unidad didáctica expresiones algebraicas - educastur.princast

unidad didáctica expresiones algebraicas - educastur.princast unidad didáctica expresiones algebraicas - educastur.princast

educastur.princast.es
from educastur.princast.es More from this publisher

UNIDAD DIDÁCTICA<br />

EXPRESIONES ALGEBRAICAS<br />

------------------------------------------------<br />

1


ÍNDICE<br />

1. INTRODUCCIÓN ---------------------------------------------------------------------- 3<br />

2. CONTENIDOS ------------------------------------------------------------------------- 3<br />

3. OBJETIVOS ---------------------------------------------------------------------------- 4<br />

4. METODOLOGÍA ---------------------------------------------------------------------- 4<br />

5. SECUENCIACIÓN DE LAS SESIONES. MATERIALES<br />

CURRICULARES DE CADA SESIÓN --------------------------------------------- 6<br />

6. COMPETENCIAS BÁSICAS QUE SE TRABAJAN<br />

EN LA UNIDAD DIDÁCTICA -------------------------------------------------------- 32<br />

7. MATERIALES Y ESPACIOS NECESARIOS -------------------------------- 33<br />

8. EVALUACIÓN. CRITERIOS DE EVALUACIÓN Y DE<br />

CALIFICACIÓN ------------------------------------------------------------------------- 33<br />

9. EN LA CLASE DE INGLÉS ------------------------------------------------------ 35<br />

2


INTRODUCCION<br />

Esta <strong>unidad</strong> está dirigida a 2º curso de E.S.O. Los alumnos han trabajado esta<br />

<strong>unidad</strong> en 1ª, dentro del programa bilingüe y conocen algunos conceptos<br />

básicos del tema, conviene repasarlos para profundizar en el lenguaje<br />

algebraico y la jerarquía de operaciones, que ya han trabajado en el bloque<br />

números. La importancia de la <strong>unidad</strong> radica en que se ha diseñado para que el<br />

alumno adquiera el dominio del álgebra básica para la posterior solución de<br />

problemas matemáticos que puedan presentarse en la vida diaria.<br />

De acuerdo con el Decreto 74/2007 del 14 de junio, esta <strong>unidad</strong> está en el<br />

bloque III de contenidos para 2º de ESO titulado “Algebra” .<br />

La <strong>unidad</strong> didáctica se compone de un total de 14 sesiones lectivas.<br />

Al finalizar esta <strong>unidad</strong> los alumnos deberían ser capaces de operar<br />

correctamente con <strong>expresiones</strong> <strong>algebraicas</strong>. Siendo conscientes de los errores<br />

sistemáticos que suelen cometer al utilizar el álgebra Utilizar las propiedades<br />

de las operaciones, la jerarquía y las reglas de uso de los paréntesis en<br />

<strong>expresiones</strong> <strong>algebraicas</strong>. Utilizar el lenguaje algebraico para expresar<br />

situaciones de la vida diaria.<br />

CONTENIDOS<br />

Los contenidos a desarrollar son los siguientes:<br />

.Repaso de situaciones matemáticas en las que se use el lenguaje algebraico.<br />

Monomios. Elementos de un monomio. Valor numérico de un monomio<br />

Operaciones con monomios. Suma , resta, multiplicación y división.<br />

Polinomios. Valor numérico de un polinomio.<br />

Operaciones con polinomios. Suma, resta, multiplicación.<br />

Igualdades notables.<br />

Contenidos específicos relacionados con el idioma inglés:<br />

Los alumnos deberán familiarizarse con todo el vocabulario en inglés propio del<br />

tema. En objetivos se hace una lista con las palabras que deberán conocer.<br />

Aunque este tema consiste básicamente en conocer el lenguaje algebraico y<br />

operar correctamente para luego poder resolver ecuaciones y problemas de la<br />

vida cotidiana, aquí aparecen <strong>expresiones</strong> como increased by , decreased by,<br />

more than, less than, triple, double, like terms, unlike terms y los ordinales fith,<br />

sixths,<br />

En los ejemplos se usarán mucho <strong>expresiones</strong> como How much y How many<br />

( contables e incontables), muchos adjetivos y sustantivos, genitivo sajón ya<br />

que en cada expresión algebraica se puede introducir el vocabulario que nos<br />

interesa que aprendan y utilizar todo el vocabulario relacionado con un<br />

determinado campo semántico, por ejemplo las relaciones familiares en las<br />

<strong>expresiones</strong> <strong>algebraicas</strong> en las que aparecen edades.<br />

3


OBJETIVOS:<br />

Objetivos específicos de Matemáticas:<br />

Simbolizar en lenguaje algebraico enunciados dados de forma verbal, y<br />

viceversa.<br />

Conocer perfectamente todo el vocabulario que se utiliza en algebra ya que los<br />

contenidos de esta <strong>unidad</strong> conforman el cimiento para determinar y organizar<br />

parte de los contenidos de la asignatura.<br />

Objetivos lingüísticos y comunicativos:<br />

Al finalizar esta <strong>unidad</strong> los alumnos deberían:<br />

− Ser capaces de entender instrucciones sencillas en inglés, tanto orales<br />

como escritas, para realizar las actividades propuestas.<br />

− Usar, leer y escribir correctamente las palabras más frecuentes propias<br />

del tema. En su vocabulario incluirán al menos estas palabras.<br />

Variable, unknown, terms, like terms, unlike terms, coefficient, grade,<br />

monomial, polynomial, expand brackets, cancel, simplify, convert, one half,<br />

third, fourth, fifths, right side, left side, sixths, twentieths, double, triple.<br />

− Ampliar campos semánticos (. árboles, frutas, miembros de la familia,)<br />

− Adverbios de tiempo en las <strong>expresiones</strong> de edades: in five years time, in<br />

a couple of days, two years ago.<br />

− Ser capaces de formular preguntas para obtener información usando<br />

contables e incontables. ( How much, how many)<br />

METODOLOGÍA<br />

Se pretende una metodología activa, intuitiva y motivadora que despierte<br />

interés y fomente el aprendizaje por el descubrimiento de los conceptos a<br />

partir de los conocimientos y experiencias personales.<br />

Basándose en el hecho de que si el alumno descubre los conceptos por sí<br />

mismo, éstos se asientan de manera más duradera en su estructura lógica, se<br />

pretenden diseñar y elaborar actividades para que los estudiantes descubran<br />

los conceptos y no sólo los almacenen.<br />

Se fomentarán clases activas, en las que desarrollen sus habilidades<br />

Las actividades han de estimularles a preguntar, reflexionar y a expresar su<br />

pensamiento verbalmente.<br />

Al trabajar las actividades se pretende que el alumnado relacione, el mayor<br />

número de conceptos posibles.<br />

Las actividades a proponer tienen varios niveles en su desarrollo hacia la<br />

solución, que permitan un ritmo diferente según el alumnado.<br />

4


Se promoverán agrupaciones diversas y se utilizarán distintos recursos.<br />

( bibliográficos, audiovisuales, uso de calculadoras y páginas web )<br />

El álgebra ha de ser usada en diferentes contextos: juegos, situaciones<br />

personales, familiares, ciencia…<br />

Al final de la tarea, la profesora puede intervenir facilitando la síntesis y la<br />

elaboración de conclusiones finales a partir de las que hayan podido obtener<br />

los estudiantes aisladamente.<br />

Reflexionar sobre lo que se va obteniendo durante las clases o sobre las<br />

razones por las que no se logra avanzar.<br />

Utilizar los errores de los alumnos en los aprendizajes de nuevos conceptos,<br />

poniendo en conflicto los erróneos sustentados por los alumnos con las<br />

nociones correctas mediante preguntas o actividades adecuadas.<br />

Las actividades propuestas seguirán la secuencia:<br />

Hacer-discutir-descubrir-exponer, expresándose ,a veces, oralmente (puesta<br />

en común) y ,a veces, por escrito.<br />

Debido a la complejidad del lenguaje algebraico en la mayoría de las<br />

actividades aparece un soporte teórico y bastantes ejercicios cuyo grado de<br />

dificultad es gradual.<br />

Aunque parezca excesiva la cantidad de actividades relacionadas con<br />

operaciones <strong>algebraicas</strong>, es necesaria para afianzar su seguridad operando y<br />

posteriormente garantizar el correcto planteamiento de los problemas.<br />

5


SECUENCIACION DE LAS SESIONES. MATERIALES CURRICULARES DE<br />

CADA SESION.<br />

La <strong>unidad</strong> didáctica se compone de un total de 14 sesiones lectivas distribuidas<br />

así:<br />

Session number Session title Activities<br />

Session 1<br />

Brainstorm.Using Activity 1<br />

algebra.<br />

Writing algebraic<br />

expressions<br />

Session 2 Words used in Activities 2 and 3<br />

algebra.. Monomials.<br />

Parts of a monomial..<br />

Session 3 Operations with Activities 4 and 5<br />

monomial.<br />

. Operations.(addition<br />

and subtraction)<br />

Session 4 Operations with Activities 6 and 7<br />

monomial. Operations<br />

(multiplication and<br />

division)<br />

Session 5 Substitution Activity 8 Game 2<br />

Session 6 Substitution Activity 8<br />

Game 3<br />

Session 7<br />

Polynomials.<br />

To read the theory<br />

Activity 9<br />

Identifying polynomials Exercise 1<br />

and its parts.<br />

Session 8<br />

. Identifying polynomials Activity 9<br />

and its parts.<br />

Exercises 2 and 3<br />

Session 9<br />

Classifying polynomial Activity 10<br />

Simplifying algebraic Activity 11<br />

expressions<br />

Session 10 Simplifying algebraic Activity 11<br />

expressions<br />

To read the theory<br />

Expanding brackets Activity 12<br />

Exercises 1 and 2<br />

Session 11<br />

Expanding brackets<br />

Operations<br />

polynomials.<br />

with<br />

Session12 . Operations with<br />

polynomials.<br />

Perfect Squares.<br />

Activity 12<br />

Exercises 3 and 4<br />

Activity 13<br />

Exercises 1 to 4<br />

Activity 13<br />

Exercise 5<br />

Exercise 6<br />

Session 13 . Perfect Squares. Activity 13<br />

Exercise 7 to 10<br />

Session 14 Multiplying polynomials Activity 14<br />

6


ACTIVIDADES<br />

Using algebra<br />

Algebra is an area of mathematics where letters are used to represent numbers.<br />

Activity 1<br />

1.- Brainstorm .-The students will look for some Spanish word<br />

related with algebra and will talk about the importance of<br />

other cultures.<br />

2.- They will think about the different algebraic expressions they already know:<br />

-Generalizing the evolution of a numerical series.<br />

Example: 1,3,5,7… n+2<br />

-Expressing the relation between different magnitudes (formulae)<br />

Example:<br />

9 C<br />

F = + 32<br />

5<br />

Distance=velocity x time<br />

Area= l 2<br />

( they will write different formulas)<br />

-Solving mathematical problems.<br />

Example 1.-(Students will conclude the sentences)<br />

Peter has planted a certain number of sunflowers seeds, but you don´t know<br />

how many. Let x stand for the unknown number. Peter has planted ……….<br />

Example 2.-<br />

Ann spent 4.5 € on a sandwich. Jane spent a on a salad.<br />

How much did they spend in total? They spent 4.5+a in total.<br />

Example 3.-<br />

Mark has x CDs in his collection. Susan has y CDs in her collection.<br />

How many CDs do they have altogether? They have ……. CDs in their<br />

collections..<br />

Example 4.-<br />

Adrian has 14 sweets. He ate some of them. How many sweets did he have<br />

left?<br />

He has left.(They complete the sentences using algebraic expressions<br />

and pronouns)<br />

7


Writing algebraic expressions<br />

An algebraic expression is a mathematical phrase which contains numbers,<br />

operators, (add, subtract, multiply, divide), and at least one variable (like x, y).<br />

Shorthand used in algebra:<br />

a means 1xa or 1a or a 1<br />

-a means -1xa or -1a or -a 1<br />

4a<br />

a<br />

2<br />

ab<br />

abc<br />

3ab<br />

a 2<br />

a 3<br />

means 4xa or (a+a+a+a)<br />

1<br />

means a ÷ 2 or a<br />

2<br />

means axb<br />

means axbxc<br />

means 3xaxb or (ab+ab+ab)<br />

means axa<br />

means axaxa<br />

5a 2 means 5xaxa or (a 2 + a 2 + a 2 + a 2 + a 2 )<br />

(3a) 2<br />

means 3ax3a or 3x3xaxa<br />

4a 2 b 3 3<br />

means 4xaxaxbxb or (a 2 3<br />

b + a 2 3<br />

b + a 2 3<br />

b + a 2 3<br />

b + a 2<br />

b )<br />

Activity 2<br />

1. - Students will try to write the following expressions:<br />

4 less than p is p-4<br />

9 more than x is x+9<br />

A number x increased by 8 is x+8<br />

The sum of a number b and 3 is b+3<br />

A number q decreased by 5 is q-5.<br />

Six times x is 6x<br />

The triple of m 3m is 3x<br />

Twice y is 2y<br />

The double of r is 2r<br />

x<br />

A quarter of x is 4<br />

8


Half m is 2<br />

m<br />

6x<br />

Six sevenths of x is or 7<br />

A fifth of t is 5<br />

t<br />

6 x<br />

7<br />

20 1 x<br />

20 % of x is x or x or ( remember to simplify )<br />

100 5 5<br />

m times m is mxm or m 2<br />

p times q is pxq or pq<br />

five times t cubed is 5xtxtxt or is 5t 3<br />

4<br />

2t 2<br />

v means 2xtxtxvxvxvxv<br />

2.-They will do the previous exercise in reverse.<br />

9


Words used in algebra<br />

Variable: When letters are used in place of different numbers they are called<br />

variables , unknowns or indeterminates..<br />

Constant : Anything that has a fixed value ( can´t be changed ) is called a c<br />

constant. 5, -4, 2<br />

1<br />

are constants, because their values do not change.<br />

Term: A Term is a single unit containing one or more variables, often with<br />

a constant in front or a constant on its own.<br />

2<br />

a<br />

5x, 3ab, 4x y,<br />

− pq,<br />

7and<br />

are examples of terms.<br />

b<br />

Coefficient: The number in front of a term is called the coefficient of the term.<br />

In the term 5x, 5 is the coefficient of x.<br />

In the term -4pq, -4 is the coefficient of pq.<br />

In the term –y, -1 is the coefficient of y ( as –y=-1y).<br />

Expression: A collection of terms separated by plus signs or minus signs is called<br />

an expression.<br />

2<br />

3x −2x + 4 is an expression with three terms.<br />

Like terms: Terms that use the same letter or arrangement of letters, are called “like<br />

terms” . The only difference is the coefficient (number in front) of the term.<br />

3x, 2x and –x are like terms.<br />

5ab,4ab and –ab are like terms<br />

8 x 2<br />

y , 3 x 2 y and -x 2 y are like terms.<br />

(The powers of each letter must be the same)<br />

Unlike terms: Terms that are not the same.<br />

3a and 5b are unlike terms.<br />

4xy and 4x are unlike terms.<br />

x 2 y and xy 2 are unlike terms.<br />

Note : The letters in a term are usually written in alphabetical order.<br />

For example, we would write 4ab rather than 4ba<br />

However. the order of the letters within the term is not important.<br />

10


Identifying monomials and parts of a monomial<br />

Monomial.- An algebraic expression consisting of only one term<br />

The exponent on a term tells you the grade or the"degree" of the term ( never a<br />

negative whole number)<br />

The degree of monomial is the sum of the exponents of the variables in the<br />

monomial.<br />

5 degree zero.<br />

4x degree one.<br />

3x 2 degree two.<br />

4x 5<br />

degree five<br />

xyzp degree four<br />

4xyz degree three<br />

Activity 3<br />

1.-Write several examples of monomials<br />

2.-Fill lin the gaps:<br />

Monomial 6x -2x a b<br />

coefficient<br />

Variable<br />

2 4<br />

2<br />

3 xy<br />

x 8<br />

1<br />

4<br />

ab<br />

Grade<br />

3.- Complete:<br />

The grade of a monomial is….<br />

In the monomial 3x 4 , 3 is …<br />

A negative number never appears in …<br />

11


Operations with monomials. Combining terms<br />

You can simplify expressions by adding o subtracting like terms.(Term with the<br />

same variable)<br />

3b and 5b are like term, so they can be added.<br />

If a variable has no number in front of it, the value of that variable is 1<br />

8xy 10xy have the same variable xy , so we add them.<br />

6t and 4v are unlike terms as they have different variables. So, you cannot<br />

subtract to simplify this expression.<br />

It is often best to group like terms together first, and then simplify:<br />

2x 2 + 3x – 4 – x 2 + x + 9 = (2x 2 – x 2 ) + (3x + x) + (–4 + 9) = x 2 + 4x + 5<br />

Terms can be combined ONLY IF they have the exact same variable part<br />

Monomials that differ only their numerical coefficients are said to be like terms.<br />

12


Activity 4<br />

1.- Fill in the gaps:<br />

4x and 3<br />

4x and 3y<br />

Not like terms<br />

The second term has no<br />

variable.<br />

4x and 3x 2 The second term has the<br />

same variable, but<br />

different degree.<br />

4x and 4y<br />

4x and 3x<br />

2.-Group like terms. Write each expression in the correct box.<br />

2,5 a 3 b<br />

-6ab 3<br />

Now the variables match<br />

and the degrees match<br />

4<br />

ab 2<br />

a<br />

3<br />

b 4<br />

2a<br />

2ab<br />

3<br />

b 4<br />

2<br />

b 2<br />

4<br />

5ab<br />

a 2 ab<br />

6cab 2 a<br />

9ab<br />

4a<br />

2<br />

b 2<br />

3<br />

b 4<br />

15a<br />

3<br />

b 4<br />

13


Addition and subtraction<br />

Activity 5<br />

1-Simplify the following:<br />

1) b + b + b + b 9) b-5b<br />

2) a + 3s 10) 4a-8a-6a-a<br />

3) 9w – 2w 11) 4a-6b+a<br />

4) 4r + 7r 12) 3x-5x-x<br />

5) d + 2d + 5d 13) 5b-4g+4b-6b<br />

6) 4t + 3t – 5t 14) 9g-7g-4g<br />

7) 9a – a – 5a 15) 6m-m+9b-5b-4m<br />

8) 6b-7b-9b 16) 8f+5y-2f-4y+3fy<br />

2.- Complete:<br />

1) 9a - 3a = 10 ) 5x + x - 8x = 19) 9a 2 - 3a 2 =<br />

2) 11x + 3x = 11) -9x - 3x = 20) 4zx + zx - 9zx =<br />

3) 4x + x = 12) x + 3 - 2x +1 = 21) a 4 b - 12a 4 b - 2a 4 b =<br />

4) 4z + 3z -7z = 13) -7x -10x + x = 22) -y 2 - 5y 2 =<br />

5) 3b - 6b - 2b = 14) -7x -2x - 9x =<br />

1<br />

23) 2x+ x =<br />

3<br />

6) 2b - 5b = 15) 3x 2 - 3 - 12x 2 + 2 =<br />

2<br />

24) x- x =<br />

7) ab - 3ab = 16) x 2 + 2x 2 + 10x -19x -8 +3<br />

=<br />

8) 3a - 5b + 3a - 6b = 17) -5x 3 -7 - 3x 3 +3 =<br />

9) 10x + 3x - 6x = 18 ) -2x 3 + 4x 3 - 10x - 11 =<br />

3<br />

2 1<br />

25) x- x + x =<br />

3 5<br />

2 2 2 3 2<br />

26) x − x + x =<br />

3 4<br />

3 3 3 2 3<br />

27) x − x − x =<br />

5 25<br />

14


Multiplication<br />

When multiplying terms, remember the following steps:<br />

1) First multiply the numbers.<br />

2) Then multiply the variables (the powers property)<br />

3) Write the numeral first followed by the variable.<br />

4) Write the variables, or letter, in alphabetical order.<br />

Warning: Don't get careless and confuse multiplication and addition. This may<br />

sound like a silly thing to say, but it is the most commonly-made mistake (after<br />

confusing the order of operations):<br />

(x)(x) = x 2<br />

(multiplication)<br />

x + x = 2x (addition)<br />

" x 2 " DOES NOT EQUAL " 2x "<br />

For example if you have something like x 3 + x 2 , DO NOT try to say that it is<br />

equal to x 5 or 5x. If you have something like 2x + x, DO NOT say that this is<br />

equal to 2x 2 .<br />

When multiplying the variable x by another term, it´s very easy to confuse ×(<br />

multiplication for ) with x (letter). So, leave out the multiplication sign. For<br />

example, write 4xa as 4a.<br />

7ax6b= 42ab<br />

7x6=42. Then multiply the variables axb, so 7ax6b=42ab<br />

8 ab 3 3a 2 b 5 =24a 3 b 8<br />

Activity 6<br />

1.- Complete:<br />

4x 5x = 2e x 3 3a 2 x 4a<br />

x (-3x) = 3d x 4d 2d x 5d<br />

9x (-10x 5 ) = 2w x 5w 4b x 6b<br />

-4x 3 (- 9x) = 5 x 3d 3c x 6c<br />

3ab 3a = g x 7g 3g x 2g 2<br />

(-3x) 6x 2 = 2 x 5d 2t x 3t 4<br />

4 ab(-9)ab 2 = 2q x 7m 3mx4mzp<br />

5z 6z(-4z)= 6 x 4b 2mxmx5p<br />

20a 4 b 2 5 a 5 b= 8q x 2g 4hx8kx2p<br />

-9rst10r 2 s 2 t 2 = 9s x 5 3mx2mxm<br />

2.- Complete ( Remember how to multiply fractions):<br />

2<br />

4 2<br />

18x. x<br />

( )<br />

=<br />

abc − 4 ab =<br />

3<br />

− 2 2 <br />

<br />

6x x =<br />

<br />

3 − 2<br />

ab 25a<br />

b<br />

3 =<br />

3 <br />

5 <br />

15


Division of monomials<br />

Divide top and bottom by common factors.<br />

The method we use to simplify algebraic fractions is the same that we use to<br />

simplify ordinary fractions<br />

10ab<br />

=5a ( divide the top and bottom by the same monomial, 2b )<br />

2b<br />

4z<br />

1<br />

= (This is an algebraic expression but not a monomial, because the<br />

2<br />

8z<br />

2z<br />

variable is not elevated to a positive number)<br />

Activity 7<br />

1.- Simplify each of the following:<br />

15ab<br />

1)<br />

3b<br />

81x<br />

2) 27<br />

14ab<br />

3)<br />

2ab<br />

18b<br />

4)<br />

9<br />

2.- Complete::<br />

1) 6x 5 : 2x =<br />

5)<br />

6)<br />

6pq<br />

2pq<br />

14xy<br />

7xy<br />

3<br />

x<br />

7)<br />

3<br />

x<br />

4ab<br />

8)<br />

4ab<br />

20x 2 2 2<br />

2 3<br />

y 18a<br />

b ab c<br />

9)<br />

13) 17)<br />

2<br />

2<br />

xy<br />

9b<br />

4ab<br />

3<br />

3<br />

64a<br />

b 4a<br />

b<br />

10) 14) 18)<br />

2<br />

2<br />

8a<br />

8a<br />

11)<br />

12)<br />

12x<br />

2 y<br />

15)<br />

4x<br />

2<br />

6<br />

24ab<br />

a b<br />

16)<br />

8ab<br />

4ab<br />

2ab<br />

2 19)<br />

8ab<br />

2<br />

14xy<br />

z<br />

7xy<br />

2 3<br />

12x<br />

my<br />

9xmy<br />

2<br />

10x<br />

y<br />

20)<br />

2<br />

4xy<br />

2) 4x 4 : (-2x) =<br />

3) -15x 2 : (-5x) =<br />

4) -21x 6 : (- 7x) =<br />

5) 20a 4 b :10 a =<br />

6) (-72x 9 ) : 4x 2 =<br />

7) 15a 5 b 7 :(-3) a 3 b 3 =<br />

8) 125z 8 : 5z 6 =<br />

16


Evaluating expressions (substitution)<br />

In algebra when we replace letters with numbers when evaluation expressions<br />

we call it substitution. When you are substituting numbers in an expression, it is<br />

good idea to put a bracket around the number that replaces the letter.<br />

Activity 8<br />

1.- Substitute the values for each letter and use the rules of operations to help<br />

you work out the answers to the questions below:<br />

a=3 b = 2 c = 1 d = 8 e = 0 f = 9 g = 10<br />

1) cg=<br />

2) bc + 7=<br />

3) 5d +a-g=<br />

4) 2c 2 -e=<br />

5) f ÷ a + g + ce=<br />

6) g 2 - bc=<br />

7) (b + c) 2 +2d=<br />

8)<br />

2(a + b) × (2f – 5) =<br />

17


2.- GAME 3 in a line<br />

Rules:<br />

Take turns throwing the dice. Put a counter on a square which matches your<br />

dice score. The first person to get 3 in a line is the winner.<br />

Substitution<br />

d + 3 = 8 7 – d = 4 10 ÷ d = 5 4 + d = 5<br />

d x 3 = 9 2 x d = 12 d ÷ 4 = 1 d x d = 4<br />

d x 2 = 10 10 – d = 9 d – 3 = 3 d x d = 16<br />

d - 2 = 4 d x d = 25 9 - d = 6 8 ÷ d = 2<br />

4a – 11 = 9 5(4 - t) = 10 2 g = 8 2 m 2 = 18<br />

18


2u – 1 = u d x 2 = 8 6( 9 - w) = 24 6z + 1 = 5z + 4<br />

4y = y + 3 7– a = 0.5<br />

2<br />

8 = 4(3y – 4) 3 (b – 1) = 6<br />

d + 4 = 7 d x d = 1 6 + d = 7 d ÷ 2 = 3<br />

2 d – 1 = d d 2 = 25 (h 2 -4)=9 5 x (d – 2) = 5<br />

d – 1 = 4 5 d = 10 d – 1 = 5 4 d = 24<br />

3 (d – 1) = 9 3 + d = 8 5 – d = 4 10 – d = 6<br />

19


3.- Game<br />

Take turns rolling the dice. Substitute the number on the dice for the letter in the<br />

formula. Complete the operation, get the solution and move forward that<br />

number of squares. The winner is the first person to go twice around the board<br />

and reach the chequered flag.<br />

20


Polynomial<br />

A polynomial is an expression constructed from variables (also known as<br />

indeterminates) and constants, using the operations of addition,<br />

subtraction, multiplication, and constant non-negative whole number<br />

exponents<br />

This year we will work with univariate polynomials<br />

When a term contains both a number and a variable, the number is called the<br />

"coefficient". The coefficient on the leading term is called the "leading"<br />

coefficient.<br />

In the above example, the coefficient of the leading term is 4; the coefficient of<br />

the second term is 3 and -7 is the constant term.<br />

The highest power in a one-variable polynomial is called its order, or degree.<br />

For instance, the leading term in the above polynomial is a "second-degree<br />

term" or "a term of degree two". The second term is a "first degree" term. The<br />

degree of the leading term tells you the degree of the whole polynomial; the<br />

polynomial above is a "second-degree polynomial".<br />

Polynomials are usually written this way, with the terms written in "decreasing"<br />

order; that is, with the largest exponent first, the second highest next, and so<br />

forth, until you get down to the number which is alone (the constant).<br />

Some polynomials don´t have a constant.<br />

Notice the exponents on the terms. The first term has an exponent of 2; the<br />

second term has an "understood" exponent of 1; and the last term doesn't have<br />

any variable at all. Any term that doesn't have a variable in it is called a<br />

"constant" term because, no matter what value you may put in for the variable x,<br />

that constant term will never change. In the picture above, no matter what x<br />

might be, 7 will always be just 7.<br />

21


The first term in the polynomial, when it is written in decreasing order, is also<br />

the term with the biggest exponent, and is called the "leading term".<br />

The exponent on a term tells you the "degree" of the term. Here are a couple<br />

more examples:<br />

The "poly" in "polynomial" means "many”. The term "polynomial" should only<br />

refer to sums of many terms, but the term is used to refer to anything from one<br />

term to the sum of a zillion terms. However, the shorter polynomials do have<br />

their own names: monomial, binomial trinomial.<br />

• a one-term polynomial, such as 2x or 4x 2 , may also be called a<br />

"monomial" ("mono" meaning "one")<br />

• a two-term polynomial, such as 2x + y or x 2 – 4, may also be called a<br />

"binomial" ("bi" meaning "two")<br />

• a three-term polynomial, such as 2x + y + z or x 4 + 4x 2 – 4, may also be<br />

called a "trinomial" ("tri" meaning "three")<br />

3<br />

4<br />

x − + 7x<br />

2<br />

is not a polynomial, because its second term involves division by<br />

x<br />

3 2<br />

the variable x and also because its third term contains an exponent that is not a<br />

whole number.<br />

22


Identifying polynomial and its parts<br />

Activity 9<br />

1.- Complete:<br />

Polynomial<br />

Terms<br />

2x 5 – 5x 3 – 10x<br />

+9<br />

10x 3 – 14x 2 + 3x<br />

22– x 2 – x<br />

Leading term<br />

Leading coefficient<br />

Constant<br />

Degree<br />

2.- Complete:<br />

• 2x 5 – 5x 3 – 10x + 9<br />

This polynomial has ………… ..terms, including a<br />

…………………………………………term, a third-degree term, a<br />

………………………………….term, and a constant term. This is a …….….-<br />

degree polynomial.<br />

• 7x 4 + 6x 2 + x<br />

This polynomial has …………..terms, including a<br />

-degree term, a<br />

-degree term, and a first-degree term. There is no ……………………….<br />

3.- Try to summarize and explain the parts of a polynomial.<br />

23


Classifying polynomial<br />

Activity 10<br />

1.- Classify each expression as monomial, binomial or trinomial. Complete the<br />

sentences:<br />

• . – 5x 3 – 10x + 9 is a ……………… because it has<br />

………………………………<br />

• 10x + 8 is<br />

……………………………………………………………………….<br />

• 3x 2 − 2x<br />

+ 1<br />

is a<br />

…………………………………………………………………….<br />

• 45ª is a<br />

……………………………………………………………………………….<br />

• 34d 6 is a<br />

……………………………………………………………………………….<br />

• 9-x+2+3x is<br />

a…………………………………………………………………………….<br />

• 10x 3 – 14x 2 + 3x is<br />

a……………………………………………………………………<br />

2.- Match each of the algebraic expressions with their names.<br />

2x-14 trinomial<br />

3x 2 − 2x<br />

+ 1<br />

other polynomial<br />

3 + 2<br />

x<br />

2x-5ax+8xy+4<br />

4x-5x+9x<br />

3x- 2 x<br />

monomial<br />

binomial<br />

none of those.<br />

24


Simplifying algebraic expressions06-2008 All Rights Reserved<br />

Activity 11 (Students will see these examples before working on their own)<br />

Example 1: 4x 2 + 5x – 8 – x 2 + x + 9<br />

Remember that there is 1 in front of a variable expression with no written<br />

coefficient, as is shown in red below:<br />

(4x 2 – x 2 )+(5x + x) + (–8 + 9) = (4x 2 – 1x 2 ) + (5x + 1x) + (–8 + 9) = 3x 2 + 6x + 1<br />

Example 2: 10x 3 – 14x 2 + 3x – 4x 3 + 4x – 6<br />

10x 3 – 14x 2 + 3x – 4x 3 + 4x– 6 =(10x 3 –4x 3 )+(–14x 2 )+(3x+4x)–6=6x 3 –14x 2 +7x–6<br />

Warning: When moving the terms around, remember that the terms' signs move<br />

with them. Don't confuse yourself by leaving orphaned "plus" and "minus" signs<br />

behind.<br />

Example 3: 25 – (x + 3 – x 2 )<br />

The first thing you need to do is to take the negative through the parentheses:<br />

25 – (x + 3 – x 2 ) = 25 – x – 3 + x 2 = x 2 – x + 25 – 3 = x 2 – x + 22<br />

Example 4: x + 2(x – [3x – 8] + 3)<br />

This is just an order of operations problem with a variable in it. If you work<br />

carefully from the inside out, paying careful attention to your "minus" signs, then<br />

you should be fine:<br />

x + 2(x – [3x – 8] + 3) = x + 2(x – [3x – 8] + 3 = x + 2(x – 3x + 8 + 3) =<br />

x + 2(–2x + 11) = x – 4x + 22 = –3x + 22<br />

Simplify:<br />

1.- [(5x – 4) – 2x] – [(10x – 7) – (3x – 8)]<br />

2.- –4y – [3x + (3y – 2x + {2y – 7} ) – 4x + 5]<br />

3.-<br />

x x − 2 x<br />

− − 1 +<br />

2 5 10<br />

4.- Students will write different expressions to simplify in their notebooks.<br />

25


Expanding brackets<br />

In algebra, many expressions include brackets. A term ( number or variable)<br />

outside the brackets means that you must multiply each term inside the<br />

brackets by the outside term.<br />

To expand brackets we must multiply each term in one bracket by each term in<br />

the<br />

other and then join the like terms<br />

You can check brackets expansions by comparing them to areas. Calculate the<br />

area of each part of the rectangle and add both areas.<br />

5(x+y) = 5• (x+y)<br />

5(X+Y) = 5X+5Y.<br />

Bracketed expressions<br />

Sometimes you will need to multiply bracketed expressions by each other.<br />

For example: (a+b)(c+d)<br />

This means (a+b) multiplied by (c+d).<br />

Look at the rectangles:<br />

The area of the whole rectangle is (a+b)(c+d)<br />

It is the same as the sum of the four separate areas<br />

So: (a+b)(c+d)=ac+ad+bc+bd<br />

Notice that each term in the first bracket is multiplied by each term in the<br />

second bracket.<br />

You can also think of the area of the rectangle as the sum of two separate<br />

parts:<br />

(a+b)(c+d)= a(c+d)+b(c+d)<br />

Think of multiplying each term in<br />

the first bracket by the whole<br />

of the second bracket.<br />

This is called multiplying out<br />

the brackets.<br />

26


Activity 12<br />

1.-Expand the brackets:<br />

1.).4(x-y)<br />

2) 8c(d + e).<br />

3.) m (4x - 2y - 6z).<br />

4) 2x(x-y)<br />

2.- Expand the brackets and simplify :<br />

1) 4x(2x-3)-4(3x-2)<br />

2) x(3x-1)+2x(x-3)<br />

3) 5c(c-2)-4a(2a-5)<br />

4) x 2 (x-3x 3 2<br />

)-2x(x − 3x<br />

)<br />

5) abc(a 2 -bc)+a 2 (a-b)<br />

6) xyz(z-y)+xz(y-x)<br />

3.-Remove the brackets and simplify:<br />

1) (x + 8) · (x + 2) =<br />

2) (x + 4) · (x - 1) =<br />

3) (x - 6) · (x - 2) =<br />

4) (x - 1) · (x - 3) =<br />

5) (x - 5) · (x - 1) =<br />

=<br />

4.- Draw different coloured rectangles showing what you have done in the<br />

previous exercise.<br />

27


Operations with polynomials<br />

Activity 13<br />

1.- Complete these operation squares:<br />

+ 2c+3d 8c+2d<br />

4c+5d<br />

3c+d<br />

+ -c-3d -3c+d<br />

5c+4d<br />

c-4d<br />

2.- Subtract binomials in the column from the ones in the row.<br />

- c+3d 8c+2d<br />

4c+5d<br />

3c+d<br />

-<br />

a 2 -ab<br />

a 2 -10ab<br />

-4a 2 -ab<br />

3a 2 +ab<br />

3- Fill in the gaps:<br />

+<br />

5a+8b<br />

4a-b<br />

7a+5b<br />

-6a+9b<br />

+<br />

5a 2 +8ab<br />

2a 2 +10ab<br />

6a 2 -ab<br />

3a 2 -ab<br />

4.-Subtract binomials in the column from the ones in the row<br />

-<br />

8t-3u<br />

15t-u<br />

5t-4u<br />

2t+6u<br />

28


5.- Complete:<br />

x 2c+3d 8c+2d<br />

4c+5d<br />

3c+d<br />

x -c-2d 4c-2d<br />

-c+5d<br />

3c-d<br />

Special identities:<br />

Examples:<br />

( 2x + 3 ) 2 = 4x 2 +12x +9<br />

( x + 7) · (x –7 )= x 2 – 49<br />

(x-4) 2 = x 2 –8x+16<br />

Remember:<br />

(a+b) 2 = (a + b)·(a + b) = a 2 + ab + ba + b 2 = a 2 + 2ab + b 2<br />

(a-b) 2 = (a -b )·(a –b ) = a 2 – ab –ba + b 2 = a 2 - 2ab + b 2<br />

(a+b)·(a-b)= a 2 –ab + ba –b 2 = a 2 –b 2<br />

6.- Calculate:<br />

x a+2 a-2<br />

a-2<br />

a+2<br />

7- Calculate:<br />

a) (2x+1) 2 =<br />

f) (2x+5y) 2 =<br />

b) (3a-2b) 2 g) ( 3x<br />

− 2)( 3x<br />

+ 1)=<br />

=<br />

c) (2-3x)(2+3x)= 3 <br />

3 <br />

h) x − 3<br />

x + 3<br />

=<br />

2 <br />

2 <br />

d) (3-5x) 2 2<br />

=<br />

4x 3 <br />

i) + =<br />

3 4 <br />

e) (2a-3b)(2a+3b)=<br />

5 <br />

5 <br />

j) x − 2y<br />

x + 2y<br />

=<br />

2 <br />

2 <br />

29


8.-Complete:<br />

2<br />

2<br />

a) x + 2xy<br />

+ y = ( + ) 2 2<br />

c) b − 2b<br />

+ 1 = ( - ) 2<br />

b) 25x 2 + 10x<br />

+ 1 = ( + ) 2 2<br />

d) x − 16 = (x+4) ( - )<br />

9.- Simplify:<br />

2<br />

x − 9<br />

a) =<br />

2<br />

x − 6x<br />

+ 9<br />

x − 2<br />

b) =<br />

2<br />

x − 4x<br />

+ 4<br />

10.- Factorize and simplify:<br />

4x<br />

+ 4y<br />

a) =<br />

2<br />

x + xy<br />

3<br />

m<br />

b) =<br />

2 3<br />

m + m<br />

9a<br />

2 + 6a<br />

+ 1<br />

c) =<br />

3a<br />

+ 1<br />

2x<br />

+ 3<br />

d) =<br />

2<br />

4x<br />

− 9<br />

2<br />

x − xy<br />

c) =<br />

2 2<br />

x − y<br />

4x<br />

d) =<br />

4x<br />

+ 8y<br />

30


Multiplying polynomial<br />

The rules are the same as in the multiplication of binomials.<br />

Multiply each term in the first expression by the whole of the second expression.<br />

It´s sometimes is useful to do it in the same way as arithmetic multiplication<br />

Example:<br />

11.- Multiply:<br />

3<br />

2<br />

x − 5x<br />

+ 1 x + 2<br />

1) ( )( ) =<br />

x<br />

x<br />

x<br />

2<br />

2<br />

2) ( 2 − 5 + 1)( 3 − 2) =<br />

x<br />

x<br />

x<br />

3 2<br />

3<br />

3) ( 4 − 6 − 3)( 4 − 5) =<br />

x<br />

x<br />

x<br />

3<br />

2<br />

4) ( 2 − 5 + 1)( 3 − 4) =<br />

31


COMPETENCIAS BASICAS QUE SE TRABAJAN EN LA UNIDAD<br />

DIDACTICA<br />

En esta <strong>unidad</strong> se trabajan las siguientes competencias básicas:<br />

Competencia matemática.-<br />

La competencia matemática es evidente. Se trabaja el uso de las operaciones<br />

básicas con cálculos mentales y de operaciones combinadas.<br />

Competencia en comunicación lingüística.<br />

Se trabaja a través de la lectura comprensiva de los problemas, de los que los<br />

alumnos deberán extraer los datos que les conduzcan a su planteamiento y<br />

posterior resolución.<br />

En general, en la realización de todas las actividades ( con lectura e<br />

interpretación de la información por parte de cada alumno de los ejercicios que<br />

le toque hacer) se fomenta el desarrollo de esta competencia.<br />

Competencia en el conocimiento y la interacción con el mundo físico.<br />

En la primera actividad los alumnos buscarán palabras de origen árabe y<br />

recogerán información sobre la gran aportación de los árabes a las<br />

matemáticas.<br />

Tratamiento de la información y competencia digital.<br />

Se les propone algunas páginas web para que realicen ejercicios interactivos<br />

on line.<br />

Competencia social y ciudadana<br />

Esta competencia se potenciara a través de actividades en grupos pequeños y<br />

también de la interpretación y análisis de las <strong>expresiones</strong> matemáticas tratando<br />

de que desarrollen una actitud crítica.<br />

Competencia artística<br />

Con la elaboración de sus materiales en los juegos, en las balanzas de<br />

ecuaciones, tales como el mural para la clase ( hechos en cartulina a los que<br />

pueden añadir dibujos)<br />

Competencia para aprender a aprender<br />

La lectura de los , el desafío de su solución, el uso métodos intuitivos y<br />

deductivos, el ensayo error, el análisis crítico de los resultados les permite<br />

desarrollar y consolidar hábitos de disciplina, estudio y trabajo individual y en<br />

equipo.<br />

Competencia autonomía e iniciativa personal<br />

Ser conscientes de su mejora en el aprendizaje les lleva a manifestar una<br />

actitud positiva ante la resolución de problemas y mostrar confianza en su<br />

propia capacidad para enfrentarse a ellos con éxito y adquirir un nivel de<br />

autoestima adecuado que le permita disfrutar de los aspectos creativos,<br />

manipulativas, estéticos y utilitarios de las matemáticas.<br />

32


MATERIALES NECESARIOS<br />

Fotocopias de las actividades para trabajar en clase.<br />

Ordenador y cañón para visionar un video.<br />

Útiles de dibujo: cartulinas, tijeras, pinturas, etc. ( lo hacen en la clase de<br />

plástica) para construir sus tableros con <strong>expresiones</strong> <strong>algebraicas</strong>.<br />

Calculadoras.<br />

Conexión a Internet para visitar páginas web<br />

EVALUACIÓN. CRITERIOS DE EVALUACIÓN<br />

− Realizar operaciones con monomios y polinomios (suma, resta,<br />

multiplicación,)<br />

− Saber utilizar letras como representación de números;<br />

− Trasladar situaciones reales a <strong>expresiones</strong> <strong>algebraicas</strong>.<br />

− Resolver ecuaciones sencillas de primer grado con una incógnita.<br />

− Valorar la precisión del lenguaje algebraico utilizado para expresar todo tipo<br />

de informaciones que contengan cantidades, medidas, relaciones<br />

numéricas.<br />

− Planificar la estrategia de resolución del problema y utilizar tablas, gráficos,<br />

esquemas o representaciones de tipo simbólico cuando se requiera<br />

− Exponer, utilizando un lenguaje matemático preciso en forma oral o escrita,<br />

los razonamientos y estrategias seguidas en la resolución, así como admitir<br />

y valorar las de los demás.<br />

CRITERIOS DE CALIFICACION.<br />

Al final del proceso de evaluación se procede a la calificación de los alumnos,<br />

es necesario tener fijados unos criterios de calificación claros y precisos, con<br />

indicación del peso de los instrumentos de evaluación empleados.<br />

Para la calificación se emplearán los procedimientos e instrumentos de<br />

evaluación indicados en el apartado anterior, asignando, en la calificación, el<br />

siguiente peso a cada uno:<br />

Observación sistemática del 20%<br />

alumno/a<br />

Trabajo del alumno/a (individual o/y 10%<br />

grupo)<br />

Pruebas escritas 70%<br />

En las pruebas escritas figurará la calificación correspondiente a cada uno de<br />

los problemas y/o cuestiones que contenga.<br />

En los problemas se valora:<br />

Planteamiento 50%<br />

25%<br />

Resolución<br />

Discusión 25%<br />

En las cuestiones teóricas se valora:<br />

33


Respuesta correcta 60%<br />

Correcta expresión 10%<br />

Razonamiento 30%<br />

En las cuestiones prácticas se valora:<br />

Desarrollo correcto 80%<br />

Justificación 20%<br />

BIBLIOGRAFIA:<br />

− Libros y material utilizados en la elaboración de esta <strong>unidad</strong> didáctica.<br />

− Revise GCSE . Mathematics. Letts.<br />

− Bitesize revision. Maths. High Level. BBC.<br />

− Scottish Secondary Mathematics. Heinemann<br />

− GCSE Mathematics. Heinemann.<br />

− Edco maths 2. Junior Certificate.<br />

− 2005RevisionGuide.ks3Maths.Collins.<br />

− Anaya 1º, 2º y 3º ESO.<br />

− www.bbc.co.uk/schools/gcsebitesize/maths<br />

34


EN EL AULA DE INGLÉS<br />

COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA<br />

• Adquisición de vocabulario referido a números (ordinales, cardinales,<br />

fracciones), comparativos y superlativos de adjetivos, nombres contables<br />

y no contables.<br />

• Lectura comprensiva de problemas matemáticos.<br />

• Expresión oral y escrita sobre problemas y <strong>expresiones</strong> matemáticas.<br />

• Cuidado en la pronunciación, ritmo y entonación de sus producciones<br />

orales.<br />

ACTIVIDADES<br />

Exercise 1(Vocabulary)<br />

Write these expressions in figures:<br />

• Six sevenths of x<br />

• A fifth of t<br />

• Eight times three is twenty-four.<br />

• The double of h<br />

• Sixteen fours are sixty-four<br />

• A quarter of x<br />

• Ten twos are twenty.<br />

Exercise 2 (Reading)<br />

Do you know how to say these expressions? Read them aloud.<br />

• 4/5 x<br />

• 1/7 x<br />

• 3t<br />

• 7/9 h<br />

35


Exercise 3(Grammar)<br />

Read these problems. Can you correct the mistakes?<br />

• You can do two kilos of cheese with fourty-fourth<br />

litres of milk. Peter have got eighty-sixth litres of milk.<br />

How many cheese can he do?<br />

• Maria drink four pot of teas a day. There is three<br />

quarter of a litre in a teapot. ¿How much litres of tea<br />

do Maria drink in four days?<br />

Exercise 4(Speaking – oral interaction)<br />

Can you work out the answers? Discuss with your classmate and explain how<br />

to solve the problems.<br />

Exercise 5 (Writing)<br />

Invent another problem similar to the ones in exercise 3. Read it aloud.<br />

36


Exercise 6 ( Speaking)<br />

Compare all the problems. Work in pairs and decide which one is the easiest,<br />

the most difficult, the most original… Vote for the best and tell the rest of your<br />

partners why you have chosen that problem.<br />

The most difficult The easiest The most original The best<br />

37


Exercise 7<br />

Write a problem using the words in the box<br />

First marathon the two fifths my best friend and me<br />

the double tired thirsty a pain in my right leg a bicycle<br />

Self-evaluation<br />

• What have you learnt?<br />

• Was this unit interesting?<br />

• Was it difficult?<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!