cabra montés (Capra pyrenaica),corzo (Capreolus capreolus) y jabalí (Sus scrofa).La exploración ocular <strong>de</strong> la mascota mostró laexistencia <strong>de</strong> 5 nematodos <strong>de</strong> color blanquecino(Figura 2), con una longitud media <strong>de</strong> 14-20 mm.No se apreciaron otras alteraciones clínicas.Debido al carácter agresivo <strong>de</strong>l perro fuenecesaria la sedación con me<strong>de</strong>tomidina (0,03 ml/kgi.m.), se realizó una preanestesia con buprenorfina(0,02 ml/kg i.m.), y anestesia con ketamina(0,05 ml/kg i.m.), tras la cual se extrajeron losnematodos con unas pinzas. Con el fin <strong>de</strong> reducir laconjuntivitis se aplicó una solución <strong>de</strong> gentamicinay <strong>de</strong>xametasona.Una vez extraídos los nematodos se preservaronen etanol al 70%, se enviaron al laboratorio <strong>de</strong>Parasitología y Enfermeda<strong>de</strong>s parasitarias <strong>de</strong> laFacultad <strong>de</strong> Veterinaria <strong>de</strong> Lugo (Universidad <strong>de</strong>Santiago <strong>de</strong> Compostela), don<strong>de</strong> se procedió a sutinción con lactofenol azul <strong>de</strong> algodón al 0,1%, yposteriormente a su i<strong>de</strong>ntificación al microscopio,siguiendo las claves morfológicas <strong>de</strong>scritas porSkrjabin et al (1967).Dificulta<strong>de</strong>s surgidas por el <strong>de</strong>terioro <strong>de</strong> losFigura 2. Ejemplar <strong>de</strong> Thelazia en el ojo <strong>de</strong> un perro enSalamanca (España).nematodos y por su reducido número impidieronla i<strong>de</strong>ntificación <strong>de</strong> la especie, pero su tamaño, lapresencia <strong>de</strong> una cápsula bucal con una apertura enforma hexagonal (Figura 3) posibilitó su inclusiónen el género Thelazia (Skrjabin et al, 1967). Laobservación <strong>de</strong> huevos embrionados en el útero(Figura 4) indicó que todas eran hembras, aspectoque se corroboró con la ausencia <strong>de</strong> las papilascloacales propias <strong>de</strong> los machos.La combinación <strong>de</strong> moxi<strong>de</strong>ctina con imidaclopridspot on se consi<strong>de</strong>ra un tratamiento <strong>de</strong> elecciónpara la thelaziosis canina (Bianciardia y Otranto2005); no obstante, una vez realizado el diagnósticoetiológico, el veterinario clínico consi<strong>de</strong>ró apropiadala administración <strong>de</strong> ivermectina (250 mg/kgRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 109-113113


V. DACAL et al.Figura 3. Detalles <strong>de</strong> la cápsula bucal <strong>de</strong> la hembra <strong>de</strong>Thelazia recuperada <strong>de</strong>l saco conjuntival <strong>de</strong> un perroen Salamanca (España). Nótese el bor<strong>de</strong> serrado <strong>de</strong> lacutícula, responsable <strong>de</strong>l daño mecánico.Figura 4. Imagen <strong>de</strong> la hembra <strong>de</strong> Thelazia recuperada<strong>de</strong>l saco conjuntival <strong>de</strong> un perro en Salamanca (España),que presenta en el interior <strong>de</strong>l útero huevos embrionadoscon larvas 1 en su interior.p.v.) <strong>de</strong> forma subcutánea. El seguimiento <strong>de</strong>l perrodurante 10 días mostró una evolución favorable, ylos síntomas iniciales remitieron completamente.DISCUSIÓNUna gran parte <strong>de</strong> las afecciones oculares <strong>de</strong> losperros cursan con alteraciones como hipersecreción,lagrimeo o conjuntivitis. Aunque las conjuntivitisno suelen ser dolorosas, sí pue<strong>de</strong>n producirmolestias, que los animales manifiestan por dificulta<strong>de</strong>spara mantener los ojos abiertos. En ocasiones,también cursa con prurito, que tratan <strong>de</strong> mitigar conel rascado continuo <strong>de</strong> la región ocular.Las infecciones oculares en perros están ocasionadaspor diversos agentes etiológicos, entre ellosciertos hongos (principalmente Aspergillus sp., Fusariumsp., Mucor sp. y Candida sp.). En cachorros,el virus <strong>de</strong>l moquillo pue<strong>de</strong> producir conjuntivitis,al igual que ciertos parásitos como Leishmania spp.o Ehrlichia spp. Cabe <strong>de</strong>stacar que como en laspersonas, los cánidos pue<strong>de</strong>n presentar conjuntivitisalérgicas <strong>de</strong>bido a agentes ambientales (polen,<strong>de</strong>terminadas plantas, etc.). También pue<strong>de</strong>n cursarcon conjuntivitis otro tipo <strong>de</strong> alergias, como las alimentarias(ingestión <strong>de</strong> <strong>de</strong>terminados alimentos) olas alergias por contacto (por contacto con algunosproductos <strong>de</strong> limpieza).Por todo ello, la colaboración <strong>de</strong>l propietarioresulta imprescindible para i<strong>de</strong>ntificar la posiblecausa <strong>de</strong> la afección ocular. Es importante registrarla historia clínica para comprobar su posiblecoinci<strong>de</strong>ncia con alguna salida al campo, con laintroducción <strong>de</strong> una planta nueva en la casa, conel empleo <strong>de</strong> nuevos productos <strong>de</strong> limpieza, u otrascircunstancias que pue<strong>de</strong>n justificar la alteraciónocular.En el caso que se <strong>de</strong>scribe, la estacionalidaddificulta el diagnóstico <strong>de</strong> la parasitosis, dado que enprimavera y verano es muy frecuente la presentación<strong>de</strong> alergias por inhalación a alérgenos ambientalesen individuos potencialmente alérgicos. Tambiénes importante tener en cuenta que la thelaziosispue<strong>de</strong> cursar <strong>de</strong> forma asintomática, y que lasmanifestaciones clínicas <strong>de</strong>pen<strong>de</strong>n <strong>de</strong>l número<strong>de</strong> nematodos presentes en el ojo, localización,respuesta inmunitaria <strong>de</strong>l hospedador, y sobre todo<strong>de</strong> posibles infecciones secundarias por bacterias(Pasteurella spp., Chlamydia spp. y Staphylococcusspp.).La mayoría <strong>de</strong> los casos <strong>de</strong> thelaziosis canina sehan diagnosticado en países europeos como Italia(Otranto et al, 2003), Francia (Dorchies et al, 2007)o Alemania (Hermosilla et al, 2004). En España,recientemente se ha <strong>de</strong>tectado en Andalucía (Guisadoy Sanz, 2010) y en la región <strong>de</strong> la Vera (norte<strong>de</strong> Cáceres) (Montoya et al, 2011). En este últimocaso, el empleo <strong>de</strong> la técnica PCR permitió i<strong>de</strong>ntificarlos ejemplares como T. callipaeda.El hallazgo <strong>de</strong> la infección por nematodos <strong>de</strong>Thelazia en un perro (Canis familiaris) oriundo <strong>de</strong>Salamanca (España) indica que esta parasitosis ha<strong>de</strong> tenerse en cuenta en el diagnóstico diferencial114Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 109-113


INFECCIÓN POR THELAZIA EN UN PERRO DE SALAMANCA (ESPAÑA)<strong>de</strong> trastornos oculares <strong>de</strong> los cánidos, sobre todoen los periodos estivales. Aunque Montoya et al,(2011) manifestaron que en España los perros conthelaziosis podían tener dos orígenes: a) presencia<strong>de</strong> canes infectados proce<strong>de</strong>ntes <strong>de</strong> zonas endémicas(Francia e Italia) que habían venido a pasarperíodos estivales a la región <strong>de</strong> La Vera, o b) perrosque viajaron a zonas endémicas <strong>de</strong> otros países<strong>de</strong>l sur <strong>de</strong> Europa. En el caso que nos ocupa, no secumple ninguno <strong>de</strong> estos supuestos, lo que <strong>de</strong>stacala necesidad <strong>de</strong> realizar más estudios epi<strong>de</strong>miológicosen nuestro país.REFERENCIAS1. BIANCIARDI P, OTRANTO D. (2005). Treatment ofdog thelaziosis caused by Thelazia callipaeda (Spirurida,Thelaziidae) using a topical formulation of imidacloprid10% and moxi<strong>de</strong>ctin 2.5%.Vet Parasitol 129:89-93.2. CHEUNG WK, LU HJ, LIANG CH, PENG ML,LEE HH. (1998). Conjunctivitis caused by Thelaziacallipaeda infestation in a woman. J Formos MedAssoc. 97: 425-427.3. DOEZIE AM, LUCIUS RW, ALDEEN W, HALED V, SMITH DR, MAMALIS N. (1996). Thelaziacaliforniensis conjunctival infestation. OphthalmicSurg Lasers. 27: 716-719.4. DORCHIES PH, CHAUDIEU G, SIMEON LA, CA-ZALOT G, CANTACESI C, OTRANTO D. (2007).First reports of autochthonous eyeworm infection byThelazia callipaeda (Spirurida, Thelaziidae) in dogsand cat from France. Vet Parasitol 149: 294-207.5. GEDEN CJ, STOFFOLANO JG. (1982). Developmentof the bovine eyeworm. Thelazia gulosa Railliet andHenry, in experimentally infected female Musca autumnalis.De Geer. J. Parasitol. 68: 287-292.6. GUISADO A, SANZ F. (2010). Conjuntivitis en unperro por Thelazia callipaeda. 6º Congreso Andaluz<strong>de</strong> Veterinarios. Benalmá<strong>de</strong>na (Málaga, España), 5 <strong>de</strong>noviembre.7. HERMOSILLA C, HERMANN B, BAUER C. (2004).First case of Thelazia callipaeda infection in a dog inGermany. Vet Rec 154: 568-569.8. MONTOYA A, VÁZQUEZ MV, PULIDO P, HER-NÁNDEZ L, DADO D, OTRANTO D, MIRÓ G.(2011). Thelaziosis ocular canina. ¿Una parasitosisemergente en España? Consulta Difus Vet 178: 43-48.9. OTRANTO D, TRAVERSA D. (2005). Thelazia eyeworm:an original endo and ecto-parasitic nemato<strong>de</strong>.Trends Parasitol 21:1-4.10. OTRANTO D, LIA RP, TRAVERSA D, GIANETTO,S. (2003). Thelazia callipaeda (Spirurida, Thelaziidae)of carnivores and humans: morphological study bylight and scanning electron microscopy. Parassitologia45: 125-133.11. OTRANTO D, LIA RP, BUONO V, TRAVERSA D,GIANGASPERO A. (2004). Biology of Thelazia callipaeda(Spirurida, Thelaziidae) eyeworms in naturallyinfected <strong>de</strong>finitive hosts. Parasitol 129: 627-633.12. OTRANTO D, CANTACESSIA C, TESTINIA G,LIAA RP. (2006). Phortica variegata as an intermediatehost of Thelazia callipaeda un<strong>de</strong>r natural conditions:Evi<strong>de</strong>nce for pathogen transmission by a male arthropodvector. Int J Parasito l36: 1167-1173.13. SKRJABIN KI, SOBOLEV AA, IVASHKIN VM.(1967). Principles of Nematology, vol. IX. Spirurata ofAnimals and Man and the Disease Caused by Them.Part. 4: Thelazioi<strong>de</strong>a. Izdatel’stvo Aka<strong>de</strong>mii Nauk SSSR,Moscow, 1967. English translation Published by IsraelProgram for Scientific Translations, Jerusalem, 1971.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 109-113115


Experiencia ClínicaRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 114-118Infestación múltiple por ácaros ectoparásitosen conejos <strong>de</strong> crianzaCALDERÓN-ARGUEDAS O. 1 , TROYO A. 1 , AVENDAÑO A. 1 , AYMERICH R. 2 ,BERROCAL B. 3 y COTO-MORALES T. 21Centro <strong>de</strong> Investigación en Enfermeda<strong>de</strong>s Tropicales (CIET), Departamento <strong>de</strong> Parasitología, Facultad <strong>de</strong>Microbiología, Universidad <strong>de</strong> Costa Rica (UCR).2Laboratorio <strong>de</strong> Ensayos Biológicos, Vicerrectoría <strong>de</strong> Investigación (UCR).3Médico Veterinario.ABSTRACTmultiple infestation by ectoparasitic mites in breeding rabbitsSix breeding rabbits (New Zealand strain) were observed with crusted and pruritic <strong>de</strong>rmal lesions.These lesions were located predominantly in ears, nose, nails and feet. Dermal material collected byscraping showed the presence of three species of mange producer acari: Sarcoptes scabiei var. cuniculi(Acaridida: Sarcoptidae, Psoroptes cuniculi (Acaridida: Psoroptidae), and Cheyletiella parasitivorax(Actinedida: Cheyletiellidae). In addition, rabbits were also infested with Leporacarus gibbus (Acaridida:Listrophoridae).The infestation of rabbits by each of these etiologic agents individually is currentlycommon, but multiple infestation is rare and strongly exacerbates symptoms.Key words: Sarcoptes scabiei, Psoroptes cuniculi, Cheyletiella parasitivorax, Leporacarus gibbus,rabbits.ResumenSeis conejos <strong>de</strong> crianza <strong>de</strong> la cepa New Zealand fueron observados con un cuadro dérmico <strong>de</strong>scamativo,altamente prurítico con lesiones severas en orejas, nariz, uñas y patas. Material colectado por raspadopermitió el diagnóstico <strong>de</strong> tres especies <strong>de</strong> ácaros ectoparásitos productores <strong>de</strong> sarna: Sarcoptes scabiei var.cuniculi (Acaridida: Sarcoptidae), Psoroptes cuniculi (Acaridida: Psoroptidae) y Cheyletiella parasitivorax(Actinedida: Cheyletiellidae). Adicionalmente los conejos estuvieron infestados con ácaros <strong>de</strong> la especieLeporacarus gibbus (Acaridida: Listrophoridae). Si bien es cierto estos cuatro agentes etiológicos sonrelativamente comunes en lo que respecta a infestar conejos, la infestación múltiple constituye un eventorelativamente raro, generando una marcada exacerbación <strong>de</strong> la sintomatología.Palabras clave: Sarcoptes scabiei, Psoroptes cuniculi, Cheyletiella parasitivorax, Leporacarus gibbus,rabbits.Recibido: 4 <strong>de</strong> Septiembre <strong>de</strong> 2010. Aprobado: 15 <strong>de</strong> Marzo 2011.Correspon<strong>de</strong>ncia: Olger Cal<strong>de</strong>rón ArguedasE-mail: olger.cal<strong>de</strong>ron@ucr.ac.cr116


INFESTACIÓN MÚLTIPLE POR ÁCAROS EN CONEJOS DE CRIANZAIntroducciónLos conejos son animales utilizados por el serhumano en diferentes ámbitos <strong>de</strong> su vida cotidiana.La crianza <strong>de</strong> conejos ha sido una actividad parala procura <strong>de</strong> pieles y carne. También estos animaleshan sido utilizados como animales <strong>de</strong> compañía(Me<strong>de</strong>rle, 2010).Existen diversas enfermeda<strong>de</strong>s infecciosas queafectan comúnmente a este grupo <strong>de</strong> animales;<strong>de</strong>ntro <strong>de</strong> ellas son frecuentes la pasteurelosis, lamicrosporidiosis por Encephalitozoon cuniculi, ylas parasitosis por coccidios (González et al, 2005;Smith et al, 2009). Con respecto a los ectoparásitos,las garrapatas Haemaphysalis leporispalustris, H.longicornis, Hyaloma marginatum e Ixo<strong>de</strong>s ricinus(Ixodida: Ixodidae) se <strong>de</strong>stacan como los más frecuentes( González et al, 2005).Diversos ácaros también han sido asociados conla infestación <strong>de</strong> conejos. Posiblemente los más comunescorrespon<strong>de</strong>n a Sarcoptes scabiei var. cuniculiy Notoedres mange (Acaridida: Sarcoptidae),los cuales pue<strong>de</strong>n generar infestaciones subdérmicasen las que las hembras grávidas excavan galeríasen el estrato córneo <strong>de</strong> la piel don<strong>de</strong> colocan sushuevos (Mullen et al, 2002). También son comunesPsoroptes cuniculi (Acaridida: Psoroptidae), agenteproductor <strong>de</strong> sarna superficial costrosa, altamenteprurítica y localizada preferencialmente en lasorejas (Lapage, 1983) y Cheyletiella parasitivorax(Actinedida: Cheyletiellidae), que se ha vinculadocon procesos irritativos dérmicos, prurito, alopeciay <strong>de</strong>scamación (Me<strong>de</strong>rle, 2010). Los ácaros <strong>de</strong> lafamilia Listrophoridae han sido consi<strong>de</strong>rados pormuchos como comensales, sin embargo, los <strong>de</strong>l géneroLeporacarus también se han relacionado concuadros pruríticos y <strong>de</strong> pérdida <strong>de</strong> pelo en conejos(Mullen et al, 2002).Aunque las infestaciones por ácaros, suelendarse comúnmente <strong>de</strong> forma individual <strong>de</strong> acuerdoal agente etiológico, en el presente informe sepresenta la <strong>de</strong>scripción <strong>de</strong> un cuadro clínico coninfestación múltiple por este tipo <strong>de</strong> ectoparásitos.Materiales y métodosSeis conejos <strong>de</strong> la Cepa New Zealand <strong>de</strong> tresmeses <strong>de</strong> edad fueron observados con lesiones dérmicasseveras localizadas predominantemente enla cara interna y externa <strong>de</strong> las orejas, nariz, uñasy patas (Figura 1). Estos conejos fueron obtenidos<strong>de</strong> un sistema <strong>de</strong> crianza semiabierta y luego fueronconfinados a una unidad <strong>de</strong> bioterio don<strong>de</strong> permanecieronen jaulas <strong>de</strong> acero inoxidable cuyas dimensionesson 50 cm <strong>de</strong> alto, 45 cm <strong>de</strong> ancho y 60 cm<strong>de</strong> fondo. Se les suministró a<strong>de</strong>más agua y alimentoad libitum. Una muestra <strong>de</strong> material <strong>de</strong>scamativofue tomada mediante raspado dérmico y procesado<strong>de</strong> acuerdo a la metodología <strong>de</strong>scrita por Cal<strong>de</strong>rón ySánchez (1995). El material fue colocado en tubos<strong>de</strong> ensayo <strong>de</strong> 13 x 100 y se suspendió en 3,0 mL <strong>de</strong>KOH al 10%. Dicha suspensión fue calentada suavementepor cinco minutos y <strong>de</strong> seguido se agregósolución saturada <strong>de</strong> azúcar hasta 1,0 cm antes <strong>de</strong>lbor<strong>de</strong> <strong>de</strong>l tubo. La suspensión se centrifugó a 4 000RMP por 15 minutos y el material <strong>de</strong>l sobrenadantefue transferido a placas <strong>de</strong> Petri. De éste se tomaronácaros para su evaluación por microscopia <strong>de</strong> luz.Dichos ácaros fueron colocados en medio Hoyercomo medio <strong>de</strong> aclaración y montaje.Algunos ácaros presentes en pelos fueron colectadosdirectamente <strong>de</strong>l animal utilizando pinzasy montados en el mismo medio para su evaluación.La i<strong>de</strong>ntificación <strong>de</strong> los ejemplares se realizó <strong>de</strong>acuerdo a la clave <strong>de</strong> Pratt y Stojanovich (1969) y alas <strong>de</strong>scripciones <strong>de</strong> Kirwan et al, (1998).ResultadosEl cuadro clínico observado en los conejos fueel típico <strong>de</strong> una <strong>de</strong>rmatosis altamente <strong>de</strong>scamativa.Las lesiones observadas en orejas fueron las másextensas. Éstas fueron hiperqueratósicas, con ampliaszonas <strong>de</strong> alopecia y <strong>de</strong>scamación (Figura 1).La nariz se observó seca con su cara dorsal endureciday levantada (Figura 1). Las patas tuvieron lesionesdiscretas en las almohadillas (Figura 1). Enellas se advirtió la ocurrencia <strong>de</strong> zonas <strong>de</strong> sangradoposiblemente ocasionadas por rascado. Adicionalmentefue posible observar distrofia <strong>de</strong> las uñas(Figura 1). El análisis <strong>de</strong> los ácaros encontrados enel material <strong>de</strong>scamativo permitió la i<strong>de</strong>ntificación<strong>de</strong> tres especies <strong>de</strong> ectoparásitos: Sarcoptes scabieivar. cuniculi, P. cuniculi y Ch. parasitivorax (Figura2). Los ácaros obtenidos puntualmente <strong>de</strong> lospelos correspondieron a ácaros listrofóridos <strong>de</strong> laespecie Leporacarus gibbus (Figura 2). S. scabieivar. cuniculi se encontró en una mayor abundan-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 114-118117


O. CALDERÓN et al.Figura 1. Lesiones costrosas observadas en los conejos. a: cara interna <strong>de</strong> pabellón auricular, b: nariz, c: uñas, d: caraventral <strong>de</strong> las patas.cia que las otras especies observadas. De este ácarose pudo observar, huevos, larvas, ninfas, adultos ymaterias fecales en todas las zonas con lesiones.Una vez conocido el diagnóstico, los conejosfueron tratados con Ivermectina (0,3 mg/Kg por semana)y con Amitraz® como tratamiento tópico.DiscusiónLos conejos, al igual que otras especies <strong>de</strong> mamíferos,pue<strong>de</strong>n sufrir problemas dérmicos cuyaetiología se encuentra asociada con diversas especies<strong>de</strong> ácaros parásitos. En el presente reportese informa sobre una infestación simultánea porácaros <strong>de</strong> diferentes especies, pero que tienen encomún su modo <strong>de</strong> transmisión. En este caso elcontacto directo entre hospedadores sanos e infestadosresulta fundamental para la propagación <strong>de</strong>este tipo <strong>de</strong> agentes etiológicos Mullen et al, 2002).Las orejas fueron los sitios don<strong>de</strong> se manifestaronlas lesiones más extensas. P. cuniculi se relacionaclásicamente con lesiones costrosas en orejas <strong>de</strong>conejos; sin embargo el análisis <strong>de</strong> las muestrasobtenidas a partir <strong>de</strong> estas lesiones permitió observar,en su mayoría, ácaros <strong>de</strong> la especie S. scabiei118Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 114-118


INFESTACIÓN MÚLTIPLE POR ÁCAROS EN CONEJOS DE CRIANZAFigura 2. Ectoparásitos i<strong>de</strong>ntificados en los conejos: a: Sarcoptes scabaiei var. cuniculi (barra = 37 mm), b: Psoroptescuniculi (barra = 100 mm) c: Cheyletiella parasitivorax (barra = 80 mm), d: Leporacarus gibbus (barra = 60 mm).var cuniculi. Estos ácaros estuvieron en muy altaabundancia. En el ser humano, S. scabiei se pue<strong>de</strong>relacionar con un cuadro hiperqueratósico y <strong>de</strong>scamativosimilar <strong>de</strong>nominado “escabiosis noruega”o “escabiosis costrosa” la cual se caracterizapor una exacerbación en las poblaciones <strong>de</strong> estosácaros (Green, 1989). En perros han sido <strong>de</strong>scritoscuadros similares asociados con S. scabiei var.canis (An<strong>de</strong>rson, 1981). Este tipo <strong>de</strong> infestacionesse han relacionado con disfunciones en el sistemainmunológico o con problemas neurológicos enlos hospedadores que sufren la afección (Green,1989). En el caso presentado no se realizó ningunainvestigación para <strong>de</strong>terminar el estatus fisiológicoo inmunológico <strong>de</strong> los conejos, sin embargo, elestrés asociado con su papel como animales <strong>de</strong> experimentaciónpodría haber generado afectación <strong>de</strong>la fisiología normal facilitando la proliferación <strong>de</strong>estos ectoparásitos.La nariz fue otro <strong>de</strong> los sitios don<strong>de</strong> se pudieronobservar alteraciones tisulares evi<strong>de</strong>ntes. Por logeneral la nariz y los labios son los sitios don<strong>de</strong>suelen ocurrir las lesiones primarias en la infestaciónpor S. scabiei var. cuniculi (Millán, 2010). EnRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 114-118119


O. CALDERÓN et al.los conejos estudiados, la cara dorsal <strong>de</strong> la nariz seobservó hiperqueratósica y endurecida generándoseuna especie <strong>de</strong> coraza sobre la misma (Figura 1).Este tipo <strong>de</strong> lesiones también han sido observadasen conejos silvestres (Orytolagus cuniculus) infestadospor S. scabiei (Millán, 2010).En las patas las lesiones tuvieron lugar en almohadillasdon<strong>de</strong> se observaron francas excoriacionesy a<strong>de</strong>más tuvo lugar el fenómeno <strong>de</strong> distrofia <strong>de</strong>las uñas (Figura1). Este fenómeno es muy poco frecuenteen conejos y ha sido explicado como un resultado<strong>de</strong> la disminución en el <strong>de</strong>sgaste natural porfalta <strong>de</strong> uso; esto <strong>de</strong>bido a una <strong>de</strong>caimiento en elestado general <strong>de</strong>l hospedador (Millán, 2010). Estaexplicación, aunque pue<strong>de</strong> ser válida, no explicacompletamente este hallazgo, ya que en seres humanoscon escabiosis noruega también se ha observadoel fenómeno <strong>de</strong> distrofia <strong>de</strong> la uñas (Cal<strong>de</strong>róny Sánchez, 1995). Este fenómeno pue<strong>de</strong> obe<strong>de</strong>cera una respuesta fisiológica a la infestación, que dacomo resultado un aumento en la producción <strong>de</strong>queratina. De hecho, el fenómeno <strong>de</strong> hipertricosis,en el cual se da un aumento en la producción <strong>de</strong>pelo, ha sido observado también en conejos infestadoscon S. scabiei (Millán, 2010).Cheyletiella. parasitivorax se observó en muchomenos cantidad que S. scabiei var. cuniculi y P. cuniculi.Este ácaro vive en la capa <strong>de</strong> queratina <strong>de</strong> lapiel pero no forma surcos como S. scabiei. Ha sidorelacionado con la ocurrencia <strong>de</strong> <strong>de</strong>rmatitis exfoliativapruriginosa no supurativa, cuadro conocido poralgunos como “caspa caminante” (Jofré et al, 2009).Otros ectoparásitos encontrados fuero ácaros<strong>de</strong> la familia Listrophoridae <strong>de</strong> la especie L. gibbuslos cuales fueron observados <strong>de</strong> forma evi<strong>de</strong>nte enel dorso <strong>de</strong> los animales y sobre las patas traseras.Algunos autores han asociado este ácaro con la ocurrencia<strong>de</strong> alopecia, <strong>de</strong>rmatitis húmeda y prurito. Sinembargo su estatus como parásito o comensal no hasido completamente dilucidado (Kirwan et al, 1998).El manejo <strong>de</strong> animales como los referidos suponeun riesgo para el personal que manipula dichosanimales, ya que si bien es cierto, estos ectoparásitosson especie específica en lo que respecta alhospedador pue<strong>de</strong>n generar cuadros transitorios <strong>de</strong><strong>de</strong>rmatitis en humanos que ciertas ocasiones llegana ser relativamente prolongados (Thomsett, 1968;Jofré et al, 2009;).El tratamiento con Ivermectina ha sido indicadocomo el <strong>de</strong> elección para este tipo <strong>de</strong> afecciones(Me<strong>de</strong>rle, 2010). Como en otros estudios (Me<strong>de</strong>rle,2010), la aplicación <strong>de</strong> Ivermectina intramuscularcon Amitraz® como agente tópico resultó efectivapara tratar la infestación y a las cuatro semanas <strong>de</strong>iniciado dicho tratamiento prácticamente hubo unaremisión completa <strong>de</strong> los ácaros así como <strong>de</strong> laslesiones.Referencias1. An<strong>de</strong>rson RK. Norwegian scabies in a dog: A casereport. J. Am Animal Hosp Ass 1981; 17: 101-104.2. Cal<strong>de</strong>rón O, Sánchez C. Diagnóstico <strong>de</strong> <strong>de</strong>modicosiscanina mediante cuatro métodos parasitológicos.Rev. Ciencias Ves 1995; 18: 65-69.3. Cal<strong>de</strong>rón O, Sánchez C. Análisis <strong>de</strong> las poblaciones<strong>de</strong> Sarcoptes scabiei (Acaridida:Sarcoptidae) enun paciente con Escabiosis Noruega <strong>de</strong> Costa Rica. Parasitolgíaal día 1995; 19: 57-60.4. González-Acuña D, Rebolledo P, SkewesO, Moreno L, Castro D. Parásitos <strong>de</strong> la liebre (Lepuseuropeus Pallas, 1778): estudio en dos zonas geográficas<strong>de</strong> Chile. Parasitol Latinoam 2005; 60: 174-177.5. Green M. Epi<strong>de</strong>miology of scabies. Epi<strong>de</strong>miol Rev1989; 11: 127-150.6. Jofré L, Noemí I, Neira P, Saavedra U, DíazL. Acarosis y zoonosis relacionadas. Revista Chilena<strong>de</strong> Infectología 2009; 26: 248-257.7. Kirwan A, Middleton PB, McGarry JW.Diagnosis and prevalence of Leporacarus gibbus in thefur of domestic rabbits in the UK. Vet Rec 1998; 142:20-21.8. Lapage G. Parasitología Veterinaria. CIA editorialcontinental, SA: De C. V., México. México D. F. 1983.790 pp.9. Me<strong>de</strong>rle N. Parasitical i<strong>de</strong>ntification of Cheyletiellain a rabbit breeding farm. Lucrari stiitinfice medicinaveterinaria 2010; XLIII: 57-60.10. Millan E. First <strong>de</strong>scription of sarcoptic mange inwild European rabbit (Oryctolagus cuniculus). EuropJ. Wld Res. 2010; 56: 455-457.11. Mullen GR, Oconnor BM. Mites (Acari). En:Mullen GR, Dur<strong>de</strong>n L. Medical and VeterinaryEntomology. Aca<strong>de</strong>mic Press. London. 2002. 587 pp.12. Pratt HD, Stojanovich J. Acarina: Illustratedkey to some common adult female mites and adultticks. En: Pictorial Keys to Arthorpod, reptiles, birdsand mammals of public health significance. US DeptHealth, Education and Welfare. 1969. 192 pp.13. Smith MH, Meeham CL, Ma JM, HisakawaN, Dasher HS, Camarillo JD, Techanum J.Rabbit disease: What you need to know. University ofCalifornia. Agricul Natl Resour. Pub 8377. 2009. 48 pp.14. Thomsett LR. Mite infestations of man contractedfrom dogs and cats. Br. Med J 1968; 3: 93-95.Agra<strong>de</strong>cimientos: Deseamos agra<strong>de</strong>cer a la Sección <strong>de</strong> ExtensiónDocente <strong>de</strong> la Vicerrectoría <strong>de</strong> Acción Social <strong>de</strong> la Universidad<strong>de</strong> Costa Rica por su apoyo logístico al proyecto ED 548.120Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 114-118


ComunicacionesRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 119-121Primer reporte <strong>de</strong> Dracunculus spp.en la provincia <strong>de</strong> Santa Fe ArgentinaBONO BATTISTONI M. F. 1 , ORCELLET V. 1 , PLAZA D. 1 , GUTIERREZ G. 1 , CIEPIELAK M. 2 y PERALTA J. L. 11Cátedra <strong>de</strong> Parasitología, Facultad <strong>de</strong> Ciencias Veterinarias, UNL. Esperanza, Santa Fe.2Actividad privada, Reconquista, Santa Fe.ABSTRACTFIRST REPORT OF DRACUNCULUS SPP IN THE PROVINCE OF SANTA FE, ARGENTINA.Dracunculosis is a parasitic disease caused by Dracunculus medinensis, which can affect both humansand animals. Very few cases have been reported in Argentina, all of them in Formosa province. Humancases were first reported in 1903. We are <strong>de</strong>scribe a case of a 2-year-old canine with skin nodules located atseveral body regions. Pinkish helminths were obtained from these lesions, the length of which ranged from15 to 57 cm. Larvae were obtained from one of the helminthes. They had a filiform end, striated cuticleand a length of approximately 700 µm. From our observations support the conclusion that this is a case ofdracunculosis.Key words: Dracunculus spp., Dog parasites, Argentina, first report.RESUMENLa dracunculosis es una enfermedad parasitaria causada por Dracunculus medinensis que pue<strong>de</strong> afectartanto a humanos como animales. En la República Argentina se han reportado pocos casos en animales,todos en la provincia <strong>de</strong> Formosa y los casos en seres humanos comunicados datan <strong>de</strong>l 1903. El casoque <strong>de</strong>scribimos es <strong>de</strong> un canino <strong>de</strong> dos años <strong>de</strong> edad con nodulaciones en varias partes <strong>de</strong>l cuerpo. Delas mismas se extrajeron vermes <strong>de</strong> color blanco rosáceo, con una longitud que varió entre 15 y 57 cm.Al comprimir uno <strong>de</strong> los vermes, se puso <strong>de</strong> manifiesto la presencia <strong>de</strong> larvas, con el extremo caudalfiliforme, la cutícula estriada y una longitud <strong>de</strong> aproximadamente 700 µm. Las observaciones realizadas,hacen concluir que se trataría <strong>de</strong> un caso <strong>de</strong> dracunculosis.Palabras clave: Dracunculus spp., parásitos <strong>de</strong>l perro, Argentina, Primer reporte.Recibido: 20 <strong>de</strong> Agosto <strong>de</strong> 2010. Aprobado: 13 <strong>de</strong> Abril <strong>de</strong> 2011.Correspon<strong>de</strong>ncia: F M Bono Battistone.UNL. Esperanza, Santa Fe. Kre<strong>de</strong>r 2805E-mail: mfbono@fcv.unl.edu.ar121


M. F. BONO BATTISTONI et al.INTRODUCCIÓNLa dracunculosis o dracontosis es una enfermedadparasitaria causada por Dracunculus medinensis(Linneaus, 1758). Este nemato<strong>de</strong>, también conocidocomo “gusano <strong>de</strong> Guinea” o “gusano <strong>de</strong> Medina”,es un parásito <strong>de</strong>l humano aunque también pue<strong>de</strong>parasitar a perros, gatos, caballos, vacas y otrosmamíferos (no humanos) (Soulsby, 1987; Bimi etal, 2005). En los años ochenta, veinte países eranendémicos para la Dracunculosis; actualmente laenfermedad solo es endémica en Etiopía, Ghana,Mali y Sudan (WHO, 2000). En América, la OMSclasificó algunos países como <strong>de</strong>l grupo C, “países yterritorios con posible historia <strong>de</strong> dracunculosis endémica”.Esta lista incluía Brasil, Colombia, Cuba,República Dominicana, Guyana Francesa, Granada,Haití, México y Surinam, aunque en 1998 algunos<strong>de</strong> ellos fueron certificados como libres <strong>de</strong> la enfermedad(Watts, 2000). En la República Argentinaexisten pocos reportes <strong>de</strong> hallazgo <strong>de</strong> este parásito(Ringuelet,1954; Rovela 1957; Hoyos et al, 1995).Riveros, et al, (1981) diagnosticaron D. medinensisen un perro con una nodulación a la altura <strong>de</strong> la articulaciónhúmero radio cubital con orificios <strong>de</strong> losque se extrajo parte <strong>de</strong>l verme y un líquido en el quese visualizaron las larvas características. Rossister, etal, (1981) hallaron el parásito en un nódulo ulceradoque presentaba un puma (Puma concolor concolor)en la piel <strong>de</strong>l muslo izquierdo. Todos estos hallazgosfueron registrados en la provincia <strong>de</strong> Formosa. Enhumanos solo se citan dos casos en la provincia <strong>de</strong>Santiago <strong>de</strong>l Estero en el año 1903. En los paísesdon<strong>de</strong> esta parasitosis es endémica constituye unserio problema para la salud pública, ya que causaimposibilidad para caminar o trabajar, reduce la productividad<strong>de</strong> los granjeros y el <strong>de</strong>sempeño académicoen niños (Okoye et al, 1995; Joshi et al, 1997).Dracunculus es un nemato<strong>de</strong> que pertenece alor<strong>de</strong>n Spirurida, subor<strong>de</strong>n Camallanina, y a la familiaDracunculidae (Soulsby, 1987). Este parásitose ubica en el tejido subcutáneo <strong>de</strong> los carnívorosy <strong>de</strong>l hombre (Bowman, 2004). Los machos mi<strong>de</strong>n<strong>de</strong> 12 a 29 mm y mueren 3 a 7 meses pos infección(PI). Las hembras pue<strong>de</strong>n llegar a medir 400 cm<strong>de</strong> largo y son las responsables <strong>de</strong> las manifestacionesclínicas ( Hoyos et al, 1995). Las hembrasson fecundadas 3 a 4 meses PI y entre los 8 y 10meses PI migran al tejido conectivo subcutáneo <strong>de</strong>las extremida<strong>de</strong>s. De ahí emerge a través <strong>de</strong> una ulceray por la cual sale el extremo anterior <strong>de</strong>l verme(Soulsby, 1987; Hoyos et al, 1995). Cuando estasúlceras entran en contacto con un medio acuoso, lahembra prolapsa la totalidad <strong>de</strong> su útero <strong>de</strong>scargandouna masa <strong>de</strong> larvas que mi<strong>de</strong>n <strong>de</strong> 500 a 700 µ.Estas larvas son ingeridas por especies <strong>de</strong> Ciclops,vulgarmente llamados “pulgas <strong>de</strong> agua”, en los que<strong>de</strong>sarrollan hasta L 3infestantes en la cavidad hemocelómica.El hospedador <strong>de</strong>finitivo se infectacuando ingiere los Ciclops infectados con el agua<strong>de</strong> bebida. Las larvas se liberan en el intestino yatraviesan la pared <strong>de</strong>l mismo, completando su <strong>de</strong>sarrollohasta llegar a la superficie cutánea (Soulsby,1987; Hoyos et al, 1995; Bowman 2004).DESCRIPCIÓN DEL CASOCorrespon<strong>de</strong> a un canino proveniente <strong>de</strong> FortínOlmos (28°46’59’’S y 61°40’59’’O), en el DepartamentoVera, <strong>de</strong> la provincia <strong>de</strong> Santa Fe, Argentina.Se trató <strong>de</strong> un macho, <strong>de</strong> aproximadamente dosaños <strong>de</strong> edad, <strong>de</strong> raza Braco Húngaro que <strong>de</strong>s<strong>de</strong> elmes <strong>de</strong> enero <strong>de</strong> 2008 presentaba nodulaciones queluego se ulceraban y <strong>de</strong> las cuales el propietarioextrajo un tejido blanquecino <strong>de</strong> aproximadamente20 cm <strong>de</strong> longitud. Cuando el animal llegó a laconsulta presentaba nódulos subcutáneos <strong>de</strong> 1 a 4mm <strong>de</strong> diámetro en miembros anteriores y posteriores,región pectoral, xifoi<strong>de</strong>a, costal izquierday en hombro <strong>de</strong>recho. Las nodulaciones variabanen su consistencia <strong>de</strong> blanda a fibrosa y la mayoríapresentaba lesiones con diferente grado <strong>de</strong> cicatrización.Al realizar la incisión con bisturí <strong>de</strong>los nódulos, drenó un líquido mucopurulento y <strong>de</strong>algunas nodulaciones se extrajo un verme <strong>de</strong> colorblanco rosáceo, <strong>de</strong> 1 mm <strong>de</strong> diámetro y con unalongitud que varió entre 15 y 57 cm (Figuras 1 y 2).Doce <strong>de</strong> los vermes extraídos fueron remitidosal Laboratorio <strong>de</strong> Estudios Parasitológicos <strong>de</strong> laFacultad <strong>de</strong> Ciencias Veterinarias <strong>de</strong> la UniversidadNacional <strong>de</strong>l Litoral. En el laboratorio al observarlos especímenes con lupa estereoscópica pudo<strong>de</strong>terminarse un cuerpo surcado por estriacionestransversales, el extremo caudal curvado en dosespecímenes solamente y ausencia <strong>de</strong> la porcióncefálica. Al comprimir entre dos portaobjetos uno<strong>de</strong> los vermes, se puso <strong>de</strong> manifiesto la presencia <strong>de</strong>larvas, con el extremo caudal filiforme, la cutículaestriada y una longitud <strong>de</strong> aproximadamente 700122Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 119-121


DRACUNCULUS EN LA PROVINCIA DE SANTA FE, ARGENTINAFigura 1. Verme emergiendo <strong>de</strong> una úlcera.Figura 2. Verme emergiendo <strong>de</strong> una úlcera en miembroanterior.µm (Figura 3).Las observaciones clínicas, más las característicasmorfológicas <strong>de</strong> los hallazgos, que son coinci<strong>de</strong>ntescon las <strong>de</strong>scripciones <strong>de</strong> Levine (1978) y Lapage(1971), hacen concluir que se trataría <strong>de</strong> un caso <strong>de</strong>dracunculosis. No po<strong>de</strong>mos asegurar que se trate <strong>de</strong> laespecie D. medinensis por no contar con un espécimencompleto. De acuerdo a las características morfológica,este parásito se pue<strong>de</strong> clasificar hasta nivel <strong>de</strong> especiesolo con los vermes machos, los cuales raramenteestán disponibles para su estudio, con las hembras sólopo<strong>de</strong>mos i<strong>de</strong>ntificar hasta el nivel <strong>de</strong> género (Bimi etal, 2005). Debido a la sequía que azotó la región no sepudieron investigar los sitios con agua para constatarla presencia <strong>de</strong> los hospedadores intermediarios y lainfección <strong>de</strong> los mismos. A<strong>de</strong>más se <strong>de</strong>be tomar encuenta el tiempo que <strong>de</strong>moran las hembras en llegaral tejido subcutáneo y que las larvas <strong>de</strong>scargadas en elagua, sobreviven sólo por 72 horas (Joshi, 1992).REFERENCIAS1. BIMI L, FREEMAN AR, EBERHARD ML, RUIZ-TIBEN E, PIENIAZEK NJ. 2005. Differentiating Dracunculusmedinensis from D. insignis, by the sequenceanalysis of the 18S rRNA gene. Ann Trop Med. Parasitol,99 (5): 511-517.2. BOWMAN DD. 2004. Parasitología para veterinarios.Cap. 3. Octava edición. Editorial Elsevier.3. HOYOS CB, JARA GA, MONZÓN CM. 1995.Reporte <strong>de</strong> un caso <strong>de</strong> dracunculosis en un canino en laprovincia <strong>de</strong> Formosa-Argentina. Rev. Inst. Med. Trop.São Paulo, 37 (3): 273-275.4. JOSHI V. 1992. Dracunculiasis in Jodhpur district:Studies on some epi<strong>de</strong>miological and parasitologicalFigura 3. Larva 1 <strong>de</strong> Dracunculus spp.aspects. J. Communicable Dis., 24: 191-193.5. JOSHI V, SINGHI M, CHAUDHARY RC. 1997. Studieson dracunculiasis in the Indian <strong>de</strong>sert. J. Arid Environ.37: 181-191.6. LAPAGE G. 1971. Parasitología Veterinaria. 1º Ed.Compañía Editorial Continental S.A.7. LEVINE ND. 1978. Tratado <strong>de</strong> parasitología veterinaria.Cap. 20. Editorial Acribia.8. OKOYE SN, ONWULIRI COE, ANOSIKE JC. 1995.A survey of predilection sites and <strong>de</strong>gree of disabilityassociated with guineaworm (Dracunculus medinensis).Int J. Parasitol. 25 (9): 1127-1129.9. RINGUELET R. 1954. Zooparásitos <strong>de</strong> interés veterinario.MAGN, Nº 28, Bs. Aires.10. RIVEROS CE, MORIENA RA, BULMAN GM,LOMBARDERO OJ. 1981. Dracunculosis en perros <strong>de</strong>la provincia <strong>de</strong> Formosa (República Argentina). Gac.Vet. Nº359: 255-258.11. ROSSISTER A, BRUNEL CM, BULMAN GM. 1981.Primera cita <strong>de</strong> dracunculosis en un puma (Pumaconcolor concolor). Gac. Vet. Nº358: 164-166.12. ROVEDA RJ. 1957. Zooparásitos <strong>de</strong> interés veterinarioen la R. Argentina. RIG, MAGN, Nº1, Bs. Aires.13. SOULSBY EJL. 1987. Parasitología y Enfermeda<strong>de</strong>sParasitarias <strong>de</strong> los animales domésticos. 7ª Ed. NuevaEditorial Interamericana S.A <strong>de</strong> C.V.14. WATTS S. 2000. Dracunculiasis in the Caribbean andSouth America: a contribution to the history of dracunculiasiseradication. Medical History, 45: 227-250.15. (WORLD HEALTH ORGANIZATION ( WHO). 2010.Programmes and proyects,Dracunculiasis: erradication,epi<strong>de</strong>miology http://www.who.int/dracunculiasis/epi<strong>de</strong>miology/en/Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 119-121123


ComunicacionesRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128Occurrence of Cryptosporidium spp.oocysts in mammals at a zoo in southern BrazilLUDWIG R. 1 and MARQUES, S. M. T. 21Ciências Biológicas, Universida<strong>de</strong> do Vale do Rio dos Sinos, São Leopoldo, Rio Gran<strong>de</strong> do Sul (Brasil).2Departamento <strong>de</strong> Patologia Clínica Veterinária, Faculda<strong>de</strong> <strong>de</strong> Veterinária, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> doSul, Rio Gran<strong>de</strong> do Sul (Brasil).ABSTRACTThe aim of the present study was to investigate the presence of Cryptosporidium spp. oocysts in captivewild mammals at the zoo of the Zoobotanical Foundation of the state of Rio Gran<strong>de</strong> do Sul, Brazil. A totalof 41 species from 46 enclosures were studied. Ninety-two fecal samples were collected from a pool of 208mammals and analyzed using a modified Ziehl-Neelsen’s acid fast method. The analysis of double samples(92) revealed that Alouatta caraya, Aotus nigriceps, Ateles chamek, Puma concolor, Coendou prehensilis,Dama dama, Cervus unicolor, Kobus ellipsiprymnus and Myrmecophaga tridactyla shed Cryptosporidiumspp oocysts. The overall occurrence of crypstosporidial infection amounted to 19.56%. The morphometricanalysis of oocysts showed short and subspherical oocysts measuring, on average, 5.7 µm X 4.9 µm, witha shape in<strong>de</strong>x of 1.16. This is the first report of Cryptosporidium spp. in A. caraya, A. chamek, D. dama,C. unicolor and K. ellipsiprymnus in Brazil, and the first report of cryptosporidiosis in A. nigriceps, C.prehensilis and M. tridactyla in the world.Key words: Cryptosporidium spp., Oocysts, Mammals, Zoo, Brazil.ResumenEl objetivo <strong>de</strong> este estudio fue establecer la presencia <strong>de</strong> ooquistes <strong>de</strong> Cryptosporidium spp. en mamíferossilvestres mantenidos en cautiverio en el zoológico <strong>de</strong> la Fundación Zoobotánica <strong>de</strong>l estado <strong>de</strong> Rio Gran<strong>de</strong>do Sul, Brasil. Un total <strong>de</strong> 41 especies alojadas en 46 recintos fueron estudiadas. Noventa y dos muestras<strong>de</strong> heces fecales provenientes <strong>de</strong> 208 mamíferos fueron analizadas por el método modificado <strong>de</strong> Ziehl-Neelsen ácido alcohol resistente. El examen microscópico reveló que Alouatta caraya, Aotus nigriceps,Ateles chamek, Puma concolor, Coendou prehensilis, Dama dama, Cervus unicolor, Kobus ellipsiprymnusy Myrmecophaga tridactyla eliminaron ooquistes <strong>de</strong> Cryptosporidium spp, con una inci<strong>de</strong>ncia general <strong>de</strong>19,56%. El análisis morfométrico mostró ooquistes pequeños, subesféricos con un tamaño promedio 4,9Recibido: 23 <strong>de</strong> Octubre <strong>de</strong> 2010. Aprobado: 15 <strong>de</strong> Abril <strong>de</strong> 2011.Corresponding: Sandra M. T. Marques. Departamento <strong>de</strong> Patologia Clínica Veterinária. Faculda<strong>de</strong> <strong>de</strong> Veterinária.Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul - Rio Gran<strong>de</strong> do Sul (Brasil). Av. BentoGonçalves,9090, CEP: 91540-000. Phone: +55 51 33086136; fax: +55 51 33087305.E-mail address: sandra.marques@ufrgs.br; smtmuni@hotmail.com124


CRYPTOSPORIDIUM SPP. OOCYSTS IN MAMMALS AT A ZOO IN BRAZILμm x 5,7 μm, e índice <strong>de</strong> forma 1,16. Este es el primer reporte <strong>de</strong> Cryptosporidium spp. en A. caraya, A.chamek, D. dama, C. unicolor y K. ellipsiprymnus en Brasil, y el primero en A. nigriceps, C. prehensilis yM. tridactyla en el mundo.Palabras clave: Cryptosporidium spp., Ooquistes, Mamiferos, Zoo, Brasil.IntroduCTIONZoonotic diseases have been observed ingeographical regions and in animal species inwhich they had not been <strong>de</strong>tected before. Thereasons for such trend are complex and inclu<strong>de</strong>environmental changes, amount and distributionof some animal species; growth of the humanpopulation and of animal population in urbanareas; growing movement of people as well as thetra<strong>de</strong> of wild animals, their rearing in captivity, andreduction in surveillance and control actions forseveral zoonotic diseases (Meslin, 1997).Many zoos, conservation parks and rehabilitationcenters for wildlife have shown concern for thepresence, and level, of contamination of their animalcollections. A zoo, due to the concentration ofdifferent animal species in a restricted space, plusthe stress caused by captivity and the contact withman, predisposes to the dissemination of pathogens(Appelbee et al, 2005).Protozoa of the genus Cryptosporidium areobligatory coccidia that infect the intestinal epithelialcells or the respiratory tract of four vertebrategroups - fishes, reptiles, birds and mammals.They are ubiquitous and infect around 170 animalspecies, and so far 19 species have been i<strong>de</strong>ntified(Fayer, 2010). The fecal-oral route is the majormo<strong>de</strong> of transmission and it is associated with theintake of water and food or contact between susceptiblehosts (Xiao and Ryan, 2008).Occurrence of Cryptosporidium spp. throughparasitological tests were evaluated in several zoos,such as in Lisbon, Barcelona, Prague, Japan, Argentinaand Malaysia (Alves et al, 2005; Appelbeeet al, 2005; Matsubayashi et al, 2005; Venturiniet al, 2006; Lim et al, 2008). However, in Brazil,there is no research on this parasite in animals thatare kept in captivity by organizations that strugglefor the preservation of the wild fauna.The present study aims to investigate thepresence of Cryptosporidium spp. oocysts amongmammals at the zoo of the Zoobotanical Foundationof the State of Rio Gran<strong>de</strong> do Sul, in Sapucaia doSul, southern Brazil.MATERIAL AND METHODSStudy area and animals: The zoo of theZoobotanical Foundation of the State of Rio Gran<strong>de</strong>do Sul was opened to the public in 1962 and is oneof Brazil’s most wi<strong>de</strong>ly visited conservation units.Approximately 600,000 people visit the zoo everyyear. The visiting area extends over 160 hectares.This zoo manages and exhibits living collections ofwild animals in environments that seek to mimicthe living conditions each species would find in itsnatural habitat, in compliance with governmentallaws, for the survival, reproduction and welfareof animals, allowing for their preservation andresearch, and for the education and leisure of zoovisitors (FZB/RS, 2008).The zoo is located in the metropolitan region ofPorto Alegre (29º48’05.28”S and 51º09’58.87”O),in Sapucaia do Sul, state of Rio Gran<strong>de</strong> do Sul,southern Brazil. It contains 1,013 animals (reptiles,birds and mammals), including native and endangeredspecies (FZB/RS, 2008).The study was conducted between March andMay 2008, and inclu<strong>de</strong>d 41 species distributed into46 different enclosures. A total of 92 fecal sampleswere obtained from a pool of 208 animals (Table1). The fecal samples belonged to adult and youngmammals (male and female) whose health andnutritional statuses were consi<strong>de</strong>red to be goodduring the experimental period. All mammalsthat were exhibited to the public were assessed,totaling seven different or<strong>de</strong>rs: Primata, Carnivora,Ro<strong>de</strong>ntia, Artiodactyla, Perissodactyla, Xenarthraand Probosci<strong>de</strong>a. Only five species were exhibitedin more than one enclosure, namely: Cebus apella,Callithrix penicillata, Panthera onca, Tremarctosornatus and Sus scrofa, in an attempt to complywith the law that regulates the population <strong>de</strong>nsityof individuals per enclosure area or due toRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128125


R. LUDWIG and S M. T. MARQUESreproduction issues.Samples: A total of 92 fecal samples werecollected. Two collections, consisting of two fecalpools, were ma<strong>de</strong> on a weekly basis. The feces werecollected as they were found on the soil. Only freshtools were collected. The fecal pool was chosenbecause physical space or isolation areas were notenough to house the animals during the experiment,and also to preserve the safety of animals andhandlers, thus precluding the necessity for animalrestraint and reducing stress.The feces were placed in vials, i<strong>de</strong>ntified andhomogenized before they were smeared on tosli<strong>de</strong>s. Fecal smears were dried at room temperatureand fixed in absolute alcohol for five minutes. Inthe laboratory, the smears were stained with themodified Ziehl-Neelsen’s technique (Henricksenand Pohlenz, 1981) and analyzed un<strong>de</strong>r a lightmicroscope, with 1000 X magnification.The morphometric analysis (I) of oocysts wasperformed with a micrometric eyepiece (LeitzWetzlar, Germany), coupled to the light microscope,taking into account length (L) and width (W), usingthe formula I= L/W (Majewska et al, 2000).RESULTSCryptosporidium spp.oocysts were <strong>de</strong>tected in19.56% (18/92) of the analyzed samples (Table1). Nine species showed oocysts in their feces:Alouatta caraya, Aotus nigriceps, Ateles chamek,Puma concolor, Coendou prehensilis, Damadama, Cervus unicolor, Kobus ellipsiprymnus eMyrmecophaga tridactyla. Oocysts averaged 5.7 X4.9µm in size, with a shape in<strong>de</strong>x of 1.16.The presence of Cryptosporidium spp. oocystsin the first collection was confirmed by the secondcollection. In the enclosures occupied by onlyone animal, as in the case of A. nigriceps, C.prehensilis, K. ellipsiprymnus and M. tridactyla,infection is evi<strong>de</strong>nt. However, in the enclosuresoccupied by several animals, it is not possible toi<strong>de</strong>ntify which animals were shedding oocysts intheir feces.Cryptosporidiosis has not been <strong>de</strong>scribed inA. nigriceps, C. prehensilis and M. tridactylaanywhere in the world; and for all investigatedmammal species, except for P. concolor, this is thefirst report in Brazil.DISCUSSIONCryptosporidium spp. oocysts were <strong>de</strong>tected in19.56% of the fecal samples obtained from captivemammals belonging to the zoo assessed in thepresent study.One of the first studies un<strong>de</strong>rtaken by the BarcelonaZoo, in 1998, with fecal samples monthlycollected from all vertebrates, <strong>de</strong>tected cryptosporidiosisin D. dama, and reinfection cycles throughoutthe year (Gracenea et al, 2002). In another investigationin the Barcelona Zoo has characterizedthe en<strong>de</strong>mic satuts to D. dama and C. unicolor,and other species of the or<strong>de</strong>rs Primates, Artiodactyla,Perissodactyla and Probosci<strong>de</strong>a (Gómez etal, 2000). A study carried out in San Diego WildAnimal Park (USA) showed a 25% prevalence ofCryptosporidium spp. oocysts in fecal samples ofD. dama, but the result was negative for K. ellipsiprymnus(Heuschele et al, 1986), unlike the resultsobtained at the Brazilian zoo for these two species.In <strong>de</strong>er from a Korean farm, the prevalence ofCryptosporidium spp. amounted to 69.2% (9/13)(Yu et al, 2004). The investigation of cryptosporidiosisat Osaka Municipal Tennoji Zoological Gar<strong>de</strong>ns,in Japan, yiel<strong>de</strong>d negative results for Cryptosporidiumspp. oocysts in P. concolor and D. dama(Matsubayashi et al, 2005), unlike the results obtainedby the Brazilian zoo and those reported byHeuschele et al, (1986), Gómez et al, (2000) andby Gracenea et al, (2002).A study conducted at the Lisbon Zoo in Portugal,with wild ruminants yiel<strong>de</strong>d positive results formammals of the Bovidae Family, more specificallyfor Connochaetes gnou and Bison bison (Americanbison), but negative results for K. ellipsiprymnus(Alves et al, 2005). In Brazil, a previous studycarried out with captive mammals at Parque doSabiá, in the state of Minas Gerais, also <strong>de</strong>tectedCryptosporidium spp. in P. concolor, showing aprevalence of 3.84% (Cabral et al, 2001).With regard to the shedding of oocysts and toprevalence estimates, two situations may occur: oneshowing that the prevalence of cryptosporidiosis canbe un<strong>de</strong>restimated due to the intermittent sheddingof oocysts, as <strong>de</strong>monstrated by Guselle et al, (2003),and another one showing that the regular sheddingof oocysts was reported in zoo and in farm animals(Xiao and Herd, 1994; O´Handley et al, 1999; Noor<strong>de</strong>net al, 2001, 2002; Gracenea et al, 2002).126Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128


CRYPTOSPORIDIUM SPP. OOCYSTS IN MAMMALS AT A ZOO IN BRAZILTherefore, there is a consensus that good hygienepractices at the animal facilities may reduceenvironmental contamination; <strong>de</strong>laying or preventinginfection (Xiao et al, 1994) and that such practiceshould always be followed. Approximately 10C. parvum oocysts are enough to be regar<strong>de</strong>d asinfectious; oocysts can be shed by asymptomaticanimals and their remaining in the environment forweeks favors dissemination and infection (Olson etal, 1999; Fayer et al, 2000).The morphometric analysis revealed small pinkoocysts, which were positive to the modified Ziehl-Neelsen staining and averaged 5.70 µm X 4.90 µmin size, with a shape in<strong>de</strong>x of 1.16. In the presentstudy, we did not i<strong>de</strong>ntify Cryptosporidium species,but the morphometric analysis of oocysts yiel<strong>de</strong>dmean values that are similar to those <strong>de</strong>scribed byother authors; for example, the mean size of C.parvum was 5.0 X 4.5 µm for Upton et al, (1985);4.5 - 7.9 X 4.2 -6.5 µm for O’Donoghue (1995);4.2 X 4.6 µm for Fayer et al. (2000); 4.4 X 4.1µm for Majewska et al, (2000); 5.3 X 4.6 µm forIrwin (2002) and 4.4 to 6.3 µm for Watanabe et al,(2005). For Cryptosporidium spp., Chalmers et al,(2002) found a mean size of 4.7 µm (4.4 - 5.5 µm)X 4.8 µm (4.5 - 5.5 µm) where as Jongwutiwes etal, (2002) reported 4.5 and 5.5 µm as mean widthand length, respectively. We observed that thein<strong>de</strong>x obtained for Cryptosporidium in this studyfalls within the in<strong>de</strong>x interval (1-1.4).Factors that are potentially associated withCryptosporidium infection in the sampled animalsare important for those which are housed in groups,as well as for those with free access to water sources,as they can disseminate oocysts by carrying themalong to other places. Moreover, the increase inpopulation <strong>de</strong>nsity in certain areas may augment therisk of infection and contribute to the maintenanceof infection among animals that share the sameenvironment, as <strong>de</strong>scribed in other studies (Miller etal, 1990; Olson et al, 1999; Fayer et al, 2000).In the past, C. parvum was the only speciesthat infected humans. Nevertheless, recent studieshave shown that immunocompromised patientsare especially susceptible to a wi<strong>de</strong> variety ofCryptosporidium species and their genotypes, thus<strong>de</strong>monstrating how important they are in publichealth (Del Coco et al, 2009).Out of nine species infected by Cryptosporidiumspp. four belong to the native fauna of the stateof Rio Gran<strong>de</strong> do Sul: A. caraya, P. concolor, C.prehensilis and M. tridactyla. Among these, threeare on the list of endangered animal species of RioGran<strong>de</strong> do Sul, each of which un<strong>de</strong>r a differentendangerment category: A. caraya - vulnerable; P.concolor - endangered; and M. tridactyla - criticallyendangered (Marques et al, 2002).Parasitic diseases in these endangered speciesare important because zoos serve as places forpreservation of biodiversity, and as genetic banks,whose animals can be used in programs forreintroduction into their natural habitat. The presenceof parasites in captive wild animals alows for morecomprehensive studies on the ecoepi<strong>de</strong>miology ofparasitic diseases, and is of utmost importance forpreserving biodiversity, provinding subsidies forany immediate intervention, whenever necessary.This study is the first extensive and quantitativeinvestigation on the shedding of Cryptosporidiumspp. oocysts in the feces of animals in a Brazilianzoo. It is difficult to compare the present data withthose reported in other similar studies around theworld because the conditions between studies andprevalence rates are different. The actual prevalenceof infection may even be un<strong>de</strong>restimated becauseonly two fecal specimens were collected per place,when intermittent shedding of oocysts is consi<strong>de</strong>red.This result also un<strong>de</strong>rlines the importance ofinvestigating the possibility that other animals alsoact as reservoirs for Cryptosporidium spp.This is the first report of protozoa of the genusCryptosporidium in A. nigriceps, C. prehensilisand M. tridactyla in the world. In Brazil, this is thefirst report of cryptosporidiosis in other parasitizedmammalian species, except P. concolor.In Brazil, molecular i<strong>de</strong>ntification is still inthe process of being implemented at researchand diagnostic centers, unlike in other countries,where methods for diagnosing this disease andtracing sources of infection and environmentalcontamination are readily available. However,there is a consensus that studies of the genusCryptosporidium need internationally acceptedstandardization to boost confi<strong>de</strong>nce in the results,to establish standards of performance and toincrease the knowledge of analysts and researchers(Carvalho, 2009).Further studies are nee<strong>de</strong>d to i<strong>de</strong>ntify the speciesand to assess the importance of zoo animals in theepi<strong>de</strong>miology of cryptosporidiosis in mammals.Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128127


R. LUDWIG and S M. T. MARQUESTable 1. Classification of or<strong>de</strong>rs, families number of individuals at the Zoo of the Zoobotanical Foundationof the state of Rio Gran<strong>de</strong> do Sul, Brazil, and amount of fecal samples collected and i<strong>de</strong>ntified as containingCryptosporidium spp. occystsMammals Numbers of Individuals Numbers of samplesCollectedPositivesOr<strong>de</strong>r: PrimatasFamily CebidaeAlouatta caraya 4 2 2Alouatta fusca 5 2 -Cebus apella 11 4 -Aotus nigriceps 1 2 2Family AtelidaeAteles chamek 3 2 2Family CercopithecidaePapio hamadryas 2 2 -Mandrillus sphinx 10 2 -Family CallitrichidaeCallithryx geoffroyi 2 2 -Callithryx jacchus 2 2 -Callithryx penicillata 7 4 -Family HominidaePan troglodytes 3 2 -Or<strong>de</strong>r CarnivoraFamily ProcyonydaeNasua nasua 5 2 -Family FelidaePanthera onca 2 4 -Panthera tigris 2 2 -Panthera leo 2 2 -Panthera pardus 1 2 -Leopardus pardalis 1 2 -Puma concolor 2 2 2Family CanidaeChrysocyon brachyurus 2 2 -Pseudalopex gymnocercus 2 2 -Family UrcidaeTremarctos ornatus 2 4 -Family MustelidaeLontra longicaudis 2 2 -Or<strong>de</strong>n Ro<strong>de</strong>ntiaFamily HrydrochaeridaeHydrochaeris hydrochaeris 15 2 -128Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128


CRYPTOSPORIDIUM SPP. OOCYSTS IN MAMMALS AT A ZOO IN BRAZILContinuación Table 1Family ErethizontidaeCoendou prehensilis 1 2 2Or<strong>de</strong>n ArtiodactylFamily Cervidae aCervus elaphus 20 2 -Dama dama 8 2 2Cervus unicolor 5 2 2Family GiraffidaeGiraffa cameloipardalis 3 2 -Family BovidaeKobus ellipsiprymnus 1 2 2Ammotragus lervia 1 2 -Family CamelidaeLama guanicoe 5 2 -Camelus bactrianus 5 2 -Lama glama 4 2 -Family SuidaeSus scroffa 6 4 -Family TayassuidaePecari tajacu 30 2 -Family HippopotamidaeHippopotamus amphibious 5 2 -Or<strong>de</strong>n PerissodactylaFamily RhinocerotidaeCeratotherium simum 2 2 -Family EquidaeEquus burchelli bohemi 2 2 -Equus asinus 20 2 -Or<strong>de</strong>r XenarhraFamily MyrmecophagidaeMyrmecophaga tridactyla 1 2 2Or<strong>de</strong>r Probosci<strong>de</strong>aElephas maximus 1 2 -Total 208 92 18REFERENCES1. ALVES M, XIAO L, LEMOS V, ZHOU L, CAMAV, CUNHA MB, MATOS O, ANTUNES F. 2005.Occurrence and molecular characterization ofCryptosporidium spp. in mammals and reptiles at theLisbon Zoo. Parasitol Res, 97: 108-112.2. APPELBEE AJ, THOMPSON RC, OLSON ME. 2005.Giardia and Cryptosporidium in mammalian wildlifecurrentstatus and future needs. Trends Parasitol, 21:370-376.3. CABRAL DD, BARBOSA FC, STRASSER C, BAR-SOTTI SRH. 2001. Exame <strong>de</strong> fezes <strong>de</strong> mamíferos silvestrespara verificação <strong>de</strong> parasitismo por Cryptospo-Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128129


R. LUDWIG and S M. T. MARQUESridium sp. Biosci J, 17: 77-83.4. CHALMERS RM, ELWYN K, REILLY WJ, IRVINE H,THOMAS AL, HUNTER PR. 2002. Cryptosporidiumin farmed animals: <strong>de</strong>tection of a novel isolated insheep. Intern J Parasitol, 32: 21-26.5. CARVALHO TTR. 2009. Estudo atual do conhecimento<strong>de</strong> Cryptosporidium e Giardia. Revista <strong>de</strong> PatologiaTropical, 38: 1-16.6. DEL COCO VF, CÓRDOBA MA, BASUALDO JA.2009. Criptosporidiosis: uma zoonosis emergente.Revista Argentina <strong>de</strong> Microbiologia, 41: 185-196.7. FAYER R, MORGAN U, UPTON SJ. 2000. Epi<strong>de</strong>miologyof Cryptosporidium: transmission, <strong>de</strong>tection andi<strong>de</strong>ntification. Int J Parasitol, 30: 1305-1322.8. FAYER R. 2010. Taxonomy and species <strong>de</strong>limitation inCryptosporidium. Exp Parasitology, 124: 90-97.9. FUNDAÇÃO ZOOBOTÂNICA DO RIO GRANDEDO SUL - FZB/RS. http://www.fzb.rs.gov.br/zoologico/.10. GÓMEZ MS, TORRES J, GRACENEA M, FERNÁN-DEZ-MORÁN J, GONZALES-MORENO O. 2000.Further report on Cryptosporidium in Barcelona zôomammals. Parasitol Res, 86, 318-323.11. GRACENEA M, GÓMEZ MS, TORRES J, CARNÉE, FERNÁNDEZ-MORÁN J. 2002. Transmission dynamicsof Cryptosporidium in primates and herbivoresat the Barcelona zoo: a long-term study. Vet Parasitol,104, 19-26.12. GUSELLE NJ, APPLEBEE AJ, OLSON ME. 2003.Biology of Cryptosporidium parvum in pigs: fromweaning to market. Vet Parasitol, 113: 17-18.13. HENRICKSEN SA, POHLENZ JFL. 1981. Staining ofCryptosporidia by a modified Ziehl-Neelsen technique.Acta Vet Scand, 22: 594-596.14. HEUSCHELE WP, OOSTERHUIS J, JANSSEN D,ROBINSON PT, ENSLEY PK, MEIER JE, OLSONT, ANDERSON MP, BENIRSCHKE K. 1986.Cryptosporidial infections in captive wild animals. JWildl Dis, 22: 493-496.15. IRWIN PJ. 2002. Companion animal parasitology: aclinical perspective. Int J Parasitol, 32: 581-593.16. JONGWUTIWES S, TIANGTIP R, YENTAKARM S,CHANTACHUM N. 2002. Simple method for longtermcopro-preservation of Cryptosporidium oocystsfor morphometric and molecular analysis. Trop MedIntern Health, 7: 257-264.17. LIM YAL, NGUI R, SHUKRI J, ROHELA N, MATNAIM HR. 2008. Intestinal parasites in various animalsat a zoo in Malaysia. Vet Parasitol, 157: 154-159.18. MAJEWSKA AC, WERNER A, SULIMA P, LUTYT. 2000. Prevalence of Cryptosporidium in sheep andgoats bred on five farms in West-Central Region ofPoland. Vet Parasitol, 89: 269-275.19. MARQUES AAB, FONTANA CS, VÉLEZ E,BENCKE GA, SCHNEIDER M, REIS RE. 2002. Listadas Espécies da Fauna Ameaçada <strong>de</strong> Extinção no RioGran<strong>de</strong> do Sul. Decreto 41.672 <strong>de</strong> 11 junho <strong>de</strong> 2002.FZB/MCT–PUCRS/PANGEA, 52 p.20. MATSUBAYASHI M, TAKAMI K, KIMATA I,NAKANISHI T, TANI H, SASAI K, BABA E. 2005.Survey of Cryptosporidium spp. and Giardia spp.infections in various animals at a zoo in Japan. J ZooWildl Med, 36: 331-335.21. MESLIN F-X. 1997. Global Aspects of Emerging andPotential Zoonoses: a WHO perspective. Emerg InfectDis, 3 (2): 223-228.22. MILLER RA, BRONSDON MS, KULLER L, MOR-TON WR. 1990. Clinical and parasitologic aspects ofcryptosporidiosis in nonhuman primates. Lab AnimSci, 40: 42-46.23. NOORDEEN F, FAIZAL AC, RAJAPAKSE RP,HORADAGODA NU, ARULKANTHAN A. 2001.Excretion of Cryptosporidium oocysts by goats in relationto age and season in the dry zone of Sri Lanka.VetParasitol, 99: 79-85.24. NOORDEEN F, HORADAGODA NU, FAIZAL AC,RAJAPAKSE RP, RAZAK MA, ARULKANTHAN A.2002. Infectivity of Cryptosporidium parvum isolatedfrom asymptomatic adult goats to mice and goat kids.Vet Parasitol, 103: 217-225.25. O´DONOGHUE PJ. 1995. Cryptosporidium andcryptosporidiosis in man and animals. Int J Parasitol,25: 139-195.26. O’HANDLEY RM, COCKWILL C, MCALLISTERTA, JELINSKI M, MORCK DW, OLSON ME.1999. Duration of naturally acquired giardiosis andcryptosporidiosis in dairy calves and their associationwith diarrhea. J Am Vet Med Assoc, 214: 391-396.27. OLSON ME, GOH J, PHILLIPS M, GUSELLIN, MCALLISTER TA. 1999. Giardia cyst andCryptosporidium oocyst survive in water, soil andcattle faces. J Environm Qual, 28: 1991-1996.28. UPTON SJ, CURRENT WL. 1985. The species ofCryptosporidium (Apicomplexa: Cryptosporiidae) infectingmammals. J Parasitol, 71: 625-629.29. VENTURINI L, BACIGALUPE D, BASSO W,UNZAGA JM, VENTURINI MC, MORE G. 2006.Cryptosporidium parvum em animales domésticos y enmonos <strong>de</strong> um zoológico. Parasitol Latinoam, 61: 90-93.30. XIAO L, HERD LP. 1994. Infection pattern of Cryptosporidiumand Giardia in calves. Vet Parasitol, 55:257-262.31. XIAO L, HERD RP, MCCLURE KE. 1994. Periparturientrise in the excretion of Giardia sp. cysts and Cryptosporidiumparvum oocysts as a source of infection forlambs. J Parasitol, 80: 55-59.32. XIAO L, RYAN UM. 2008. Molecular epi<strong>de</strong>miology.In: Fayer, R., Xiao, L. (Eds.), Cryptosporidium andCryptosporidiosis. CRC Press and IWA Publishing.Boca Raton. USA., 119-163.33. YU JR, LEE JK, SEO M, IL KIM S, SOHN WN. 2004.Prevalence of cryptosporidiosis among the villagersand domestic animals in several rural areas of Korea.Korean J Parasitol, 42: 1-6.34. WATANABE Y, YANG CH, OOI HK. 2005. Cryptosporidiuminfection in livestock and first i<strong>de</strong>ntificationof Cryptosporidium parvum genotype in cattle feces inTaiwan. Parasitol Res, 97: 238-241.130Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 122-128


In memorian <strong>de</strong>l ProfesorDr. Antonio Atías Martín (Q.E.P.D.)(1927 - 2011)El sábado 28 <strong>de</strong> Mayo <strong>de</strong>l 2011, <strong>de</strong>spués <strong>de</strong>presentar una larga y penosa enfermedad <strong>de</strong>jo <strong>de</strong>existir el Dr. Antonio Atías.El Profesor Atías nació en Santiago el 12<strong>de</strong> Septiembre <strong>de</strong> 1927, estudio medicina enla Universidad <strong>de</strong> Chile entre 1947 y 1953. Sutesis para obtener el título <strong>de</strong> médico cirujanofue “Contribución al estudio <strong>de</strong> la enfermedad<strong>de</strong> Chagas experimental <strong>de</strong>l ratón”, durantes susestudios <strong>de</strong> medicina fue ayudante alumno <strong>de</strong>la Cátedra <strong>de</strong> Parasitología <strong>de</strong>l Prof. Dr. AmadorNeghme junto a una pléyada <strong>de</strong> investigadoresy científicos, que posteriormente al igual que elllegarían a ser profesores titulares <strong>de</strong> esa facultad.El Dr. Atías tuvo una carrera científica <strong>de</strong> grannivel, es así como obtuvo becas <strong>de</strong> la OPS y otras <strong>de</strong>gran importancia para nuestro país. Publicó cerca<strong>de</strong> 180 trabajos científicos tanto en Chile como enel extranjero. Culminando esta actividad con laelaboración junto al Profesor Dr. Amador Neghme<strong>de</strong> un texto <strong>de</strong> parasitología “Parasitología Clínica”,que fue pionero en América Latina <strong>de</strong>l cual tuveel honor <strong>de</strong> comentar. Tres ediciones <strong>de</strong>l texto sealcanzaron a publicar antes <strong>de</strong>l fallecimiento <strong>de</strong>lprofesor Atías.En su labor profesional <strong>de</strong>sarrolló funcionesasistenciales y asesorías <strong>de</strong> Parasitólogos en elHospital San Juan <strong>de</strong> Dios <strong>de</strong> Santiago (1954-1988) y posteriormente en la Clínica INDISA hastasu <strong>de</strong>ceso.El Dr. Atías formó a numerosos profesionalesculminando su carrera en la se<strong>de</strong> occi<strong>de</strong>nte <strong>de</strong> la cualfue Profesor y Jefe <strong>de</strong> la Unidad <strong>de</strong> Parasitología.Recibió numerosos premios, tanto por su laborasistencial como docente entre el <strong>de</strong> la Aca<strong>de</strong>mia <strong>de</strong>Medicina <strong>de</strong> 1979 junto a la Dra. Erika Thierman.Sus discípulos y alumnos lo consi<strong>de</strong>raron siemprecomo un excelente docente, agradable y ameno ensus clases.Se <strong>de</strong>staco por su espíritu jovial y humor atoda prueba, tenía gran capacidad <strong>de</strong> redacción.Creo sin lugar a dudas que fue uno <strong>de</strong> los gran<strong>de</strong>sescritores <strong>de</strong>l área parasitológica. Su alejamientoenluta no sólo a la Parasitología chilena sino a laParasitología Latinoamericana.A nombre <strong>de</strong> la Sociedad Chilena <strong>de</strong> Parasitologíadamos el más sentido pésame a su esposa, hijosy familiares. Descansa en Paz Antonio.Prof. Dr. Werner Apt B.Presi<strong>de</strong>nteSociedad Chilena <strong>de</strong> Parasitología131


Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 130-132NORMAS DE PUBLICACIÓN1. Los trabajos serán remitidos a:1.1 Secretaria <strong>de</strong> Edición, Prof. Patrocinio MorrondoPelayo, Cátedra <strong>de</strong> Parasitología, Facultad <strong>de</strong> Veterinaria.27071 Lugo, España. E-mail: patrocinio.morrondo@usc.es1.2 Editor Prof. Héctor Alcaíno, Casilla 9183, Santiago1, Chile. E-mail: hectoralcaino@gmail.com2. Los autores <strong>de</strong>berán remitir el manuscrito <strong>de</strong>ltrabajo, que será original y aceptado por todos losautores, mediante un soporte informático, a ser posibleen formato RTF, Microsoft Word (DOC) u Openoffice(ODT).3. La Revista Ibero-Latinoamericana <strong>de</strong> Parasitologíano dispone limitación en el número <strong>de</strong> páginas<strong>de</strong> los trabajos, siempre que la información aportadalo justifique.4. ESTILO:- Los trabajos podrán ser escritos en español, portuguéso inglés (la Comisión Editorial aconseja esteúltimo idioma), <strong>de</strong>ben remitirse usando una fuenteTimes New Roman tamaño 12 y con márgenes <strong>de</strong>rechoe izquierdo <strong>de</strong> 3 cm, normas que <strong>de</strong>ben guardartambién las cabeceras <strong>de</strong> tablas y pies <strong>de</strong> figuras. Todaslas páginas <strong>de</strong>berán ser numeradas consecutivamente,tablas y figuras incluidas.- Las letras en cursiva se utilizarán para los nombrescientíficos <strong>de</strong> géneros y especies, así como parapalabras en idioma distinto al que se escribe.- Cuando se cite una especie por primera vez en eltexto, se hará con su nombre científico completo.- Para nombrar las enfermeda<strong>de</strong>s se seguirán lasnormas publicadas por Kassai T., Cor<strong>de</strong>ro M.,Euzeby J., Gaafar, S., Hiepe Th. and Himonas,C.A. 1988. Standardized Nomenclature of AnimalParasitic Diseases (SNOAPAD). Vet Parasitol 29:299-326, las cuales están aceptadas por la SEP.- Los números <strong>de</strong>l uno al diez, se escribirán conletras (nueve), salvo si prece<strong>de</strong>n a una unidad <strong>de</strong>medida (4 m) o se utilizan como marcadores (día3). Los números mayores <strong>de</strong> diez se escribirán conletras únicamente cuando vayan al principio <strong>de</strong> unpárrafo. Los números que sobrepasen las unida<strong>de</strong>s<strong>de</strong> millar se anotarán, uniformemente en ambaslenguas, sin signos <strong>de</strong> puntuación, ejemplo “10000y no 10.000 o 10,000”. Por su parte los números<strong>de</strong>cimales se anotarán siguiendo la forma “xx’xx(xx.xx), según se trate <strong>de</strong> textos en español o inglés”.Igualmente, <strong>de</strong>ben evitarse números muy largos,como “(250000000), escribiendo 250 millones o 2,5x 10 8 ”.- Las horas <strong>de</strong>l día se nombrarán <strong>de</strong> “0 a 24 (18 h yno 6 p.m.)”.- Los años se expresarán <strong>de</strong> forma completa (porejemplo “1999-2000 y no 1999-00”).- Las abreviaturas podrán usarse, siempre claras ycarentes <strong>de</strong> ambigüedad. Las abreviaturas <strong>de</strong> usomuy frecuente, no necesitarán <strong>de</strong>letrearse previamente:“ADP, AMP, ATP, bp, kDa, cpm, D.F., ADN,Fig., g, h, i.m., i.p., mAb, min, NAD, NADH, no.,pH, p.i., %, ARN, sec, sp., spp., s.c., s.d., s.e., OMS,etc.”- Los artículos constarán <strong>de</strong> los siguientes apartados,a menos que la naturaleza <strong>de</strong>l trabajo requiera otraestructura:A) Página <strong>de</strong> título: Constará <strong>de</strong>:- Título.- Título abreviado ( A running title)- Nombre(s) <strong>de</strong> autor(es) y su centro <strong>de</strong> trabajo,subrayando el autor para correspon<strong>de</strong>ncia:REINA D., SERRANO F.J. y NAVARRETE I.Parasitología. Facultad <strong>de</strong> Veterinaria. 10071 Cáceres.España.- Autor para correspon<strong>de</strong>ncia: Nombre, direccióncompleta, teléfono, fax y dirección electrónica.B) Resumen y Abstract (siempre en español einglés), no excediendo <strong>de</strong> 200 palabras; PalabrasClave y Key words (en número máximo <strong>de</strong> seis encada idioma),C) Introducción, Material y Métodos, Resultados- Discusión.D) Referencias:Se relacionarán únicamente los artículos citadosen el texto.Las referencias <strong>de</strong> las publicaciones <strong>de</strong>berán irnumeradas y se hará <strong>de</strong> la manera siguiente:1. ALLENDE A, SELMA MV, LÓPEZ-GÁLVEZ F,VILLAESCUSA R, GIL MI. 2008. Impact of washwater quality on sensory and microbial quality,including Escherichia coli cross-contamination, offresh-cut escarole. J Food Prot 71: 2514-2518.Cuando varios artículos <strong>de</strong>l mismo o <strong>de</strong> losmismos autores hayan sido publicados el mismo añoserán citados como “Brown (1980 a, b). Las referenciasa observaciones no publicadas, resúmeneso publicaciones en preparación, <strong>de</strong>berán serexcepcionales, apareciendo sólo en el texto como“com. pers.”. La relación bibliográfica <strong>de</strong>berá seror<strong>de</strong>nada alfabéticamente por autores, incluyendoel título completo <strong>de</strong>l trabajo y según los mo<strong>de</strong>lossiguientes:Artículos en <strong>revista</strong>s:SERRANO F., PÉREZ-MARTÍN J.E., REINA D.,NAVARRETE I., KAPEL C.M.O. 2000. Influence132


NORMAS DE PUBLICACIÓNof infection intensity on predilection sites in swinetrichinellosis. J Helminthol 73: 251-254.Libros y publicaciones no periódicas:NAVARRETE I., CALERO R., REINA D., SERRA-NO F. 1989. Programa <strong>de</strong> Acciones contra la Trichinellosis.Servicio <strong>de</strong> Publicaciones Universidad <strong>de</strong>Extremadura. Cáceres/Badajoz.Artículos en libros:ARROWOOD M.J. 1997. Diagnosis. In: Cryptosporidiumand Cryptosporidiosis (Ronald Fayer,Ed.). CRC Press. Boca Ratón. USA., 43-64.Tesis Doctorales:FRONTERA E. 2000. Repercusiones orgánicas <strong>de</strong>la infección experimental por Ascaris suum en elcerdo ibérico. Tesis Doctoral, Universidad <strong>de</strong> Extremadura.España.Trabajos no publicados: (Se citarán únicamente sihan sido aceptados para su publicación).SERRANO F.J., REINA D., FRONTERA E.,NAVARRETE I., ROEPSTORFF A. Resistanceagainst migrating Ascaris suum larvae in pigsimmunized with adult worm antigens. Parasitology(en prensa).Las abreviaturas <strong>de</strong> los nombres <strong>de</strong> las <strong>revista</strong>sestarán <strong>de</strong> acuerdo con las indicaciones <strong>de</strong> losJournal Citation Reports (JCR); en caso <strong>de</strong> no estarincluidas en esa relación, se citará con el nombrecompleto.E) Tablas y Figuras:Se presentarán en página aparte, perfectamentenumeradas y con referencia, en el reverso, al primerautor y al título <strong>de</strong>l trabajo. Deberán tener suficientecalidad para que cuando se reduzcan a los formatos<strong>de</strong> una o dos columnas (8 ó 16 cm, respectivamente)conserven suficiente niti<strong>de</strong>z. En el manuscrito<strong>de</strong>berá aparecer una llamada <strong>de</strong>stacada (ejemplo:AQUÍ TABLA 2), para la colocación <strong>de</strong> cada tabla ofigura en su lugar en el texto.5. El autor, una vez aceptado para su publicación eltrabajo, recibirá una prueba <strong>de</strong> imprenta para que seacorregida, y <strong>de</strong>berá <strong>de</strong>volverla antes <strong>de</strong> diez días. Encaso <strong>de</strong> que el autor introduzca modificaciones sustancialesen el texto aceptado por el comité editorial,los gastos correrían a su cargo.6. El autor podrá recibir separatas <strong>de</strong> su trabajo, previopago <strong>de</strong> su importe. Así mismo, las reproducciones<strong>de</strong> figuras en color, serán por cuenta <strong>de</strong> los autores.7. El Comité <strong>de</strong> Redacción se reserva el <strong>de</strong>recho<strong>de</strong> hacer algunas correcciones <strong>de</strong> forma cuando loestime necesario8. Los autores <strong>de</strong>berán pagar la suma <strong>de</strong> 10 USpor cada página impresa que ocupe el trabajoen la <strong>revista</strong>. Esta cantidad se pagará cuando secomunique a los autores que el trabajo está aceptadopara su publicación.INSTRUCTION TO AUTHORS.1. Papers should be sent to:1.1 Edition Secretary, Prof. Patrocinio MorrondoPelayo, Cátedra <strong>de</strong> Parasitología, Facultad <strong>de</strong> Veterinaria.27071 Lugo, España. E-mail: patrocinio.morrondo@usc.es1.2 Editor Prof. Héctor Alcaíno, Casilla 9183, Santiago1, Chile. E-mail: hectoralcaino@gmail.com2. Authors should be submitted the manuscript,which will be original and accepted by all thenamed authors, in an electronic copy. The format isMS Word (DOC), Openoffice (ODT) or Ritch TextFormat (RTF).3. Ibero-Latin American Journal of Parasitologyhaven’t lower limit on manuscript size, provi<strong>de</strong>dthat sufficient essential information is given. Unnecessarilylong papers will be returned to the authorsfor revision.4. STYLE:- Manuscripts should be in Spanish, Portuguese orEnglish, typewritten using Times New Roman 12,with 3 cm left and right margin, including figureand table headings. All pages should be numberedconsecutively, figures and tables inclu<strong>de</strong>d.- The italic typeface should be reserved for scientificnames of genera and species, and also for wordstypewritten in a different to the mean paper language.- Species names should be given in full on firstappearance in the text.- Parasitic disease will be named according to: KassaiT., Cor<strong>de</strong>ro M., Euzeby J., Gaafar S., Hiepe Th.and Himonas C.A. 1988. Standardized Nomenclatureof Animal Parasitic Diseases (SNOAPAD). VetParasitol 29: 299-326.- Numbers one to ten should be written as wordsunless they prece<strong>de</strong> a measurement unit (e.g. 4 m) orserve as markers (e.g. day 3). Numbers larger thanten should only be written as words at the beginningof a sentence.- Large numbers should be set out without commas,uniformly and in both languages (e.g. 10000 not10,000 or 10.000). On the other hand, <strong>de</strong>cimalnumber will appear following the type xx.xx.Equally, very large numbers should be avoi<strong>de</strong>d, e.g.250 million or 2.5 x 10 8 and not 250 000 000.- Times should be expressed according to a 24-hRev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 130-132133


NORMAS DE PUBLICACIÓNclock (e.g. authors should write 18.00 rather than 6p.m.).- Years should not be abridged to the last two figures(e.g. 1999-2000 rather than 1999-00 should be used).- Abbreviations should be used sparingly andunambiguously. The following abbreviations arecommonly used and need not be spelled out: ADP,AMP, ATP, bp, kDa, cpm, D.F., DNA, Fig., g, h(hour), i.m., i.p., mAb, min, NAD, NADH, no., pH,p.i., %, RNA, sec, sp., spp., s.c., s.d., s.e., WHO.- Articles will consist of the following sections,unless its structure makes any of them redundant:A) Title-page:- A concise but informative full title.- A running title- Name(s) of author(s) and working Centre. Correspondingauthor’s name should be un<strong>de</strong>rlined.REINA D., SERRANO F.J. and NAVARRETE I.Parasitología. Facultad <strong>de</strong> Veterinaria. 10071Cáceres. España.- Corresponding author: Name, complete address,phone, fax and e-mail address.B) Abstract and Resumen.Always in English and Spanish, no more than 200words; Key words and Palabras Clave (a maximumof six key words for each language).C) Introduction, Material and Methods, Results,Discussion.D) References:The list of references will be composed only byarticles cited in the text.References should be numbered and will be cited asfollow:1. ALLENDE A, SELMA MV, LÓPEZ-GÁLVEZ F,VILLAESCUSA R, GIL MI. 2008. Impact of washwater quality on sensory and microbial quality,including Escherichia coli cross-contamination, offresh-cut escarole. J Food Prot 71: 2514-2518.When several papers by the same author(s) havebeen published in the same year, they should be citedas “Brown (1980 a, b). References to unpublishedobservations, abstracts or papers in preparationshould only be cited in exceptional circumstances,and should be cited only as “pers. com.” (personalcommunication). References must be listed inalphabetical or<strong>de</strong>r of the author’s name and the titleof the paper should be given in full.Articles should conform to the following formats:Journal articles:SERRANO F., PÉREZ-MARTÍN J.E., REINA D.,NAVARRETE I.,KAPEL C.M.O. 2000. Influenceof infection intensity on predilection sites in swinetrichinellosis. J Helminthol 73: 251-254.Books and other non-periodical publications:NAVARRETE I., CALERO R., REINA D., SE-RRANO F. 1989. Programa <strong>de</strong> Acciones contra laTrichinellosis. Servicio <strong>de</strong> Publicaciones Universidad<strong>de</strong> Extremadura. Cáceres/ Badajoz.Chapter in edited books:ARROWOOD M.J. 1997. Diagnosis. In: Cryptosporidiumand Cryptosporidiosis (Ronald Fayer,Ed.). CRC Press. Boca Ratón. USA., 43-64.Doctoral Theses:FRONTERA E. 2000. Repercusiones orgánicas<strong>de</strong> la infección experimental por Ascaris suum enel cerdo ibérico. Tesis Doctoral, Universidad <strong>de</strong>Extremadura.Unpublished works: (This should only be cited if ithas been accepted for publication and be styled asfollows).SERRANO F.J., REINA D., FRONTERA E.,NAVARRETE I., ROEPSTORFF A. Resistanceagainst migrating Ascaris suum larvae in pigsimmunized with adult worm antigens. Parasitology(In press).Abbreviations of Journal titles should conformto those of the Journal Citation Reports (JCR); ifJournal is not in<strong>de</strong>xed full name of Journal shouldbe noted.E) Figure and Table headings:In a separate page, perfectly numbered and with areference in the reverse to both the first author andthe title of the paper. Their approximate inten<strong>de</strong>dlocation in the text should be marked clearly in themanuscript (eg. HERE FIG. 2). Figures and tablesmay be accepted provi<strong>de</strong>d that they are of a highquality such us to fit neatly into one column (80 mm)or two columns (166 mm) maintaining its quality.5. The gallery proofs of each paper will be sent in duecourse to the author(s) for correction and should bereturned within ten days of receipt. Expenses incurredas results of substantial modifications to the originaltext at this stage will be charged to the author(s).6. Authors could be supplied with offprints of theirpaper, charging its full value.7. The Redaction Committee reserves its right tomake some form corrections when necessary.8. Authors must pay the equivalent sum of 10 USDper each printed page in the Journal. This amountmust be paid when the paper is accepted.134 Rev. Ibero-Latinoam. Parasitol. (2011); 70 (1): 130-132


ARTÍCULOS ORIGINALES· Parasitemia and humoral responses in the brain and spinal cord of pregnantrats with infection by Trypanosoma cruzi.REVISTA IBERO-LATINOAMERICANA DE PARASITOLOGÍA - Volumen Nº 70 - Nº 1 ENERO - JUNIO 2011· Characterization of cutaneous isolates of Leishmania in Colombia byisoenzyme typing and kDNA restriction analysis.· I<strong>de</strong>ntificación <strong>de</strong> genotipos. <strong>de</strong> Giardia duo<strong>de</strong>nalis niños <strong>de</strong> Guatemala.· Risk factors and prevalence of IgG antibodies to Toxoplasma gondii indomestic cats.· Blastocystis sp en niños y adolescentes <strong>de</strong> la ciudad <strong>de</strong> Córdoba,Argentina.· Anaplasma platys and other pathogens in urban ectoparasites ofNortheast Argentine.· Serological <strong>de</strong>tection of Trichinella spiralis and Trichinella britovi in wild boarby ELISA using an excretor-secretor antigen and a cru<strong>de</strong> antigen.· Immunisation of rabbits with house dust mite extract against Graphidiumstrigosum.· Cystic echinococcosis in cattle in Uruguay.· Epi<strong>de</strong>miology and approach treatment of human cystic echinococcosis:Case Series.· Hipocromia y diagnóstico <strong>de</strong> talla en niños y adolescentes con parasitosisintestinales.· Anemia ferropriva e sua correlaçao com parasitos intestinais em Manaus,Brasil.· Nematophagous fungi with activity against the sheep nemato<strong>de</strong>Haemonchus contortus .EXPERIENCIAS CLINICAS· Hallazgo <strong>de</strong> infección por nematodos <strong>de</strong>l género Thelazia (Boso, 1819) enun perro <strong>de</strong> Salamanca (España).· Infestación múltiple por ácaros ectoparásitos en conejos <strong>de</strong> crianza.COMUNICACIONES· Primer reporte <strong>de</strong> Dracunculus spp. en la provincia <strong>de</strong> Santa Argentina.· Occurrence of Cryptosporidium spp. oocysts in mammals at a zoo insouthern Brazil.Volumen 70 ENERO - JUNIO 2011 Núm. 1135

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!