24.10.2014 Views

Aca - Departamento de Física - Universidad Técnica Federico Santa ...

Aca - Departamento de Física - Universidad Técnica Federico Santa ...

Aca - Departamento de Física - Universidad Técnica Federico Santa ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

2 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

El V Encuentro Sud-Americano <strong>de</strong> Colisiones Inelásticas en la Materia es<br />

la continuación <strong>de</strong> los encuentros realizados en Gramado, Brasil, el 2002, en Viña<br />

<strong>de</strong>l Mar, Chile, el 2004, en Buenos Aires, Argentina, el 2006 y en Río <strong>de</strong> Janeiro,<br />

Brasil el 2008.<br />

El objetivo principal <strong>de</strong> estos encuentros Sud Americanos es fomentar el<br />

intercambio científico regional, para propiciar activida<strong>de</strong>s <strong>de</strong> cooperación entre<br />

Argentina, Brasil y Chile. Adicionalmente, estos encuentros ofrecen a los<br />

alumnos <strong>de</strong> posgrado entrar en contacto con investigadores <strong>de</strong>l área <strong>de</strong> colisiones<br />

inelásticas y sus aplicaciones y generar intercambio y colaboraciones mutuas.<br />

El programa consistirá en presentaciones orales y paneles, disponiéndose <strong>de</strong><br />

tiempo suficiente para discusiones informales en torno a los temas presentados.<br />

Los idiomas oficiales <strong>de</strong> la reunión serán el español y el portugués.<br />

Áreas <strong>de</strong> Interés: Esta reunión cubrirá las diferentes áreas relacionadas con el<br />

estudio básico <strong>de</strong> las interacciones <strong>de</strong> iones con sólidos, superficies y gases, y sus<br />

aplicaciones. <strong>Técnica</strong>s espectroscópicas (TOF, PIXE, RBS, ERDA, NRA,<br />

FEEL), caracterización <strong>de</strong> materiales implantados, interacción <strong>de</strong> iones con<br />

átomos, moléculas y nanoestructuras.<br />

3 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Comité Asesor Científico<br />

Moni Behar<br />

Pedro L. Gran<strong>de</strong><br />

Nestor Arista<br />

Jorge Miraglia<br />

Roberto Rivarola<br />

Nelson V. Castro Faría<br />

Eduardo Montenegro<br />

Enio F. Da Silveira<br />

Jorge E. Valdés<br />

Coordinadores<br />

Moni Behar<br />

Pedro L. Gran<strong>de</strong><br />

Jorge Miraglia<br />

Nestor Arista<br />

Jorge E. Valdés<br />

Comité Organizador Local<br />

Carlos Celedón<br />

Shimrit Elimelech<br />

Emilio Figueroa<br />

Joaquín Díaz <strong>de</strong> Valdés<br />

Patricio Vargas C.<br />

Jorge E. Valdés<br />

Secretaría: Marcela Aguirre W.<br />

Teléfono: +56 32 2654142/4625<br />

Av. España 1680, Casilla 110-V,<br />

Valparaíso, Chile<br />

4 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Contenido<br />

Comité Asesor Científico ..................................................................................4<br />

Coordinadores................................................................................................4<br />

Comité Organizador Local ................................................................................4<br />

Programa.................................................................................... 9<br />

Contribuciones ......................................................................... 13<br />

Ab-Initio Sturmian method for three-body quantum mechanical problems: Atomic<br />

and molecular bound states ........................................................................... 15<br />

Aplicações <strong>de</strong> PIXE na UFRGS ......................................................................... 17<br />

Atomistic simulations of swift ion bombardment ................................................ 18<br />

Caracterização <strong>de</strong> nanoestruturas usando a técnica MEIS ................................... 19<br />

Chemical Characterization of Fish-Otoliths using Micro-PIXE................................ 20<br />

Depth profiling of thin films using Coulomb explosion......................................... 22<br />

Discrepancias post-prior y apantallamiento electrónico dinámico.......................... 23<br />

Electron transfer processes in particle surface interactions.................................. 25<br />

Endohedrally confined atoms in Fullerenes: He (and the time capsule) ................. 26<br />

Estudio teórico-experimental <strong>de</strong> efectos <strong>de</strong> orientación en procesos <strong>de</strong> ionización en<br />

colisiones H + +He ......................................................................................... 28<br />

Estudo da ionização direta <strong>de</strong> átomos <strong>de</strong> neônio por impacto <strong>de</strong> íons <strong>de</strong> boro com<br />

energias <strong>de</strong> 1-4 MeV ..................................................................................... 30<br />

Excitación <strong>de</strong> excitones en colisiones <strong>de</strong> iones con Cristales <strong>de</strong> FLi: un mo<strong>de</strong>lo tipocebolla<br />

.................................................................................................... 31<br />

Fast atom diffraction from metallic surfaces...................................................... 32<br />

Influence of light-ion irradiation on the ion track etching of polycarbonate ............ 34<br />

Interacción <strong>de</strong> haces <strong>de</strong> protones con materiales <strong>de</strong> interés biológico ................... 36<br />

Interaction Dynamics of Clusters In Intense Laser Fields .................................... 38<br />

Ionización múltiple <strong>de</strong> Ne, Ar, Kr y Xe <strong>de</strong>bido al impacto <strong>de</strong> iones H+ y He+ ......... 39<br />

Ionization pattern in the region of the Bragg peak ............................................. 41<br />

Laboratorio Tan<strong>de</strong>m <strong>de</strong> 1.7MV <strong>de</strong>l Centro Atómico Bariloche ............................... 42<br />

LPA stopping power of swift ions in solids. Mo<strong>de</strong>ling the inhomogeneous electron gas<br />

.................................................................................................... 44<br />

Manipulation of magnetic and electronic properties of Ga 1-x Mn x As by ion beam<br />

irradiation.................................................................................................... 46<br />

Medidas da distribuição <strong>de</strong> energia <strong>de</strong> moléculas e fragmentos moleculares por<br />

espectroscopia <strong>de</strong> tempo <strong>de</strong> vôo com extração retardada ................................... 47<br />

5 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Perda <strong>de</strong> energia <strong>de</strong> elétrons em água ............................................................. 48<br />

Plasmon excitation in single walled carbon nanotubes by charged particles ........... 49<br />

Processos <strong>de</strong> Troca <strong>de</strong> Carga na Ionização Múltipla <strong>de</strong> Gases Nobres por Íons <strong>de</strong> C 3+ .<br />

.................................................................................................... 50<br />

Prospects for a new synchrotron light source in Brazil ........................................ 51<br />

Quantum-mechanical and classical cross sections for ionization and capture induced<br />

by light ions on DNA and RNA nucleobases ....................................................... 52<br />

Secondary Ions emission from Alkanethiol-SAMs due to highly charged ions<br />

bombardment .............................................................................................. 54<br />

Structural characterization of Pb nanoislands in SiO 2 /Si interface synthe-sized by ion<br />

implantation through MEIS analysis................................................................. 55<br />

Supression of binary and recoil peaks in ionization of H 2 by electron impact .......... 57<br />

The role of electronic excitations in the energy loss of hydrogen clusters in dielectric<br />

and metallic materials ................................................................................... 59<br />

Contribuciones - Paneles ........................................................ 61<br />

P1 Electron emission by grazing scattering from Be(0001)......................... 65<br />

P2 Monte Carlo simulation for proton track structure in biological matter ..... 67<br />

P3 Multiple differential cross sections for the ionization from the 1B1 orbital of<br />

liquid water molecule by fast electron impact.................................................... 68<br />

P4 I<strong>de</strong>ntificação dos caminhos <strong>de</strong> fragmentação da molécula <strong>de</strong> CHClF 2<br />

quando ionizada por elétrons.......................................................................... 70<br />

P5 Café Brasileiro: Estudo da Concentração Elementar Utilizando Feixes<br />

Iônicos .................................................................................................... 72<br />

P6 Coherencia y localización parcial en emisión electrónica simple <strong>de</strong><br />

moléculas diatómicas moléculas biatómicas ...................................................... 73<br />

P7 Estados selectivos <strong>de</strong> captura <strong>de</strong> electrones en colisiones <strong>de</strong> 3 He 2+ +He a<br />

energías intermedias <strong>de</strong> impacto aplicando la técnica COLTRIMS ......................... 75<br />

P8 Estudio <strong>de</strong> colisiones con proyectiles neutros y cargados sobre blancos<br />

moleculares <strong>de</strong> H 2 a energías intermedias <strong>de</strong> impacto con la técnica COLTRIMS ..... 77<br />

P9 Doble Ionización <strong>de</strong> Helio por impacto <strong>de</strong> iones: Influencia <strong>de</strong> la Carga <strong>de</strong>l<br />

Proyectil .................................................................................................... 79<br />

P10 Lα, Lβ, and Lγ x-ray production cross sections of Sm, Dy, Ho, and Tm by<br />

electron impact. Distorted-wave calculations vs experiment ................................ 80<br />

P11 Estudio <strong>de</strong> po<strong>de</strong>r <strong>de</strong> frenado <strong>de</strong> partículas α en películas <strong>de</strong>lgadas <strong>de</strong> cobre<br />

en el intervalo <strong>de</strong> energía entre 1,0 a 2,0 MeV .................................................. 82<br />

P12 Ab-Initio Sturmian method for three-body quantum mechanical problems:<br />

Scattering states and ionizing collisions............................................................ 84<br />

P13 Ionización <strong>de</strong> hidrógeno atómico e iones moleculares H + 2 por pulsos láser .<br />

.................................................................................................... 85<br />

P14 Un mo<strong>de</strong>lo <strong>de</strong> onda distorsionada para ionización electrónica en colisiones<br />

entre iones vestidos y blancos atómicos........................................................... 87<br />

6 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

P15 Canalización cuasiplanar <strong>de</strong> protones energéticos en inci<strong>de</strong>ncia normal<br />

sobre nanotubos <strong>de</strong> carbono <strong>de</strong> pared múltiple ................................................. 89<br />

P16 Bulk plasmon excitation in grazing inci<strong>de</strong>nce ionmetal surface collisions.. 91<br />

P17 Distribuciones <strong>de</strong> Scattering Múltiple y Efectos Angulares en la Pérdida <strong>de</strong><br />

energía <strong>de</strong> Protones y Deuterones en Láminas Delgadas <strong>de</strong> Carbono Amorfo ......... 92<br />

P18 Stopping power y Straggling <strong>de</strong> protones en Pd................................... 93<br />

P19 Energy Loss of slow Hydrogen and Helium ions in channeling conditions in<br />

Au single crystal ........................................................................................... 94<br />

P20 Pérdida <strong>de</strong> energía <strong>de</strong> protones en láminas <strong>de</strong>lgadas <strong>de</strong> Carbono amorfo 95<br />

P21 Energy losses of H and F ions in grazing scattering on a missing row<br />

reconstructed Au(110) surface........................................................................ 97<br />

P22 Inverse photoemission espectroscopy on graphene .............................. 99<br />

P23 Elemental analysis of the Chaitén volcano ash 2008-2009 eruptions..... 100<br />

P24 Múltipla ionização <strong>de</strong> Neônio em coincidência com íons <strong>de</strong> B 2+ no regime <strong>de</strong><br />

energia <strong>de</strong> poucos MeV................................................................................ 102<br />

Índice <strong>de</strong> autores ................................................................... 103<br />

Corres electrónicos participantes .......................................... 105<br />

7 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

8 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Programa<br />

Inicio MARTES - 30 <strong>de</strong> noviembre EXPOSITOR MODERADOR<br />

8:30 INSCRIPCIONES<br />

9:30 Atomistic simulations of swift ion bombardment Eduardo Bringa (Argentina)<br />

10:05<br />

10:30<br />

The role of electronic excitations in the energy loss of<br />

hydrogen clusters in dielectric and metallic materials<br />

Ionización múltiple <strong>de</strong> Ne, Ar, Kr y Xe <strong>de</strong>bido al impacto <strong>de</strong><br />

iones H+ y He+<br />

Samir. M. Shubeita (Brasil)<br />

Claudia Montanari (Argentina)<br />

10:55 C A F E<br />

11:10 Prospects for a new synchrotron light source in Brazil Gustavo <strong>de</strong> Azevedo (Brasil)<br />

Nestor Arista<br />

11:45<br />

12:10<br />

12:35<br />

Excitación <strong>de</strong> excitones en colisiones <strong>de</strong> iones con<br />

Cristales <strong>de</strong> FLi: un mo<strong>de</strong>lo tipo-cebolla<br />

Medidas da distribuição <strong>de</strong> energia <strong>de</strong> moléculas e<br />

fragmentos moleculares por espectroscopia <strong>de</strong> tempo <strong>de</strong><br />

vôo com extração retardada.<br />

Endohedrally confined atoms in Fullerenes: He (and the<br />

time capsule)<br />

Jorge E. Miraglia (Argentina)<br />

Natalia Ferreira (Brasil)<br />

Darío Mitnik (Argentina)<br />

13:00 ALMUERZO - FOTO<br />

9 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Inicio MARTES - 30 <strong>de</strong> noviembre EXPOSITOR MODERADOR<br />

15:00 Interaction dynamics of clusters in intense laser fields Dominique Vernhet (France)<br />

15:35 Aplicações <strong>de</strong> PIXE na UFRGS Liana A. Boufleur (Brasil)<br />

16:00<br />

Quantum-mechanical and classical cross sections for<br />

ionization and capture induced by light ions on DNA and<br />

RNA nucleobases<br />

16:25 C A F E<br />

Christophe Champion (France)<br />

16:40<br />

Laboratorio Tan<strong>de</strong>m <strong>de</strong> 1.7MV <strong>de</strong>l Centro Atómico<br />

Bariloche<br />

Sergio Suárez (Argentina)<br />

Geraldo Sigaud<br />

17:15 Caracterização <strong>de</strong> nanoestruturas usando a técnica MEIS Mauricio A. Sortica (Brasil)<br />

17:40<br />

18:05<br />

LPA stopping power of swift ions in solids. Mo<strong>de</strong>ling the<br />

inhomogeneous electron gas<br />

Structural characterization of Pb nanoislands in SiO2/Si<br />

interface synthe-sized by ion implantation through MEIS<br />

analysis<br />

José María Fernán<strong>de</strong>z-Varea<br />

(España)<br />

Dario Sanchez (Brasil)<br />

20:00 CENA DE CAMARADERIA<br />

10 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Inicio MIÉRCOLES - 1 Diciembre EXPOSITOR Mo<strong>de</strong>rador<br />

9:30<br />

Interacción <strong>de</strong> haces <strong>de</strong> protones con materiales <strong>de</strong><br />

interés biológico<br />

Rafael García-Molina (España)<br />

10:05 Perda <strong>de</strong> energia <strong>de</strong> elétrons em água André C. Tavares (Brasil)<br />

10:30 ECOS - CONICYT Dominique Vernhet (France)<br />

10:55 C A F E<br />

11:10<br />

11:45<br />

12:10<br />

12:35<br />

Electron transfer processes in particle surface<br />

interactions.<br />

Discrepancias post-prior y apantallamiento electrónico<br />

dinámico<br />

Processos <strong>de</strong> Troca <strong>de</strong> Carga na Ionização Múltipla <strong>de</strong><br />

Gases Nobres por Íons <strong>de</strong> C3+<br />

Supression of binary and recoil peaks in ionization of H2<br />

by electron impact<br />

13:00 ALMUERZO<br />

Vladimir Esaulov (France)<br />

Roberto D. Rivarola (Argentina)<br />

Geraldo Monteiro Sigaud (Brasil)<br />

Omar A . Fojón (Argentina)<br />

Eduardo Bringa<br />

15:00<br />

Secondary Ions emission from Alkanethiol-SAMs due to<br />

highly charged ions bombardment<br />

Marcos Flores (Chile)<br />

15:35<br />

16:00<br />

Chemical Characterization of Fish-Otoliths using Micro-<br />

PIXE<br />

Ab-Initio Sturmian method for three-body quantum<br />

mechanical problems: Atomic and molecular bound states<br />

16:25 C A F E<br />

16:40<br />

Influence of light-ion irradiation on the ion track etching<br />

of polycarbonate<br />

Elis Moura Stori (Brasil)<br />

Juan Martin Randazzo (Argentina)<br />

Claudia Telles <strong>de</strong> Souza (Brasil)<br />

Eduardo Montenegro<br />

17:05<br />

Plasmon excitation in single walled carbon nanotubes by<br />

charged particles<br />

Silvina Segui (Argentina)<br />

17:30 SESIÓN DE PANELES<br />

11 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Inicio JUEVES - 2 diciembre EXPOSITOR Mo<strong>de</strong>rador<br />

9:30 Ionization pattern in the region of the Bragg peak Eduardo Montenegro (Brasil)<br />

10:05 Fast atom diffraction from metallic surfaces María Silvia Gravielle (Argentina)<br />

10:30 Depth profiling of thin films using Coulomb explosion Pedro L. Gran<strong>de</strong> (Brasil)<br />

10:55 C A F E<br />

11:10<br />

Estudo da ionização direta <strong>de</strong> átomos <strong>de</strong> neônio por<br />

impacto <strong>de</strong> íons <strong>de</strong> boro com energias <strong>de</strong> 1-4 MeV<br />

Hugo M. R. <strong>de</strong> Luna (Brasil)<br />

Roberto Rivarola<br />

11:35<br />

Estudio teórico-experimental <strong>de</strong> efectos <strong>de</strong> orientación en<br />

procesos <strong>de</strong> ionización en colisiones H+ +He<br />

Juan Fiol (Argentina)<br />

12:00<br />

Manipulation of magnetic and electronic properties of Ga1<br />

- xMnxAs by ion beam irradiation<br />

Marcelo M. Sant’Anna (Brasil)<br />

12:25 CLAUSURA<br />

13:05 ALMUERZO<br />

12 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Contribuciones<br />

13 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

14 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Ab-Initio Sturmian method for three-body quantum mechanical problems:<br />

Atomic and molecular bound states<br />

J. M. Randazzo 1 , 5 , A. L. Frapiccini 1 , 5 ,<br />

G. Gasaneo 2 , 5 , F. D. Colavecchia 1 , 5 , D. M. Mitnik 3 , 5 and L. U. Ancarani 4<br />

1 División <strong>de</strong> Colisiones Atómicas, Centro atómico Bariloche, San Carlos <strong>de</strong> Bariloche, Río Negro, Argentina.<br />

2 Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> Nacional <strong>de</strong>l Sur, Bahía Blanca, Buenos Aires, Argentina<br />

3 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio and <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias Exactas y Naturales,<br />

<strong>Universidad</strong> <strong>de</strong> Buenos Aires C.C. 67, Suc. 28, (C1428EGA) Buenos Aires, Argentina.<br />

4 Laboratoire <strong>de</strong> Physique Moléculaire et <strong>de</strong>s Collisions,Université Paul Verlaine-Metz, 57078 Metz, France.<br />

5 Consejo Nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET).<br />

email address corresponding author: randazzo@cab.cnea.gov.ar<br />

In this work we review a recently introduced<br />

methodology to solve the<br />

Schrödinger equation of three particles. We<br />

assume that the particles interact through<br />

potentials <strong>de</strong>pending only on the distances<br />

between them. The most general Schrödinger<br />

equation we will consi<strong>de</strong>r reads:<br />

together with the boundary conditions:<br />

and<br />

Where U 1 , U 2 and U 12 can be any well behaved<br />

atomic potentials. We also assume that<br />

U 12 admits a simple partial wave expansion,<br />

such as Coulomb, Yukawa, armonic potentials,<br />

etc.<br />

Because of the symmetries of the Eq.<br />

(1), the wave function can be evaluated separately<br />

for each L, M, S and Π (total angular<br />

momentum, its projection along the z axis,<br />

the spin symmetry and parity, respectively).<br />

We then propose a partial wave expansion in<br />

terms of the bi-spherical harmonics, and obtain<br />

a coupled set of two-dimensional equations<br />

in the radial coordinates r 1 and r 2 .<br />

The set of coupled equations is solved<br />

by means of a Sturmian expansion (one<br />

Sturmian set for each coordinate)[1]. The<br />

Generalized Sturmian functions are solutions<br />

of the Sturm-Liouville equation:<br />

where V is a short range generating potential,<br />

β is the eigenvalue and E is consi<strong>de</strong>red<br />

as a parameter. Constructing the basis in this<br />

way enables us to set boundary conditions of<br />

the complete problem in each Sturmian <strong>de</strong>pending<br />

on coordinates r 1 and r 2 : Kato cusp<br />

conditions and Coulomb exponentially <strong>de</strong>caying<br />

behaviour for negative energies, or Coulomb<br />

outgoing wave conditions for positive<br />

ones[2].<br />

In this work we will show some results of the<br />

application of the Sturmian expansion to the<br />

solution of equation (1) for a variety of three<br />

body boun<strong>de</strong>d atomic and molecular systems<br />

and mo<strong>de</strong>ls. We choose here using negative<br />

energy Sturmian functions, and compute<br />

ground as well as the different manifolds of<br />

excited states. We also analyze different<br />

choices for the generating potential to<br />

achieve a high <strong>de</strong>gree of accuracy in the en-<br />

15 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

ergies of the states. For an optimal choice of<br />

the potential, with 35 Sturmians per electron,<br />

we found E=-2.903 712 820 a.u. for the He<br />

ground state, (reference value: -2.903 724<br />

377 a.u. [3]).<br />

Acknowledgements<br />

This work has been supported by PICT 08/0934<br />

of ANPCYT (Argentina), PIP 200901/552 of<br />

Conicet (Argentina), and PGI Grant No.<br />

24/F049, <strong>Universidad</strong> Nacional <strong>de</strong>l Sur (Argentina).<br />

References<br />

[1] J. M. Randazzo, L. U. Ancarani, G. Gasaneo,<br />

A. L. Frapiccini, and F. D. Colavecchia, Phys.<br />

Rev. A 81, 042520 (2010).<br />

[2] J. M. Randazzo, A.L. Frapiccini, F. D.<br />

Colavecchia, and G. Gasaneo, Phys. Rev. A<br />

79, 022507 (2009).<br />

[3] G.W.F. Drake, Handbook of Atomic,<br />

Molecular, and Optical Physics, (Springer,<br />

Hei<strong>de</strong>lberg/New York, 2005).<br />

16 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Aplicações <strong>de</strong> PIXE na UFRGS<br />

L. A. Boufleur 1 , C. E. Iochims dos Santos 1 , R. Debastiani 1 , L. Amaral 1 , J. F. Dias 1<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Porto Alegre, Brasil<br />

Autor correspon<strong>de</strong>nte: carlaiochims@yahoo.com.br<br />

A <strong>de</strong>terminação <strong>de</strong> elementos<br />

químicos em alimentos e no meio ambiente e<br />

o conhecimento da interação <strong>de</strong> tais<br />

elementos com os organismos vivos são<br />

indispensáveis para controle <strong>de</strong> qualida<strong>de</strong> e<br />

toxicida<strong>de</strong>, tanto na produção <strong>de</strong> alimentos<br />

quanto na contaminação ambiental e<br />

exposição ocupacional.<br />

Neste contexto, o grupo PIXE do<br />

Laboratório <strong>de</strong> Implantação Iônica do<br />

Instituto <strong>de</strong> <strong>Física</strong> da Universida<strong>de</strong> Fe<strong>de</strong>ral do<br />

Rio Gran<strong>de</strong> do Sul (UFRGS) realiza diversos<br />

trabalhos <strong>de</strong> <strong>de</strong>terminação da composição<br />

elementar em alimentos, bebidas e amostras<br />

biológicas em geral.<br />

Como trabalho pioneiro no Brasil<br />

com a técnica PIXE, foi realizado o estudo da<br />

composição elementar do vinho varietal<br />

Cabernet Sauvignon proce<strong>de</strong>nte do Vale dos<br />

Vinhedos e outras três regiões do estado [1].<br />

Dentre outros resultados, diferenças<br />

nos conteúdos elementares <strong>de</strong> potássio e<br />

fósforo entre vinhos produzidos em tal região<br />

revelam a influência do cultivo da uva e do<br />

processamento da bebida, próprios <strong>de</strong> cada<br />

vinícola.<br />

Outro exemplo diz respeito à<br />

<strong>de</strong>terminação <strong>de</strong> ferro, cobre, chumbo, zinco,<br />

alumínio, <strong>de</strong>ntre outros, no fígado <strong>de</strong><br />

morcegos <strong>de</strong> uma região mineradora <strong>de</strong> <strong>Santa</strong><br />

Catarina, e respectivos danos no DNA [2].<br />

Para uma das espécies estudadas, foi<br />

observado um maior índice <strong>de</strong> danos no DNA<br />

dos habitantes da região mineradora<br />

comparado aos da região controle,<br />

possivelmente <strong>de</strong>vido à maior exposição ao<br />

ferro e ao cobre na área <strong>de</strong> mineração.<br />

Além <strong>de</strong>stes, outros trabalhos estão<br />

em andamento ou em fase <strong>de</strong> conclusão,<br />

como o estudo da composição elementar <strong>de</strong><br />

alimentos enlatados, da cerveja e do café; a<br />

investigação do papel <strong>de</strong> certos elementos em<br />

processos como os <strong>de</strong> aprendizagem,<br />

aquisição e consolidação da memória e a<br />

<strong>de</strong>terminação da espessura <strong>de</strong> filmes finos por<br />

MEIS, PIXE e NRP.<br />

Referências<br />

[1] C. E. Iochims dos Santos et al, Food<br />

Chemistry 121, 244 (2010).<br />

Figura 1: Espectro PIXE típico <strong>de</strong> um vinho<br />

Cabernet Sauvignon (safra 2002) como função da<br />

energia do raio X (em KeV).<br />

[2] Zocche et al, Environmental Research<br />

110, 684 (2010).<br />

17 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Atomistic simulations of swift ion bombardment<br />

Eduardo M. Bringa 1<br />

1 CONICET & Instituto <strong>de</strong> Ciencias Básicas, <strong>Universidad</strong> Nacional <strong>de</strong> Cuyo, Mendoza 5500, Argentina<br />

email address corresponding author: ebringa@yahoo.com<br />

Atomistic simulations are often used<br />

to study the bombardment of ions in the regime<br />

where elastic collisions dominate, but<br />

they rarely mo<strong>de</strong>l bombardment when electronic<br />

effects dominate energy <strong>de</strong>position in<br />

the target. There are several mo<strong>de</strong>ls to inclu<strong>de</strong><br />

these electronic effects within classic<br />

molecular dynamics (MD) simulations like<br />

Coulomb explosions, “thermal spikes”, and<br />

etcetera. MD simulations follow the evolution<br />

of a system of atoms interacting trough<br />

some empirical potential. Using current parallel<br />

computers millions of atoms can be<br />

followed during tens of picoseconds. Such<br />

systems are large enough and can be studied<br />

long enough to account for the early stages<br />

of radiation damage. Later stages have to be<br />

studied with other techniques, like kinetic<br />

Monte Carlo or rate theory.<br />

Ion tracks [1], surface craters [2] or<br />

hillocks, electronic sputtering [3], and other<br />

radiation damage indicators can be predicted<br />

in this way. Examples from materials<br />

science, surface physics, and astrophysics<br />

will be shown to illustrate that these mo<strong>de</strong>ls<br />

are relatively simple, but provi<strong>de</strong> a reasonable<br />

<strong>de</strong>scription of experimental results when<br />

electronic stopping power cannot be neglected.<br />

Future directions to <strong>de</strong>scribe electronic<br />

effects in atomistic simulations will<br />

also be discussed.<br />

This work has been carried out in<br />

collaboration with several people, including<br />

D. Schwen, D. Farkas, J. Monk, A.<br />

Caro, J. Rodriguez-Nieva, T. Cassidy,<br />

R.E. Johnson, R. Papaléo, M. Da Silva, C.<br />

Ruestes, and Nestor Arista.<br />

Figure 1. MD simulation of hillocks in tetrahedral<br />

amorphous carbon, showing increasing hillock<br />

height with increasing electronic stopping [4].<br />

References<br />

[1] R. Devanathana, P. Durhamb, J. Dua, L.R.<br />

Corrales and E.M. Bringa, Nuclear Instruments<br />

and Methods in Physics Research Section B 255,<br />

172 (2007).<br />

[2] E.M. Bringa, R.E. Johnson, R. M. Papaléo,<br />

Phys. Rev. B 65, 094113 (2002).<br />

[3] E.M. Bringa and R.E. Johnson, Phys. Rev.<br />

Lett. 88, 165501 (2002).<br />

[4] D. Schwen and E.M. Bringa, submitted<br />

(2010).<br />

18 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Caracterização <strong>de</strong> nanoestruturas usando a técnica MEIS<br />

M. A. Sortica 1 , P. L. Gran<strong>de</strong> 1 , C. Radtke 2 , G. Machado 3<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Porto Alegre-RS, Brasil<br />

2 Instituto <strong>de</strong> Química, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul,Porto Alegre-RS, Brasil<br />

3 Centro <strong>de</strong> Tecnologias Estratégica do Nor<strong>de</strong>ste, Recife-PE,, Brasil<br />

e-mail: sortica@if.ufrgs.br<br />

Espalhamento <strong>de</strong> íons com média<br />

energia (MEIS) é uma técnica analítica <strong>de</strong><br />

caracterização por feixe <strong>de</strong> íons, capaz <strong>de</strong><br />

<strong>de</strong>terminar quantitativamente composição<br />

elementar e perfil <strong>de</strong> profundida<strong>de</strong> com<br />

resolução subnanométrica. Isso torna o<br />

MEIS uma pon<strong>de</strong>rosa ferramenta para<br />

caracterização <strong>de</strong> nanoestruturas [1], com<br />

resolução para fazer perfilometria <strong>de</strong>ntro <strong>de</strong><br />

nanoestruturas com tamanhos abaixo <strong>de</strong> 5<br />

nm [2]. Para isso, <strong>de</strong>senvolvemos um<br />

software Monte Carlo para simulação e<br />

ajuste <strong>de</strong> espectros <strong>de</strong> MEIS [3], que leva<br />

em conta a forma geométrica, distribuição<br />

<strong>de</strong> tamanhos e <strong>de</strong>nsida<strong>de</strong> <strong>de</strong> nanoestru-turas.<br />

Nosso software (PowerMeis) tam-bém<br />

consi<strong>de</strong>ra a forma assimétrica da distribuição<br />

<strong>de</strong> perda <strong>de</strong> energia [4, 5].<br />

Nesse trabalho apresentamos 2<br />

estudos. O primeiro sistema se refere à<br />

interação entre nanopartículas esféricas <strong>de</strong><br />

ouro e um filme formado por multi-camadas<br />

<strong>de</strong> polieletrólitos fracos [6] (Figura 1).<br />

Figura 1. (a) Esquema da síntese das 20 bicamadas<br />

(LbL) usando PAH/PAA. Em <strong>de</strong>talhe uma<br />

representação <strong>de</strong> como se forma uma LbL. (b)<br />

Configuração esquemática <strong>de</strong> uma NP <strong>de</strong> ouro<br />

estabilizada com citrato, indicando que a carga<br />

superficial é negativa.<br />

A difusão ou adsorção <strong>de</strong> nano-partículas<br />

através do filme po<strong>de</strong> ser controlada<br />

modificando o pH dos polieletrólitos e da<br />

solução coloidal <strong>de</strong> nanoparticulas <strong>de</strong> ouro,<br />

possibilitando a formação <strong>de</strong> uma ou duas<br />

camadas <strong>de</strong> NPs na superfície ou a<br />

penetração <strong>de</strong> NPs com <strong>de</strong>terminados<br />

tamanhos. Nesse estudo, usamos MEIS para<br />

mo<strong>de</strong>lar a interface entre ouro e filme<br />

(Figura 2). O segundo sistema tem como<br />

objetivo a caracterização da estrutura coreshell<br />

<strong>de</strong> nanopartículas esféricas <strong>de</strong> CdSe,<br />

recobertas por ZnS, <strong>de</strong>positadas sobre óxido<br />

<strong>de</strong> silício.<br />

Figura 2. Sequência <strong>de</strong> espectros 2D (energy/ angle)<br />

<strong>de</strong> MEIS (a, b, c, d) e 1D, para um ângulo <strong>de</strong><br />

espalhamento <strong>de</strong> 120 o , (e, f, g and h) para 4<br />

diferentes sistemas LbL. (i, j, l, m) correspon<strong>de</strong>m às<br />

configurações <strong>de</strong> NPs que melhor ajustam o espectro<br />

<strong>de</strong> MEIS.<br />

Referências<br />

[1] J. P. Stoquert, T. Szörenyi, Phys. Rev B 67<br />

(2002) 144108.<br />

[2] H. Matsumoto, K. Mitsuhara, A. Visikovskiy,<br />

T. Akita, N. Toshima, Y. Kido, Nucl. Instr. and<br />

Meth. in Phys. Res. B, (2010) DOI<br />

10.1016/j.nimb.2010.03.032 .<br />

[3] I. Konomi, S. Hyodo, T. Motohiro, Journal of<br />

Catalysis 192 (2000) 11-17.<br />

[4] P. L. Gran<strong>de</strong>, A. Hentz, R. P. Pezzi, I. J. R.<br />

Baumvol, G. Schiwietz, Nucl. Instr. and Meth. In<br />

Phys. Res. B 256 (2007) 92-96.<br />

[5] M. A. Sortica, P. L. Gran<strong>de</strong>, G. Machado, L.<br />

Miotti, Journal of Applied Physics 106 (2009)<br />

114320.<br />

[6] G. Decher, Science, 1997, 277, 1232-1237.<br />

19 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Chemical Characterization of Fish-Otoliths using Micro-PIXE<br />

Stori, E. M. 1 , Dias, J. F. 1 , Favero, J. M. 2 , Dias, J. F. 2<br />

1 Laboratório <strong>de</strong> Implantação Iônica – Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Av. Bento<br />

Gonçalves 9500, Porto Alegre, RS , Brasil<br />

2 Instituto <strong>de</strong> Oceanografia – Universida<strong>de</strong> Estadual <strong>de</strong> São Paulo – São Paulo, SP, Brasil<br />

email address corresponding author: elistori@gmail.com<br />

Fishes contain a group of three pairs of<br />

bone structures in their ear that are responsible<br />

for hearing and equilibrium. These structures<br />

grow in layers that look like rings if<br />

sectioned (figure 1). [1]<br />

of interest and its position in the otolith.<br />

[5][6]<br />

The knowledge of the trace elements<br />

present in different rings would allow to establish<br />

a relation between different places the<br />

fish have lived and the stages of its life.<br />

Figure 2 shows calcium maps of a juvenile<br />

fish otolith, in which can be observed<br />

the growth rings through the difference of<br />

intensity of the calcium signal.<br />

Figure 1. Sectioned otolith showing growth rings [2]<br />

There are very well <strong>de</strong>veloped studies<br />

that relate the rings in the otoliths with the<br />

fishes’ age. While in adult’s otoliths the rings<br />

may represent years of age, in juvenile fishes<br />

and larvae the rings represent days. [1]<br />

Moreover, the otoliths may give information<br />

of fish migration pattern or their origin<br />

by <strong>de</strong>termining the trace elements contained<br />

in them. [3][4]<br />

The micro-PIXE technique (micro-<br />

Particle Induced X-Ray Emission) is not<br />

regularly used to <strong>de</strong>termine trace elements in<br />

otoliths. Its advantages inclu<strong>de</strong> the non<strong>de</strong>structive<br />

character of the technique, and<br />

the possibility of a spacial characterization of<br />

the elements, enabling a more accurate analysis<br />

of the relation between the trace element<br />

(a)<br />

(b)<br />

Figure 2. Calcium maps of a juvenile fish otolith (a)<br />

the entire otolith and (b) a more <strong>de</strong>tailed map of the<br />

central region of the otolith.<br />

20 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

References<br />

[1] STEVENSON, D.K. and S.E. CAMPANA<br />

[ed]. 1992. Otolith microstructure examination<br />

and analysis. Can. Spec. Publ. Fish. Aquat. Sci.<br />

117: 130 pp<br />

[2] Tennessee Wildlife Resources Agency website:<br />

http://www.tnfish.org/AgeGrowth_TWRA/TWR<br />

A_FishAgeGrowth.htm<br />

[3] Bradbury, I. R., Campana, S. E., and<br />

Bentzen, P. 2008. Otolith elemental composition<br />

and adult tagging reveal spawning site fi<strong>de</strong>lity<br />

and estuarine <strong>de</strong>pen<strong>de</strong>ncy in rainbow smelt.<br />

Mar. Ecol. Prog. Ser. 368:255-268.<br />

[4] CAMPANA, S. E., VALENTIN, A., SÉVI-<br />

GNY, J.-M., and POWER, D. 2007. Tracking<br />

seasonal migrations of redfish (Sebastes spp.) in<br />

and around the Gulf of St. Lawrence using otolith<br />

elemental fingerprints. Can. J. Fish. Aquat.<br />

Sci. 64:6-18.<br />

[5] Johansson, S., Campbell, K. M., Particle-<br />

Induced X-ray Emission Spectrometry (PIXE),<br />

John Wiley & Sons, Inc., New York (1995)<br />

[6] Grime, G. W. and Watt, F., Beam Optics of<br />

Quadrupole Probe-forming Systems, Adam<br />

Higler Ltd., Bristol (1983)<br />

21 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Depth profiling of thin films using Coulomb explosion<br />

S. M. Shubeita 1 , P. L. Gran<strong>de</strong> 1 and J. F. Dias 1<br />

1 Instituto <strong>de</strong> <strong>Física</strong> da Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Porto Alegre, RS, Brazil<br />

e-mail address corresponding author: gran<strong>de</strong>@if.ufrgs.br<br />

Depth profiling of heavy elements in<br />

thin films can be performed by backscattering<br />

spectrometry. In this well established<br />

technique the <strong>de</strong>pth is given in units of<br />

length assuming the knowledge of the <strong>de</strong>nsity<br />

of the target. Otherwise “<strong>de</strong>pth” stands as<br />

an abbreviation for the number of atoms per<br />

unit area (<strong>de</strong>nsity) over the distance traversed<br />

(length) in the target [1]. A method to<br />

<strong>de</strong>termine the absolute <strong>de</strong>pth without the<br />

knowledge of the <strong>de</strong>nsity is useful since the<br />

<strong>de</strong>nsity is a physical quantity that can have<br />

different values for the same material.<br />

In this work we explore the Coulomb<br />

explosion occurring when energetic H 2<br />

+<br />

ionic clusters interact with thin layers of<br />

dielectric materials (LaScO 3 , HfO 2 and LaAlO<br />

3, thickness < 100 Å; and Si 3 15 N 4 and<br />

Al 2 O 3 , hundreds of Å). The molecules dissociate<br />

after passing the first monolayer and<br />

get stripped of all their electrons. The moving<br />

ionic fragments repel each other via mutual<br />

quasi Coulomb forces and excite the<br />

electronic medium coherently. The Coulomb<br />

explosion leads to a broa<strong>de</strong>ning of the energy-loss<br />

distribution of the ionic fragments,<br />

and can be evaluated through an additional<br />

energy-loss straggling.<br />

The information obtained by Coulomb<br />

explosion of H 2 + clusters in this approach<br />

can provi<strong>de</strong> the dwell time of the<br />

ionic fragments in thin layers after the breakup.<br />

In this way, the Coulomb explosion can<br />

work as a clock where the start is given by<br />

the electron striping and the stop by the<br />

backscattering. Thus the <strong>de</strong>termination of<br />

the absolute thickness of the thin films based<br />

in the dwell time (fig. 1) can be achieved.<br />

Figure 1. The experimental results of Coulomb explosion<br />

for HfO 2 as a function of the <strong>de</strong>pth traversed<br />

in comparison with calculations consi<strong>de</strong>ring<br />

screened and non-screened Coulomb potentials.<br />

For this purpose, high energy resolution<br />

backscattering experiments (MEIS: Medium<br />

Energy Ion Scattering) were carried<br />

out as a function of the incoming projectile<br />

energy, covering an energy range between<br />

100 and 200 keV/nucleon. Also, NRP (Nuclear<br />

Reaction Profiling) experiments were<br />

carried out on Si 3 15 N 4 ( 15 N(p,αγ) 12 C at 429<br />

keV/nucleon) and Al 2 O 3 ( 27 Al(p,γ) 28 Si at<br />

992 keV/nucleon) targets.<br />

The results obtained are compared<br />

with theoretical calculations and show the<br />

potentiality of a Coulomb explosion profiling<br />

technique.<br />

References<br />

[1] W. -K. Chu, J. W. Mayer, M. A. Nicolet,<br />

Backscattering Spectrometry (New York: <strong>Aca</strong><strong>de</strong>mic<br />

Press) (1978).<br />

22 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

23 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

24 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Electron transfer processes in particle surface interactions.<br />

Vladimir A. Esaulov<br />

Institut <strong>de</strong>s Sciences Moleculaires d’Orsay<br />

CNRS and Université Paris Sud, Orsay 91405, FRANCE<br />

vladimir.esaulov@u-psud.fr<br />

Electron transfer processes play an<br />

important role in adsorption and reactions at<br />

surfaces. Usual surface science experiments <strong>de</strong>al<br />

with the study of either the kinetics of<br />

adsorption/<strong>de</strong>sorption or with characterisation of<br />

adsorbates or products of reactions in situ.<br />

However the dynamics of the electron transfer<br />

process is usually not studied. I will discuss some<br />

experiments which allow us to obtain this<br />

information by scattering of atoms or ions on a<br />

surface and monitoring the energy and charge<br />

state of the scattered particles. These experiments<br />

allow one to obtain <strong>de</strong>tailed information in<br />

controlled conditions through a<strong>de</strong>quate choices of<br />

initial energy and impact angles and a selection of<br />

final charge state, trajectory (scattering angle) and<br />

energy. Information on electron transfer<br />

probabilities can be obtained for site specific or<br />

surface averaged conditions, mimicking different<br />

approaches of a gas phase particle to a surface.<br />

This quantitative data can serve as a rigorous test<br />

of theoretical mo<strong>de</strong>ls.<br />

observed.<br />

Another example concerns neutralisation<br />

of Li+ ions on Ag and Au clusters supported on<br />

titania (TiO2). Experiments as a function of<br />

growth of clusters an increase in their size have<br />

revealed that much larger neutralisation [4] is<br />

observed on small clusters than on large clusters<br />

or bulk like film.<br />

References<br />

[1] M. Wiatrowski, L. Lavagnino, V.A.<br />

Esaulov Surface Science, Volume 601, 2007,<br />

L39-L43<br />

[2] A R Canário , T Kravchuk and V A Esaulov<br />

2006 New J. Phys. 8 227<br />

[3] M. Casagran<strong>de</strong>, S. Lacombe, L.<br />

Guillemot, V. A. Esaulov Surface Science,<br />

445, 2000, Pages L29-L35<br />

[4] Ana Rita Canário and V. A. Esaulov, J .<br />

Chem. Phys. 124, 224710 (2006)<br />

Our main interest over the last few years,<br />

has been a study of progressively more complex<br />

cases serving to illustrate effects related to<br />

“promotion” or “poisoning” of reactions in<br />

catalysis and also the size effects. I shall illustrate<br />

our approach for several cases involving a clean<br />

metal surface, a surface with adsorbates and a<br />

nanoscale metal film or cluster supported on a<br />

metal or an oxi<strong>de</strong>. Some of these cases are well<br />

un<strong>de</strong>rstood but for some substantial theoretical<br />

effort has yet to be ma<strong>de</strong>.<br />

As examples I will mention typical results<br />

on negative ion formation for the case of fluorine<br />

negative ion scattering and Li+ neutralisation.<br />

Both involve resonant transfer of electrons. In<br />

case of Li+ ion neutralisation on metals and thin<br />

films recent experiments [1,2] have revealed<br />

“anomalously“ large neutralisation, much larger<br />

than what could be expected in “standard”<br />

mo<strong>de</strong>ls.<br />

The effect of adding controlled amounts<br />

of reactive adsorbates on metals will be illustrated<br />

on the case of chlorine adsorption [3] , where<br />

large changes in electron transfer probabilities are<br />

25 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Endohedrally confined atoms in Fullerenes: He (and the time capsule)<br />

Dario Mitnik 1 , Juan Randazzo 2 , Flavio Colavecchia 2 , y Gustavo Gasaneo 3<br />

1 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio y Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Argentina<br />

2 Centro Atómico Bariloche, Río Negro, Argentina<br />

3 Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> Nacional <strong>de</strong>l Sur, Bahía Blanca, Argentina<br />

email address corresponding author: dmitnik@df.uba.ar<br />

One of the most fascinating features of<br />

the<br />

fullerene molecules [1] is that they are capable<br />

of<br />

enclosing atoms in their hollow interior,<br />

forming endohedrally confined atoms. Experimental<br />

efforts have ma<strong>de</strong> it possible to<br />

trap atoms insi<strong>de</strong> a fullerene in different<br />

ways. The particular mechanisms responsible<br />

for the insertion of the atom, vary from a<br />

“brute force" implantation, to a “window"<br />

mechanism, in which high temperatures and<br />

pressures can break one of the Carbon-<br />

Carbon bonds in the cage. Small molecules<br />

and atoms can pass through this temporary<br />

hole, forming a stable endohedrally confined<br />

compound.<br />

The properties of a Helium atom confined<br />

insi<strong>de</strong> an endohedral<br />

cavity, like a fullerene, are studied. The<br />

fullerene cavity is mo<strong>de</strong>led by a potential<br />

well and the strength of<br />

this potential is varied in or<strong>de</strong>r to un<strong>de</strong>rstand<br />

the collapse of<br />

different atomic wavefunctions into the<br />

fullerene cage.<br />

Three theoretical calculation methods have<br />

been <strong>de</strong>veloped: a relaxation method, a Sturmian<br />

basis method, and a variational method.<br />

The first two methods are nonperturbative.<br />

The three methods allow inclusion of full<br />

correlations among the two electrons.<br />

Results showing mirror collapse effects are<br />

presented for an<br />

S-wave mo<strong>de</strong>l, in which all the angular quantum<br />

numbers are set to zero. In this work [2] we<br />

showed how the confinement potential<br />

strength<br />

affects in different amounts the atomic levels<br />

of the confined atom.<br />

Figure 1. First three wavefunctions, 1s2 1S, 1sy1 1S,<br />

and 1sy1 3S for different potential <strong>de</strong>pths, around the<br />

first avoi<strong>de</strong>d crossing at U0=1,185 a.u..<br />

Around the regions <strong>de</strong>noted as crossings, it<br />

seems that the variation in the potential produces<br />

<strong>de</strong>generacies in energy,<br />

indicating that the levels can cross each to the<br />

other.<br />

A <strong>de</strong>tailed analysis that requires a very high<br />

<strong>de</strong>gree of precision<br />

shows that the energy levels do not cross<br />

each other,<br />

but rather come close and repel each other<br />

yielding to<br />

an avoi<strong>de</strong>d crossing.<br />

We analyzed the behaviour of the avoi<strong>de</strong>d<br />

crossing levels by using<br />

different information entropies, providing an<br />

efficient tool to estimate in a physically<br />

transparent manner the<br />

26 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

atomic transitions caused by a slowly varying<br />

perturbation.<br />

References<br />

[1] Kroto H.W. et al., Nature 318, 162 (1985).<br />

[2] Mitnik, et al., Phys. Rev. A 78, 062501<br />

(2008).<br />

27 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Estudio teórico-experimental <strong>de</strong> efectos <strong>de</strong> orientación en<br />

procesos <strong>de</strong> ionización en colisiones H + +He<br />

D. Fregenal 1,2 , R. O. Barrachina 1,2 , G. Bernardi 1,2 , P. Focke 1,2 , S. G. Suárez 1,2 , J. Fiol 1,2<br />

1 Centro Atómico Bariloche and Instituto Balseiro (Comisión Nacional <strong>de</strong> Energía Atómica y Univ.<br />

Nacional <strong>de</strong> Cuyo), 8400 S. C. <strong>de</strong> Bariloche, Río Negro, Argentina.<br />

2 Consejo Nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET), Argentina.<br />

Correo Electrónico: fiol@cab.cnea.gov.ar<br />

Resultados recientes tanto a nivel experimental<br />

como teórico han revelado anomalías<br />

en las secciones eficaces <strong>de</strong> ionización <strong>de</strong><br />

átomos y moléculas por impacto <strong>de</strong> positrones<br />

[1–5]. Las secciones eficaces múltiplemente<br />

diferenciales muestran un corrimiento <strong>de</strong>l<br />

pico <strong>de</strong> electrones capturados al continuo<br />

<strong>de</strong>l proyectil (ECC) respecto <strong>de</strong> la posición<br />

obtenida teóricamente [2, 4]. Cálculos realizados<br />

con el método <strong>de</strong> trayectorias clásicas <strong>de</strong><br />

Monte Carlo han relacionado este <strong>de</strong>splazamiento<br />

con un fuerte alineamiento <strong>de</strong>l par<br />

electrón-positrón en el estado final <strong>de</strong>l sistema<br />

[5].<br />

Estos resultados nos han motivado a<br />

investigar la existenca <strong>de</strong> efectos similares<br />

<strong>de</strong> alineamiento en procesos <strong>de</strong> ionización<br />

atómica por impacto <strong>de</strong> iones. En esta comunicación<br />

presentamos datos teóricos y experimentales<br />

<strong>de</strong> secciones eficaces diferenciales <strong>de</strong><br />

ionización en colisiones <strong>de</strong> H + +He para energías<br />

inci<strong>de</strong>ntes entre 20 y 50 keV/uma.<br />

El experimento consistió <strong>de</strong> mediciones<br />

<strong>de</strong>l ángulo y la energía <strong>de</strong> los electrones emitidos<br />

mediante un espectrómetro electrostático<br />

cilíndrico. Para cada energía inci<strong>de</strong>nte se han<br />

<strong>de</strong>terminado más <strong>de</strong> 1200 combinaciones <strong>de</strong><br />

ángulo y energía <strong>de</strong> los electrones emitidos en<br />

la región cercana a la cúspi<strong>de</strong> <strong>de</strong> ECC. Estas<br />

mediciones <strong>de</strong>talladas nos permiten representar<br />

gráficos tridimensionales <strong>de</strong> la distribución<br />

<strong>de</strong> velocida<strong>de</strong>s relativas <strong>de</strong>l electrón respecto<br />

al proyectil.<br />

Los resultados experimentales muestran<br />

un fenómeno <strong>de</strong> alineamiento tan acentuado<br />

como el observado con positrones. Este efecto<br />

se pue<strong>de</strong> observar en la figura 1, don<strong>de</strong> se representa<br />

la sección eficaz doblemente diferencial<br />

en la región <strong>de</strong> velocida<strong>de</strong>s electrónicas<br />

correspondiente al pico <strong>de</strong> ECC, para el caso<br />

<strong>de</strong> protones inci<strong>de</strong>ntes sobre He con energías<br />

<strong>de</strong> E = 50 keV/uma.<br />

v' ⊥ / v p<br />

0.05<br />

0<br />

v p = 1.414 a.u.<br />

-0.05<br />

-0.15 -0.1 -0.05 0 0.05 0.1<br />

v' || / v p<br />

Figura 1. Distribución <strong>de</strong> velocida<strong>de</strong>s <strong>de</strong>l electron<br />

emitido respecto al proyectil en colisiones H + +He<br />

a energía 50 keV/uma.<br />

El fenómeno <strong>de</strong> alineamiento es más pronunciado<br />

para energías <strong>de</strong> colisión más bajas. Para<br />

32 keV/uma la velocidad relativa electrónprotón<br />

está más concentrada hacia valores<br />

negativos que a 50 keV (figura 2).<br />

v' ⊥ / v p<br />

0.05<br />

0<br />

v p = 1.123 a.u.<br />

-0.05<br />

-0.15 -0.1 -0.05 0 0.05 0.1<br />

v' || / v p<br />

Figura 2. Distribución <strong>de</strong> velocida<strong>de</strong>s relativas<br />

electron-proyectil en la región <strong>de</strong> la cúspi<strong>de</strong> <strong>de</strong><br />

ECC para una energía inci<strong>de</strong>nte <strong>de</strong> 32 keV/uma.<br />

Este comportamiento es consistente con<br />

el observado tanto en mediciones previas en<br />

colisiones ión-átomo a energías <strong>de</strong> inci<strong>de</strong>ncia<br />

<strong>de</strong> 100 y 200 keV/uma [6] así como con resultados<br />

recientes en colisiones con positrones<br />

[1, 2]. Adicionalmente, nuestros cálculos <strong>de</strong><br />

28 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Trayectorias Clásicas <strong>de</strong> Monte Carlo reproducen<br />

este comportamiento, <strong>de</strong> manera similar<br />

al caso <strong>de</strong> impacto <strong>de</strong> positrones.<br />

Referencias<br />

[1] A. Kövér and G. Laricchia,<br />

Phys. Rev. Lett. 80, 5309 (1998).<br />

[2] A. Kövér, K. Paludan, and G. Laricchia,<br />

J. Phys. B: At. Mol. Opt. Phys. 34, L219<br />

(2001).<br />

[3] J. Fiol and R. E. Olson, J. Phys. B: At.<br />

Mol. Opt. Phys. 35, 1173 (2002).<br />

[4] C. Arcidiacono, A. Kövér, and G. Laricchia,<br />

Phys. Rev. Lett. 95, 223202 (2005).<br />

[5] J. Fiol and R. O. Barrachina, J. Phys. B:<br />

At. Mol. Opt. Phys. 42, 231004 (2009).<br />

[6] R. G. Pregliasco, C. R. Garibotti, and<br />

R. O. Barrachina, J. Phys. B: At. Mol.<br />

Opt. Phys. 27, 1151 (1994).<br />

29 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Estudo da ionização direta <strong>de</strong> átomos <strong>de</strong> neônio por impacto <strong>de</strong> íons <strong>de</strong> boro<br />

com energias <strong>de</strong> 1-4 MeV<br />

H. M. R. <strong>de</strong> Luna 1 , W. Wolff 1 , A.C. F. dos Santos 1 , e E. C. Montenegro 1<br />

C.C.Montanari 2,3 , e J.E.Miraglia 2,3<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro, Brasil<br />

2 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio, Buenos Aires, Argentina<br />

3 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias Exactas y Naturales, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Buenos Aires,<br />

Argentina<br />

hluna@if.ufrj.br<br />

Foi instalado recentemente no laboratório<br />

<strong>de</strong> colisões atômicas e moleculares do<br />

Instituto <strong>de</strong> <strong>Física</strong> da Universida<strong>de</strong> Fe<strong>de</strong>ral<br />

do Rio <strong>de</strong> Janeiro, um sistema que permite<br />

<strong>de</strong>terminar secções <strong>de</strong> choque absolutas <strong>de</strong><br />

troca <strong>de</strong> carga na colisão entre íons <strong>de</strong> carga<br />

múltipla e átomos ou moléculas. O sistema<br />

experimental compreen<strong>de</strong> <strong>de</strong> dois alvos gasosos<br />

in<strong>de</strong>pen<strong>de</strong>ntes, sendo o primeiro uma célula<br />

gasosa para medidas absolutas <strong>de</strong> secções<br />

<strong>de</strong> choque <strong>de</strong> troca <strong>de</strong> carga, e o segundo<br />

um jato gasoso efusivo acoplado a um espectrômetro<br />

<strong>de</strong> massa por tempo <strong>de</strong> vôo<br />

(TOF) para medidas em coincidência dupla<br />

do elétron ejetado – íon <strong>de</strong> recuo, íon <strong>de</strong> recuo<br />

– projétil e coincidência tripla do elétroníon<br />

<strong>de</strong> recuo-projétil (fig1).<br />

Primeiramente fizemos um estudo das<br />

secções <strong>de</strong> choque totais obtidas <strong>de</strong> forma<br />

absoluta para a troca <strong>de</strong> carga <strong>de</strong> íons <strong>de</strong> B2+<br />

colidindo com alvos <strong>de</strong> Neônio e Argônio<br />

[1]. Estes resultados serão apresentados e<br />

discutidos neste trabalho. Posteriormente esten<strong>de</strong>mos<br />

o estudo às medidas <strong>de</strong> secção <strong>de</strong><br />

choque parciais para o canal <strong>de</strong> ionização direta<br />

<strong>de</strong> alvos multieletrônicos, on<strong>de</strong> o TOF e<br />

o jato gasoso foram utilizados. Estas secções<br />

<strong>de</strong> choque foram normalizadas pelas secções<br />

<strong>de</strong> choque <strong>de</strong> captura medidas na referência<br />

[1]. Uma abordagem teórica será discutida<br />

para estes resultados preliminares.<br />

Figure 1. Linha <strong>de</strong> colisão íon-átomo, vista do sistema<br />

experimental, câmara <strong>de</strong> interação com jato gasoso,<br />

câmara <strong>de</strong> projéteis e célula gasosa<br />

Referência<br />

[1] W. Wolff, H. Luna, A.C.F.Santos and E.C.<br />

Montenegro, Phys. Rev. A 80, 032703 (2009)<br />

30 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Excitación <strong>de</strong> excitones en colisiones <strong>de</strong> iones con Cristales <strong>de</strong> FLi:<br />

un mo<strong>de</strong>lo tipo-cebolla<br />

J. E. Miraglia, M.S. Gravielle<br />

Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong> Espacio (UBA y CONICET))<br />

Facultad <strong>de</strong> Ciencias Exactas y Naturales, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Buenos Aires, Argentina<br />

Ciudad Universitaria, C.C. 67, Suc. 28, 1428 Buenos Aires, Argentina<br />

email : miraglia@iafe.uba.ar<br />

Nos interesa estudiar los procesos inelásticos<br />

que ocurren cuando iones o electrones<br />

colisionan con cristales aisladores <strong>de</strong>l<br />

tipo ClNa: en particular nos concentraremos<br />

en el FLi. Un mo<strong>de</strong>lo teórico muy popular<br />

para atacar este problema consiste en consi<strong>de</strong>rar<br />

el cristal como una grilla <strong>de</strong> iones aislados<br />

<strong>de</strong> Li + y F - . Para este caso, nosotros<br />

usamos orbitales <strong>de</strong>l tipo Clementi-Roetti<br />

(ion aislado). Este mo<strong>de</strong>lo llamado grilla <strong>de</strong><br />

iones in<strong>de</strong>pendientes (GII) ha sido usado con<br />

bastante éxito. Sin embargo es incorrecto, ya<br />

que, por ejemplo, no pue<strong>de</strong> haber estados excitados<br />

correspondientes al F - , ni <strong>de</strong>scribe el<br />

potencial <strong>de</strong> Ma<strong>de</strong>lung.<br />

En este trabajo nosotros mejoramos la<br />

representación electrónica introduciendo el<br />

efecto <strong>de</strong> la grilla “vistiendo” los iones <strong>de</strong>l<br />

cristal con 44 capas colombianas correspondientes<br />

a los vecinos más próximos. En cada<br />

capa se supone una distribución <strong>de</strong> carga<br />

constante. La grilla tiene en cuenta 1330 iones<br />

teniendo cuidados en consi<strong>de</strong>rar el enjaulado<br />

(cargas fraccionales en los limites). Los<br />

iones ahora se parecen a una “cebolla” por lo<br />

que al mo<strong>de</strong>lo lo llamamos grilla <strong>de</strong> cebollas<br />

in<strong>de</strong>pendientes (GIO). Estas cebollas ahora<br />

tienen las correctas condiciones, sus estados<br />

electrónicos presentan el correcto corrimiento<br />

<strong>de</strong> Ma<strong>de</strong>lung, y cada electrón ve a gran<strong>de</strong>s<br />

distancias su propio agujero <strong>de</strong> acuerdo al<br />

mo<strong>de</strong>lo <strong>de</strong> Wannier [1]. El anión F - ahora si<br />

tiene estados excitados que en la <strong>Física</strong> <strong>de</strong>l<br />

estado sólido se los conoce como excitones.<br />

Las funciones <strong>de</strong> onda se calcularon resolviendo<br />

numéricamente la ecuación radial <strong>de</strong><br />

Schroedinger y se encontró que la solución<br />

presenta “cicatrices” correspondiente a cada<br />

capa. Se calculó el Stopping power usando la<br />

aproximación <strong>de</strong> Born (línea punteada en la<br />

figura) y la CDW-EIS (línea sólida). Los resultados<br />

se presentan en la Figura junto a los<br />

experimentos <strong>de</strong> Ba<strong>de</strong>r [2]<br />

Dos observaciones son importantes: <strong>de</strong>bido a la<br />

constante <strong>de</strong> Ma<strong>de</strong>lung, la ionización <strong>de</strong>l catión<br />

Li + es bastante importante (no lo es en el mo<strong>de</strong>lo<br />

GII), la contribución <strong>de</strong> los excitones <strong>de</strong> F - (en la<br />

figura notados con F - (2->3)@), ausente en el<br />

GII) tiene una contribución importante a energías<br />

intermedias. Se abre un tema interesante en<br />

relación al estudio <strong>de</strong> la física post-colisional<br />

<strong>de</strong> dichos excitones y su influencia en las colisiones<br />

rasantes.<br />

Referencias<br />

[1] D.L. Dexter and R. S. Knox, Excitons<br />

(Wiley, New York, 1965).<br />

[2] M. Ba<strong>de</strong>r y colaboradores, Phys. Rev. 32,<br />

103 (1953).<br />

31 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Fast atom diffraction from metallic surfaces<br />

M.S. Gravielle 1 , G. Bocán 2 , and R. Díez Muiño 3<br />

1 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio, CONICET, Bs. As, Argentina, and Depto <strong>de</strong> <strong>Física</strong>,<br />

FCEN, UBA.<br />

2 Centro Atómico Bariloche, CNEA and CONICET, S.C. <strong>de</strong> Bariloche, Río Negro, Argentina.<br />

3 Donostia International Physics Center (DIPC) and C. Fís. Materiales CSIC-UPV/EHU, San Sebastián,<br />

Spain.<br />

E-mail: msilvia@iafe.uba.ar<br />

1. INTRODUCTION<br />

Diffraction from crystal surfaces produced by<br />

grazing scattering of atoms in the keV energy<br />

range is nowadays attracting consi<strong>de</strong>rable attention.<br />

The first experimental evi<strong>de</strong>nces of this<br />

effect were reported for insulator surfaces [1] for<br />

which the presence of a band gap strongly suppresses<br />

inelastic electronic processes, favoring<br />

the conservation of quantum coherence. However,<br />

this diffraction effect has recently been<br />

observed at metallic materials [2,3] as well, although<br />

electron excitations were supposed to<br />

smudge interference signatures for these surfaces.<br />

The aim of this work is to study the<br />

atomic diffraction from metal surfaces by consi<strong>de</strong>ring<br />

keV nitrogen atoms impinging grazingly<br />

on Ag(111) .<br />

2. THEORETICAL MODEL<br />

To <strong>de</strong>scribe the scattering process we employ<br />

a distorted-wave mo<strong>de</strong>l - the surface-eikonal<br />

approximation [4] - that makes use of the eikonal<br />

wave function to represent the elastic collision<br />

with the surface, while the movement of the<br />

fast projectile is <strong>de</strong>scribed classically by consi<strong>de</strong>ring<br />

axially channeled trajectories for different<br />

initial conditions. The surface-eikonal T-matrix<br />

element reads:<br />

r r<br />

(eik)<br />

Tif<br />

= ∫ dRos<br />

aif<br />

( Ros<br />

),<br />

(1)<br />

where R r<br />

<strong>de</strong>termines the initial position of the<br />

os<br />

projectile on the surface plane and<br />

a<br />

if<br />

r<br />

( R<br />

os<br />

r<br />

-3<br />

) = ( 2π)<br />

∫ dt |vz<br />

( RP<br />

) |×<br />

r r r<br />

exp[ -iQ.R -i η(<br />

R )] V<br />

P<br />

P<br />

SP<br />

r<br />

( R<br />

P<br />

)<br />

(2)<br />

is the transition amplitu<strong>de</strong> associated with the<br />

r r<br />

classical path RP<br />

( Ros<br />

, t)<br />

, with Q r the projectile<br />

r<br />

momentum transfer and v z<br />

( RP<br />

) the component<br />

of the projectile velocity perpendicular to the<br />

surface plane. In Eq. (2), η ( R<br />

r P<br />

) is the eikonal-<br />

Maslov phase that takes into account the action<br />

of the projectile-surface potential V ( R<br />

r<br />

SP P)<br />

along<br />

the classical path.<br />

An accurate potential energy surface for the<br />

N/Ag(111) system was <strong>de</strong>rived from <strong>de</strong>nsity<br />

functional theory (DFT) calculations as implemented<br />

in the "Vienna Ab-initio Simulation<br />

Program" (VASP) co<strong>de</strong> [5], combined with an<br />

elaborate interpolation method [6].<br />

3. RESULTS<br />

We apply the theoretical mo<strong>de</strong>l to evaluate<br />

angular projectile distributions for impact along<br />

different low-in<strong>de</strong>x crystallographic directions.<br />

The influence of the inci<strong>de</strong>nce energy and the<br />

symmetry of the consi<strong>de</strong>red channel are both<br />

analyzed.<br />

32 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

dP/dϕ f<br />

(arb. u.)<br />

N→Ag(111)<br />

-0,006 -0,004 -0,002 0,000 0,002 0,004 0,006<br />

Azimuthal angle ϕ f<br />

(rad)<br />

Figure 1. Azimuthal angular distribution of<br />

elastically scattered projectiles for 3 keV N atoms<br />

impinging on Ag(111) along the direction<br />

-1,-1,2, with a glancing angle ( θ i =0.4678<br />

<strong>de</strong>g.)<br />

dP/dΘ (arb. u.)<br />

N→Ag(111)<br />

E i ⊥<br />

= 0.2 eV<br />

-1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6<br />

Deflection angle Θ (rad)<br />

Figure 2. Angular projectile distributions, as<br />

function of the <strong>de</strong>flection angle Θ, for N atoms<br />

scattered from Ag(111) along the direction<br />

, with E i = 0.2 eV for the inci<strong>de</strong>nce<br />

energy E i = 3.0 keV.<br />

Angular distributions of N atoms scattered<br />

from the Ag(111) surface display diffraction<br />

patterns that <strong>de</strong>pend on the axial inci<strong>de</strong>nce direction.<br />

For scattering along the channel,<br />

the angular spectrum presents interference structures,<br />

with peaks symmetrically placed with respect<br />

to the inci<strong>de</strong>nce direction. The complexity<br />

of these structures augments dramatically as E i<br />

increases up to 1.0 eV, indicating that the scattering<br />

of N atoms from a Ag surface tends to<br />

blur interference patterns more easily than for<br />

helium impact.<br />

Something similar happens when we consi<strong>de</strong>r<br />

the wi<strong>de</strong>r channel , which displays an<br />

even stronger corrugation. In addition, this inci<strong>de</strong>nce<br />

direction does not run along a symmetry<br />

axis of the surface, and this results in angular<br />

distributions displaying asymmetric structures<br />

with respect to φ f =0. Therefore, the high reactivity<br />

of N atoms favors the sensitivity of diffraction<br />

patterns to asymmetries across the<br />

channel, which in this case are originated from<br />

the contributions of target atoms from the second<br />

layer below the topmost atomic plane.<br />

We have also analyzed the contribution of<br />

inelastic processes. Our results suggest that they<br />

might not be so important as expected in the<br />

consi<strong>de</strong>red energy range, which is in accord with<br />

available experimental results. Given its high<br />

resolution in energy, diffraction of fast atoms<br />

from surfaces may therefore become a useful<br />

quality check for both insulating and metallic<br />

PESs, also providing a promising tool for surface<br />

analysis.<br />

References<br />

[1] A. Schüller et al., Phys. Rev. Lett. 98,<br />

016103 (2007); P. Rousseau et al., Phys.<br />

Rev. Lett. 98, 016104 (2007).<br />

[2] N. Bundaleski et al., Phys. Rev. Lett. 101,<br />

177601 (2008).<br />

[3] M. Busch et al., Surf. Sci. 603, L23 (2009).<br />

[4] M.S. Gravielle et al., Phys. Rev. A. 78,<br />

022901 (2008).<br />

[5] G. Kreese and J. Hafner, Phys. Rev B 47,<br />

558 (1993).<br />

[6] H.F. Busnengo et al., J. Chem. Phys. 112,<br />

7641 (2000)<br />

[2] J. B. Good, Technical Writing for Dummies<br />

(Wiley, New York, 1923).<br />

33 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Influence of light-ion irradiation on the ion track etching of polycarbonate<br />

R.S. Thomaz 1 , C. T <strong>de</strong> Souza 2 , and R. M. Papaléo 1<br />

1 Faculty of Physics, Catholic University of Rio Gran<strong>de</strong> do Sul, Porto Alegre, Brazil<br />

2 Institute of Physics, Fe<strong>de</strong>ral University of Rio Gran<strong>de</strong> do Sul, Porto Alegre, Brazil<br />

claudia.telles@ufrgs.br<br />

In this work, we report on the effect of<br />

light-ion irradiation on the pore size distribution<br />

of etched tracks produced by medium<br />

energy heavy ions in polycarbonate. Polycarbonate<br />

foils (Makrofol KG, Bayer, Germany),<br />

about 12 µm thick, were treated with 2 MeV<br />

H + ions of different fluences (1x10 13 to<br />

5x10 14 ions/cm 2 ) either before or after irradiation<br />

with a 18 MeV Au 7+ beam (at a fluence<br />

around 5x10 8 ions/cm 2 ). The heavy ion<br />

irradiation was used to produce the latent<br />

tracks in the foils and the proton beam acted<br />

as a perturbation to the <strong>de</strong>fect distribution.<br />

The sequence of irradiations was performed<br />

at a 3 MV HVEE Tan<strong>de</strong>tron accelerator at<br />

room temperature and without breaking the<br />

vacuum. The irradiated foils were etched<br />

with 6 M NaOH solution at 60 ±1 ºC for 1 to<br />

3 minutes and the etched surfaces analyzed<br />

by scanning electron microscopy. Characterization<br />

of the chemical damage and molecular<br />

weight distribution of the foils was performed<br />

by FTIR spectroscopy, gel permeation<br />

chromatography (GPC) and contact angle<br />

measurements.<br />

The microscopy results showed that the<br />

proton irradiation causes a <strong>de</strong>crease in the<br />

mean etched pore size as compared to samples<br />

bombar<strong>de</strong>d only with the Au ions<br />

(Fig.1). The reduction effect is greater at H +<br />

fluences around 2 to 5 x10 13 cm -2 , while at<br />

higher H + fluences the pore size start to grow<br />

again, as shown in Figure 2.<br />

Figure 1. SEM images of<br />

etched ion tracks on PC<br />

foils bombar<strong>de</strong>d with different<br />

2 MeV H + fluences.<br />

The samples were first<br />

bombar<strong>de</strong>d by the H + beam<br />

and subsequently irradiated<br />

with the 18 MeV Au<br />

beam to produce the etchable<br />

tracks. (a) control<br />

sample (Au beam only); (b)<br />

=5x10 12 cm -2 ; (c)=<br />

2x10 13 cm -2 ;d=5x10 13<br />

cm -2 ; (e) =2x10 14 cm -2 .<br />

34 Valparaíso, Chile


Relative diameter (a.u.)<br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

1.2<br />

1<br />

batch 1<br />

batch 2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 5 10 13 1 10 14 1.5 10 14 2 10 14<br />

(cm -2 )<br />

Figure 2. Relative diameter of the etched pores (D()/D(0)) as a function of H + fluence , for two batches of<br />

samples.<br />

The observation of a minimum in the<br />

diameter curve is compatible with the existence<br />

of two competitive effects: one that<br />

causes the <strong>de</strong>crease in radius and is dominant<br />

at low fluences (i.e. with a large crosssection)<br />

and another that tend to increase the<br />

radial etching rate and is dominant at high<br />

fluences (with a small cross-section).<br />

The physico-chemical mechanism behind<br />

the observed effect is unclear at present.<br />

The <strong>de</strong>crease in pore size due to the proton<br />

irradiation is consistent with a reduction in<br />

the radial or bulk etch rate v B or an increase<br />

in the etching induction time. A reduced v B<br />

could be caused by e.g., crosslinking of the<br />

PC matrix induced by the proton beam. However,<br />

the GPC curves indicate the predominance<br />

of chain scission in the irradiated samples.<br />

Also negligible changes in the contact<br />

angle of the proton irradiated foils were <strong>de</strong>tected,<br />

indicating similar wetting properties.<br />

Thus the proton irradiation seems to affect<br />

the etching process in a more complex way<br />

by changing the surface properties of the PC<br />

foils.<br />

Key-words: ion track etching, polymers,<br />

polycarbonate.<br />

35 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Interacción <strong>de</strong> haces <strong>de</strong> protones con materiales <strong>de</strong> interés biológico<br />

Rafael Garcia-Molina 1 , Isabel Abril 2 , Cristian D. Denton 2 , Ioanna Kyriakou 3 , Dimitris Emfietzoglou 3<br />

1<br />

<strong>Departamento</strong> <strong>de</strong> <strong>Física</strong> – Centro <strong>de</strong> Investigación en Óptica y Nanofísica, <strong>Universidad</strong> <strong>de</strong> Murcia,<br />

E-30100 Murcia, España<br />

2<br />

Departament <strong>de</strong> <strong>Física</strong> Aplicada, Universitat d’Alacant, E-03080 Alacant, España<br />

3<br />

Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina, Grecia<br />

corresponding author: rgm@um.es<br />

La irradiación <strong>de</strong> sistemas biológicos<br />

mediante haces <strong>de</strong> partículas energéticas<br />

(electrones, positrones o iones) tiene gran interés<br />

<strong>de</strong>bido a sus numerosas aplicaciones en micro y<br />

nanodosimetría, o en física médica, como por<br />

ejemplo la radioprotección [1] y el tratamiento<br />

oncológico [2]. Así pues, es necesario estudiar y<br />

compren<strong>de</strong>r las primeras etapas físicas y<br />

químicas <strong>de</strong> la interacción <strong>de</strong> la radiación con<br />

los materiales <strong>de</strong> interés biológico para po<strong>de</strong>r<br />

pre<strong>de</strong>cir o controlar el dañado que se producirá<br />

en estos sistemas.<br />

El tratamiento radioterapéutico mediante<br />

haces <strong>de</strong> protones energéticos, u otros iones<br />

ligeros, es una alternativa que ofrece notables<br />

ventajas frente a los tratamientos usados<br />

habitualmente, los cuales emplean haces <strong>de</strong><br />

fotones o <strong>de</strong> electrones, ya que estos últimos<br />

<strong>de</strong>positan la mayor parte <strong>de</strong> su energía cerca <strong>de</strong><br />

la superficie <strong>de</strong>l tejido biológico. Sin embargo,<br />

los haces <strong>de</strong> iones <strong>de</strong> alta energía sufren poca<br />

dispersión angular y tienen una penetración bien<br />

<strong>de</strong>finida <strong>de</strong>ntro <strong>de</strong>l blanco, sufriendo un<br />

aumento significativo <strong>de</strong> la pérdida <strong>de</strong> energía al<br />

final <strong>de</strong> sus trayectorias. Así, la mayoría <strong>de</strong> la<br />

energía <strong>de</strong>l haz <strong>de</strong> iones se <strong>de</strong>posita al final <strong>de</strong><br />

su recorrido, en una pequeña región <strong>de</strong>nominada<br />

pico <strong>de</strong> Bragg, mientras que sólo una pequeña<br />

proporción <strong>de</strong> esta energía se transfiere al tejido<br />

en la región anterior y posterior a este pico.<br />

Estas características permiten controlar que la<br />

energía <strong>de</strong>l haz <strong>de</strong> iones se <strong>de</strong>posite<br />

mayoritariamente en una profundidad dada,<br />

don<strong>de</strong> se espera que actúe sobre el tumor y se<br />

reduzca el daño producido en el tejido sano.<br />

En esta comunicación se presentará el<br />

estudio <strong>de</strong> la distribución espacial <strong>de</strong> la energía<br />

<strong>de</strong>positada por un haz <strong>de</strong> protones en agua<br />

líquida. Utilizamos como blanco irradiado el<br />

agua líquida, ya que representa una parte<br />

mayoritaria en la composición <strong>de</strong> los organismos<br />

vivos, a<strong>de</strong>más <strong>de</strong> que es más simple caracterizar<br />

su respuesta a la perturbación producida por el<br />

haz <strong>de</strong> protones.<br />

Para realizar nuestro estudio utilizamos<br />

el código <strong>de</strong> simulación SEICS (Simulation of<br />

Energetic Ions and Clusters through Solids) [3-<br />

5], basado en una combinación <strong>de</strong> los métodos<br />

<strong>de</strong> Montecarlo y <strong>de</strong> Dinámica Molecular, que<br />

permite seguir dinámicamente las trayectorias<br />

<strong>de</strong>l haz <strong>de</strong> protones al incidir sobre agua líquida<br />

hasta que éstos se <strong>de</strong>tienen, <strong>de</strong>bido<br />

fundamentalmente a las interacciones con los<br />

electrones <strong>de</strong>l blanco. Así, a partir <strong>de</strong> las<br />

coor<strong>de</strong>nadas, velocida<strong>de</strong>s y carga <strong>de</strong> los<br />

proyectiles en cada instante es posible obtener la<br />

energía <strong>de</strong>positada por el proyectil en función <strong>de</strong><br />

la posición en el material irradiado.<br />

El programa SEICS incluye las<br />

principales interacciones y fenómenos que<br />

tienen lugar entre el proyectil y los átomos <strong>de</strong>l<br />

blanco: (i) fuerza <strong>de</strong> frenado electrónica<br />

(obtenida a partir <strong>de</strong>l po<strong>de</strong>r <strong>de</strong> frenado<br />

electrónico y <strong>de</strong>l straggling en la pérdida <strong>de</strong><br />

energía), (ii) colisiones elásticas con los núcleos<br />

<strong>de</strong>l blanco (que dan lugar a la <strong>de</strong>flexión <strong>de</strong>l<br />

proyectil y contribuyen a la pérdida <strong>de</strong> energía),<br />

y (iii) cambio en el estado <strong>de</strong> carga <strong>de</strong>l proyectil<br />

(<strong>de</strong>bido a los procesos <strong>de</strong> pérdida y captura<br />

electrónica entre el proyectil y el blanco).<br />

36 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

El po<strong>de</strong>r <strong>de</strong> frenado electrónico se<br />

calcula a partir <strong>de</strong>l formalismo dieléctrico y el<br />

mo<strong>de</strong>lo MELF-GOS [6] para <strong>de</strong>scribir la<br />

función <strong>de</strong> pérdida <strong>de</strong> energía <strong>de</strong>l agua líquida<br />

[7], don<strong>de</strong> se pone énfasis en la correcta<br />

<strong>de</strong>scripción <strong>de</strong>l espectro <strong>de</strong> excitaciones<br />

electrónicas a partir <strong>de</strong> los datos experimentales<br />

disponibles en la literatura [8].<br />

En la figura representamos el po<strong>de</strong>r <strong>de</strong><br />

frenado <strong>de</strong> un haz <strong>de</strong> protones en agua líquida en<br />

función <strong>de</strong> la energía inci<strong>de</strong>nte. Los símbolos<br />

correspon<strong>de</strong>n a datos experimentales <strong>de</strong> hielo.<br />

Comparamos los resultados <strong>de</strong> nuestro mo<strong>de</strong>lo<br />

MELF-GOS [5] (línea negra) con resultados<br />

semiempíricos <strong>de</strong> SRIM [9] (línea gris<br />

continua), y con datos compilados en el report<br />

<strong>de</strong> ICRU [10] (línea gris discontinua).<br />

En este trabajo hemos puesto especial<br />

énfasis en la <strong>de</strong>scripción <strong>de</strong> la energía<br />

<strong>de</strong>positada alre<strong>de</strong>dor <strong>de</strong>l pico <strong>de</strong> Bragg, por lo<br />

que nos centraremos en haces <strong>de</strong> protones con<br />

energías en la región <strong>de</strong> 0.5 MeV a 10 MeV, y<br />

analizaremos en <strong>de</strong>talle cómo las diferentes<br />

interacciones entre el haz <strong>de</strong> protones y el<br />

blanco afectan a la dosis <strong>de</strong>positada en el blanco<br />

en función <strong>de</strong> la profundidad.<br />

Por último, también analizaremos la<br />

energía <strong>de</strong>positada por el haz <strong>de</strong> protones<br />

cuando interacciona con otros materiales <strong>de</strong><br />

interés biológico, en especial el DNA.<br />

Referencias:<br />

[1] E. B. Podgorsak, Radiation Physics for<br />

Medical Physicists, Springer, Berlin, 2006.<br />

[2] M. Goitein, A. J. Lomas, E. Pedroni,<br />

Treating cancer with protons, Phys. Today 55,<br />

45 (2002).<br />

[3] S. Heredia-Avalos, R. Garcia-Molina, I.<br />

Abril, Energy-loss calculation of swift C n<br />

+<br />

(n=2–60) clusters through thin foils, Phys. Rev.<br />

A 76, 012901-1 (2007).<br />

[4] S. Heredia-Avalos, I. Abril, C. D. Denton,<br />

R. Garcia-Molina, Simulation of swift boron<br />

clusters traversing amorphous carbon foils,<br />

Phys. Rev. A 75, 012901-1 (2007).<br />

[5] R. Garcia-Molina, I. Abril, C. D. Denton, S.<br />

Heredia-Avalos, I. Kyriakou, D. Emfietzoglou,<br />

Calculated <strong>de</strong>pth-dose distributions for H + and<br />

He + beams in liquid water, Nucl. Instrum.<br />

Methods B 267, 2647 (2009).<br />

[6] I. Abril, R. Garcia-Molina, C. D. Denton, F.<br />

J. Pérez-Pérez, N. R. Arista, Dielectric<br />

<strong>de</strong>scription of wakes and stopping powers in<br />

solids, Phys. Rev. A 58, 357 (1998); S. Heredia-<br />

Avalos, R. Garcia-Molina, I. Abril, J. M.<br />

Fernán<strong>de</strong>z-Varea, Calculated energy loss of<br />

swift He, Li, B and N ions in SiO 2 , Al 2 O 3 and<br />

ZrO 2 , Phys. Rev. A 72, 052902-1(2005).<br />

[7] I. Abril, C. D. Denton, P. <strong>de</strong> Vera, I.<br />

Kyriakou, D. Emfietzoglou, R. Garcia-Molina,<br />

Effect of the Bethe surface <strong>de</strong>scription on the<br />

electronic excitations induced by energetic<br />

proton beams in liquid water and DNA, Nucl.<br />

Instrum. Methods B 268, 1763 (2010).<br />

[8] N. Watanabe, H. Hayashi, Y. Udagawa,<br />

Bethe surface of liquid water <strong>de</strong>termined by<br />

inelastic X-ray scattering spectroscopy and<br />

electron correlation effects, Bull. Chem. Soc.<br />

Jpn. 70, 719 (1997).<br />

[9] J. F. Ziegler, J. P. Biersak, M. D. Ziegler,<br />

SRIM. The Stopping and Range of Ions in<br />

Matter, SRIM Co., Chester, MD, 2008.<br />

[10] Stopping Powers and Ranges for Protons<br />

and Alpha Particles, ICRU Report 49,<br />

Bethesda, MD, 1993.<br />

37 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

INTERACTION DYNAMICS OF CLUSTERS IN INTENSE<br />

LASER FIELDS<br />

D. Vernhet 1 , E. Lamour 1 , C. Prigent 1 , C. Ramond 1 , R. Reuschl 1 , J.-P. Rozet 1 ,<br />

M. Trassinelli 1 , J. Burgdörfer 2 , C. Deiss 2 , G. Schiwietz 3<br />

1 Institut <strong>de</strong>s NanoSciences <strong>de</strong> Paris, Université Pierre et Marie Curie, CNRS-UMR7588<br />

F-75252 Paris, France, EU<br />

2 Institute for Theoretical Physics, Vienna University of Technology,<br />

A-1040 Vienna, Austria, EU<br />

3 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH<br />

D-14109 Berlin, Germany, EU<br />

Large clusters, similarly to solids, couple very efficiently to intense subpicosecond laser pulses.<br />

Nearly 100 % of the laser radiation can be absorbed, leading to the observation of highly charged<br />

ions with energies reaching MeV and electrons with energies up to a few keV. A fascinating feature<br />

of this interaction is its efficiency for converting photons in the eV range to x-rays with keV<br />

energies. Whereas spectroscopy of the emitted ions maps the final stage of the Coulomb explosion,<br />

i.e. a few microseconds after the femtosecond laser pulse and the cluster disintegration, x-ray<br />

spectroscopy gives access to the dynamical evolution of the irradiated cluster on a time scale<br />

comparable to that of the laser pulse duration. Since the inner-shell vacancies are produced by<br />

electron-impact ionisation, x-ray spectroscopy can provi<strong>de</strong> insight into the electron dynamics and<br />

more precisely on the heating mechanisms, which allow electrons to gain energy as high as the innershell<br />

binding energies. KeV x-rays provi<strong>de</strong> a “thermometer” of the hot electrons in the cluster, acting<br />

as a probe of the energy distribution on the high energy si<strong>de</strong>.<br />

Rare-gas clusters- (Ar) n , (Kr) n and (Xe) n with n > 10 4 (i.e. 10-40 nm of diameter)- irradiated with<br />

intense (I


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Ionización múltiple <strong>de</strong> Ne, Ar, Kr y Xe <strong>de</strong>bido al impacto <strong>de</strong> iones H + y He +<br />

J. E. Miraglia 1,2 , C. C. Montanari 1,2 and E. C. Montenegro 3<br />

1 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio, CONICET-UBA, Buenos Aires, Argentina<br />

2 Facultad <strong>de</strong> Ciencias Exactas y Naturales, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Buenos Aires, Argentina<br />

3 Instituto <strong>de</strong> F´ısica, Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong> Rio <strong>de</strong> Janeiro, Caixa Postal 68528, Rio <strong>de</strong> Janeiro, Brazil<br />

La ionización múltiple es un problema complejo<br />

<strong>de</strong>ntro <strong>de</strong> las colisiones atómicas, más aún<br />

cuando se trata <strong>de</strong> blancos pesados. Se <strong>de</strong>ben<br />

tener en cuenta muchos procesos: la ionización<br />

múltiple directa, la emisión post-colisional<br />

(post-collisional ionization o PCI) <strong>de</strong> electrones<br />

por efectos Auger o Coster–Krönig originada en<br />

la ionización <strong>de</strong> un electrón <strong>de</strong> capa interna, la<br />

emisión <strong>de</strong> electrones por shake-off, o la<br />

combinación <strong>de</strong> excitación y doble Auger. Todos<br />

estos procesos contribuyen a aumentar el estado<br />

<strong>de</strong> carga final <strong>de</strong>l blanco.<br />

Recién en los últimos años la combinación <strong>de</strong><br />

cálculos <strong>de</strong> probabilida<strong>de</strong>s <strong>de</strong> ionización con<br />

mo<strong>de</strong>los <strong>de</strong> electrón in<strong>de</strong>pendiente, y datos <strong>de</strong><br />

producción <strong>de</strong> iones multicargados en<br />

experimentos <strong>de</strong> fotoionización, ha dado una<br />

buena <strong>de</strong>scripción <strong>de</strong> los datos experimentales en<br />

la región <strong>de</strong> los MeVs [1-5]. Sin embargo los<br />

resultados teóricos abarcan los blancos Ne y Ar,<br />

mientras que los datos experimentales llegan<br />

hasta Xe.<br />

En esta oportunidad presentamos resultados<br />

teóricos <strong>de</strong> ionización simple a quintuple <strong>de</strong> Ne,<br />

Ar, Kr y Xe bombar<strong>de</strong>ados con H+ y He+ [6].<br />

Los cálculos han sido realizados empleando dos<br />

mo<strong>de</strong>los, continuum distorted wave-eikonal<br />

initial state (CDW-EIS) y primera aproximación<br />

<strong>de</strong> Born, utilizando los mismos potenciales en<br />

ambos.<br />

La contribución PCI a la ionización es<br />

introducida a través <strong>de</strong> datos experimentales <strong>de</strong><br />

<strong>de</strong>caimiento y emisión en experimentos recientes<br />

<strong>de</strong> fotoionización que utilizan técnicas <strong>de</strong><br />

coinci<strong>de</strong>ncia y tiempo <strong>de</strong> vuelo para seleccionar<br />

los procesos <strong>de</strong> ionización múltiple que siguen a<br />

la ionización simple <strong>de</strong> cierta capa <strong>de</strong> electrones<br />

<strong>de</strong>l blanco. Discutiremos también la importancia<br />

<strong>de</strong> procesos tipo shake off <strong>de</strong> los electrones <strong>de</strong> la<br />

capa <strong>de</strong> Valencia, para los cuales no hay<br />

contribución <strong>de</strong> Auger.<br />

Multiple ionization cross sections (Mb)<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Kr 3+ x 10 -1 Kr 2+<br />

Kr 4+ x 10 -3<br />

Kr +<br />

10 2 10 3<br />

Energy (keV/am u)<br />

Fig 1. Multiple ionización en collision H + + Kr<br />

Los resultados obtenidos muestran que en<br />

general, la combinación <strong>de</strong> la CDW-EIS con los<br />

datos <strong>de</strong> producción <strong>de</strong> multicargados, <strong>de</strong>scriben<br />

bien la ionización múltiple para E>300 keV/<br />

amu, mostrando una clara ten<strong>de</strong>ncia a los valores<br />

<strong>de</strong> la primer aproximación <strong>de</strong> Born para altas<br />

energías.<br />

Comentaremos el llamativo resultado obtenido<br />

con la primer approximación <strong>de</strong> Born, la cual<br />

<strong>de</strong>scribe muy bien los resultados <strong>de</strong> doble y<br />

triple ionización aún en el rango <strong>de</strong> energías<br />

(50–300 keV/ amu), don<strong>de</strong> la ionización directa<br />

es la contribución dominante.<br />

39 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Multiple ionization cross section (Mb)<br />

10 3 Ar 5+ x 10 -5<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

Ar +<br />

Ar 2+<br />

Ar 3+ x 10 -1<br />

Ar 4+ x 10 -3<br />

Multiple ionization cross section (Mb)<br />

C avalcanti<br />

D uBois<br />

10 2 Schram for e+Ne<br />

An<strong>de</strong>rsen<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

inclu<strong>de</strong>s K-shell PCI<br />

inclu<strong>de</strong>s L-shell shake off<br />

Ne +<br />

Ne 2+<br />

Ne 3+ x 10 -1<br />

10 -7<br />

10 2 10 3<br />

Energy (keV/amu)<br />

10 2 10 3 10 4<br />

Energy (keV)<br />

Fig. 2 Ionización múltiple <strong>de</strong> Ar por He+<br />

El acuerdo con los valores experimentales es<br />

bueno, en especial para Ar y Kr para ambos<br />

iones, H+ y He+. En el caso <strong>de</strong> H+ en Xe, y He+<br />

en Ar y Kr, comparamos resultados teóricos y<br />

valores experimentales hasta ionización<br />

quíntuple.<br />

Multiple ionization cross sections (Mb)<br />

10 3 Xe +<br />

10 2<br />

Xe 2+<br />

10 1<br />

10 0<br />

Xe 3+ x 10 -1<br />

10 -1<br />

10 -2<br />

10 -3<br />

Xe 4+ x 10 -3<br />

10 -4<br />

10 -5<br />

Xe 5+ x 10 -5<br />

10 -6<br />

10 2 10 3<br />

Energy (keV/am u)<br />

Fig. 3 Ionización múltiple <strong>de</strong> Xe por H+<br />

Fig. 4 Ionización múltiple <strong>de</strong> Ne por H+<br />

El caso <strong>de</strong> Ne muestra características propias<br />

(ver figura 4). La única capa que contribuye a<br />

aumentar la ionización múltiple directa es la<br />

capa K, dado que no hay Auger <strong>de</strong> 2s y 2p. Sin<br />

embargo los resultados teóricos subestiman los<br />

valores experimentales dando muestras <strong>de</strong> que<br />

hay algún otro proceso contribuyendo a la doble<br />

y triple ionización <strong>de</strong> Ne. Mostraremos que la<br />

inclusión <strong>de</strong> shake off [7-9] darían la ten<strong>de</strong>ncia<br />

correcta para <strong>de</strong>scribir la ionización múltiple <strong>de</strong><br />

Ne a altas energías.<br />

References<br />

[1] Cavalcanti E G, et al J. Phys. B: At. Mol. Opt.<br />

Phys. 35 3937 (2002).<br />

[2] Spranger T and Kirchner T J. Phys. B: At. Mol.<br />

Opt.Phys. 37 4159 (2004).<br />

[3] Sigaud G M et al, Phys. Rev. A 69 062718<br />

(2004).<br />

[4] Galassi M E, Rivarola R D and Fainstein P D,<br />

Phys. Rev.A 75 052708 (2007).<br />

[5] Schenk G and Kirchner T, J. Phys. B: At. Mol.<br />

Opt. Phys. 42 205202 (2009)<br />

[6] Montanari C C, Montenegro E C and Miraglia J E,<br />

J. Phys. B: At. Mol. Opt. Phys. 43 165201 (2010).<br />

[7] Kochur et al, J. Phys. B: At. Mol. Opt. Phys. 35<br />

395 (2002)<br />

[8] Carlson T A and Nestor C W, Phys. Rev.A 8 2887<br />

(1973).<br />

40 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Ionization pattern in the region of the Bragg peak<br />

E C Montenegro<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, UFRJ, Caixa Postal 68528, Rio <strong>de</strong> Janeiro, 21945-970, RJ, Brazil.<br />

montenegro@if.ufrj.br<br />

Regarding direct collisional effects the<br />

penetration of heavy ions through matter is<br />

usually characterized by the energy loss,<br />

from the projectile si<strong>de</strong>, and by the number<br />

of ions produced along its trajectory, from<br />

the target si<strong>de</strong>. While energy loss measurements<br />

are numerous, embracing a large<br />

number of combinations of projectiles and<br />

targets – the latter mostly solids – ionization<br />

measurements by ions with the proper<br />

charge states, associated to the energies they<br />

have during their way through matter, are<br />

rare and restricted to gas targets, due to the<br />

nature of these measurements. For a given<br />

energy transfer by the projectile there is a<br />

large number of dynamical alternatives for a<br />

given final state of the target, making the<br />

theoretical <strong>de</strong>scription of the ionization by<br />

heavy ions more complex compared to those<br />

of energy loss. This difficulty is enhanced in<br />

the region of the Bragg peak where more<br />

than one collision channel compete on equal<br />

foot.<br />

Recently, it was shown that the shape<br />

of the Bragg peak is very much due to the<br />

energy transfer to inner target electrons [1].<br />

Although the cross section for the removal<br />

of inner electrons is small, this process involves<br />

large energy transfer. This contrasts<br />

with the ionization pattern, which is dominated<br />

by the removal of outer electrons with<br />

large cross sections and small energy transfers.<br />

In this work the differences between<br />

the patterns of energy loss and ion production<br />

are studied. Available measured cross<br />

sections for collisions of heavy ions with<br />

noble gases are used as a starting point to<br />

estimate the ionization pattern in the velocity<br />

region corresponding to the Bragg peak.<br />

This estimate requires the inclusion of other<br />

- and usually not measured - charge states<br />

which contribute to the energy <strong>de</strong>position<br />

along the particle path in this region.<br />

It is found that, in the region of the<br />

Bragg peak for energy loss, the ionization<br />

pattern is much flatter in shape as compared<br />

with that of the energy loss, as shown in<br />

Fig.1. This result points in the same direction<br />

as that observed in water [2], where essentially<br />

no peak was observed in the ion<br />

production pattern in the velocity region corresponding<br />

to the distal part of the Bragg<br />

peak. The knowledge of the shape of the<br />

ionization pattern is nee<strong>de</strong>d to interpret the<br />

effects of radiation damage by heavy ions<br />

from medical to technological applications.<br />

Figure 1. Cross section for target ions production<br />

and number of target ions produced by C ions in water.<br />

The shape is not of a single and sharp peak.<br />

References<br />

[1] E. D. Cantero, R. C. Fadanelli, C. C. Montanari,<br />

M. Behar, J. C. Eckhardt, G. H. Landschner,<br />

J. E. Miraglia and N. R. Arista, Phys.<br />

Rev. A79, 042904 (2009).<br />

[2] E. C. Montenegro, M. B. Shah, H. Luna, S.<br />

W. J. Scully, A. L. F. <strong>de</strong> Barros, J. A. Wyer, and<br />

J. Lecointre, Phys. Rev. Lett. 99, 213201 (2007).<br />

41 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Laboratorio Tan<strong>de</strong>m <strong>de</strong> 1.7MV <strong>de</strong>l Centro Atómico Bariloche<br />

G. Bernardi, D. Fregenal, P. Focke y S. Suárez 1<br />

Comisión Nacional <strong>de</strong> Energía Atómica(CNEA) –Centro Atómico Bariloche(CAB)<br />

Consejo nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET)<br />

Av. E. Bustillo 9500, S.C. <strong>de</strong> Bariloche, Río Negro – Argentina.<br />

1 <strong>Universidad</strong> nacional <strong>de</strong> Cuyo – Instituto Balseiro<br />

email address corresponding author: suarez@cab.cnea.gov.ar<br />

El laboratorio <strong>de</strong> Colisiones Atómicas<br />

<strong>de</strong>l Centro Atómico Bariloche (CAB) ha incorporado<br />

recientemente un acelerador Tan<strong>de</strong>m<br />

<strong>de</strong> 1.7MV, una línea <strong>de</strong> microhaz con<br />

una cámara para análisis y caracterización <strong>de</strong><br />

materiales y otros equipamientos adicionales<br />

para estudios <strong>de</strong> colisiones atómicas y superficies,<br />

entre los cuales se <strong>de</strong>stacan una cámara<br />

<strong>de</strong> UHV con espectrómetro <strong>de</strong> análisis Auger,<br />

con manipulador e intercambiador <strong>de</strong><br />

muestras y una línea <strong>de</strong> espectroscopía <strong>de</strong><br />

electrones e iones ya utilizada en una gran<br />

cantidad <strong>de</strong> investigaciones [1].<br />

En esta presentación se mostrarán las<br />

nuevas facilida<strong>de</strong>s experimentales, técnicas<br />

implementadas (PIXE, RBS, ERDA, NRA,<br />

Channeling, etc) y sus potencialida<strong>de</strong>s, dando<br />

ejemplos <strong>de</strong> algunas <strong>de</strong> las aplicaciones ya<br />

realizadas en campos <strong>de</strong> la biología, arqueología,<br />

física forense, tecnología <strong>de</strong> celdas solares,<br />

<strong>de</strong>terminación <strong>de</strong> espesores <strong>de</strong> óxidos y<br />

po<strong>de</strong>res <strong>de</strong> frenamiento, etc.<br />

El uso combinado <strong>de</strong> RBS y PIXE, por<br />

ejemplo, ha permitido estudiar la composición<br />

<strong>de</strong> sedimentos marinos <strong>de</strong> la costa patagónica,<br />

con el propósito <strong>de</strong> investigar posibles<br />

fuentes <strong>de</strong> contaminación humana. Estos<br />

resultados han sido comparados con estándares<br />

provistos por la IAEA [2].<br />

La composición multicapas <strong>de</strong> una celda<br />

solar, así como sus características, fueron<br />

medidas y los resultados corroborados con un<br />

estudio <strong>de</strong> perfiles <strong>de</strong> profundidad (<strong>de</strong>pth<br />

profiling) realizado por ciclos <strong>de</strong> sputtering<br />

<strong>de</strong> Ar a 3.5keV y analisis por fotoemisión<br />

XPS. La consistencia entre ambos estudios es<br />

notable, resaltándose los resultados obtenidos<br />

con la técnica RBS por su simplicidad, pocas<br />

horas <strong>de</strong> adquisición y análisis y por tratarse<br />

<strong>de</strong> un estudio no <strong>de</strong>structivo<br />

Figure 1. Vista parcial <strong>de</strong>l acelerador Tan<strong>de</strong>m y la<br />

línea <strong>de</strong>l microhaz con la cámara multipropósito<br />

RC43 <strong>de</strong> la empresa NEC para caracterización <strong>de</strong><br />

materiales.<br />

Las técnicas PIXE y RBS han sido<br />

también utilizadas para el análisis <strong>de</strong> cuentas<br />

<strong>de</strong> collares <strong>de</strong> la cultura Tehuelche con el<br />

propósito <strong>de</strong> diferenciar el origen marítimo o<br />

lacustre <strong>de</strong> las valvas utilizadas como material<br />

<strong>de</strong> construcción <strong>de</strong> las mismas. Se realizaron,<br />

a<strong>de</strong>más, estudios <strong>de</strong> residuos <strong>de</strong> disparos<br />

los cuales aportaron resultados a una causa<br />

policial. También fueron efectuados varios<br />

análisis <strong>de</strong> diferentes carburos <strong>de</strong> base Fe y<br />

W, óxidos <strong>de</strong> Zr y vidrios varios para estandarización<br />

<strong>de</strong> futuros análisis forenses [3].<br />

Algunos <strong>de</strong> estos resultados serán presentados<br />

como ejemplos.<br />

En el campo <strong>de</strong> las colisiones atómicas,<br />

entretanto, se han realizado mediciones <strong>de</strong><br />

emisión <strong>de</strong> electrones binarios por colisión <strong>de</strong><br />

42 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

H+, Li q+ (q= 1, 2 y 3) y Al q+ (q0= 1, 2 y 3)<br />

con blancos <strong>de</strong> He con el propósito <strong>de</strong> observar<br />

posibles interferencias coherentes <strong>de</strong> contribuciones<br />

<strong>de</strong> corto y largo rango <strong>de</strong>l potencial<br />

perturbativo <strong>de</strong>l proyectil [4]. Si bien un<br />

efecto tal ha sido observado experimentalmente<br />

para proyectiles multicargados, aunque<br />

parcialmente vestidos, como el U 21+ con<br />

energías <strong>de</strong> 1MeV/u [5], el objetivo <strong>de</strong> este<br />

estudio es investigar la posibilidad <strong>de</strong> tales<br />

interferencias con proyectiles con cargas pequeñas<br />

y energías menores. Se mostrarán, a<br />

modo <strong>de</strong> referencia, los resultados obtenidos<br />

con proyectiles <strong>de</strong>snudos (H + y Li 3+ ) y su<br />

comparación con cargas menores (Li 2+ , Li + )<br />

para la energía 440 keV/u. Se presentarán<br />

también resultados obtenidos con proyectiles<br />

más pesados Al q+ para 100 y 200 keV/u. Para<br />

cada uno <strong>de</strong> los sistemas mencionados se realizaron<br />

mediciones <strong>de</strong> distribuciones doblemente<br />

diferenciales, en ángulo y energía, <strong>de</strong><br />

los electrones emitidos cubriendo prácticamente<br />

el rango angular completo y para<br />

energías extendidas más allá <strong>de</strong>l pico <strong>de</strong> colisión<br />

binaria.<br />

Dentro <strong>de</strong>l conocido proceso <strong>de</strong> transferencia<br />

<strong>de</strong> electrones al continuo <strong>de</strong>l proyectil,<br />

se ha investigado la emisión al continuo<br />

<strong>de</strong> estados Rydberg altamente excitados en<br />

proyectiles <strong>de</strong> Si q+ sobre blancos <strong>de</strong> He y Ar.<br />

Estos resultados se han comparado con los<br />

obtenidos con otros proyectiles (H + , Li q+ ,<br />

Al q+ , C q+ ). Mientras que los proyectiles H + ,<br />

Li q+ y Al q+ , muestran la típica forma <strong>de</strong> cúspi<strong>de</strong><br />

para el proceso <strong>de</strong> captura <strong>de</strong> electrones<br />

al continuo, el Si q+ y el C q+ presentan picos<br />

satélites <strong>de</strong> muy baja energía relativa al proyectil,<br />

<strong>de</strong>formando significativamente el pico<br />

<strong>de</strong> captura al continuo. La Figura 2 muestra<br />

el resultado obtenido para 700 keV Si + sobre<br />

He.<br />

Se observa que, al aumentar la energía<br />

<strong>de</strong>l proyectil, el pico central, correspondiente<br />

a la velocidad <strong>de</strong>l proyectil, crece en magnitud<br />

y domina el espectro <strong>de</strong> emisión, aunque<br />

mantiene una forma simétrica, no divergente,<br />

y con picos satélites que no pue<strong>de</strong>n i<strong>de</strong>ntificarse<br />

con la resolución <strong>de</strong>l espectrómetro utilizado[1].<br />

Resultados <strong>de</strong> auto-emisión <strong>de</strong><br />

electrones en estados excitados han sido reportados<br />

por Kawatsura y colaboradores [6]<br />

para Si, S, Sc altamente ionizados con blancos<br />

<strong>de</strong> He y láminas <strong>de</strong> C, sin embargo las<br />

líneas o picos <strong>de</strong> emisión (Coster-Kronig) en<br />

el sistema <strong>de</strong>l proyectil, por ellos reportadas,<br />

correspon<strong>de</strong>n a energías que superan los tres<br />

ór<strong>de</strong>nes <strong>de</strong> magnitud a las observadas en<br />

nuestros experimentos.<br />

Figure 2. Emisón <strong>de</strong> electrons con la velocidad <strong>de</strong>l<br />

proyectil para la colisión 700keV Si + +He.<br />

Finalmente, se comentarán algunas<br />

perspectivas <strong>de</strong>l crecimiento <strong>de</strong>l laboratorio y<br />

otros resultados obtenidos con un acelerador<br />

<strong>de</strong> menores energías.<br />

Referencias<br />

[1] G. Bernardi et al, Rev. Sci. Instrum. 67,<br />

1761(1996).<br />

[2] A Mannan et al, IAEA Report Nº IAEA-<br />

356, 223 (2007).<br />

[3] M.J. Bailey and C. Jeynes, Nucl. Instrum.<br />

and Methods B, 267, 2265 (2009).<br />

[4] J M Monti, R D Rivarola and P D Fainstein,<br />

J. Phys. B: At. Mol. Opt. Phys. 41<br />

(2008) 201001<br />

[5] C O Reinhold et al, Phys. Rev Lett. 66,<br />

1842(1991).<br />

[6] M Sataka et al, J. Phys. B: At. Mol. Opt.<br />

Phys. 35, 267(2002) y referencias citadas.<br />

43 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

LPA stopping power of swift ions in solids. Mo<strong>de</strong>ling the inhomogeneous<br />

electron gas<br />

J. M. Fernán<strong>de</strong>z-Varea 1 , C. D. Denton 2 , I. Abril 2 and R. Garcia-Molina 3<br />

1<br />

Facultat <strong>de</strong> <strong>Física</strong> (ECM and ICC), Universitat <strong>de</strong> Barcelona, Diagonal 647, E-08028 Barcelona, Spain<br />

2<br />

Departament <strong>de</strong> <strong>Física</strong> Aplicada, Universitat d’Alacant, Apartat 99, E-03080 Alacant, Spain<br />

3<br />

<strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>-CIOyN, <strong>Universidad</strong> <strong>de</strong> Murcia, Apartado 4021, E-30080 Murcia, Spain<br />

email address corresponding author: jose@ecm.ub.es<br />

The stopping of swift ions in solids is<br />

still a subject of intense research in spite of<br />

the many <strong>de</strong>ca<strong>de</strong>s elapsed since the pioneering<br />

works of Bohr, Bethe and others. There<br />

are numerous theories that <strong>de</strong>scribe the energy<br />

loss of a heavy charged particle (charge<br />

Z 1 , velocity v) in a free-electron gas (FEG) of<br />

uniform <strong>de</strong>nsity ρ, such as the dielectric<br />

formalism or non-linear methods [1,2]. If the<br />

projectile penetrates a medium with a varying<br />

local electron <strong>de</strong>nsity, e.g. a crystalline solid,<br />

the local-plasma approximation (LPA) lets us<br />

express the stopping power as<br />

where V is the volume of the unit cell.<br />

We find it convenient to split ρ(r) into<br />

contributions from atomic inner shells (cores)<br />

and weakly-bound (valence) electrons, i.e.<br />

difficult to implement. As an alternative, the ab<br />

initio TB-LMTO method [4,5] has been used occasionally<br />

to mo<strong>de</strong>l the stopping of swift ions in<br />

channeling conditions [6].<br />

In the present work, Roothaan-Hartree-<br />

Fock wave function [7] are employed to mo<strong>de</strong>l<br />

the electron <strong>de</strong>nsity of the cores. In turn, the<br />

program TB-LMTO-ASA [4,5] is adopted to<br />

generate the 3D valence-electron <strong>de</strong>nsities.<br />

These methods are used to calculate the electron<br />

<strong>de</strong>nsities of solid Al, Si, Cu, Ag, and Au.<br />

In or<strong>de</strong>r to avoid computing the LPA<br />

stopping power due to valence electrons as a 3D<br />

integral, the probability distribution function<br />

p(ρ v ) is first extracted from ρ v (r) because then<br />

Figure 1 shows the p(ρ v ) distributions of solid<br />

Al, Si, and Cu.<br />

Neglecting the overlap between the two electron<br />

<strong>de</strong>nsities, the LPA stopping power may<br />

be written as<br />

Electrons in the cores are barely disturbed by the<br />

solid-state environment. Hence, the corresponding<br />

<strong>de</strong>nsity is spherically symmetrical and can<br />

be evaluated straightforwardly using atomic<br />

wave functions. On the other hand, the spatial<br />

distribution of valence electrons is strongly affected<br />

by aggregation effects. and may display a<br />

non-negligible anisotropy. The 3D electron<br />

<strong>de</strong>nsity can be calculated with the Dawson-<br />

Stewart-Coppens formalism. However, so far<br />

this method has found only limited application<br />

(see e.g. reference [3]), possibly because it is<br />

Figure 1. Probability distribution function<br />

p(ρ v ) of solid Al, Si, and Cu, extracted from the<br />

3D valence-electron <strong>de</strong>nsities calculated with the<br />

TB-LMTO-ASA program.<br />

44 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

As an application of the presented<br />

methods we investigate the stopping power of<br />

H and He ions in the aforementioned solids.<br />

For the sake of simplicity we resort to the<br />

well-known relation [1,2,8,9])<br />

which is the low-velocity form of non-linear<br />

theory. The transport cross section is evaluated<br />

numerically from phase shifts <strong>de</strong>termined<br />

in a self-consistent way so as to satisfy<br />

the Frie<strong>de</strong>l sum rule [1,2,8,9].<br />

The LPA friction coefficient Q=S/v is<br />

found to change 4% in the case of slow H and<br />

He ions in Al compared to the values obtained<br />

assuming a constant <strong>de</strong>nsity for the<br />

valence electrons. In turn, for H and He in Si<br />

the change amounts to 12% and 16%, respectively.<br />

These trends are to be expected in<br />

sight of the valence electron <strong>de</strong>nsity distributions<br />

displayed in figure 1.<br />

Work is in progress to explore further<br />

consequences of the presented <strong>de</strong>composition<br />

of the local electron <strong>de</strong>nsity. In particular, the<br />

stopping power at higher velocities is being<br />

studied with the non-linear mo<strong>de</strong>l of Nagy<br />

and Apagyi [10].<br />

[8] P. M. Echenique, R. M. Nieminen, J. C.<br />

Ashley, and R. H. Ritchie, Phys. Rev. A 33, 897<br />

(1986).<br />

[9] J. Calera-Rubio, A. Gras-Martí, and N. R.<br />

Arista, Nucl. Instrum. Meth. B 93, 137 (1994).<br />

[10] I. Nagy and B. Apagyi, Phys. Rev. A 58,<br />

R1653 (1998).<br />

References<br />

[1] P. M. Echenique, F. Flores, and R. H. Ritchie,<br />

Solid State Phys. 43, 229 (1990).<br />

[2] Adv. Quantum Chem., volumes 45 and 46<br />

(2004).<br />

[3] J. Sillanpää, J. Peltola, K. Nordlund, J.<br />

Keinonen, and M. J. Puska, Phys. Rev. B 63,<br />

134113 (2001).<br />

[4] O. K. An<strong>de</strong>rsen and O. Jepsen, Phys. Rev.<br />

Lett. 53, 2571 (1984).<br />

[5] http://www.fkf.mpg.<strong>de</strong>/an<strong>de</strong>rsen/<br />

[6] J. E. Valdés, P. Vargas, C. Celedón, E.<br />

Sánchez, L. Guillemot, and V. A. Esaulov, Phys.<br />

Rev. A 78, 032902 (2008).<br />

[7] C. F. Bunge, J. A. Barrientos, and A. V.<br />

Bunge, At. Data Nucl. Data Tables 53, 113<br />

(1993).<br />

45 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Manipulation of magnetic and electronic properties of Ga 1 - x Mn x As by ionbeam<br />

irradiation<br />

M. M. Sant’Anna 1 , T. G. Rappoport 1 , E. H. C. P. Sinnecker 1 , M. P. Pires 1 , G. M. Penello<br />

1 , D. E. R. Souza 1 , S. L. A. Mello 1 , J. B. S. Men<strong>de</strong>s 1 , J. K. Furdyna 2 , and X. Liu 2<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro 21941-909, RJ, Brazil<br />

2 Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA<br />

email address corresponding author: mms@if.ufrj.br<br />

Spintronics relies on the simultaneous<br />

use of both charge and spin <strong>de</strong>grees of freedom<br />

of charge carriers. New materials have<br />

been <strong>de</strong>veloped in recent years in or<strong>de</strong>r to<br />

create a path towards the realization of spintronic<br />

<strong>de</strong>vices. The Ga 1-x Mn x As is one among<br />

those materials. It has a crystalline structure<br />

similar to Gallium Arseni<strong>de</strong> with a small<br />

fraction of the Ga atoms replaced by Mn atoms.<br />

The sites with Mn are diluted in the<br />

original Ga 1-x Mn x As lattice.<br />

The Ga 1-x Mn x As is a semiconductor<br />

that also has magnetic characteristics. Its ferromagnetism,<br />

however, is not a consequence<br />

of direct Mn-Mn interactions. The relevant<br />

Mn-Mn interaction is mediated by the holes<br />

that are introduced by the Mn substitutional<br />

to Ga (Mn Ga ). Thus, Mn Ga atoms in Ga 1-<br />

xMn x As provi<strong>de</strong>, at the same time, the holes<br />

and the magnetic moments that are crucial for<br />

the existence of magnetism in the material.<br />

Intersticial Mn atoms, and other kinds of <strong>de</strong>fects,<br />

on the other hand, <strong>de</strong>crease the <strong>de</strong>nsity<br />

of carriers in the material. As a consequence,<br />

magnetism is also <strong>de</strong>creased when Mn atoms<br />

are displaced from Ga substitutional positions.<br />

In practice, perfect crystalline Ga 1-<br />

xMn x As is never grown and un<strong>de</strong>rstanding the<br />

role of <strong>de</strong>fects in their magnetic and chargetransport<br />

properties is fundamental in or<strong>de</strong>r<br />

to control the behavior of this material (e.g.<br />

[1]). Ion beams can displace the Mn atoms in<br />

a controllable way. Thus, we have studied<br />

Ga 1-x Mn x As with the controlled introduction<br />

of <strong>de</strong>fects by irradiating the samples with energetic<br />

ion beam. Our recent study (Ref. [2])<br />

focuses on the low-carrier-<strong>de</strong>nsity regime,<br />

starting with as-grown Ga 1-x Mn x As films and<br />

<strong>de</strong>creasing even further the number of carriers,<br />

through a sequence of irradiation doses.<br />

We performed in situ room-temperature resistivity<br />

measurements as a function of the ion<br />

dose (Fig. 1).We have also studied the magnetization<br />

as a function of temperature and of<br />

the irradiation ion dose. We observe that both<br />

magnetic and transport properties of the samples<br />

can be experimentally manipulated by<br />

controlling the ion-beam parameters.<br />

Rs (Ω/sq)<br />

10 5 x nom<br />

=5%<br />

Ga 1-x Mn x As<br />

10 4<br />

10 3<br />

Li + (700 keV) + Ga 1-x<br />

Mn x<br />

As<br />

Li + beam<br />

p inicial<br />

=2×10 14 cm -2<br />

l = 4 mm<br />

d = 100 nm<br />

10 10 10 11 10 12 10 13 10 14 10 15<br />

Dose (Li + /cm 2 )<br />

Figure 1. Sheet Resistance as a function of the irradiation<br />

dose measured in-situ for 700 keV Li + projectiles.<br />

The sample is a 100 nm Ga 1-x Mn x As thin film<br />

grown by MBE on a GaAs substrate.<br />

References<br />

[1] K. Sato et al., Rev. Mod Phys. 82, 1633<br />

(2010).<br />

[2] E. H. C. P. Sinnecker et al., Phys.<br />

Rev. B. 81, 245203 (2010).<br />

46 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Medidas da distribuição <strong>de</strong> energia <strong>de</strong> moléculas e fragmentos moleculares<br />

por espectroscopia <strong>de</strong> tempo <strong>de</strong> vôo com extração retardada.<br />

Natalia Ferreira (1) , L. Sigaud (1) , V. L. B. <strong>de</strong> Jesus (2) , W. Wolff (1) , M. B. Shah (3) ,<br />

and E. C. Montenegro (1)<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, P.O. 68528, 21941-972 Rio <strong>de</strong> Janeiro, RJ, Brasil<br />

2 Instituto Fe<strong>de</strong>ral <strong>de</strong> Educação, Ciência e Tecnologia, R. Lucio Tavares 1045, 26530-060 Nilópolis, RJ, Brasil<br />

3 The Queen’s University Belfast, University Road Belfast, BT7 1NN, Northern Ireland, UK<br />

email para correspondência: natalia@if.ufrj.br<br />

Este trabalho apresenta medidas diretas da<br />

distribuição <strong>de</strong> energia <strong>de</strong> moléculas e fragmentos<br />

moleculares utilizando uma técnica <strong>de</strong> espectroscopia<br />

por tempo <strong>de</strong> vôo com extração retardada,<br />

que permite um estudo <strong>de</strong>talhado da dinâmica<br />

<strong>de</strong> colisões com moléculas.<br />

A metodologia proposta tem maior<br />

sensibilida<strong>de</strong> para fragmentos <strong>de</strong> baixa energia<br />

<strong>de</strong>s<strong>de</strong> térmicos, supra térmicos, até alguns eV,<br />

diferente <strong>de</strong> métodos tradicionais que são mais<br />

sensíveis a fragmentos com energias mais altas.<br />

A montagem experimental utilizada é<br />

baseada em um espectrômetro <strong>de</strong> massa por<br />

tempo <strong>de</strong> vôo, on<strong>de</strong> a interação ocorre <strong>de</strong>ntro <strong>de</strong><br />

uma célula com o gás <strong>de</strong> interesse em equilíbrio<br />

térmico com o ambiente. O pulso <strong>de</strong> elétrons é<br />

intercalado com um pulso <strong>de</strong> extração, que po<strong>de</strong><br />

ser dado imediatamente após a passagem do feixe<br />

<strong>de</strong> elétrons ou com um atraso temporal variável.<br />

A função distribuição <strong>de</strong> velocida<strong>de</strong>s é obtida<br />

através dos produtos medidos em função do<br />

tempo <strong>de</strong> retardo pela mo<strong>de</strong>lagem da difusão dos<br />

íons a partir da zona <strong>de</strong> interação.<br />

Resultados preliminares, utilizando a<br />

molécula N 2 , mostram que a metodologia<br />

reproduz com fi<strong>de</strong>lida<strong>de</strong> a distribuição <strong>de</strong><br />

energia térmica (<strong>de</strong> Maxwell -Boltzmann) para a<br />

molécula mãe simplesmente ionizada N + 2 . Como<br />

po<strong>de</strong> ser visto na figura, os círculos fechados são<br />

o resultado teórico para distribuição <strong>de</strong><br />

velocida<strong>de</strong>s <strong>de</strong> MB, e os círculos abertos são os<br />

dados experimentais.<br />

O pico <strong>de</strong> razão massa/ carga = 14<br />

possui contribuições do fragmento N + e da<br />

molécula mãe duplamente ionizada, N ++ 2 , que<br />

não são distinguíveis usando a espectroscopia <strong>de</strong><br />

massa usual. Através da análise da função<br />

distribuição <strong>de</strong> velocida<strong>de</strong> é possível i<strong>de</strong>ntificar<br />

a contribuição <strong>de</strong> cada um <strong>de</strong>sses íons. Na figura<br />

as distribuições <strong>de</strong> velocida<strong>de</strong>s do fragmento N +<br />

e da molécula N ++ 2 se somam e são comparadas<br />

aos dados experimentais, como indicado.<br />

A questão da estabilida<strong>de</strong> <strong>de</strong> moléculas<br />

++,<br />

pequenas, como o N 2 duplamente carregadas<br />

vem sendo estudada utilizando-se diferentes<br />

técnicas: com moléculas contendo isótopos [1],<br />

através da análise <strong>de</strong> sua meia vida em<br />

aceleradores [2], e, mais recentemente,<br />

utilizando <strong>de</strong>tectores especiais supercondutores<br />

[3]. O método aqui proposto é uma alternativa<br />

++,<br />

simples para tratar o problema. Como o N 2<br />

possui velocida<strong>de</strong> térmica, po<strong>de</strong>mos facilmente<br />

i<strong>de</strong>ntificá-lo, pois é nesta faixa que a<br />

metodologia <strong>de</strong>senvolvida é mais precisa.<br />

Referencias:<br />

Figura: Frações <strong>de</strong> íons coletados em função do tempo <strong>de</strong><br />

retardo. A molécula mãe, N 2<br />

q+<br />

tem distribuição <strong>de</strong> energia<br />

<strong>de</strong> Maxwell-Boltzmann (MB). O fragmento N + tem uma<br />

função distribuição <strong>de</strong> velocida<strong>de</strong>s <strong>de</strong>pen<strong>de</strong>nte do canal <strong>de</strong><br />

fragmentação.<br />

[1] T.D. Märk, J. Chem. Phys., vol 23, n. 9 (1975)<br />

[2] D Mathur et al., J. Phys. B At. Mol, Opt. Phys. 28<br />

3415-3426. (1995)<br />

[3] Shiki et al, J. Mass Spectrom., 43: 1686–1691<br />

(2008)<br />

47 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Perda <strong>de</strong> energia <strong>de</strong> elétrons em água<br />

André C. Tavares 1 , E. C. Montenegro 2<br />

1 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Pontifícia Universida<strong>de</strong> Católica do Rio <strong>de</strong> Janeiro, CP. 38071, Rio <strong>de</strong><br />

Janeiro, RJ, 22452-970, Brasil<br />

2 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, CP. 6852, Rio <strong>de</strong> Janeiro, RJ, 21945-970,<br />

Brasil<br />

email address corresponding author: andre.tavares@vdg.fis.puc-rio.br<br />

O conhecimento da perda <strong>de</strong><br />

energia <strong>de</strong> elétrons em água é fundamental<br />

para <strong>de</strong>terminar os efeitos indiretos <strong>de</strong><br />

praticamente todos os tipos <strong>de</strong> radiações<br />

ionizantes em tecidos biológicos.<br />

Apesar disso, não existem medidas<br />

diretas <strong>de</strong> perda <strong>de</strong> energia em água para<br />

energias <strong>de</strong> impacto nas cercanias do pico<br />

<strong>de</strong> Bragg, principalmente porque o alcance<br />

<strong>de</strong>sses elétrons em água liquida é muito<br />

pequeno, abaixo <strong>de</strong> 50 nm para energias<br />

menores que 1 keV, conforme mostrado na<br />

fig. 1 [1].<br />

associadas à formação dos fragmentos<br />

H 2 O + , OH + , O + e H + . Para cada fragmento<br />

produzido, existem orbitais específicos<br />

responsáveis pela quebra molecular. Po<strong>de</strong>se<br />

então relacionar a quantida<strong>de</strong> <strong>de</strong> energia<br />

<strong>de</strong>positada por elétron inci<strong>de</strong>nte, em um<br />

<strong>de</strong>terminado orbital, com a quantida<strong>de</strong> <strong>de</strong><br />

fragmentos produzidos pela ionização <strong>de</strong>ste<br />

orbital.<br />

Figura 1. Variação do alcance <strong>de</strong> penetração<br />

do elétron em água líquida como função da<br />

energia inicial do elétron entre 0,2 eV a 150<br />

keV. [1]<br />

A maioria dos valores disponíveis<br />

na literatura para a perda <strong>de</strong> energia nessa<br />

região é obtida através <strong>de</strong> cálculos [ver, por<br />

exemplo, 2 e 3] e somente nos últimos<br />

anos foram <strong>de</strong>spendidos esforços para a<br />

obtenção <strong>de</strong> medidas <strong>de</strong> transferência <strong>de</strong><br />

energia em vapor <strong>de</strong> água [4]. Neste<br />

trabalho, apresentamos uma nova<br />

abordagem para obter a transferência <strong>de</strong><br />

energia <strong>de</strong> elétrons com energias na região<br />

do pico <strong>de</strong> Bragg, para os diversos orbitais<br />

moleculares da água, utilizando os<br />

resultados <strong>de</strong> medidas da produção <strong>de</strong><br />

fragmentos originários da ionização da<br />

molécula. A partir dos valores obtidos <strong>de</strong><br />

perda <strong>de</strong> energia por orbital, é calculada a<br />

perda <strong>de</strong> energia total além das parciais<br />

Figura 2. Comparação entre os resultados <strong>de</strong><br />

perda <strong>de</strong> energia obtidos através do método<br />

proposto, consi<strong>de</strong>rando vários conjuntos <strong>de</strong><br />

dados experimentais para a fragmentação, e<br />

resultados teóricos.<br />

Nosso método permite, pela<br />

primeira vez, uma avaliação abrangente <strong>de</strong><br />

todos os dados experimentais disponíveis<br />

na literatura sobre a fragmentação da<br />

molécula <strong>de</strong> H 2 O, mostrando que existem<br />

gran<strong>de</strong>s discrepâncias entre a transferência<br />

<strong>de</strong> energia obtida através das medidas com<br />

vapor <strong>de</strong> água e os diversos cálculos <strong>de</strong><br />

perda <strong>de</strong> energia, principalmente para<br />

energias <strong>de</strong> impacto na região e abaixo do<br />

pico <strong>de</strong> Bragg, fig. 2.<br />

Referencias<br />

[1] Meesungnoen, J. and Mankhetkon, S.,<br />

Radiation Research 158 (2002) 657.<br />

[2] La Verne, J.A. and Mozum<strong>de</strong>r, A.,<br />

Radiation Research 96 (1983) 219.<br />

[3] NIST database http://physics.nist.gov/cgi<br />

bin/Star/e_table.pl<br />

[4] Muñoz, A. et al., Phys. Rev. A 76<br />

(2007) 052707.<br />

48 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Plasmon excitation in single walled carbon nanotubes by charged particles<br />

S. Segui 1 , D. J. Mowbray 2 , 3 , J. L. Gervasoni 1 , Z. L. Mišković 2 and N. R. Arista 1<br />

1<br />

Centro Atómico Bariloche (CNEA) 8400 S.C. <strong>de</strong> Bariloche, Río Negro, Argentina<br />

2<br />

Department of Applied Mathematics, Univ. of Waterloo, Waterloo, Ontario, Canada<br />

3<br />

Nano-Bio Spectroscopy Group, Depto. <strong>Física</strong> <strong>de</strong> Materiales, Univ. País Vasco, San Sebastián, Spain<br />

email address corresponding author: segui@cab.cnea.gov.ar<br />

The excitation of plasmons in singleand<br />

multi-walled nanotubes has been the<br />

object of several experimental and theoretical<br />

studies in recent years, since it plays an<br />

important role in a variety of interesting<br />

phenomena, such as probing the nanotube<br />

response by EELS, formation of electron<br />

image states, etc.<br />

Due to the geometry of single-walled<br />

nanotubes, and the characteristics of the<br />

electronic structure of carbonaceous<br />

nanostructures (with σ and π orbitals), the<br />

excitation of plasmons is conveniently<br />

<strong>de</strong>scribed by a two-fluids formulation of the<br />

hydrodynamic mo<strong>de</strong>l. In this formulation, σ<br />

and π electrons are treated as separate twodimensional<br />

fluids constrained to the same<br />

cylindrical surface. The electrostatic<br />

interaction between the fluids gives rise to<br />

splitting of the plasmon frequencies into two<br />

groups of distinct energies.<br />

In this work we present a quantization<br />

of the two-fluids hydrodynamic mo<strong>de</strong>l [1].<br />

This procedure allows us to obtain the<br />

average number of plasmons excited by a fast<br />

charged particle impinging on the nanotube at<br />

different positions. We also calculate several<br />

other quantities, such as the stopping power,<br />

energy loss spectra and total energy loss,<br />

which could be compared with experimental<br />

measurements. We study the effect of various<br />

parameters, such as the velocity of the<br />

inci<strong>de</strong>nt particle, the impact parameter, the<br />

inclination of the trajectory with respect to<br />

the tube’s axis, etc. Figure 1 shows the total<br />

energy loss suffered by a proton passing near<br />

a 7 Å radius nanotube, as a function of the<br />

inci<strong>de</strong>nt velocity v, for (a) perpendicular and<br />

(b) oblique trajectory, and different minimum<br />

distances from the tube's axis.<br />

Figure 1. Total energy loss E l o s s versus<br />

speed v for proton trajectory passing near<br />

a SWCNT of radius R=7 Å with an angle<br />

relative to the tube's axis of (a) 90° and<br />

(b) 45°, at the minimum separation of r m i n<br />

= 7.5 Å (top), 8.0, 8.5, 9.0, 9.5, 10.0, and<br />

10.5 Å (bottom).<br />

References<br />

[1] D. J. Mowbray, S. Segui, J. L. Gervasoni, Z.<br />

L. Mišković and N. R. Arista, Phys. Rev. B. 82,<br />

035405 (2010).<br />

49 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Processos <strong>de</strong> Troca <strong>de</strong> Carga na Ionização Múltipla <strong>de</strong> Gases Nobres por<br />

Íons <strong>de</strong> C 3 +<br />

G. M. Sigaud 1 , A. C. F. Santos 2 , M. M. Sant’Anna 2 , W. S. Melo 3 , E. C. Montenegro 2<br />

1 <strong>Departamento</strong>. <strong>de</strong> <strong>Física</strong>, Pontifícia Universida<strong>de</strong> Católica do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro, 22453-900, Brasil<br />

2 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro, 21941-972,Brasil<br />

3 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong> Juiz <strong>de</strong> Fora, 36036-330, Brasil<br />

En<strong>de</strong>reço <strong>de</strong> e-mail do autor para correspondência: gms@vdg.fis.puc-rio.br<br />

Seções <strong>de</strong> choque absolutas para a perda<br />

eletrônica do projétil, a captura eletrônica<br />

pelo projétil e a ionização múltipla do alvo<br />

foram medidas em colisões entre íons <strong>de</strong> carbono<br />

triplamente ionizados e gases nobres,<br />

em função dos estados <strong>de</strong> carga finais do projétil<br />

e do alvo, para energias entre 1,3 e 3,5<br />

MeV [1]. Os dados foram comparados com<br />

outros resultados experimentais semelhantes<br />

existentes na literatura para diversos projéteis.<br />

Foram realizados cálculos a perda eletrônica<br />

simples do projétil acompanhada pela<br />

ionização múltipla do alvo para o modo <strong>de</strong><br />

blindagem (screening), usando tanto uma<br />

versão estendida do Mo<strong>de</strong>lo <strong>de</strong> Impulso Clássico<br />

<strong>de</strong> Colisões Livres (FCM) [2] quanto a<br />

Aproximação <strong>de</strong> Born <strong>de</strong> Ondas Planas (PW-<br />

BA), e para o modo <strong>de</strong> antiblindagem (antiscreening)<br />

<strong>de</strong>ntro da PWBA [3]. A <strong>de</strong>pendência<br />

do número <strong>de</strong> elétrons ativos para o antiscreening<br />

com a energia da colisão foi <strong>de</strong>scrita<br />

por uma função simples, que é “universal” no<br />

que diz respeito aos alvos, mas que, em princípio,<br />

<strong>de</strong>pen<strong>de</strong> do projétil consi<strong>de</strong>rado. Foi<br />

<strong>de</strong>senvolvido um método, <strong>de</strong>ntro da Aproximação<br />

<strong>de</strong> Impulso [4], para <strong>de</strong>terminar o número<br />

<strong>de</strong> elétrons ativos para o antiscreening<br />

em cada subcamada do alvo, no limite <strong>de</strong> altas<br />

velocida<strong>de</strong>s.<br />

No caso da captura eletrônica, a análise<br />

da <strong>de</strong>pendência dos processos <strong>de</strong> captura<br />

simples e <strong>de</strong> ionização com transferência com<br />

a carga do projétil mostrou que, no caso do<br />

alvo <strong>de</strong> He, projéteis <strong>de</strong>sprovidos <strong>de</strong> elétrons<br />

e projéteis carregando elétrons, mas com o<br />

mesmo estado <strong>de</strong> carga, apresentam seções <strong>de</strong><br />

choque muito semelhantes. Este fato indica<br />

que, nestes processos para o He, íons vestidos<br />

se comportam como partículas carregadas<br />

sem estrutura.<br />

Um comportamento semelhante ao da<br />

captura simples foi também observado na ionização<br />

simples pura do átomo <strong>de</strong> He por<br />

projéteis com diferentes estados <strong>de</strong> carga.<br />

Para os <strong>de</strong>mais gases nobres, este comportamento<br />

foi observado apenas para projéteis<br />

simplesmente carregados.<br />

Mostrou-se, ainda, que a <strong>de</strong>pendência<br />

das seções <strong>de</strong> choque <strong>de</strong> ionização simples<br />

pura do alvo com o quadrado da carga do<br />

projétil, predita por mo<strong>de</strong>los <strong>de</strong> primeira or<strong>de</strong>m,<br />

só é válida no regime <strong>de</strong> altas velocida<strong>de</strong>s.<br />

Para colisões mais lentas, a captura eletrônica<br />

pelo projétil se torna mais relevante e<br />

compete com a ionização simples pura do<br />

alvo. Tal fato se torna ainda mais importante<br />

à medida que a carga do projétil aumenta.<br />

Referências<br />

[1] A. C. F. Santos et al., Phys. Rev. A 82,<br />

012704 (2010).<br />

[2] G. M. Sigaud, J. Phys. B 41, 015205 (2008).<br />

[3] E. C. Montenegro e W. E. Meyerhof, Phys.<br />

Rev. A 43, 2289 (1991).<br />

[4] E. C. Montenegro e T. J. M. Zouros, Phys.<br />

Rev. A 50, 3186 (1994).<br />

50 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Prospects for a new synchrotron light source in Brazil<br />

Gustavo M. Azevedo 1<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brasil<br />

corresponding author e-mail: gustavo.azevedo@ufrgs.br<br />

The Brazilian Synchrotron Light Source<br />

(LNLS) is in operation since 1997. More than a<br />

thousand scientists, mainly from Brazil and Latin<br />

America have open access to the LNLS facilities<br />

every year. Over the last 13 years, the storage<br />

ring and beam lines have been continuously<br />

improved and their operational parameters greatly<br />

overcame the originally planned performance.<br />

Worldwi<strong>de</strong>, remarkable advances in several scientific<br />

areas, such as structural molecular biology,<br />

nanotechnology and new materials were<br />

possible due to the wi<strong>de</strong>spread availability of<br />

synchrotron light sources. Many new facilities<br />

have been recently commissioned or upgra<strong>de</strong>d<br />

and new ones are being planned around the<br />

world.<br />

The LNLS storage ring is now reaching<br />

its physical limits for upgra<strong>de</strong>s and improvements.<br />

To keep competitiveness in this area, the<br />

LNLS Users community has pointed out the necessity<br />

of a new, high performance light source,<br />

with a brighter beam and broa<strong>de</strong>r energy range<br />

spectrum. In 2009, the <strong>de</strong>cision to build a new<br />

3 rd generation light source in Brazil was ma<strong>de</strong>.<br />

The project is now in its first stage (conceptual<br />

project) and its funding is in discussion with the<br />

Fe<strong>de</strong>ral Government and Science Funding<br />

Agencies.<br />

the following, some of the new possibilities<br />

opened up by the new facility in high resolution<br />

x-ray spectroscopy, x-ray scattering, timeresolved,<br />

in situ and in operando mo<strong>de</strong> experiments<br />

and experiments un<strong>de</strong>r extreme conditions<br />

will be illustrated. Finally, I will conclu<strong>de</strong><br />

presenting the conceptual project gui<strong>de</strong>lines,<br />

compare the expected performance parameters<br />

with existing and planned facilities<br />

around the world and present <strong>de</strong>tails on the construction<br />

costs and schedule.<br />

Figure 1. The LNLS experimental hall.<br />

In this talk, an overview of the history<br />

and current <strong>de</strong>velopment of Synchrotron Radiation<br />

Technology in Brazil will be presented. I<br />

will <strong>de</strong>tail the limitations of our light source,<br />

emphasizing the scientific challenges to be faced<br />

in the near future in important areas such as infectious<br />

and plant diseases (structural molecular<br />

biology), catalysis and oil industry, energy generation<br />

from “green” sources , geochemistry,<br />

environmental sciences and materials science. In<br />

51 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Quantum-mechanical and classical cross sections for ionization and capture<br />

induced by light ions on DNA and RNA nucleobases<br />

C. Champion 1 , H. Lekadir 1 , M. E. Galassi 2 , O. Fojón 2 , R. D. Rivarola 2 , and J. Hanssen 1<br />

1 Laboratoire <strong>de</strong> Physique Moléculaire et <strong>de</strong>s Collisions, Université Paul Verlaine-Metz, Metz, France<br />

2 Instituto <strong>de</strong> <strong>Física</strong> Rosario, CONICET, <strong>Universidad</strong> Nacional <strong>de</strong> Rosario, Rosario, Argentina<br />

Corresponding author: champion@univ-metz.fr<br />

DNA lesions and more particularly those<br />

involved in clustered damages are nowadays<br />

consi<strong>de</strong>red of prime importance for <strong>de</strong>scribing<br />

the post-irradiation cellular survival [1]. In<strong>de</strong>ed,<br />

these complex radio-damages may induce critical<br />

DNA lesions like double strand breaks<br />

whose relevance has been clearly i<strong>de</strong>ntified in<br />

the radio-induced cellular <strong>de</strong>ath process [2]. Un<strong>de</strong>r<br />

these conditions, further theoretical mo<strong>de</strong>ls<br />

as well as experimental data on ion-induced collisions<br />

at the DNA level remain still today crucial.<br />

Until recently, measurements on such biological<br />

systems remain scarce and are essentially<br />

limited to studies of mechanisms of radiation<br />

damage only explored at the mesoscopic scale<br />

and not at the single molecule (nanometric) one.<br />

In this context, ionization and fragmentation of<br />

isolated gas-phase nucleobases have received<br />

only little interest and were essentially focused<br />

on the cross section <strong>de</strong>termination for electroninduced<br />

collisions. Ion-induced collisions have<br />

rarely been reported in the literature and to the<br />

best of our knowledge, only few works exist.<br />

Thus, Schalthölter and co-workers have extensively<br />

studied the fragmentation mo<strong>de</strong>s induced<br />

by Xe q+ ions (q = 5-25) [3] and C q+ ions (q = 1-<br />

6) [4] on isolated nucleobases and more recently<br />

on nucleobase clusters [5]. Proton-induced collisions<br />

on DNA and RNA bases have been also<br />

experimentally investigated by many groups. Let<br />

us cite for example the work of Coupier et al. [6]<br />

where ionization and fragmentation of uracil<br />

molecules induced by protons were studied by<br />

means of coinci<strong>de</strong>nce techniques. More recently,<br />

Moretto-Capelle and co-workers have studied<br />

the ionization and fragmentation of isolated<br />

DNA/RNA bases and uridine nucleosi<strong>de</strong> induced<br />

by protons [7]. Finally, note that very recently<br />

Alvarado et al. [8] have studied collisions of<br />

slow light ions, namely, keV-H + , He 2+ and C +<br />

ions with DNA building blocks.<br />

On the theoretical si<strong>de</strong>, many attempts<br />

were proposed for predicting total ionization<br />

cross sections of simple biological molecules<br />

including DNA/RNA bases. Among them, we<br />

essentially find in the literature two major approaches<br />

<strong>de</strong>dicated to electron-induced collisions,<br />

namely, that proposed by Deutsch et al.<br />

[9] and commonly used by many groups and that<br />

based on the Binary-Encounter-Bethe (BEB)<br />

theory initially proposed by Kim and Rudd [10].<br />

Ion-induced collisions on DNA bases have been<br />

less studied and we essentially find two approaches<br />

in the literature: a first (semi)-classical<br />

one generally based on classical-trajectory<br />

Monte Carlo (CTMC) type approaches, and a<br />

second one <strong>de</strong>veloped in the quantummechanical<br />

framework and limited - for the major<br />

part of the existing studies - to the use of the<br />

first Born approximation. Let us first illustrate<br />

the “semi-classical group” by the study of Bacchus-Montabonel<br />

et al. [11] where C q+ (q = 2-4)<br />

induced collisions with uracil have been investigated<br />

pointing out the strong <strong>de</strong>pen<strong>de</strong>nce of the<br />

charge-transfer process with respect to the molecular<br />

target orientation. In the same kind of<br />

approach, we have recently applied a relatively<br />

simple classical mo<strong>de</strong>l which combines a homema<strong>de</strong><br />

CTMC co<strong>de</strong> with a classical over-barrier<br />

(COB) criteria to estimate the total cross sec-<br />

52 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

tions of single electron loss processes (capture<br />

and ionization) for collisions between multiply<br />

charged ions, namely, H + , He 2+ and C 6+ (with<br />

impact energies ranging from 10 keV/amu to<br />

10 MeV/amu) and DNA/RNA bases [12-13]. To<br />

the best of our knowledge the second group of<br />

“quantum mechanical approaches” is only represented<br />

by the recent work of Dal Cappello et al.<br />

[14] where differential and total ionization cross<br />

sections have been reported for protons impinging<br />

on cytosine molecules. However, the obtained<br />

total cross sections exhibited large discrepancies<br />

in magnitu<strong>de</strong> as well as in shape with<br />

our recent CTMC predictions [13], these later<br />

showing nevertheless a very good agreement<br />

with semi-classical results obtained by using the<br />

simple Rutherford formula proposed by Stolterfoht<br />

et al. [15].<br />

In the present work, quantum-mechanical<br />

and classical calculations of doubly and singly<br />

differential as well as total cross sections are<br />

presented for ionization and capture processes<br />

induced by proton, α-particle and bare ion<br />

carbon beams impacting on a<strong>de</strong>nine, cytosine,<br />

thymine and guanine bases.<br />

TCS (10 -16 cm 2 )<br />

1 0 2<br />

1 0 1<br />

1 0 0<br />

C B 1<br />

1 0 -1<br />

a ) H +<br />

+ A d e n in e<br />

C D W - E IS<br />

C T M C - C O B<br />

e x p e r im e n ta l<br />

1 0 2 c ) H + + T h ym in e<br />

b ) H +<br />

+ C y to s in e<br />

d ) H +<br />

+ G u a n in e<br />

References<br />

[1] A. Yokoya et al., Radiat. Phys. Chem. 77,<br />

1280 (2008).<br />

[2] H. Nikjoo and L. Lindborg, Phys. Med. Biol.<br />

55, R65 (2010).<br />

[3] J. <strong>de</strong> Vries et al., Phys. Rev. Lett. 91, 053401<br />

(2003).<br />

[4] J. <strong>de</strong> Vries et al., Eur. Phys. J. D 24, 161<br />

(2003).<br />

[5] T. Schlathölter et al., Chem. Phys. Chem. 7,<br />

2339 (2006).<br />

[6] B. Coupier et al., Eur. Phys. J. D 20, 459<br />

(2002).<br />

[7] A. Le Pa<strong>de</strong>llec et al., J. Phys: Conf. Series<br />

101, 012007 (2008).<br />

[8] F. Alvadaro et al., J. Chem. Phys. 127,<br />

034301 (2007).<br />

[9] H. Deutsch et al., Int. J. Mass. Spectrom.<br />

197, 37 (2000).<br />

[10] Y. K. Kim and M. E. Rudd, Phys. Rev. A<br />

50, 3954 (1994).<br />

[11] M. C. Bacchus-Montabonel et al., Phys.<br />

Rev. A 72, 052706 (2005).<br />

[12] I. Abbas et al., Phys. Med. Biol. 53, N41<br />

(2008).<br />

[13] H. Lekadir et al., Phys. Rev. A 79, 062710.<br />

[14] C. Dal Cappello et al., Phys. Rev. A 78,<br />

042702 (2008).<br />

[15] N. Stolterforht, R. D. DuBois and R. D.<br />

Rivarola in Electron emission in heavy ion-atom<br />

collisions, edited by G. Ecker, P. Lambropoulos,<br />

I. I. Sobel’man, and H. Walther (Springer series<br />

on Atoms and Plasma, Berlin, 1997).<br />

1 0 1<br />

1 0 0<br />

1 0 -1<br />

1 0 1 1 0 2 1 0 3 1 0 4 1 0 15<br />

1 0 2 1 0 3 1 0 4 1 0 5<br />

In c id e n t p ro to n e n e rg y (k e V /u )<br />

Figure 1. Total ionization cross sections (10 -16 cm 2 )<br />

for the four DNA bases here investigated, namely,<br />

a<strong>de</strong>nine (panel a), cytosine (panel b), thymine (panel<br />

c), and guanine (panel d) impacted by protons.<br />

53 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Secondary Ions emission from Alkanethiol-SAMs due to highly charged ions<br />

bombardment<br />

M Flores 1 , V. Esaulov 2 and Y. Yamazaki 3<br />

1 Depto. <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> ciencias físicas y matemáticas, <strong>Universidad</strong> <strong>de</strong> Chile, casilla 110-V, Santiago, Chile.<br />

2 Laboratoire <strong>de</strong>s Collisions Atomiques et Moleculaires, Universite Paris-Sud, Orsay Ce<strong>de</strong>x, France.<br />

3 Atomic Physics Laboratory, Riken Institute, Wako, Saitama, Japan.<br />

email address corresponding author: mflorescarra@ing.uchile.cl<br />

Self-assembled monolayers (SAMs) are<br />

or<strong>de</strong>red molecular assemblies formed by the adsorption<br />

of an active surfactant on a solid surface.<br />

SAMs provi<strong>de</strong> a convenient, flexible, and<br />

simple system with which to tailor the interfacial<br />

properties of metal, metal oxi<strong>de</strong>s and semiconductors<br />

[1]. The alkanethiols are a common type<br />

of molecules used to build SAMs.<br />

Several techniques have been used to<br />

study and characterize SAMs, for example SPM,<br />

optical and ion spectroscopies. In the latter case,<br />

the interaction of ions with SAM surfaces leads<br />

to the sputtering of molecules from the surface,<br />

with the <strong>de</strong>tection of such molecules giving information<br />

on both the chemical and structural<br />

composition of the SAM. For this reason much<br />

experimental and theoretical effort has been directed<br />

towards ion-SAM collisions. Special case<br />

is the highly charged ions (HCI).<br />

For slow HCI, the potential energy stored<br />

in the projectile can far exceed its kinetic energy.<br />

In contrast to the kinetic sputtering process,<br />

which is due to momentum transfer from the<br />

ion to the surface, HCI may also transfer significant<br />

potential energy, removing ions and molecules<br />

from the surface in a process called potential<br />

sputtering.<br />

SAMs of the alkanethiol molecules Un<strong>de</strong>canethiol<br />

(UDT), HS(CH 2 ) 10 CH 3 , and Do<strong>de</strong>canethiol<br />

(DDT), HS(CH 2 ) 11 CH 3 , were prepared<br />

on atomically flat Au(111) which was <strong>de</strong>posited<br />

as a thin film on freshly cleaved mica.<br />

The quality of the SAMs was confirmed by<br />

STM observations [2]. The samples were bombardment<br />

with Ar q+ ions.<br />

The q-<strong>de</strong>pen<strong>de</strong>nce of the proton sputtering<br />

yield from hydrogen contaminated/covered surfaces<br />

has been found to follow a power law <strong>de</strong>pen<strong>de</strong>nce<br />

and this was explained by the classical<br />

over barrier mo<strong>de</strong>l. In this mo<strong>de</strong>l a HCI approaching<br />

an atom/molecule induces multielectron<br />

transfer. In the case of our SAM it<br />

would induce electron transfer from the alkanethiol<br />

molecule terminal functional group.<br />

Removal of two electrons from the most external<br />

part of the SAM, would create a doubly charged<br />

chemical bond (C-H) 2+ . Because the molecule is<br />

a poor conductor, the reneutralization probability<br />

in the molecular layer should be lower than<br />

on a metal, and a proton may be released in the<br />

bond direction by Coulomb repulsion [3]. In<br />

general, in the above mo<strong>de</strong>l the proton yield is<br />

then <strong>de</strong>pen<strong>de</strong>nt on the probabilities of removal<br />

of the first and second electron and on reneutralization<br />

as the ion moves away from the surface,<br />

given a power law, Fig 1(a,b), and in the<br />

case un<strong>de</strong>r study the probabilities are strong <strong>de</strong>pen<strong>de</strong>nt<br />

of the orientation of the terminal functional<br />

group, Fig. 1(c,d).<br />

Figure 1. Proton Yields from (a)UDT and (b)DDT<br />

un<strong>de</strong>r bombardment with Ar q+ ions. Top surface<br />

scheme of the SAMs corresponding to (c)UDT and<br />

(d)DDT.<br />

References<br />

[1] Love et al, Chem. Rev. 105 (2005) 1103.<br />

[2] O’Rourke et al, Appl. Phys. Lett., submitted.<br />

[3] Flores et al, Phys. Rev. A79 (2009) 022902.<br />

54 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Structural characterization of Pb nanoislands in SiO 2 /Si interface synthesized<br />

by ion implantation through MEIS analysis<br />

D. F. Sanchez 1 , F. P. Luce 2 , Z. E. Fabrim 1 , M. A. Sortica 1 , P. F. P. Fichtner 1 and P. L.<br />

Gran<strong>de</strong> 1<br />

1 Institute of Physics, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Porto Alegre, Brazil<br />

email address corresponding author: dario.f.sanchez@gmail.com<br />

Recently, the Medium Energy Ion Scattering<br />

(MEIS) technique has been used as an<br />

additional tool for characterization of<br />

nanoparticles (NPs), where basically their<br />

shape, composition, size distribution,<br />

stoichiometry and the <strong>de</strong>termination of <strong>de</strong>pth<br />

distributions of different elements in a single<br />

NP have been successfully obtained. We have<br />

<strong>de</strong>veloped a Monte Carlo simulation and fitting<br />

software, the PowerMeis [1], that consi<strong>de</strong>rs<br />

any geometry, size distribution, <strong>de</strong>nsity<br />

of the nanostructures and also the asymmetry<br />

of the energy loss-distribution. In this<br />

work we investigate buried Pb NPs synthesized<br />

by ion implantation on SiO 2 /Si thin<br />

film, with low temperature and long aging<br />

time treatments followed by a high temperature<br />

thermal annealing. This process [2] leads<br />

to the formation of a <strong>de</strong>nse 2D NPs array located<br />

at the SiO 2 /Si interface, as shown in<br />

Fig. 1. Through the 2D MEIS spectra (energy<br />

and angle), we have studied the nanostructure<br />

geometry, number <strong>de</strong>nsity and mean NP size<br />

of such system. The present results are compared<br />

to transmission electron microscopy<br />

(TEM) measurements.<br />

Figure 1. (a) HRTEM micrograph from a [011] oriented<br />

sample presenting a cross-section view of the<br />

NPs partially embed<strong>de</strong>d in the Si matrix; (b) Brightfield<br />

two-beam image, un<strong>de</strong>rfocus, <strong>de</strong>monstrating<br />

that the NPs are exclusively located at the SiO 2 /Si<br />

(100) interface. (c) Plan-view image (bright field, in<br />

focus) close to the (001) zone axis, showing square<br />

based NPs preferentially aligned parallel to the (011)<br />

planes of the matrix.<br />

In Fig. 2 is compared the experimental<br />

MEIS spectra to the simulation performed by<br />

the PowerMeis software using the NP geometrical<br />

shape <strong>de</strong>scribed in Fig. 3 and number<br />

<strong>de</strong>nsity of 3.5×10 11 cm -2 , close to<br />

55 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

3.75×10 11 cm -2 , the value from the TEM planview<br />

images.<br />

images can be also observed that the PF<br />

shape is in better agreement.<br />

Figure 2. Experimental and simulated 2D MEIS<br />

spectra.<br />

To investigate the geometrical shape of<br />

the NPs, the system was mo<strong>de</strong>lled in two different<br />

ways: i) as a hemisphere in the SiO 2<br />

si<strong>de</strong> on a pyramidal frustum in the Si matrix<br />

si<strong>de</strong> (further referred as PF) and ii) as a<br />

sphere, half in the SiO 2 and half in the Si matrix.<br />

The parameters of the PF shape are <strong>de</strong>scribed<br />

in Fig. 3 and the variable parameter<br />

of the spherical shape is the radius.<br />

To <strong>de</strong>terminate the size and number<br />

<strong>de</strong>nsity of NPs, it were performed simulations<br />

with several number <strong>de</strong>nsities for booth<br />

geometrical mo<strong>de</strong>ls, and their the radius was<br />

adjusted in or<strong>de</strong>r to keep the same Pb per<br />

area, namely (Nt) Pb,MEIS = 2.26×10 15 atoms∙cm<br />

-2 , value obtained by the MEIS measurement,<br />

which is close to the one obtained<br />

by auxiliary RBS measurements. The number<br />

<strong>de</strong>nsity obtained for the PF shape is<br />

(4.2±1.6)×10 11 cm -2 , and, (5.3±1.7)×10 11 cm -2<br />

consi<strong>de</strong>ring the spherical shape. These values<br />

of <strong>de</strong>nsities correspond to the values of radii<br />

of (3.7±0.5)nm for PF shape and (3.2±0.4)nm<br />

for spherical shape. The result for PF shape<br />

agrees better to the value obtained by TEM,<br />

namely radius of (4±1) nm and number <strong>de</strong>nsity<br />

of 3.7×10 11 cm -2 . Through the HRTEM<br />

Figure 2. The PF geometrical shape mo<strong>de</strong>l is <strong>de</strong>scribed<br />

by three parameters: the radius, the angle θ<br />

and the <strong>de</strong>pth h. The NPs anisotropy observed in the<br />

TEM micrographs was taken into account, and is<br />

related to (110) and (010) Si plane direction. Above,<br />

(a) a lateral perspective at (110) and (c) (010) direction<br />

of Si substrate, (b) seen from above and (d) from<br />

below.<br />

Here we have shown the capability of<br />

MEIS analysis to characterize buried NPs,<br />

which opens new perspectives for nanostructure<br />

analysis in situ that can be of great interest.<br />

References<br />

[1] M. A. Sortica, P. L. Gran<strong>de</strong>, G. Machado, L.<br />

Miotti, Journal of Applied Physics 106, 114320<br />

(2009).<br />

[2] F. Kremer, J. M. J. Lopes, F. C. Zawislak,<br />

and P. F. P. Fichtner, Appl. Phys. Lett. 91,<br />

083102 (2007).<br />

56 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Supression of binary and recoil peaks in ionization of H 2 by electron impact<br />

Fojón O A, Stia C R and Rivarola R D<br />

Instituto <strong>de</strong> <strong>Física</strong> Rosario (CONICET-UNR), Pellegrini 250 (2000) Rosario, Argentina<br />

email address corresponding author: fojon@ifir-conicet.gov.ar<br />

We study theoretically the single<br />

ionization of H 2 molecules by fast electron<br />

impact. Our aim is to show that interferences<br />

coming from the coherent emission from the<br />

molecular centers may produce unexpected<br />

consequences in the physical features of the<br />

observables of the reaction.<br />

Interference phenomena have been of<br />

crucial importance in the foundation of quantum<br />

mechanics. Analogies with the Young two-slit<br />

experiment played a fundamental role in the<br />

<strong>de</strong>scription and comprehension of the dual<br />

nature of quantum objects such as electrons. A<br />

fascinating alternative way of observing<br />

interference patterns is provi<strong>de</strong>d by the electron<br />

spectra resulting from the ionization of<br />

molecular diatomic targets. In the sixties, it was<br />

suggested that the coherent emission from these<br />

molecules may give rise to specific oscillations<br />

in the differential cross sections of the ejected<br />

electrons, the two molecular centers acting as the<br />

analogues of the two slits in the Young<br />

experiment [1]. However, this kind of<br />

oscillations was measured for the very first time<br />

with fast krypton ions impacting on H 2 [2]. In<br />

previous works, we have shown that these<br />

interference patterns may be observed also for<br />

electron impact [3-7].<br />

We focus here on electron emission at<br />

high impact energies from fixed-in-space H 2<br />

molecules impacted by fast electrons. We study<br />

transitions at fixed equilibrium internuclear<br />

distance from the ground state of H 2 to the<br />

ground (gera<strong>de</strong>) and first excited (ungera<strong>de</strong>)<br />

state of the H +<br />

2 residual target. We consi<strong>de</strong>r<br />

coplanar geometries in which the inci<strong>de</strong>nt,<br />

scattered and ejected momenta lie all in the same<br />

plane. In addition, we analyze asymmetric<br />

kinematics situations in which one slow and one<br />

fast electron are <strong>de</strong>tected in the final channel.<br />

We employ a first or<strong>de</strong>r mo<strong>de</strong>l obtained<br />

in the framework of a two-effective center<br />

approximation (TEC). The i<strong>de</strong>a exploited in the<br />

TEC mo<strong>de</strong>l is that although electrons in the<br />

ground state of H 2 are shared by both nuclei, the<br />

electronic <strong>de</strong>nsity is peaked at the nuclei<br />

positions. Then, it is argued that ejection occurs<br />

in the neighbourhoods of one nucleus while the<br />

nuclear charge of the other one is screened<br />

completely by the non ionized electron.<br />

Consequently, a unique final effective<br />

continuum function satisfying the correct<br />

asymptotic long range conditions is used to<br />

represent the ejected electron in the final channel<br />

of the reaction. This mo<strong>de</strong>l gives reasonably<br />

good agreement with experiments [8]<br />

constituting thus a good approximation to the<br />

final state of the reaction in which three charged<br />

bodies interact through Coulomb potentials. In<br />

or<strong>de</strong>r to take into account the complexities of<br />

this interaction in an approximate way, one can<br />

take a more elaborated final function such as the<br />

one used in Ref. [9]. This function <strong>de</strong>scribes the<br />

final interactions through a product of three<br />

Coulomb functions associated to the three twobody<br />

pairs present in the final channel. The<br />

approximation obtained using this function for<br />

molecular targets gives an excellent agreement<br />

with experiments [10].<br />

We show here for the first time that un<strong>de</strong>r<br />

<strong>de</strong>finite conditions, <strong>de</strong>structive interferences<br />

coming from the coherent emission from both<br />

molecular centers provoke the supression of the<br />

binary peak in the multiple differential cross<br />

sections corresponding to transitions leading to<br />

final ground state of H 2 + . This is a surprising<br />

result as is well known that ejection is classically<br />

more likely to be produced in the binary region.<br />

Moreover, this finding is shocking as so far and<br />

up to our knowledge the presence of the binary<br />

peak was assumed for every ionization reaction<br />

with either atomic or molecular targets [11].<br />

57 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Nonetheless, we <strong>de</strong>monstrate proceeding further<br />

that not only the binary but also the recoil peak<br />

may be supressed when transitions involve the<br />

first excited (ungera<strong>de</strong>) state of the residual<br />

target. A similar effect was discovered for<br />

emission of photoelectrons: at <strong>de</strong>finite photon<br />

energies, electron ejection in the classical<br />

direction given by the polarization vector is<br />

forbid<strong>de</strong>n for molecules aligned with the<br />

polarization vector [12,13].<br />

Unfortunately, no experiments with<br />

oriented molecules are available at present to<br />

contrast with our predictions. Notwithstanding,<br />

in the age of the COLTRIMS and reaction<br />

microscopes [14] is possible to envisage in the<br />

near future the coming of experimental work to<br />

corroborate (or not) our findings.<br />

[11] O. Al-Hagan et al, Nature Physics 5, 59<br />

(2009).<br />

[12] J. Fernán<strong>de</strong>z, O. Fojón, A. Palacios and F.<br />

Martín, Phys. Rev. Lett. 98, 043005 (2007).<br />

[13] J. Fernán<strong>de</strong>z, O. Fojón and F. Martín, Phys.<br />

Rev. A 79, 023420 (2009).<br />

[14] Ten years of COLTRIMS and reaction<br />

microscopes, collection of papers edited by J.<br />

Ullrich, Max Planck Institute für Kernphysik<br />

Hei<strong>de</strong>lberg (2004).<br />

References<br />

[1] H. D. Cohen and U. Fano, Phys. Rev. 150,<br />

30 (1966).<br />

[2] N. Stolterfoht et al, Phys. Rev. Lett. 87,<br />

023201 (2001).<br />

[3] C. R. Stia, O. A. Fojón, P. Weck, J. Hanssen,<br />

and R. D. Rivarola, J. Phys. B: At. Mol. Opt.<br />

Phys. 36, L257 (2003).<br />

[4] O. Kamalou, J.-Y. Chesnel, D. Martina, F.<br />

Frémont, J. Hanssen, C. R. Stia, O. A. Fojón, R.<br />

D. Rivarola, Phys. Rev. A 71, 010702(R)<br />

(2005).<br />

[5] S. Chatterjee, D. Misra, A. H. Kelkar, L.<br />

Tribedi, C. R. Stia, O. A. Fojón and R. D.<br />

Rivarola, Phys. Rev. A 78, 052701 (2008).<br />

[6] S. Chatterjee, S. Kasthurirangan, A. H.<br />

Kelkar, C. R. Stia, O. A. Fojón, R. D. Rivarola<br />

and L. Tribedi, J. Phys. B: At. Mol. Opt. Phys.<br />

42, 065201 (2009).<br />

[7] S. Chatterjee, A. N. Agnihotri, C. R. Stia, O.<br />

A. Fojón, R. D. Rivarola and L. Tribedi, Phys.<br />

Rev. A (2010) in press.<br />

[8] P. Weck, O. A. Fojón, J. Hanssen, B.<br />

Joulakian and R. D. Rivarola, Phys. Rev. A 63,<br />

042709 (2001).<br />

[9] M. Brauner, J. S. Briggs and H. Klar, J.<br />

Phys. B: At. Mol. Opt. Phys. 22, 2265 (1989).<br />

[10] C. R. Stia, O. A. Fojón, Ph. Weck, J.<br />

Hanssen, B. Joulakian and R. D. Rivarola, Phys.<br />

Rev. A 66, 052709 (2002).<br />

58 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

The role of electronic excitations in the energy loss of hydrogen clusters in<br />

dielectric and metallic materials<br />

S. M. Shubeita 1 , R. C. Fadanelli 1 , J. F. Dias 1 , P. L. Gran<strong>de</strong> 1 , C. D. Denton 2 , I. Abril 2 ,<br />

R. Garcia-Molina 3 and N. R. Arista 4<br />

1 Instituto <strong>de</strong> <strong>Física</strong> da Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Porto Alegre, RS, Brazil<br />

2 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong> Aplicada, <strong>Universidad</strong> d’Alicante, Alicante, Spain<br />

3 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong> – CIOyN, <strong>Universidad</strong> <strong>de</strong> Murcia, Murcia, Spain<br />

4 Centro Atômico Bariloche, Instituto Balseiro, San Carlos <strong>de</strong> Bariloche, Rio Negro, Argentina<br />

e-mail address corresponding author: samir.shubeita@ufrgs.br<br />

The aim of this work is to study the<br />

signature of plasmon excitations induced by<br />

H + 2 and H + 3 ionic clusters when interacting<br />

with thin (10-50 Å) layers of dielectric<br />

(SiO 2 , LaScO 3 , HfO 2 ) and metallic (Au)<br />

materials. For this purpose, high energy<br />

resolution backscattering experiments were<br />

carried out as a function of the incoming<br />

projectile energy, covering an energy range<br />

between 40 and 200 keV/nucleon. The ratio<br />

R n between the energy loss of the cluster and<br />

the sum of the energy loss of its constituents<br />

provi<strong>de</strong>s the information about the plasmon<br />

excitation threshold, which is characteristic<br />

for each material. The results obtained for<br />

the high-k dielectrics (LaScO 3 and HfO 2 )<br />

and Au do not show any clear evi<strong>de</strong>nce of<br />

plasmon excitations induced by H +<br />

2 ionic<br />

clusters (see fig. 1 for HfO 2 ). These results<br />

are supported by calculations based on the<br />

dielectric formalism. However, for the SiO 2<br />

thin film (fig. 2), the plasmon excitation<br />

threshold is observed at about 70<br />

keV/nucleon for both cluster ions (H + 2 and<br />

H + 3 ) [1]. In fact, unlike SiO 2 where a dominant<br />

long-range electronic excitation is present,<br />

the HfO 2 , LaScO 3 and Au have several<br />

and equally important excitation energies<br />

(mix of plasmon excitations, excitons and<br />

interband transitions). They lead to different<br />

onset projectile-energies, which explains the<br />

smoothly increase of stopping ratio [2].<br />

Also, the results obtained for Au are compared<br />

with previous results [3].<br />

Figure 1. The experimental energy loss ratio R 2<br />

(squares) for HfO 2 as a function of the inci<strong>de</strong>nt cluster<br />

energy, in comparison with different theoretical<br />

approaches.<br />

Figure 2. The experimental stopping ratio R 2 (full<br />

squares) as a function of the inci<strong>de</strong>nt H +<br />

2 cluster<br />

energy. The thick lines represent the dielectric formalism<br />

calculations including plasmon excitations<br />

(full line) and without plasmon excitations (dotted<br />

lines) after averaging over charge-state fractions of<br />

H + and H 0 .<br />

59 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

References<br />

[1] S. M. Shubeita, M. A. Sortica, P. L. Gran<strong>de</strong>,<br />

J. F. Dias and N. R. Arista, Phys. Rev. B 77,<br />

115327 (2008).<br />

[2] S. M. Shubeita, R. C. Fadanelli, J. F. Dias, P.<br />

L. Gran<strong>de</strong>, C. D. Denton, I. Abril, R. Garcia-<br />

Molina and N. R. Arista, Phys. Rev. B 80,<br />

205316 (2009).<br />

[3] W. Brandt, A. Ratkowski and R. H. Ritchie,<br />

Phys. Rev. Lett. 33, 1325 (1974).<br />

60 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Contribuciones - Paneles<br />

Título<br />

Autores<br />

P1<br />

Electron emission by grazing scattering from<br />

Be(0001)<br />

C. D. Archubi, M. S. Gravielle and V. M.<br />

Silkin<br />

Claudio D. Archubi<br />

P2<br />

Monte Carlo simulation for proton track<br />

structure in biological matter<br />

H. Lekadir, C. Champion, S. Incerti, M. E.<br />

Galassi, O. Fojón, R. D. Rivarola, and J.<br />

Hanssen<br />

Christophe . Champion<br />

P3<br />

P4<br />

P5<br />

P6<br />

Multiple differential cross sections for the<br />

ionization from the 1B1 orbital of liquid water<br />

molecule by fast electron impact<br />

M.L. <strong>de</strong> Sanctis, O. Fojón, C. Stia, R.<br />

Vuilleumier and M.-F. Politis<br />

M.L. <strong>de</strong> Sanctis<br />

L. Sigaud, Natalia Ferreira, V.L.B. <strong>de</strong> Jesus,<br />

I<strong>de</strong>ntificação dos caminhos <strong>de</strong> fragmentação da W. Wolff, A.L.F. <strong>de</strong> Barros, A.C.F. dos<br />

Lucas Sigaud<br />

molécula <strong>de</strong> CHClF2 quando ionizada por elétrons Santos, R.S. Menezes, A.B. Rocha, M.B.<br />

Shah, E.C. Montenegro<br />

Rafaela Debastiani, Carla Eliete Iochims<br />

dos Santos, Liana Appel Boufleur,<br />

Café Brasileiro: Estudo da Concentração Masahiro Hatori, Débora Elisa Peretti,<br />

Rafaela Debastiani<br />

Elementar Utilizando Feixes Iônicos<br />

Vanessa Sobrosa Souza, Mateus Maciel<br />

Ramos, Elis Moura Stori, Cláudia Telles <strong>de</strong><br />

Souza, Livio Amaral, Johnny Ferraz Dias<br />

Coherencia y localización parcial en emisión<br />

electrónica simple <strong>de</strong> moléculas diatómicas<br />

moléculas diatómicas<br />

C. Tachino, M. Galassi, F. Martín, y R.<br />

Rivarola<br />

Roberto Rivarola<br />

P7<br />

P8<br />

P9<br />

Estados selectivos <strong>de</strong> captura <strong>de</strong> electrones en<br />

colisiones <strong>de</strong> 3He2++He a energías intermedias<br />

<strong>de</strong> impacto aplicando la técnica COLTRIMS<br />

Estudio <strong>de</strong> colisiones con proyectiles neutros y<br />

cargados sobre blancos moleculares <strong>de</strong> H2 a<br />

energías intermedias <strong>de</strong> impacto con la técnica<br />

COLTRIMS<br />

Doble Ionización <strong>de</strong> Helio por impacto <strong>de</strong> iones:<br />

Influencia <strong>de</strong> la Carga <strong>de</strong>l Proyectil<br />

M. Alessi, S. Otranto, D. Fregenal, P. Focke Mariana Alessi<br />

M. Alessi, D. Fregenal, P. Focke Mariana Alessi<br />

S. D. López, S. Otranto, C. R. Garibotti S. López<br />

61 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

P10<br />

Lα, Lβ, and Lγ x-ray production cross sections<br />

of Sm, Dy, Ho, and Tm by electron impact.<br />

Distorted-wave calculations vs experiment<br />

José M. Fernán<strong>de</strong>z-Varea, Silvina Segui<br />

and Michael Dingfel<strong>de</strong>r<br />

José M. Fernán<strong>de</strong>z-Varea<br />

P11<br />

Estudio <strong>de</strong> po<strong>de</strong>r <strong>de</strong> frenado <strong>de</strong> partículas α en<br />

películas <strong>de</strong>lgadas <strong>de</strong> cobre en el intervalo <strong>de</strong><br />

energía entre 1,0 a 2,0 MeV.<br />

Roberto Hauyón, German Kremer, Pedro<br />

Miranda y J. Roberto Morales<br />

Roberto Hauyón<br />

P12<br />

Ab-Initio Sturmian method for three-body A. L. Frapiccini, J. M. Randazzo, G.<br />

quantum mechanical problems: Scattering states Gasaneo, F. D. Colavecchia, D. M. Mitnik<br />

and ionizing collisions<br />

and L. U. Ancarani<br />

Darío M. Mitnik<br />

P13<br />

Ionización <strong>de</strong> hidrógeno atómico e iones<br />

moleculares H+2 por pulsos láser<br />

R. <strong>de</strong>lla Picca, J. Fiol, P. D. Fainstein Juan Fiol<br />

P14<br />

Un mo<strong>de</strong>lo <strong>de</strong> onda distorsionada para ionización<br />

electrónica en colisiones entre iones vestidos y<br />

blancos atómicos<br />

J. M. Monti, P. D. Fainstein , R. D. Rivarola Roberto D. Rivarola<br />

P15<br />

Canalización cuasiplanar <strong>de</strong> protones<br />

energéticos en inci<strong>de</strong>ncia normal sobre<br />

nanotubos <strong>de</strong> carbono <strong>de</strong> pared múltiple<br />

Jorge E. Valdés, Isabel Abril, Cristian D.<br />

Denton, P. Vargas, E. Figueroa, Néstor R.<br />

Arista, Rafael Garcia-Molina<br />

Isabel Abril<br />

P16<br />

Bulk plasmon excitation in grazing inci<strong>de</strong>nce<br />

ionmetal surface collisions<br />

C.A. Salas , F.A. Gutierrez and H. Jouin<br />

C.A. Salas<br />

P17<br />

Distribuciones <strong>de</strong> Scattering Multiple y Efectos<br />

Angulares en la Pérdida <strong>de</strong> energía <strong>de</strong> Protones<br />

y Deuterones en Láminas Delgadas <strong>de</strong> Carbono<br />

Amorfo<br />

E. D. Cantero, G. H. Lantschner1, N. R.<br />

Arista<br />

Esteban D. Cantero<br />

P18 Stopping power y Straggling <strong>de</strong> protones en Pd<br />

P. A. Miranda, A. Sepúlveda, E. Burgos, H.<br />

Fernán<strong>de</strong>z, J. R. Morales<br />

A. Sepúlveda<br />

P19<br />

Energy Loss of slow Hydrogen and Helium ions in<br />

channeling conditions in Au single crystal<br />

A.M. Calle, J.D. Uribe, C. Celedón, E.A.<br />

Figueroa, J.E. Valdés.<br />

Juan Uribe<br />

P20<br />

Pérdida <strong>de</strong> energía <strong>de</strong> protones en láminas<br />

<strong>de</strong>lgadas <strong>de</strong> Carbono amorfo.<br />

C. Celedón, J. E. Valdés, P. Vargas, E.<br />

Figueroa<br />

Carlos Celedón<br />

62 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

P21<br />

Energy losses of H and F ions in grazing<br />

scattering on a missing row reconstructed<br />

Au(110) surface<br />

Lin Chen, J.E. Valdés, P. Vargas, Jie Shen,<br />

V.Esaulov<br />

Jorge E. Valdés<br />

P22<br />

Inverse photoemission espectroscopy on<br />

graphene.<br />

V. Del Campo, P. Häberle Valeria Del Campo<br />

P23<br />

Elemental analysis of the Chaitén volcano ash<br />

2008-2009 eruptions<br />

Shimrit Elimelech, Jorge E. Valdés and<br />

Patricio Vargas<br />

Shimrit Elimelech<br />

Múltipla ionização <strong>de</strong> Neônio em coincidência W. Wolff, H. M. R. <strong>de</strong> Luna, A.C. F. dos<br />

P24 com íons <strong>de</strong> B2+ no regime <strong>de</strong> energia <strong>de</strong> poucos Santos, e E. C. Montenegro, G.M. Sigaud,<br />

MeV<br />

C.C.Montanari, e J.E.Miraglia<br />

Wania Wolff<br />

63 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

64 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Electron emission by grazing scattering from Be(0001)<br />

C. D. Archubi 1 , M. S. Gravielle 1,2 and V. M. Silkin 3,4<br />

1 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio, CONICET-UBA, Buenos Aires, Argentina<br />

2 Depto. <strong>de</strong> <strong>Física</strong>, Fac. <strong>de</strong> C. Exactas y Naturales, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Buenos Aires, Argentina<br />

3 Donostia Internacional Physics Center (DIPC), 20018, San Sebastián, Spain<br />

4 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain<br />

email address corresponding author: archubi@iafe.uba.ar<br />

1. INTRODUCTION<br />

Recently it has been <strong>de</strong>monstrated that<br />

occupied surface states can modify the dielectric<br />

properties of metal surfaces [1]. Thus, with the<br />

aim of investigating the influence of surface<br />

states on electron emission, we study electron<br />

distributions originated by fast protons colliding<br />

grazing with a Be(0001) surface. Beryllium presents<br />

a technological interest in mo<strong>de</strong>rn fusion<br />

reactors and it is expected that its surface states<br />

play an important role in inelastic electronic<br />

processes.<br />

To <strong>de</strong>scribe the electron emission process<br />

we employ the Band-structure-based (BSB)<br />

mo<strong>de</strong>l [2], which inclu<strong>de</strong>s an accurate <strong>de</strong>scription<br />

of the electron-surface potential, incorporating<br />

information about the band structure of the<br />

solid. Within the BSB approach the surface interaction<br />

is <strong>de</strong>scribed by a realistic onedimensional<br />

mo<strong>de</strong>l potential [3], while the dynamic<br />

response of the medium is <strong>de</strong>rived in consistent<br />

way from the unperturbed electronic<br />

states by using a linear response theory. This<br />

method has been succesfully employed to study<br />

energy loss and electron emission from Al surfaces,<br />

where the effects of the surface states<br />

were found negligible [4].<br />

2. RESULTS<br />

Due to the large mass of the projectile, it<br />

is reasonable to calculate its motion in terms of a<br />

classical trajectory. Within the binary collisional<br />

formalism, the transition probability per unit<br />

path reads<br />

dP 2 π<br />

( x)<br />

= δ ( ∆)<br />

T<br />

dk vs<br />

if<br />

2<br />

(1)<br />

where z is the projectile distance to the surface,<br />

v s is the projectile velocity parallel to the surface<br />

plane, and the Dirac <strong>de</strong>lta expresses the<br />

energy conservation. In Eq (1) T if represents the<br />

T-matrix element, which is evaluated within a<br />

first-or<strong>de</strong>r-perturbation theory.<br />

In this work we employ the BSB mo<strong>de</strong>l<br />

to <strong>de</strong>rive both the unperturbed electronic wave<br />

functions and the surface induced potential. The<br />

differential probability of electron transition to a<br />

<br />

given final state with momentum k , is dP dk<br />

, obtained<br />

from Eq (1) by integrating along the classical<br />

projectile trajectory, after adding the contributions<br />

coming from the different initial<br />

states.<br />

10 1<br />

10 0<br />

10 -1<br />

dP/dk (a.u.)<br />

dP/dk (a.u.)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

100 100 keV keV H + H + Be Be (0001)<br />

α = 1<br />

α = 1 ο ο<br />

30 60 90 120 150 180 210 240<br />

30 60 90 120 150 180 210 240<br />

Energy (eV)<br />

Energy (eV)<br />

θ=20 ο<br />

θ=20 ο<br />

θ=30 ο<br />

θ=30 ο<br />

θ=45 ο<br />

θ=45 ο<br />

θ=30 ο Jellium<br />

Figure 1. Differential probability of electron emission<br />

from the valence band, as a function of the electron<br />

energy, for 100 keV protons impinging on a Be<br />

(0001) surface with the angle α=1 o . Three different<br />

electron emission angles, meassured with respect to<br />

the surface plane, are consi<strong>de</strong>red: θ =20, 30 and 45<br />

o .<br />

65 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

In Fig. 1 we display the differential electron<br />

emission probability for 100 keV protons<br />

impinging grazing on a Be (0001) surface consi<strong>de</strong>ring<br />

three different ejection angles in the<br />

scattering plane. Due to the contribution of surface<br />

occupied states, electron spectra display<br />

pronounced shoul<strong>de</strong>rs at intermediate energies,<br />

which are not present when the surface is <strong>de</strong>scribed<br />

in a simpler way by employing a finite<br />

step potential to respresent the electron surfaceinteraction<br />

(Jellium mo<strong>de</strong>l). These shoul<strong>de</strong>rs are<br />

also observed for emission out of the scattering<br />

plane and their positions are gradually shifted to<br />

lower electron energies as the emission angle<br />

increases.<br />

10<br />

100 keV H + Be(0001)<br />

dP/dk (arb. units.)<br />

1<br />

0.1<br />

0.01<br />

Jellium<br />

BSB<br />

1E-3<br />

50 100 150 200<br />

Energy (eV)<br />

Figure 2. Total emission spectra for 100 keV protons<br />

impinging on a Be(0001) surface. BSB results<br />

are compared with Jellium mo<strong>de</strong>l results.<br />

Remarkably, surface state effects completely<br />

dissapear when we calculate the total<br />

emission probability as a function of the electron<br />

energy. These results are shown in Fig. 2.<br />

References<br />

[1] V.M. Silkin et al, J. Phys.: Con<strong>de</strong>ns. Matter<br />

20, 304209 (2008)<br />

[2] M. N. Faraggi et al, Phys. Rev. A 69,<br />

042901 (2004)<br />

[3] E. V. Chulkov, V. M. Silkin and P. M.<br />

Echenique, Surf. Sci. 391, L1217 (1997);<br />

437, 330 (1999)<br />

[4] M. N. Faraggi et al, Phys. Rev. A 72,<br />

012901 (2005).<br />

66 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Monte Carlo simulation for proton track structure in biological matter<br />

H. Lekadir 1 , C. Champion 1 , S. Incerti 2 , M. E. Galassi 3 , O. Fojón 3 , R. D. Rivarola 3 , and<br />

J. Hanssen 1<br />

1 Laboratoire <strong>de</strong> Physique Moléculaire et <strong>de</strong>s Collisions, Université Paul Verlaine-Metz, Metz, France<br />

2 Université Bor<strong>de</strong>aux 1, CNRS/IN2P3, CENBG, Bor<strong>de</strong>aux-Gradignan, France<br />

3 Instituto <strong>de</strong> <strong>Física</strong> Rosario, CONICET, <strong>Universidad</strong> Nacional <strong>de</strong> Rosario, Rosario, Argentina<br />

Corresponding author: lekadir@univ-metz.fr<br />

Monte Carlo simulations are well suited<br />

for <strong>de</strong>scribing the transport of charged particles<br />

in matter and more particularly in biological<br />

medium for predicting the radio-induced biological<br />

consequences.<br />

Ion beams are commonly used in radiotherapy<br />

essentially due to their physical and radiobiological<br />

characteristics which radically differ<br />

from those of conventional radiation beams<br />

(photons). Nowadays, protons are employed in<br />

many countries for treating particular pathologies.<br />

In<strong>de</strong>ed, in comparison to conventional<br />

techniques, protons offer an increased biological<br />

efficiency and a better ballistic by <strong>de</strong>positing in<br />

particular a large part of their initial energy in a<br />

narrow region - at the end of their path- called<br />

the Bragg peak region. Then, they allow a better<br />

protection of organs at risk in cancer therapy.<br />

To mo<strong>de</strong>l in <strong>de</strong>tails the track-structure of<br />

protons in biological matter, we have then <strong>de</strong>veloped<br />

a full-history Monte Carlo co<strong>de</strong> called<br />

TILDA2 which is able to <strong>de</strong>scribe, step by step,<br />

all the proton induced-collisions in biological<br />

matter, this latter being alternatively mo<strong>de</strong>lled<br />

by water and by some of its most important biological<br />

entities, namely, the DNA bases. The<br />

originality of our co<strong>de</strong> resi<strong>de</strong>s in the physical<br />

processes that are integrated. Thus, TILDA2<br />

takes into account a large panel of ionizing processes<br />

such as single and double ionization and<br />

capture, transfer ionization and excitation.<br />

To do that, we have first investigated different<br />

theoretical mo<strong>de</strong>ls for providing the<br />

nee<strong>de</strong>d input data, namely, the total cross sections:<br />

a first classical one based on a CTMC-<br />

COB [1,2] approach and two quantum mechanical<br />

ones, namely, a Coulomb Born (CB1) mo<strong>de</strong>l<br />

and a continuum-distorted wave eikonal-initialstate<br />

(CDW-EIS) one. All the obtained cross<br />

sections have been validated via theory/exp<br />

comparisons.<br />

TCS (10 -16 cm 2 )<br />

10 3 a) H 2<br />

O<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 2 10 3 10 4<br />

7<br />

Inci<strong>de</strong>nt energy (keV/u)<br />

b) Guanine<br />

10 2 10 3 10 4<br />

Figure 1. Total cross sections of the ionizing<br />

processes inclu<strong>de</strong>d into the Monte Carlo co<strong>de</strong><br />

TILDA2 for <strong>de</strong>scribing the proton transport in water<br />

and guanine.<br />

Un<strong>de</strong>r these conditions, we have access to<br />

a large number of physical quantities such as<br />

stopping power, energy <strong>de</strong>position, charge fraction,<br />

range… in water and DNA components.<br />

Then, we have shown that the energy <strong>de</strong>posit<br />

patterns were extremely <strong>de</strong>pen<strong>de</strong>nt on the<br />

medium <strong>de</strong>scription.<br />

References<br />

[1] H. Lekadir et al., Nucl. Instr. Meth. Phys<br />

Res. B 267, 1014 (2009).<br />

[2] H. Lekadir et al., Phys. Rev. A 79, 062710<br />

(2009).<br />

67 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Multiple differential cross sections for the ionization from the 1B 1 orbital of liquid water molecule<br />

by fast electron impact<br />

M.L. <strong>de</strong> Sanctis 1 , O. Fojón 1 , C. Stia 1 , R. Vuilleumier 2 and M.-F. Politis 3<br />

1 Instituto <strong>de</strong> <strong>Física</strong> Rosario (CONICET-UNR), Pellegrini 250, (2000) Rosario, Argentina<br />

2 LPTMC, UMR-CNRS 7600, Université Pierre et Marie Curie 4 place Jussieu, 75005, Paris, France<br />

3 IMPMC, Université Pierre et Marie Curie, Campus Boucicaut, 140 rue <strong>de</strong> Lourmel, 75015, Paris, France<br />

email: ml<strong>de</strong>sanc@fceia.unr.edu.ar<br />

Ionization of water molecules in liquid<br />

phase is of relevance in several domains such as<br />

radiobiology and medical physics. As the<br />

biological matter is composed mainly of water,<br />

the analysis of this reaction is crucial to<br />

un<strong>de</strong>rstand the damage provoked to living tissue<br />

by the ionizing radiations. In particular, the<br />

production of low energy secondary electrons<br />

resulting from a primary ionization reaction of<br />

water is of importance to elucidate the<br />

mechanisms that lead to cell alteration.<br />

Therefore, we study the single ionization<br />

of water molecules in liquid phase by electron<br />

impact at high impact energies, i.e., hundreds of<br />

eV. We compute multiple differential cross<br />

sections (MDCS) by means of a simple first<br />

or<strong>de</strong>r mo<strong>de</strong>l. To represent the initial state of the<br />

molecule, we employ wavefunctions obtained<br />

through a Wannier orbital formalism that<br />

transforms the wavefunction of the whole liquid<br />

system into electronic orbitals localized over<br />

each water molecule in the liquid phase [1]. In<br />

particular, we consi<strong>de</strong>r coplanar geometries in<br />

which the inci<strong>de</strong>nt, scattered and ejected<br />

electrons lie in the same plane. Moreover, we<br />

analyze asymmetric kinematic conditions for the<br />

scattered and ejected electrons (ejected energies<br />

of some eV). By means of an approximate static<br />

potential, we obtain an estimation of the<br />

influence of the passive electrons of the<br />

molecule (those not ionized) on the ionization<br />

process. We compute MDCS for the 1B 1 orbital<br />

of the water molecule as a function of the<br />

ejection angle at <strong>de</strong>finite scattering angle,<br />

inci<strong>de</strong>nt and ejected energies, and for fixed<br />

orientations of the molecule. It is observed that<br />

MDCS <strong>de</strong>pend strongly on the orientation of the<br />

molecule. As experimental results of MDCS at<br />

fixed molecular orientations for liquid water are<br />

not available, we compare our theoretical<br />

predictions with other theoretical ones obtained<br />

for water molecules in gas phase [2]. In addition,<br />

as molecules are randomly oriented in<br />

experiments with water vapor [3], we also<br />

present MDCS averaged over all molecular<br />

orientations. The main physical features of the<br />

experiments (such as binary and recoil peaks)<br />

are similar to the ones observed in our results.<br />

Finally, we compare them with previous<br />

Fig 1. MDCS averaged over all molecular<br />

orientations. E i = 250 eV, E e = 10 eV and θ s<br />

=15º. Full line, present results for the liquid<br />

phase. Solid circles, experiments for the gas<br />

phase [3] conveniently normalized. Dashed line,<br />

previous caculations for the gas phase [4].<br />

Dotted line, FBA-CW for the liquid phase [6].<br />

Dash-dotted lines, FBA-CW for the gas phase<br />

[6].<br />

theoretical predictions by other authors for gas<br />

phase [4] in which the bound state of the water<br />

molecule is <strong>de</strong>scribed by means of single<br />

68 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

centered Moccia's orbitals [5]. It is worthy to<br />

mention that this is the only difference in the<br />

theoretical treatment of both mo<strong>de</strong>ls. Also, we<br />

compare with recent calculations for both<br />

thermodynamical phases here analysed, obtained<br />

again within a similar theoretical framework but<br />

now with monocentric wavefunctions for the<br />

water molecule constructed by employing a<br />

Gaussian basis [6].<br />

In Fig. 1, we present our theoretical<br />

MDCS averaged over all molecular orientations<br />

for an inci<strong>de</strong>nt energy E i = 250 eV, ejected<br />

energy E e = 10 eV and scattering angle θ s =15º.<br />

We have conveniently normalized the<br />

experiments for the gas phase as they were<br />

obtained in a relative scale [3]. As can be seen,<br />

our results <strong>de</strong>scribe the characteristic two-lobe<br />

structure found in the experimental data for the<br />

binary region. Moreover, all the theoretical<br />

predictions consi<strong>de</strong>red in the figure present<br />

binary and recoil structures in qualitative good<br />

agreement. In particular, our predictions present<br />

a very good agreement with the theoretical<br />

calculation for the liquid phase of Ref. [6].<br />

References<br />

[1] P. Hunt, M. Sprik and R. Vuilleumier, Chem.<br />

Phys. Lett. 376, 68 (2003).<br />

[2] C. Champion et al, Phys. Rev. A 63, 052720<br />

(2001); C. Champion et al, Phys. Rev. A 72,<br />

059906 (2005).<br />

[3] D. S. Milne et al, Phys. Rev. A 69, 032701<br />

(2004).<br />

[4] C. Champion et al, Phys. Rev. A 73, 012717<br />

(2006).<br />

[5] R. Moccia, J. Chem. Phys. 40 2186 (1964).<br />

[6] C. Champion, Phys. Med. Biol. 55, 11<br />

(2010).<br />

69 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

I<strong>de</strong>ntificação dos caminhos <strong>de</strong> fragmentação da molécula <strong>de</strong> CHClF 2 quando<br />

ionizada por elétrons<br />

L. Sigaud 1 , Natalia Ferreira 1 , V.L.B. <strong>de</strong> Jesus 2 , W. Wolff 1 , A.L.F. <strong>de</strong> Barros 3 , A.C.F.<br />

dos Santos 1 , R.S. Menezes 2 , A.B. Rocha 4 , M.B. Shah 5 , E.C. Montenegro 1<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, 21941-972, Rio <strong>de</strong> Janeiro, RJ, Brasil<br />

2 Instituto Fe<strong>de</strong>ral <strong>de</strong> Educação, Ciência e Tecnologia do Rio <strong>de</strong> Janeiro, 26530-060, Nilópolis, RJ, Brasil<br />

3 CEFET/RJ, 20271-110, Rio <strong>de</strong> Janeiro, RJ, Brasil<br />

4 Instituto <strong>de</strong> Química, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, 21941-614, Rio <strong>de</strong> Janeiro, RJ, Brasil<br />

5 School of Maths & Physics, The Queen´s University of Belfast, Belfast, UK<br />

email address corresponding author: lucas@if.ufrj.br<br />

O impacto negativo ao meio-ambiente<br />

causado pelo aumento do buraco da camada<br />

<strong>de</strong> ozônio é bem conhecido. Em 1974, Molina<br />

e Rowland <strong>de</strong>scobriram que a maior parte dos<br />

compostos CFC utilizados na indústria <strong>de</strong>s<strong>de</strong><br />

a década <strong>de</strong> 30 ainda estavam presentes em<br />

camadas altas da atmosfera [1]. Na baixa<br />

estratosfera, moléculas <strong>de</strong> CFC po<strong>de</strong>m ser<br />

fragmentadas, liberando um átomo <strong>de</strong> cloro,<br />

que, juntamente com o bromo, são os<br />

principais responsáveis pela <strong>de</strong>pleção da<br />

camada <strong>de</strong> ozônio.<br />

Originalmente acreditava-se que o<br />

mecanismo responsável pela fragmentação<br />

das moléculas <strong>de</strong> CFC fossem fótons<br />

energéticos provenientes do Sol, mas estudos<br />

recentes mostram que elétrons <strong>de</strong> chuveiros<br />

gerados por raios cósmicos po<strong>de</strong>m ser<br />

candidatos viáveis para a produção <strong>de</strong> átomos<br />

<strong>de</strong> cloro na estratosfera [2,3]. Por isso, um<br />

estudo da fragmentação <strong>de</strong> moléculas <strong>de</strong> CFC<br />

e HCFC (compostos CFC hidrogenados, a<br />

fim <strong>de</strong> diminuir seu impacto para a camada<br />

<strong>de</strong> ozônio) quando impactadas por elétrons é<br />

necessário, uma vez que alguns <strong>de</strong>sses<br />

compostos continuam sendo utilizados<br />

largamente na indústria, como é o caso do<br />

CHClF 2 .<br />

Para tanto, um canhão <strong>de</strong> elétrons<br />

operante na faixa <strong>de</strong> 40-450eV acoplado a<br />

uma célula gasosa com medição <strong>de</strong> pressão<br />

absoluta e um espectrômetro <strong>de</strong> massa por<br />

tempo <strong>de</strong> vôo montado na Universida<strong>de</strong><br />

Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro foi utilizado. As<br />

seções <strong>de</strong> choque <strong>de</strong> fragmentação da<br />

molécula <strong>de</strong> CHClF 2 quando impactada por<br />

elétrons foram medidas, fornecendo um<br />

indicador preciso para a produção <strong>de</strong> átomos<br />

<strong>de</strong> cloro.<br />

As seções <strong>de</strong> choque absolutas e<br />

parciais para cada um dos principais canais<br />

<strong>de</strong> fragmentação (a saber, H + , C + , CH + , F + ,<br />

CF + , CHF + , Cl + , (CF + 2 + CHF + 2 ), (CClF + +<br />

CHClF + +<br />

2 ) e (CClF 2 + CHClF + 2 )) foram<br />

obtidas, e os resultados comparados com<br />

previsões teóricas calculadas a partir <strong>de</strong> um<br />

mo<strong>de</strong>lo simples baseado na aproximação <strong>de</strong><br />

Born e funções <strong>de</strong> onda hidrogenói<strong>de</strong>s [4].<br />

A partir <strong>de</strong>ssa comparação, as razões <strong>de</strong><br />

fragmentação (branching ratios) pu<strong>de</strong>ram ser<br />

obtidas empiricamente, ajustando-se os<br />

parâmetros livres às seções <strong>de</strong> choque<br />

calculadas e aos dados obtidos<br />

experimentalmente.<br />

Os resultados obtidos [5] indicam que a<br />

molécula <strong>de</strong> CHClF 2 é altamente instável ao<br />

ser ionizada por elétrons nesta faixa <strong>de</strong><br />

energia - isto é, quando um <strong>de</strong> seus elétrons é<br />

removido, a maior probabilida<strong>de</strong> é a da<br />

molécula-mãe se fragmentar, pois a seção <strong>de</strong><br />

choque <strong>de</strong> produção do íon CHClF + 2 é uma<br />

das menores observadas. A maior <strong>de</strong> todas é<br />

justamente a do canal <strong>de</strong> fragmentação<br />

responsável pela emissão do átomo <strong>de</strong> cloro<br />

(CF +<br />

2 ou CHF + 2 + Cl 0 ), conforme ilustra a<br />

Figura 1.<br />

Além disso, o estudo realizado dos<br />

caminhos possíveis <strong>de</strong> fragmentação da<br />

70 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

molécula <strong>de</strong> CHClF 2 indicam que não apenas<br />

vacâncias nos orbitais do átomo <strong>de</strong> cloro<br />

po<strong>de</strong>m gerar sua emissão, mas também que<br />

elétrons retirados dos orbitais do átomo <strong>de</strong><br />

flúor contribuem significativamente para a<br />

emissão do átomo <strong>de</strong> cloro. Esse aspecto<br />

interessante aponta para uma fragmentação<br />

em um sítio diferente do local on<strong>de</strong> a<br />

ionização <strong>de</strong> fato ocorreu, por meio <strong>de</strong> um<br />

rearranjo local dos orbitais eletrônicos do<br />

átomo <strong>de</strong> flúor, que po<strong>de</strong> gerar rearranjos<br />

eletrônicos e excitações vibracionais na<br />

molécula.<br />

Figura 1. Espectro típico obtido na<br />

fragmentação da molécula <strong>de</strong> CHClF 2<br />

(representada nos <strong>de</strong>talhes) por impacto <strong>de</strong><br />

elétrons. Po<strong>de</strong>-se notar claramente a<br />

predominância do canal responsável pela<br />

emissão do átomo <strong>de</strong> cloro (CF 2 + + CHF 2 + ), bem<br />

como o baixa probabilida<strong>de</strong> do canal que<br />

representa a ionização simples da molécula-mãe.<br />

Os cálculos teóricos, mesmo baseados<br />

em um mo<strong>de</strong>lo simples, fornecem, portanto,<br />

uma <strong>de</strong>scrição razoavelmente <strong>de</strong>talhada dos<br />

caminhos mais prováveis para a<br />

fragmentação da molécula por elétrons. Em<br />

particular, essa comparação mostra um<br />

gran<strong>de</strong> indício <strong>de</strong> não-localida<strong>de</strong> entre a<br />

ionização e o processo <strong>de</strong> fragmentação, a<br />

qual contribui significantemente para a<br />

instabilida<strong>de</strong> do CHClF 2 [5].<br />

References<br />

[1] F.S. Rowland and M.J. Molina, Nature 249,<br />

810 (1974).<br />

[2] Q.-B. Lu and L. Sanche, Phys. Rev. Lett. 87,<br />

078501 (2001).<br />

[3] J.A.M. Pereira, Nucl. Instr. Meth. B 240, 133<br />

(2005).<br />

[4] E.C. Montenegro, A.C.F. dos Santos e G.M.<br />

Sigaud, Application of Accelerators in Research<br />

and Industry 2000 (AIP Conf. Proc. 576) ed. J.L.<br />

Duggan and I.L. Morgan (New York: AIP<br />

Press), 96 (2001).<br />

[5] L. Sigaud, Natalia Ferreira, V.L.B. <strong>de</strong><br />

Jesus, W. Wolff, A.L.F. <strong>de</strong> Barros,<br />

A.C.F. dos Santos, R.S. Menezes,<br />

A.B. Rocha, M.B. Shah and E.C.<br />

Montenegro, J. Phys. B: At. Mol. Opt. Phys.<br />

43, 105203 (2010).<br />

71 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Café Brasileiro: Estudo da Concentração Elementar Utilizando Feixes Iônicos<br />

Rafaela Debastiani 1 , Carla Eliete Iochims dos Santos 1 , Liana Appel Boufleur 1 , Masahiro Hatori 1 , Débora Elisa<br />

Peretti 1 , Vanessa Sobrosa Souza 1 , Mateus Maciel Ramos 1 , Elis Moura Stori 1 , Cláudia Telles <strong>de</strong> Souza 1 , Livio<br />

Amaral 1 , Johnny Ferraz Dias 1<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio Gran<strong>de</strong> do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brasil<br />

Email autor correspon<strong>de</strong>nte: rafa_<strong>de</strong>bas@yahoo.com.br<br />

Sendo o café um produto alimentício<br />

nutracêutico (nutricional e farmacêutico) [1]<br />

amplamente consumido, é importante termos o<br />

conhecimento sobre sua composição química, mais<br />

especificamente, sua composição elementar. Alguns<br />

<strong>de</strong>sses elementos po<strong>de</strong>m ser metais com potencial<br />

bio-cumulativo, que ingeridos em <strong>de</strong>terminadas<br />

doses, po<strong>de</strong>m causar intoxicação. Em vista disso,<br />

utilizando a técnica PIXE (Particle-Induced X-ray<br />

Emission) e complementarmente a técnica RBS<br />

(Rutherford Backscattering Spectrometry) foi<br />

realizada a análise elementar do café brasileiro.<br />

PIXE é uma técnica baseada na emissão <strong>de</strong> raios X<br />

característicos <strong>de</strong> cada elemento da amostra, quando<br />

esta é irradiada por prótons <strong>de</strong> alta energia<br />

(aproximadamente 2 MeV) provenientes <strong>de</strong> um<br />

acelerador <strong>de</strong> partículas. Esta técnica possui alta<br />

sensibilida<strong>de</strong> (da or<strong>de</strong>m <strong>de</strong> ppm), é não <strong>de</strong>strutiva e<br />

<strong>de</strong>termina simultaneamente elementos a partir do<br />

sódio. A técnica RBS foi utilizada para <strong>de</strong>terminação<br />

da matriz (composição orgânica – carbono,<br />

oxigênio) da amostra. Para utilização <strong>de</strong> ambas as<br />

técnicas, é necessário que as amostras estejam<br />

sólidas e homogêneas. Para tanto, inicialmente<br />

analisamos pó <strong>de</strong> oito marcas <strong>de</strong> café, cujos<br />

elementos encontrados foram Mg, Al, P, S, Cl, K,<br />

Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb e Sr. O resultado<br />

qualitativo da média <strong>de</strong> 18 amostras para cada uma<br />

das oito marcas <strong>de</strong> café po<strong>de</strong> ser observado na figura<br />

1. Em continuação, será selecionada uma marca com<br />

a qual será realizada a análise do processo <strong>de</strong><br />

preparação e ingestão da bebida (café em pó, café<br />

pelo qual a água passou e café líquido, propriamente<br />

dito).<br />

Figura 1. Espectro PIXE com a média <strong>de</strong> 18 amostras<br />

para cada uma das 8 marcas <strong>de</strong> café.<br />

Referências[1]<br />

http://www.abic.com.br/prog_merenda.html<br />

72 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Coherencia y localización parcial en emisión electrónica simple <strong>de</strong><br />

moléculas diatómicas<br />

C. Tachino 1 , M. Galassi 1 , F. Martín 2 , y R. Rivarola 1<br />

1<br />

Instituto <strong>de</strong> <strong>Física</strong> Rosario, CONICET – <strong>Universidad</strong> Nacional <strong>de</strong> Rosario, Av. Pellegrini 250, 2000 Rosario,<br />

Argentina<br />

2<br />

<strong>Departamento</strong> <strong>de</strong> Química, Módulo 13, <strong>Universidad</strong> Autónoma <strong>de</strong> Madrid, 28049, Madrid, España<br />

email address corresponding author: rivarola@fceia.unr.edu.ar<br />

La emisión coherente <strong>de</strong> electrones<br />

<strong>de</strong>s<strong>de</strong> las cercanías <strong>de</strong> los núcleos <strong>de</strong> una<br />

molécula diatómica da lugar a los <strong>de</strong>nominados<br />

efectos <strong>de</strong> interferencia, siendo la naturaleza<br />

ondulatoria <strong>de</strong> estas partículas el origen<br />

<strong>de</strong> dicho fenómeno. Los primeros indicios<br />

<strong>de</strong> la existencia <strong>de</strong> los característicos<br />

patrones oscilatorios en los espectros<br />

electrónicos fueron observados ya en la<br />

década <strong>de</strong> 1960 por Samson y Cairns [1]<br />

al estudiar el proceso <strong>de</strong> fotoionización <strong>de</strong><br />

electrones <strong>de</strong> valencia <strong>de</strong> moléculas N 2 y<br />

O 2 . Tiempo más tar<strong>de</strong>, Cohen y Fano [2]<br />

pudieron establecer una relación entre<br />

este hecho y la emisión coherente <strong>de</strong> electrones<br />

<strong>de</strong>s<strong>de</strong> las proximida<strong>de</strong>s <strong>de</strong> los núcleos<br />

moleculares analizando <strong>de</strong> manera<br />

teórica el problema <strong>de</strong> fotoionización <strong>de</strong>l<br />

ion H 2+ . Sin embargo, las primeras evi<strong>de</strong>ncias<br />

experimentales <strong>de</strong> la existencia <strong>de</strong><br />

este fenómeno fueron obtenidas recién en<br />

el año 2001, cuando Stolterfoth y colaboradores<br />

[3] pudieron observar patrones <strong>de</strong><br />

interferencia en las secciones eficaces <strong>de</strong><br />

ionización para el sistema Kr 34+ (60<br />

MeV/u) + H 2 . Des<strong>de</strong> entonces, los estudios<br />

sobre efectos <strong>de</strong> interferencia se han<br />

ampliado, lográndose no sólo una mayor<br />

cantidad <strong>de</strong> evi<strong>de</strong>ncias experimentales<br />

sino también mo<strong>de</strong>los teóricos cada vez<br />

más sofisticados que nos permiten enten<strong>de</strong>r<br />

en mayor medida la esencia <strong>de</strong> este<br />

tipo <strong>de</strong> procesos.<br />

Es nuestra intención exponer en esta<br />

oportunidad los resultados obtenidos en<br />

un trabajo previo [4] con el fin <strong>de</strong> analizar<br />

la existencia <strong>de</strong> interferencias en los patrones<br />

<strong>de</strong> ionización simple <strong>de</strong> iones moleculares<br />

HeH + y <strong>de</strong> moléculas diatómicas<br />

que posean más <strong>de</strong> un orbital molecular<br />

en su estado fundamental. Para realizar<br />

este trabajo, utilizamos el mo<strong>de</strong>lo CDW-<br />

EIS junto con una aproximación <strong>de</strong> dos<br />

centros efectivos (TEC) para <strong>de</strong>scribir la<br />

dinámica <strong>de</strong> la colisión. En cuanto a los<br />

núcleos <strong>de</strong>l blanco, se ha asumido que las<br />

posiciones <strong>de</strong> los mismos permanecen fijas<br />

durante la reacción. Los orbitales moleculares<br />

fueron representados mediante<br />

una combinación lineal <strong>de</strong> orbitales <strong>de</strong><br />

tipo Slater centrados en cada núcleo.<br />

En lo que respecta al blanco heteronuclear<br />

HeH + , se muestra que las interferencias<br />

son visibles aún <strong>de</strong>spués <strong>de</strong> promediar<br />

las distribuciones electrónicas angulares<br />

sobre todas las posibles orientaciones<br />

moleculares [5]. De la comparación<br />

entre estos espectros y los calculados<br />

para moléculas H 2 , se observa que las oscilaciones<br />

en el caso heteronuclear son<br />

menos pronunciadas que aquellas correspondientes<br />

al caso homonuclear. Este<br />

comportamiento se atribuye a la localización<br />

parcial <strong>de</strong> electrones alre<strong>de</strong>dor <strong>de</strong> la<br />

partícula alfa en el blanco HeH + .<br />

Para moléculas multielectrónicas tales<br />

como N 2 , O 2 y CO, se muestran los espectros<br />

correspondientes a secciones eficaces<br />

diferenciales en energía y orientación<br />

<strong>de</strong>l electrón emitido, y en orientación<br />

<strong>de</strong>l blanco molecular. En estos cálculos se<br />

consi<strong>de</strong>ra una geometría coplanar en la<br />

que el electrón emitido, el proyectil y la<br />

molécula se encuentran todos en el mismo<br />

plano, y se analizan dos orientaciones mo-<br />

73 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

leculares <strong>de</strong>finidas- paralela y perpendicular<br />

a la dirección <strong>de</strong> inci<strong>de</strong>ncia <strong>de</strong>l proyectil.<br />

También se muestras secciones eficaces<br />

doble diferenciales, las cuales se<br />

obtienen promediando las distribuciones<br />

electrónicas angulares sobre todas las posibles<br />

orientaciones <strong>de</strong> la molécula.<br />

Referencias<br />

[1] J. Samson y R. Cairns, J. Opt. Soc. Am.<br />

55, 1035 (1965).<br />

[2] H. Cohen y U. Fano, Phys. Rev. 150, 30<br />

(1966).<br />

[3] N. Stolterfoht et al, Phys. Rev. Lett. 87,<br />

023201 (2001).<br />

[4] C. Tachino et al., J. Phys. B 42, 075203<br />

(2009).<br />

[5] C. Tachino et al., J. Phys. B 43, 135203<br />

(2010).<br />

Figura 1. Comparación entre los cocientes <strong>de</strong> secciones<br />

eficaces doble diferenciales (DDCS) para el<br />

ion molecular HeH + (línea sólida) y para la molécula<br />

<strong>de</strong> hidrógeno (línea <strong>de</strong> trazos) para diferentes energías<br />

<strong>de</strong> impacto <strong>de</strong> protones y diferentes ángulos <strong>de</strong><br />

emisión <strong>de</strong>l electrón..<br />

Figura 2. Cocientes <strong>de</strong> secciones eficaces doble<br />

diferenciales por orbital molecular para el sistema<br />

H + (1 MeV) + N 2, para un ángulo <strong>de</strong><br />

emisión <strong>de</strong>l electrón igual a 30º.<br />

74 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Estados selectivos <strong>de</strong> captura <strong>de</strong> electrones en colisiones <strong>de</strong> 3 He 2+ +He a<br />

energías intermedias <strong>de</strong> impacto aplicando la técnica COLTRIMS<br />

M. Alessi 1 , S. Otranto 2 , D. Fregenal 1 , P. Focke 1<br />

1 Centro Atómico Bariloche, S. C. <strong>de</strong> Bariloche, 8400, Río Negro, Argentina<br />

2 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong> <strong>Universidad</strong> Nacional <strong>de</strong>l Sur, 8000 Bahía Blanca, Buenos Aires Argentina.<br />

email <strong>de</strong>l autor correspondiente: alessi@cab.cnea.gov.ar<br />

Durante la última década el <strong>de</strong>sarrollo <strong>de</strong><br />

la técnica COLTRIMS (Cold Target Recoil - Ion<br />

Momentum Spectroscopy) ha provocado un<br />

cambio fundamental en la investigación <strong>de</strong> colisiones<br />

atómicas y moleculares. Dicha técnica<br />

también conocida como Reaction Microscope,<br />

es actualmente una <strong>de</strong> las herramientas más<br />

completas que permite reconstruir con alta resolución<br />

y en forma <strong>de</strong>tallada procesos <strong>de</strong> colisiones<br />

que involucren átomos, moléculas y clusters<br />

en estado gaseoso.<br />

Lo novedoso <strong>de</strong> dicha técnica es la incorporación<br />

e integración <strong>de</strong> blancos fríos supersónicos,<br />

<strong>de</strong>tectores bidimensionales <strong>de</strong> partículas y<br />

espectrómetros electrostáticos; que junto con el<br />

<strong>de</strong>sarrollo <strong>de</strong> electrónica ultra-rapida y la técnica<br />

<strong>de</strong> medición por tiempo <strong>de</strong> vuelo (TOF), la convierten<br />

en una herramienta fundamental para el<br />

estudio <strong>de</strong> procesos que involucren transferencia<br />

<strong>de</strong> carga, simple y múltiple ionización por iones,<br />

electrones y fotones, entre otros procesos.<br />

La utilización <strong>de</strong> un haz supersónico colimado<br />

para la producción <strong>de</strong> blancos fríos localizados<br />

y <strong>de</strong> <strong>de</strong>tectores <strong>de</strong> partículas sensibles a<br />

la posición, es lo que <strong>de</strong>termina la resolución y<br />

precisión en la medición <strong>de</strong> los momentos transferidos<br />

durante las colisiones.<br />

Dicha técnica lleva poco más <strong>de</strong> diez años<br />

<strong>de</strong> <strong>de</strong>sarrollo y aplicación, y se encuentra en<br />

plena producción en su país gestador, Alemania<br />

y en países como Estados Unidos, Francia y Japón.<br />

Luego <strong>de</strong> varios años <strong>de</strong> <strong>de</strong>sarrollo se logró<br />

la optimización <strong>de</strong> diversas partes <strong>de</strong> los diseños<br />

originales. En nuestro país, es una técnica nueva<br />

y se ha incorporado en los últimos años en nuestro<br />

laboratorio. La versión <strong>de</strong>l equipamiento implementado<br />

en el Centro Atómico Bariloche correspon<strong>de</strong><br />

a uno <strong>de</strong> las primeras variantes <strong>de</strong> la<br />

técnica <strong>de</strong>sarrollada en Alemania, con algunas<br />

modificaciones que fueron incorporándose durante<br />

el montaje y caracterización <strong>de</strong>l presente<br />

equipo.<br />

La línea experimental <strong>de</strong> Bariloche consta<br />

<strong>de</strong> un sistema <strong>de</strong> transporte y colimación <strong>de</strong>l haz<br />

<strong>de</strong> proyectiles (iones/átomos) provenientes <strong>de</strong>l<br />

acelerador Kevatron tipo Cockcroft-Walton, que<br />

permite alcanzar energías <strong>de</strong>l or<strong>de</strong>n <strong>de</strong> 10 a<br />

250 keV. Dicho haz es transportado hacia la<br />

zona <strong>de</strong> colisión, <strong>de</strong>ntro <strong>de</strong> una cámara que alcanza<br />

presiones <strong>de</strong> base <strong>de</strong>l or<strong>de</strong>n <strong>de</strong> 10 -8 Torr,<br />

don<strong>de</strong> impacta con un haz supersónico gaseoso<br />

enfriado, ya sea atómico o molecular. En nuestro<br />

caso, el enfriamiento <strong>de</strong>l blanco se produce durante<br />

una expansión adiabática <strong>de</strong>l mismo, a través<br />

<strong>de</strong> un sistema <strong>de</strong> tobera-skimmer. Tal enfriamiento<br />

tiene el objetivo <strong>de</strong> reducir consi<strong>de</strong>rablemente<br />

la distribución <strong>de</strong> momentos inicial<br />

<strong>de</strong>l blanco, hasta llegar a ser <strong>de</strong>spreciable, comparada<br />

con los momentos transferidos durante<br />

los procesos <strong>de</strong> colisiones.<br />

Los fragmentos e iones en retroceso producidos<br />

durante las colisiones, son extraídos<br />

utilizando un espectrómetro electrostático y son<br />

<strong>de</strong>tectados por medio <strong>de</strong> un <strong>de</strong>tector sensible a la<br />

posición (DLD40) tipo multi-hit, conformado<br />

por micro-channelplates (MCP) y ánodo por<br />

líneas <strong>de</strong> retraso. Dicho <strong>de</strong>tector junto con la<br />

técnica <strong>de</strong> medición TOF, la incorporación <strong>de</strong><br />

campos eléctricos en la línea emergente <strong>de</strong>l proyectil<br />

y la utilización <strong>de</strong> <strong>de</strong>tectores ultra-rápidos<br />

(tipo channeltron) permiten medir en coinci<strong>de</strong>ncia<br />

los momentos <strong>de</strong> los iones producidos en las<br />

colisiones y el estado <strong>de</strong> carga <strong>de</strong>l proyectil<br />

emergente. Esta configuración <strong>de</strong> medición abre<br />

75 Valparaíso, Chile


Counts<br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

las puertas hacia una nueva técnica en la cual<br />

toda la cinemática producida durante la colisión<br />

pue<strong>de</strong> ser reconstruida, a través <strong>de</strong> la <strong>de</strong>terminación<br />

<strong>de</strong> la posición <strong>de</strong> impacto <strong>de</strong> los fragmentos<br />

residuales sobre <strong>de</strong>tectores bidimensionales<br />

y el tiempo <strong>de</strong> vuelo <strong>de</strong> los fragmentos y el proyectil.<br />

En este trabajo como muestra <strong>de</strong>l <strong>de</strong>sempeño<br />

y caracterización <strong>de</strong>l equipo, presentamos<br />

mediciones <strong>de</strong> captura simple <strong>de</strong> electrones en<br />

colisiones <strong>de</strong> 3 He 2+ como proyectil inci<strong>de</strong>nte<br />

sobre blancos <strong>de</strong> He. El estudio fue realizado<br />

en el rango <strong>de</strong> energías intermedias <strong>de</strong> 13.3 -<br />

100 keV/amu, rango en energías hasta ahora<br />

no explorado en la literatura. Fueron <strong>de</strong>terminadas<br />

las distribuciones <strong>de</strong> momentos longitudinales<br />

en las cuales se i<strong>de</strong>ntificaron las<br />

contribuciones <strong>de</strong> los distintos procesos <strong>de</strong><br />

captura asociados al estado fundamental y<br />

estados excitados (Fig. 1). Se <strong>de</strong>terminaron<br />

secciones eficaces <strong>de</strong> estados selectivos <strong>de</strong><br />

captura simple como función <strong>de</strong> la energía <strong>de</strong><br />

impacto <strong>de</strong>l proyectil. Los resultados obtenidos<br />

muestran un buen acuerdo con mediciones<br />

existentes <strong>de</strong>l grupo <strong>de</strong> Frankfurt [1],<br />

don<strong>de</strong> se exponen datos en el rango <strong>de</strong> energias<br />

<strong>de</strong> impacto <strong>de</strong> 60 keV/amu a 250<br />

keV/amu; así como con datos más resientes<br />

<strong>de</strong>l grupo <strong>de</strong> Lanzhou [2] a 7.5 keV/amu. Los<br />

datos experimentales presentados también<br />

son contrastados con resultados obtenidos en<br />

este trabajo con el método <strong>de</strong> trayectorias<br />

clasicas <strong>de</strong> Monte Carlo (Fig. 2).<br />

En este trabajo también por medio <strong>de</strong>l<br />

mo<strong>de</strong>lo dCTMC se ponen en evi<strong>de</strong>ncia las<br />

contribuciones <strong>de</strong> cada uno <strong>de</strong> los canales<br />

(1,1), (1,2), (2,1) y (3,1) en forma discriminada,<br />

muchos <strong>de</strong> los cuales no pue<strong>de</strong>n ser<br />

resueltos experimentalmente, como por<br />

ejemplo los canales (1,2) y (2,1), dada la simetría<br />

<strong>de</strong>l presente proceso.<br />

Cross section (cm 2 )<br />

8000<br />

6000<br />

4000<br />

2000<br />

Figura 1. Distribución <strong>de</strong> momentos longitudinales<br />

p x , <strong>de</strong> iones en retroceso <strong>de</strong> He + provenientes <strong>de</strong>l<br />

proceso <strong>de</strong> captura simple a 60 keV.<br />

10 -15 (n,n')=(1,1)<br />

a)<br />

(1,2)&(2,1)<br />

(1,>3)&(>3,1)<br />

10 -16<br />

(>2,>2)<br />

10 -17<br />

10 -18<br />

20 keV/amu<br />

(n,n´)=(1,1)<br />

0.75<br />

FWHM<br />

0<br />

-4 -3 -2 -1 0 1 2 3<br />

p x<br />

(a.u.)<br />

Figura 2. Secciones eficaces <strong>de</strong> captura para diferentes<br />

estados excitados. Símbolos llenos: este trabajo;<br />

símbolos abiertos: Mergel et al. [1] (Frankfurt<br />

group); símbolos abiertos divididos: Zhu et al. [2]<br />

(Lanzhou group); líneas: cálculo dCTMC presente.<br />

Lineas: cálculo dCTMC: línea sólida (1,1); línea <strong>de</strong><br />

trazos (1,2)&(2,1); puntos-trazos (1,≥3)&(≥3,1);<br />

línea <strong>de</strong> puntos (≥2, ≥2).<br />

Referencias<br />

(1,2) & (2,1)<br />

100<br />

10 100<br />

Energy (keV/amu)<br />

(> 2, > 2)<br />

1 2 3<br />

(1, > 3) & ( > 3,1)<br />

[1] V. Mergel, et al., Phys. Rev. Lett. 74, 2200,<br />

(1995).<br />

[2] X. L. Zhu, et al., Chi. Phys. Lett. 23, 587,<br />

(2006).<br />

10<br />

76 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Estudio <strong>de</strong> colisiones con proyectiles neutros y cargados sobre blancos<br />

moleculares <strong>de</strong> H 2 a energías intermedias <strong>de</strong> impacto con la técnica<br />

COLTRIMS<br />

M. Alessi, D. Fregenal, P. Focke<br />

Centro Atómico Bariloche, S. C. <strong>de</strong> Bariloche, 8400, Río Negro, Argentina.<br />

email <strong>de</strong>l autor correspondiente: alessi@cab.cnea.gov.ar<br />

La técnica COLTRIMS (Cold Target Recoil<br />

- Ion Momentum Spectroscopy) incorporada<br />

en los últimos años en el Centro Atómico Bariloche,<br />

es actualmente una <strong>de</strong> las herramientas<br />

más nuevas con la que cuenta la División Colisiones<br />

Atómicas para realizar estudios completos<br />

sobre la cinemática <strong>de</strong> colisiones <strong>de</strong> proyectiles<br />

neutros y cargados sobre blancos supersónicos<br />

enfriados. Dicha técnica, implementada y<br />

caracterizada en los últimos años, permite en su<br />

actual <strong>de</strong>sarrollo realizar mediciones <strong>de</strong> colisiones<br />

<strong>de</strong> haces livianos sobre blancos moleculares<br />

en estado gaseoso y estudiar procesos <strong>de</strong> transferencia<br />

<strong>de</strong> carga, excitación e ionización, tanto<br />

<strong>de</strong>l blanco como <strong>de</strong>l proyectil que involucren un<br />

cambio <strong>de</strong> carga <strong>de</strong>l proyectil.<br />

Varios estudios ya se encuentran en la literatura<br />

<strong>de</strong> procesos <strong>de</strong> colisiones <strong>de</strong> proyectiles<br />

cargados sobre blancos moleculares tanto <strong>de</strong><br />

COLTRIMS [1] como empleando otras técnicas<br />

[2], pero pocas referencias pue<strong>de</strong>n hallarse sobre<br />

proyectiles neutros interactuando con moléculas<br />

[3]. Este es un campo hasta el presente prácticamente<br />

no abordado y su comprensión aporta<br />

conocimientos en áreas vinculadas con procesos<br />

en la atmósfera, plasmas, física espacial y física<br />

médica, [4, 5, 6].<br />

En este trabajo se presentan mediciones<br />

<strong>de</strong> proyectiles atómicos neutros y cargados como<br />

He o , He + y H o , inci<strong>de</strong>ntes sobre el blanco<br />

molecular <strong>de</strong> H 2 , a energías <strong>de</strong> impacto intermedias<br />

<strong>de</strong> 6.25 y 50 keV/amu. La configuración<br />

básica <strong>de</strong> los procesos estudiados está dada en la<br />

Fig. 1, don<strong>de</strong> pue<strong>de</strong>n observarse, la dirección x,<br />

o longitudinal, don<strong>de</strong> inci<strong>de</strong> el proyectil y las<br />

dos direcciones transversales y y z, don<strong>de</strong> y es<br />

la dirección <strong>de</strong>l haz blanco, y z la dirección <strong>de</strong>l<br />

campo eléctrico <strong>de</strong> extracción <strong>de</strong> los fragmentos,<br />

en el espectrómetro <strong>de</strong>l sistema COLTRIMS.<br />

Figura 1. Esquema simplificado <strong>de</strong> procesos estudiados<br />

con la técnica COLTRIMS. Don<strong>de</strong> x es la direccion<br />

<strong>de</strong>l proyectil, y es la dirección <strong>de</strong>l haz supersónico<br />

(jet), z es la dirección <strong>de</strong>l campo <strong>de</strong> extracción.<br />

b y v p son el parámetro <strong>de</strong> impacto y la velocidad<br />

<strong>de</strong>l proyectil inci<strong>de</strong>nte. es el ángulo <strong>de</strong>l eje<br />

intermolecular con la dirección <strong>de</strong> inci<strong>de</strong>ncia <strong>de</strong>l<br />

proyectil, y es el ángulo azimutal en el plano y-z.<br />

En particular en este caso, para proyectiles<br />

cargados, se presentan mediciones <strong>de</strong> procesos<br />

<strong>de</strong> captura simple <strong>de</strong>l proyectil y excitación<br />

<strong>de</strong>l blanco para el sistema <strong>de</strong> colisión He + + H 2<br />

y para el caso <strong>de</strong> proyectiles neutros, se analizan<br />

procesos <strong>de</strong> pérdida, ionización y excitación.<br />

En todos los procesos se centra la atención en la<br />

emisión <strong>de</strong> fragmentos <strong>de</strong> H 2 + en todo su rango<br />

<strong>de</strong> energías, como así también en la emisión<br />

<strong>de</strong> H + pero solo para rangos <strong>de</strong> energías <strong>de</strong><br />

emisión menores a 4 eV, es <strong>de</strong>cir, el estudio<br />

se enfoca en la emisión <strong>de</strong> protones lentos.<br />

Como análisis <strong>de</strong> la cinemática se presentan<br />

las distribuciones <strong>de</strong> transferencias <strong>de</strong><br />

momentos longitudinales (P x ) y transversales<br />

(P y - P z ) <strong>de</strong> los recoils <strong>de</strong> H 2 + (Fig.2) y H + , se<br />

77 Valparaíso, Chile


Py (a.u.)<br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

estudia su emisión angular y simetrías<br />

(Fig.3), como así también <strong>de</strong>flexión <strong>de</strong>l proyectil,<br />

por ejemplo para el caso <strong>de</strong> captura<br />

simple. Los fragmentos <strong>de</strong> H + <strong>de</strong> baja energía<br />

están vinculados con la disociación <strong>de</strong>l estado<br />

fundamental <strong>de</strong>l ion H 2 + (GSD).<br />

Para el caso <strong>de</strong> proyectiles neutros en<br />

particular, se comienzan a dar muestras <strong>de</strong> la<br />

transferencia <strong>de</strong> momentos a distintas energías<br />

y análisis <strong>de</strong> procesos con proyectiles<br />

con uno y dos electrones.<br />

Figura 2. Distribución <strong>de</strong> momentos longitudinal P x<br />

y una <strong>de</strong> las componentes transversales P y (dirección<br />

<strong>de</strong>l jet) para el proceso <strong>de</strong> captura simple <strong>de</strong><br />

He + + H 2 a 25 keV.<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25<br />

Px (a.u)<br />

100<br />

10<br />

1<br />

1<br />

10<br />

100<br />

180<br />

9000<br />

8500<br />

8000<br />

7500<br />

7000<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

150<br />

210<br />

120<br />

240<br />

(grados)<br />

90<br />

270<br />

Figura 3. Emisión angular <strong>de</strong> los fragmentos <strong>de</strong> H +<br />

en la disociación <strong>de</strong>l estado fundamental GSD<br />

H 2<br />

+<br />

(1s g<br />

) → H + + H o (1s) para el sistema<br />

He + + H 2 →He o + H + + H (captura y excitación).<br />

Círculos llenos 200 keV, círculos abiertos 25 keV.<br />

Referencias<br />

60<br />

300<br />

30<br />

330<br />

0<br />

100<br />

10<br />

1<br />

1<br />

10<br />

100<br />

180<br />

(grados)<br />

[1] M. A. Abdallah, et al., Phys. Rev. A, 62,<br />

012711, (2000).<br />

[2] V. V. Afrosimov, et al., Sov. Phys. JETP, 29,<br />

4, (1969).<br />

[3] E. Horsdal Pe<strong>de</strong>rsen and P. Hvelplund, J.<br />

Phys. B : Atom. Mol. Phys., 7, 132, (1974).<br />

[4] M. H. Rees. Physics and Chemistry of the<br />

Upper Atmosphere. Cambridge Atmospheric<br />

and Space Science Series. (1989).<br />

[5] Weihong Liu and D. R. Schultz, The Astrophysical<br />

Journal, 530 :500-503, (2000).<br />

[6] Jürgen Kiefer, Biological Radiation Effects,<br />

Springer-Verlag, (1990).<br />

150<br />

210<br />

120<br />

240<br />

90<br />

270<br />

60<br />

300<br />

30<br />

330<br />

0<br />

78 Valparaíso, Chile


SEPD (u.a.)<br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Doble Ionización <strong>de</strong> Helio por impacto <strong>de</strong> iones:<br />

Influencia <strong>de</strong> la Carga <strong>de</strong>l Proyectil<br />

S. D. López 1 , S. Otranto 2 , C. R. Garibotti 1<br />

1 CONICET y Centro atómico Bariloche, Av. Bustillo Km 9.4,8400 S. C. <strong>de</strong> Bariloche, Argentina<br />

2<br />

CONICET y Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> Nacional <strong>de</strong>l Sur, 8000 Bahía Blanca, Argentina<br />

email: sebastlop@gmail.com<br />

En la última década, la técnica COL-<br />

TRIMS (Cold Target Recoil-Ion Momentum<br />

Spectroscopy) ha permitido realizar diversos<br />

procesos <strong>de</strong> colisiones atómicas y moleculares<br />

a un nivel cinemáticamente completo [1].<br />

En particular, se han presentado secciones<br />

plenamente diferenciales (SEPD) para el proceso<br />

<strong>de</strong> doble ionización <strong>de</strong> He por impacto<br />

<strong>de</strong> protones y electrones [2,3]. En esta última<br />

referencia, se comparan las secciones plenamente<br />

diferenciales obtenidas mediante protones<br />

<strong>de</strong> 6 MeV como proyectil con los obtenidos<br />

mediante el impacto <strong>de</strong> electrones <strong>de</strong> 2<br />

keV encontrando diferencias sustanciales en<br />

las estructuras para ambos casos.<br />

En el presente trabajo se analiza en<br />

forma teórica la influencia <strong>de</strong> la carga <strong>de</strong>l<br />

proyectil en el proceso <strong>de</strong> ionización doble <strong>de</strong><br />

Helio por impacto <strong>de</strong> protones y antiprotones<br />

para energías <strong>de</strong> impacto entre 700keV y<br />

6MeV. El estudio se realiza para secciones<br />

eficaces completamente diferenciales. La<br />

configuración elegida para la observación es<br />

aquella en el cual todas las partículas salen en<br />

el plano <strong>de</strong> colisión, observando la distribución<br />

en los ángulos polares electrónicos. Se<br />

emplea el formalismo <strong>de</strong> la primera aproximación<br />

<strong>de</strong> Born en la interacción proyectilblanco.<br />

Como es sabido, esta aproximación<br />

no presenta diferencias ante la carga <strong>de</strong>l proyectil,<br />

y por ello se ha incluido un apantallamiento<br />

dinámico para incluir sus efectos [4].<br />

Para la <strong>de</strong>scripción <strong>de</strong>l sistema atómico<br />

inicial se han utilizado funciones <strong>de</strong>l tipo<br />

Bonham y Kohl que introducen correlación<br />

angular, mientras que para el estado final se<br />

ha utilizado la función <strong>de</strong> onda C3 [5] con<br />

cargas apantalladas como propusieran Berakdar<br />

y Briggs [6]. La introducción <strong>de</strong> este<br />

apantallamiento dinámico logra disminuir la<br />

sobreestimación <strong>de</strong> la distorsión Coulombiana<br />

repulsiva entre los electrones que es dominante<br />

a bajas energías <strong>de</strong> impacto.<br />

3.0x10 -5 protón<br />

antiprotón<br />

2.5x10 -5<br />

1<br />

=0º<br />

2.0x10 -5<br />

1.5x10 -5<br />

1.0x10 -5<br />

5.0x10 -6<br />

0.0<br />

-90 -60 -30 0 30 60 90 120 150 180 210 240 270<br />

2<br />

(grados)<br />

Figura 1. SEPD para la doble ionización <strong>de</strong> He<br />

por impacto <strong>de</strong> protones y antiprotones a 700<br />

keV. Las energías <strong>de</strong> los electrones emitidos son<br />

E 1 = E 1 =10 eV y el momento transferido Q = 0.7<br />

a.u.<br />

References<br />

[1] R. Moshammer et al, NIMB 108, 425 (1996).<br />

[2] A. Dorn et al, Phys. Rev. Lett 86, 3755<br />

(2001).<br />

[3] D. Fischer et al, Phys. Rev. Lett 90, 243201<br />

(2003).<br />

[4] G. Gasaneo, S. Otranto, K. V. Rodríguez,<br />

Proceedings of the XXIV ICPEAC, 369 (2006)<br />

[5] C. R. Garibotti y J. E. Miraglia, Phys. Rev. A<br />

21, 572 (1980).<br />

[6] J. Berakdar y J. S. Briggs, Phys. Rev. Lett.<br />

72, 3799 (1994).<br />

79 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Lα, Lβ, and Lγ x-ray production cross sections of Sm, Dy, Ho, and Tm<br />

by electron impact. Distorted-wave calculations vs experiment<br />

José M. Fernán<strong>de</strong>z-Varea 1 , Silvina Segui 2 and Michael Dingfel<strong>de</strong>r 3<br />

1<br />

Facultat <strong>de</strong> <strong>Física</strong> (ECM and ICC), Universitat <strong>de</strong> Barcelona, Diagonal 647, E-08028 Barcelona, Spain<br />

2<br />

Centro Atómico Bariloche (CNEA), 8400 San Carlos <strong>de</strong> Bariloche, Río Negro, Argentina<br />

3<br />

Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States of America<br />

email address corresponding author: jose@ecm.ub.es<br />

The ionization of atoms by the impact<br />

of electrons is a fundamental process of<br />

nature. In addition to its interest from the<br />

purely theoretical si<strong>de</strong>, several experimental<br />

techniques require knowledge on the associated<br />

cross sections. For instance, Auger electron<br />

spectroscopy and electron-probe microanalysis<br />

need such input data for quantitative<br />

analysis.<br />

The distorted-wave Born approximation<br />

(DWBA) has become a well-established<br />

formalism to calculate cross sections for the<br />

ionization of atomic inner shells by electron<br />

impact [1-3]. Comparison of DWBA cross<br />

sections with available experimental information<br />

provi<strong>de</strong>s confi<strong>de</strong>nce in the predictions of<br />

this theoretical approach. Nevertheless, a<br />

thorough assessment of the DWBA is still <strong>de</strong>sirable,<br />

especially in the case of the L and M<br />

shells of atoms with intermediate and high<br />

atomic numbers.<br />

In a recent work [4] we studied the<br />

emission (after electron impact) of Lα, Lβ,<br />

and Lγ characteristic x-rays by atoms with 72<br />

≤ Z ≤ 83, paying attention to electron energies<br />

E < 50 keV. Good agreement was generally<br />

found between DWBA x-ray production<br />

cross sections and existing measurements.<br />

The present work is a continuation of<br />

the previous one, focusing now on lanthani<strong>de</strong><br />

atoms. In particular, we investigate the emission<br />

of Lα, Lβ, and Lγ x-rays by elements<br />

Sm, Dy, Ho, and Tm, whose respective atomic<br />

numbers are 62, 66, 67, and 69. To this<br />

end, DWBA cross sections for the ionization<br />

of the L 1 , L 2 , and L 3 shells of the consi<strong>de</strong>red<br />

atoms were calculated on a <strong>de</strong>nse grid of<br />

electron kinetic energies. This was done solving<br />

numerically the radial Dirac equation for<br />

the bound and free wave functions of the projectile<br />

and active electrons in a Dirac-Fock-<br />

Slater potential, and summing the required<br />

partial-wave series. Atomic relaxation parameters<br />

(i.e. fluorescence yields, Coster-Kronig<br />

and radiative transition probabilities,<br />

emission rates) were then employed to evaluate<br />

the sought Lα, Lβ, and Lγ x-ray production<br />

cross sections. Three sets of relaxation<br />

parameters were adopted, namely those used<br />

in reference [4] as well as the values from the<br />

Evaluated Atomic Data Library [5].<br />

The resulting x-ray emission cross sections<br />

are rather insensitive to the specific<br />

choice of relaxation data set. The predictions<br />

of the DWBA are in reasonable agreement<br />

with measurements reported in the literature<br />

[6-8], especially for Dy and Tm. As an example,<br />

figure 1 shows the comparison<br />

between theoretical and experimental cross<br />

sections of Dy. However, the experimental<br />

values are systematically lower than the theoretical<br />

ones, with Sm displaying the largest<br />

disagreement.<br />

The observed discrepancies might be<br />

partly caused by shortcomings of the correction<br />

applied to the raw experimental data to<br />

account for the finite thickness of the sample<br />

and the presence of the thick substrate. These<br />

effects tend to increase the production of x-<br />

rays above the values that would be measured<br />

if the sample were a thin, self-supporting<br />

foil. Multiple-scattering theories might be inappropriate<br />

to estimate these corrections at<br />

the consi<strong>de</strong>red low energies.<br />

80 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

[2] J. Colgan, C. J. Fontes, and H. L. Zhang,<br />

Phys. Rev. A 73, 062711 (2006).<br />

[3] D. Bote and F. Salvat, Phys. Rev. A 77,<br />

042701 (2008).<br />

[4] J. M. Fernán<strong>de</strong>z-Varea, S. Segui, and M.<br />

Dingfel<strong>de</strong>r, Phys. Rev. A (submitted).<br />

[5] S. T. Perkins, D. E. Cullen, M. H. Chen, J.<br />

H. Hubbell, J. Rathkopf, and J. Scofield, Tables<br />

and Graphs of Atomic Subshell and Relaxation<br />

Data <strong>de</strong>rived from the LLNL Evaluated Atomic<br />

Data Library (EADL), Z=1-100, Report UCRL-<br />

50400, vol. 30 (Lawrence Livermore National<br />

Laboratory, Livermore, CA, 1991).<br />

[6] C. -J. Gou, Z. -W. Wu, D. -L. Yang, F. -Q.<br />

He, X. -F. Peng, Z. An, and Z. -M. Luo, Chin.<br />

Phys. Lett. 22, 2244 (2005).<br />

[7] Z. -W. Wu, C. -J. Gou, D. -L. Yang, Z. An,<br />

X. -F. Peng, F. -Q. He, and Z. -M. Luo, Chin.<br />

Phys. Lett. 22, 2538 (2005).<br />

[8] Z. Wu, C. Gou, D. Yang, X. Peng, F. He,<br />

and Z. Luo, Chin. Sci. Bull. 51, 1929 (2006).<br />

Figure 1. X-ray production cross sections of Dy as a<br />

function of energy. The continuous curves correspond<br />

to theoretical cross sections obtained with relaxation<br />

data taken from the EADL [5]. Symbols are<br />

experimental values from reference [6].<br />

References<br />

[1] S. Segui, M. Dingfel<strong>de</strong>r, and F. Salvat, Phys.<br />

Rev. A 67, 062710 (2003).<br />

81 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Estudio <strong>de</strong> po<strong>de</strong>r <strong>de</strong> frenado <strong>de</strong> partículas α en películas <strong>de</strong>lgadas <strong>de</strong> cobre<br />

en el intervalo <strong>de</strong> energía entre 1,0 a 2,0 MeV.<br />

Roberto Hauyón 1 , German Kremer 2 , Pedro Miranda 2 y J. Roberto Morales 1 , 2 .<br />

1 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias, <strong>Universidad</strong> <strong>de</strong> Chile, Casilla 653, Santiago, Chile.<br />

2 Centro <strong>de</strong> <strong>Física</strong> Experimental, CEFEX, Facultad <strong>de</strong> Ciencias, <strong>Universidad</strong> <strong>de</strong> Chile, Casilla 653, Santiago, Chile.<br />

Correo electrónico <strong>de</strong>l autor : rhauyon@gmail.com<br />

El objetivo <strong>de</strong> este trabajo fue el medir el po<strong>de</strong>r<br />

<strong>de</strong> frenado <strong>de</strong> partículas α en el rango <strong>de</strong> energías<br />

entre 1,0 a 2,0 MeV en el acelerador <strong>de</strong> partículas<br />

Van <strong>de</strong> Graaff KN3750 <strong>de</strong> la Facultad <strong>de</strong> Ciencias,<br />

<strong>Universidad</strong> <strong>de</strong> Chile. La principal motivación <strong>de</strong>l<br />

estudio es que en la actualidad existe discrepancia<br />

entre varios grupos y autores en sus datos experimentales<br />

<strong>de</strong> po<strong>de</strong>r <strong>de</strong> frenado <strong>de</strong>l cobre en estos rangos <strong>de</strong><br />

energías con las partículas α. Se contrastó los datos<br />

obtenidos con la teoría <strong>de</strong> Bethe-Bloch, calculadas<br />

por el programa SRIM, y con otros laboratorios. Se<br />

obtuvo consistencia entre los valores experimentales<br />

con los cálculos propuestos por SRIM.<br />

Actualmente hay un gran interés por conocer<br />

con mejor exactitud varios parámetros nucleares como<br />

secciones eficaces <strong>de</strong> reacciones y po<strong>de</strong>r <strong>de</strong> frenado<br />

[1–9]. En particular, el po<strong>de</strong>r <strong>de</strong> frenado, tiene<br />

varias décadas <strong>de</strong> estudio, tanto a nivel experimental<br />

como a nivel teórico. Dentro <strong>de</strong> estas últimas dos<br />

décadas se han incluido para su estudio técnicas <strong>de</strong><br />

simulación para diversos usos y nuevas metodologías<br />

experimentales. Las motivaciones actuales para<br />

este estudio van <strong>de</strong>s<strong>de</strong> su uso en la física médica,<br />

ciencias espaciales y recientemente [10] en la Comisión<br />

Chilena <strong>de</strong> Energía Nuclear CCHEN, en el <strong>Departamento</strong><br />

<strong>de</strong> Materiales Nucleares y a través <strong>de</strong> un<br />

convenio <strong>de</strong> colaboración con la empresa Sueca<br />

Swedish Nuclear Fuel and Waste Management Co,<br />

(SKB), realiza un estudio <strong>de</strong> la resistencia <strong>de</strong>l cobre<br />

frente a la irradiación y a la corrosión, tanto por factores<br />

químicos como por radiación. Este uso no tradicional<br />

<strong>de</strong> cobre sumado a que Chile es un gran productor<br />

<strong>de</strong> cobre hace aún más atractivo el <strong>de</strong>sarrollo y<br />

la investigación que preten<strong>de</strong> utilizar cobre dopado<br />

con fósforo como blindaje para <strong>de</strong>sechos nucleares <strong>de</strong><br />

alta actividad por emisión <strong>de</strong> partículas α. El cobre es<br />

un material que combina entre muchas cosas, una<br />

buena resistencia a la corrosión, alta conducción<br />

térmica y eléctrica, y atractivas propieda<strong>de</strong>s mecánicas<br />

a temperaturas bajas, ambiente y mo<strong>de</strong>radamente<br />

altas. En países como Suecia [10,11] y Finlandia [10]<br />

se ha seleccionado a los contenedores con pare<strong>de</strong>s <strong>de</strong><br />

cobre como la mejor alternativa para aislar <strong>de</strong>sechos<br />

nucleares <strong>de</strong> alta actividad.<br />

La metodología experimental con la cual se<br />

mi<strong>de</strong> el po<strong>de</strong>r <strong>de</strong> frenado se conoce como método<br />

<strong>de</strong> trasmisión, la cual consiste en la irradiación<br />

<strong>de</strong> un blanco <strong>de</strong>lgado <strong>de</strong> cobre mediante un haz<br />

<strong>de</strong> partículas α. El acelerador es capaz <strong>de</strong> proveer<br />

una corriente <strong>de</strong> haz estable <strong>de</strong> 5 nA, el cual traspasa<br />

blancos <strong>de</strong>lgados autosoportantes. Esto nos<br />

permitió, mediante un sistema espectroscópico<br />

apropiado, <strong>de</strong>terminar la perdida <strong>de</strong> energía <strong>de</strong>l<br />

haz <strong>de</strong> partículas al atravesar el material bajo estudio.<br />

Figura 1: Superposición <strong>de</strong> espectros para <strong>de</strong>terminar<br />

la perdida <strong>de</strong> energía ocurrida en 1,82 MeV <strong>de</strong>bido<br />

a la película auto soportante <strong>de</strong> cobre. En el<br />

espectro sin atenuar la energía es 1,82 MeV con<br />

FWHM <strong>de</strong> 20 keV con un total <strong>de</strong> 814 cuentas y<br />

cuentas netas 808 ± 29. En el espectro con la película<br />

auto soportante la energía medida fue 1,65 MeV<br />

con FWHM <strong>de</strong> 35 keV con un área total <strong>de</strong> 789 cuentas<br />

y cuentas netas <strong>de</strong> 789 ± 28. En ambos espectros<br />

el tiempo real <strong>de</strong> medición fue <strong>de</strong> 1200 segundos.<br />

Los blancos son fabricados utilizando la<br />

técnica evaporación disponible en el Laboratorio<br />

82 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

<strong>de</strong> Sólidos <strong>de</strong> la Facultad <strong>de</strong> Ciencias <strong>de</strong> la <strong>Universidad</strong><br />

<strong>de</strong> Chile. La <strong>de</strong>nsidad superficial <strong>de</strong> estos<br />

blancos se <strong>de</strong>terminó mediante la técnica <strong>de</strong><br />

retrodisperción <strong>de</strong> Rutherford.<br />

Figura 2: Espectro RBS <strong>de</strong> partículas α sobre la<br />

película autosoportante <strong>de</strong> cobre utilizada para el<br />

experimento. El programa usado para el análisis <strong>de</strong><br />

este tipo <strong>de</strong> espectros es SIMRA[12], con el cual, se<br />

<strong>de</strong>termino la <strong>de</strong>nsidad superficial <strong>de</strong>l blanco.<br />

Con los procedimientos anteriormente<br />

mostrados, obtuvimos valores <strong>de</strong> po<strong>de</strong>r <strong>de</strong> frenado<br />

<strong>de</strong> partículas alfa sobre cobre. En la figura 3<br />

comparamos los valores obtenidos con los datos<br />

experimentales <strong>de</strong> otros laboratorios y los propuestos<br />

por la teoría <strong>de</strong> Bethe-Bloch[13-15], calculados<br />

por SRIM. [8] Se uso <strong>de</strong> referencia la<br />

base <strong>de</strong> datos disponible <strong>de</strong>l Dr. Helmut Paul [7].<br />

Referencias<br />

[1] W. Chu y D. Powers, Phys. Rev. 187 (1969).<br />

[2] W. Wenzel y W. Whaling, Phys. Rev. 88 (1952).<br />

[3] W. Wenzel y W. Whaling, Phys. Rev. 87 (1952).<br />

[4] D. Powers, W. Chu y P. Bourland, Phys. Rev. 165<br />

(1968).<br />

[5] P. Bourland y D. Powers, Phys. Rev. B 3 (1971).<br />

[6] J. F. Ziegler, J. Applied Physics 85 (1999).<br />

[7] H. Paul, Stopping Power for Light Ions. Graphs,<br />

Data, Comments and Programs<br />

(http://www.exphys.uni-linz.ac.at/stopping/, 2008).<br />

[8] J.Ziegler, J.Biersack, The Stopping and Range of<br />

iones in matter (www.srim.org, 2008).<br />

[9] NIST, Stopping Power and Range Tables for Alpha<br />

Particles (www.physics.nist.gov/PhysRefData/<br />

Star/Text/ASTAR.html, 2010)<br />

[10] CCHEN .<br />

[11] RD y D.-P. 95, Swedish Nuclear Fuel and Waste<br />

Management Co. Stockholm .<br />

[12] M.Mayer, SIMNRA, Users’s Gui<strong>de</strong> (Max-<br />

Planck Institute for Plasmaphysics, Garching Germany,<br />

2002).<br />

[13] H. Bethe, Annalen <strong>de</strong>r Physik 397 (1930).<br />

[14] E. Podgorsak, Radiation Physics for Medical<br />

Physicists, Second Edition (Springer, 2010).<br />

[15] W. R. Leo, Techniques for nuclear and particle<br />

physics experiments (Springer Verlag, 1993).<br />

[16] P. Sigmund, Nuc. Inst. Meth. Phys. Res. B. 85<br />

(1994).<br />

[16] W. Chu, J.W. Maye, M.A. Nicolet, Backscattering<br />

Spectrometry (<strong>Aca</strong><strong>de</strong>mic Press, New York,<br />

1978).<br />

[17] W. Chu, Physics Review A 13 (1976).<br />

[18] G.F.Knoll, Radiation Detection and Measurement<br />

(2a Ed., John Wiley & Sons, 1989).<br />

[20] H.H.An<strong>de</strong>rsen y J.F.Ziegler, Stopping Powers<br />

and Ranges of Ions in Matter (Pergamon press,<br />

1977).<br />

Figura 3: Po<strong>de</strong>r <strong>de</strong> frenado <strong>de</strong> partículas alfa sobre<br />

película <strong>de</strong> cobre autosoportante. La línea continua<br />

representa el cálculo <strong>de</strong>l programa SRIM y los puntos<br />

las mediciones experimentales <strong>de</strong> este trabajo y<br />

<strong>de</strong> otros autores.<br />

83 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Ab-Initio Sturmian method for three-body quantum mechanical problems:<br />

Scattering states and ionizing collisions<br />

A. L. Frapiccini 1 , 5 , J. M. Randazzo 1 , 5 ,<br />

G. Gasaneo 2 , 5 , F. D. Colavecchia 1 , 5 , D. M. Mitnik 3 , 5 and L. U. Ancarani 4<br />

1 División <strong>de</strong> Colisiones Atómicas, Centro atómico Bariloche, San Carlos <strong>de</strong> Bariloche, Río Negro, Argentina.<br />

2 Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> Nacional <strong>de</strong>l Sur, Bahía Blanca, Buenos Aires, Argentina<br />

3 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio and <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias Exactas y Naturales,<br />

<strong>Universidad</strong> <strong>de</strong> Buenos Aires C.C. 67, Suc. 28, (C1428EGA) Buenos Aires, Argentina.<br />

4 Laboratoire <strong>de</strong> Physique Moléculaire et <strong>de</strong>s Collisions,Université Paul Verlaine-Metz, 57078 Metz, France.<br />

5 Consejo Nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET).<br />

email address corresponding author: randazzo@cab.cnea.gov.ar<br />

In this work we present the general theory to<br />

compute scattering states with a novel abinitio<br />

method[1] based on generalized Sturmians.<br />

These functions are solutions of a<br />

radial Schrödinger equation where the magnitu<strong>de</strong><br />

of a generating potential is assumed<br />

as the eigenvalue, while the energy is a parameter<br />

of the calculation. These Sturmians<br />

are versatile enough to inclu<strong>de</strong> almost any<br />

arbitrary (atomic) asymptotic conditions in<br />

the radial electron coordinates, such as the<br />

outgoing flux conditions for Coulomb potentials<br />

which are the a<strong>de</strong>quate ones for<br />

atomic collisions. The full three body<br />

Schrödinger equation is solved with a Configuration<br />

Interaction expansion of the wave<br />

function in these generalized Sturmians. The<br />

basis set is used to expand the scattering<br />

portion of the total wave function, which<br />

evolves from a separable state composed by<br />

a plane wave and the ground hydrogen state.<br />

By means of the Galerkin method, a linear<br />

system of equations is obtained for the expansion's<br />

coefficients. We show that the<br />

scattering wave function has the appropriate<br />

outgoing behaviour in the radial hyper<br />

spherical coordinate.<br />

Single differential cross section for the simple<br />

problem of atomic ionization by electronic<br />

impact in the S-wave mo<strong>de</strong>l is presented<br />

(see Fig. 1). Our results of the cross<br />

sections at 55 and 54.4 eV inci<strong>de</strong>nt energy<br />

present an excellent agreement compared to<br />

Exterior Complex Scaling results[2] and<br />

Time <strong>de</strong>pen<strong>de</strong>nt calculations from M. S.<br />

Pindzola and F. Robicheaux [3].<br />

Figure 1. Single differential cross section for single<br />

electron-atom ionization in the Temkin-Poet mo<strong>de</strong>l<br />

with different theoretical methods (E=54.4 eV).<br />

Acknowledgements<br />

This work has been supported by PICT 08/0934<br />

of ANPCYT (Argentina), PIP 200901/552 of<br />

Conicet (Argentina), and PGI 24/F049, <strong>Universidad</strong><br />

Nacional <strong>de</strong>l Sur (Argentina).<br />

References<br />

[1] A. L. Frapiccini, J. M. Randazzo, F. D.<br />

Colavecchia and G. Gasaneo, J. Phys. B: At.<br />

Mol. Opt. Phys. 101001 43 (2010).<br />

[2] C. W. McCurdy and T. N. Rescigno, Phys.<br />

Rev. A 56, R4369 (1997).<br />

[3] M. S. Pindzola and F. Robicheaux, Phys.<br />

Rev. A 55, 4617 (1997).<br />

84 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Ionización <strong>de</strong> hidrógeno atómico e iones moleculares H + 2<br />

pulsos láser<br />

R. <strong>de</strong>lla Picca, J. Fiol, P. D. Fainstein<br />

por<br />

Centro Atómico Bariloche e Instituto Balseiro (Comisión Nacional <strong>de</strong> Energía Atómica y Univ. Nacional<br />

<strong>de</strong> Cuyo), 8400 S. C. <strong>de</strong> Bariloche, Río Negro, Argentina.<br />

Consejo Nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET), Argentina.<br />

Correo Electrónico: fiol@cab.cnea.gov.ar<br />

El <strong>de</strong>sarrollo reciente <strong>de</strong> pulsos láser<br />

<strong>de</strong> muy corta duración, <strong>de</strong>l or<strong>de</strong>n <strong>de</strong> unos<br />

pocos ato-segundos, con frecuencias en la<br />

región <strong>de</strong>l ultravioleta extremo (XUV) plantea<br />

nuevos <strong>de</strong>safíos a nuestro conocimiento <strong>de</strong> la<br />

dinámica producida por interacciones lásermateria.<br />

En particular, el empleo <strong>de</strong> estos<br />

nuevos láseres necesita un conocimiento <strong>de</strong>tallado<br />

<strong>de</strong> la <strong>de</strong>pen<strong>de</strong>ncia <strong>de</strong> la dinámica en los<br />

parámetros <strong>de</strong>l láser: duración, frecuencias e<br />

intensidad [1].<br />

En esta comunicación investigamos la<br />

ionización por sobre el umbral (Above Threshold<br />

Ionization- ATI) para átomos e iones<br />

moleculares <strong>de</strong> hidrógeno. Los cálculos se realizan<br />

en el marco <strong>de</strong> la teoría <strong>de</strong> Coulomb-<br />

Volkov [2–4] utilizando funciones <strong>de</strong> onda exactas<br />

para <strong>de</strong>scribir al sistema electrón-núcleo<br />

tanto en el estado inicial como en el estado final<br />

[5]. El pulso láser es <strong>de</strong>scripto en la forma<br />

E(t) = E 0 ˆε sin 2 (πt/τ) sin(ω(t − τ/2) + ϕ)<br />

para 0 ≤ t ≤ τ y nulo fuera <strong>de</strong> este rango.<br />

Hemos <strong>de</strong>sarrollado una aproximación tipo<br />

dipolar, que permite <strong>de</strong>sacoplar parte <strong>de</strong>l<br />

cálculo con los <strong>de</strong>talles relevantes al pulso<br />

láser <strong>de</strong> los <strong>de</strong>talles <strong>de</strong> los estados atómicos<br />

y moleculares.<br />

Figura 1. Espectro <strong>de</strong> ionización <strong>de</strong> hidrógeno atómico por acción <strong>de</strong> pulsos láser como función <strong>de</strong> la<br />

duración <strong>de</strong>l pulso.<br />

85 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

En las figuras se comparan los cálculos<br />

realizados con la aproximación Volkov-<br />

Coulomb <strong>de</strong> aquellos realizados en la aproximación<br />

“dipolar”, tanto para hidrógeno<br />

atómico como para iones <strong>de</strong> hidrógeno para<br />

distintos pulsos láser.<br />

Figura 2. Espectro <strong>de</strong> ionización <strong>de</strong> iones <strong>de</strong> hidrógeno <strong>de</strong>bido a pulsos láser <strong>de</strong> distinta duración.<br />

Los espectros <strong>de</strong> ionización <strong>de</strong> iones<br />

moleculares muestran un fondo más alto entre<br />

picos ATI para energías <strong>de</strong> electrones altas.<br />

Los resultados obtenidos muestran que<br />

la aproximación dipolar representa un método<br />

alternativo <strong>de</strong> bajo costo computacional para<br />

el cálculo <strong>de</strong> secciones eficaces diferenciales y<br />

totales <strong>de</strong> ionización <strong>de</strong> blancos atómicos y<br />

moleculares complejos<br />

Referencias<br />

[2] G. Duchateau, E. Cormier, and R. Gayet,<br />

Physical Review A 66, 23412 (2002).<br />

[3] P. A. Macri, J. E. Miraglia, and M. S.<br />

Gravielle, Optical Society of America<br />

Journal B 20, 1801 (2003).<br />

[4] V. D. Rodríguez, P. Macri, and R. Gayet,<br />

Journal of Physics B: Atomic Molecular<br />

and Optical Physics 38, 2775 (2005).<br />

[5] R. Della Picca, P. D. Fainstein, M. L. Martiarena,<br />

and A. Dubois, Physical Review A<br />

75, 032710 (2007).<br />

[1] F. Krausz and M. Ivanov, Review of Mo<strong>de</strong>rn<br />

Physics 81, 163 (2009).<br />

86 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

87 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

88 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Canalización cuasiplanar <strong>de</strong> protones energéticos en inci<strong>de</strong>ncia normal sobre<br />

nanotubos <strong>de</strong> carbono <strong>de</strong> pared múltiple<br />

Jorge E. Valdés 1 , Isabel Abril 2 , Cristian D. Denton 2 , P. Vargas 1 , E. Figueroa 1 , Néstor R. Arista 3 , Rafael<br />

Garcia-Molina 4<br />

1 Laboratorio <strong>de</strong> Colisiones Atómicas, <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, UTFSM, Valparaíso 2390123, Chile<br />

2<br />

Departament <strong>de</strong> <strong>Física</strong> Aplicada, Universitat d'Alacant, E-03080 Alacant, España<br />

3 Centro Atómico Bariloche, División Colisiones Atómicas, S.C. <strong>de</strong> Bariloche, Argentina<br />

3<br />

<strong>Departamento</strong> <strong>de</strong> <strong>Física</strong> – Centro <strong>de</strong> Investigación en Óptica y Nanofísica, <strong>Universidad</strong> <strong>de</strong> Murcia,<br />

E-30100 Murcia, España<br />

corresponding author: ias@ua.es<br />

Por sus reducidas dimensiones, así como<br />

por sus singulares propieda<strong>de</strong>s electrónicas, mecánicas<br />

y magnéticas, los nanotubos <strong>de</strong> carbono<br />

(CNT) son materiales <strong>de</strong> gran interés en diversas<br />

áreas <strong>de</strong> la física, ciencia <strong>de</strong> materiales o<br />

biomedicina [1]. Entre sus posibles aplicaciones<br />

po<strong>de</strong>mos citar la fabricación <strong>de</strong> transistores <strong>de</strong><br />

efecto campo, así como memorias y sensores, o<br />

la utilización en materiales <strong>de</strong> alta resistencia<br />

mecánica, tales como puntas para microscopios<br />

<strong>de</strong> fuerza atómica y nano-electrodos para dispositivos<br />

ópticos [2]. A<strong>de</strong>más, <strong>de</strong>bido a que los<br />

nanotubos <strong>de</strong> carbono pue<strong>de</strong>n comportarse como<br />

metales o semiconductores con un ancho <strong>de</strong><br />

banda variable, <strong>de</strong>pendiendo <strong>de</strong> su estructura<br />

(diámetro o quilaridad), y a su tamaño nanométrico,<br />

los CNT son candidatos i<strong>de</strong>ales como materiales<br />

en nanoelectrónica [3].<br />

Por otra parte, está bien establecido que<br />

los haces <strong>de</strong> partículas energéticas (iones y electrones)<br />

son capaces <strong>de</strong> modificar la estructura y<br />

las propieda<strong>de</strong>s <strong>de</strong> los nanotubos <strong>de</strong> carbono <strong>de</strong><br />

forma controlada y con precisión casi atómica<br />

[4], por ello, es importante conocer cómo los<br />

haces <strong>de</strong> partículas energéticas <strong>de</strong>positan energía<br />

en los CNT.<br />

En este trabajo simularemos la interacción<br />

<strong>de</strong> haces <strong>de</strong> protones, con energía E 0 = 10 keV,<br />

al incidir sobre nanotubos <strong>de</strong> carbono <strong>de</strong> pared<br />

múltiple (MWCNT), perpendicularmente a su<br />

eje, tal y como se muestra en la figura 1.<br />

Figura 1<br />

Para ello, utilizaremos una simulación<br />

semiclásica que permite calcular las trayectorias<br />

<strong>de</strong>l proyectil a través <strong>de</strong> un MWCNT. La interacción<br />

<strong>de</strong> los protones con los átomos <strong>de</strong> carbono<br />

<strong>de</strong>l nanotubo se ha mo<strong>de</strong>lado mediante un<br />

potencial empírico repulsivo. La pérdida <strong>de</strong><br />

energía electrónica se incluye a través <strong>de</strong>l mo<strong>de</strong>lo<br />

no lineal <strong>de</strong> funcional <strong>de</strong>nsidad (DFT) para un<br />

gas <strong>de</strong> electrones, junto con la aproximación <strong>de</strong><br />

<strong>de</strong>nsidad electrónica local [5].<br />

Nuestra simulación predice que la distribución<br />

<strong>de</strong> pérdida <strong>de</strong> energía <strong>de</strong> los protones,<br />

medida en la dirección <strong>de</strong> inci<strong>de</strong>ncia, muestra<br />

dos picos bien diferenciados. El pico <strong>de</strong> menor<br />

pérdida <strong>de</strong> energía se atribuye a los protones que<br />

se mueven con gran parámetro <strong>de</strong> impacto, b<br />

(medido <strong>de</strong>s<strong>de</strong> el eje <strong>de</strong>l CNT, tal como se representa<br />

en la fig.1), los cuales han sufrido canalización<br />

cuasiplanar cerca <strong>de</strong> los bor<strong>de</strong>s <strong>de</strong>l na-<br />

89 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

notubo. Por otra parte, el pico <strong>de</strong> pérdida <strong>de</strong><br />

energía elevada correspon<strong>de</strong> a protones que inci<strong>de</strong>n<br />

sobre el nanotubo con parámetros <strong>de</strong> impacto<br />

pequeños.<br />

En la figura 2 se muestra el resultado <strong>de</strong> la<br />

simulación para la distribución energética <strong>de</strong> los<br />

protones a ángulo cero tras atravesar un<br />

MWCNT, con una energía inicial, E 0 =10 keV.<br />

En la simulación consi<strong>de</strong>ramos que el nanotubo<br />

<strong>de</strong> carbono <strong>de</strong> pared múltiple tiene un diámetro<br />

interior <strong>de</strong> 5 nm, un diámetro exterior <strong>de</strong> 27 nm,<br />

y está constituido por 34 capas, ya que la distancia<br />

entre capas es <strong>de</strong> 0.335 nm. En la simulación<br />

se han promediado los resultados obtenidos para<br />

la pérdida <strong>de</strong> energía correspondientes a la rotación<br />

<strong>de</strong>l MWCNT alre<strong>de</strong>dor <strong>de</strong> su eje con respecto<br />

al haz <strong>de</strong> protones, puesto que en este caso<br />

no existe simetría entre las capas <strong>de</strong>l nanotubo<br />

<strong>de</strong>bido a la diferente quiralidad <strong>de</strong> cada capa.<br />

En la figura 3 mostramos la distribución<br />

<strong>de</strong> la <strong>de</strong>nsidad electrónica promedio ρ , evaluada<br />

a través <strong>de</strong>l parámetro r s = [ 3/(4πρ)<br />

] , que<br />

1/ 3<br />

explora el haz <strong>de</strong> protones en su trayectoria a<br />

través <strong>de</strong>l MWCNT, en función <strong>de</strong> su parámetro<br />

<strong>de</strong> impacto, b. La simulación muestra claramente<br />

la correlación existente entre las trayectorias<br />

<strong>de</strong> los protones con parámetro <strong>de</strong> impacto gran<strong>de</strong><br />

(es <strong>de</strong>cir, aquellos que inci<strong>de</strong>n próximos al<br />

bor<strong>de</strong> <strong>de</strong>l MWCNT) y una <strong>de</strong>nsidad electrónica<br />

baja. Este resultado indica que estos proyectiles<br />

experimentan un proceso <strong>de</strong> canalización entre<br />

las capas externas <strong>de</strong>l nanotubo, lo cual hace que<br />

sufran una dispersión angular pequeña. Aunque<br />

estos protones sean minoritarios, la mayoría <strong>de</strong><br />

ellos llegarán al <strong>de</strong>tector (que se encuentra a ángulo<br />

cero), en contra <strong>de</strong> lo que suce<strong>de</strong> para protones<br />

con parámetro <strong>de</strong> impacto pequeño, que<br />

sufren mayor dispersión múltiple.<br />

Por último, <strong>de</strong>bemos remarcar que este<br />

comportamiento <strong>de</strong> la transferencia <strong>de</strong> energía<br />

<strong>de</strong> los protones al MWCNT se <strong>de</strong>be claramente<br />

a su configuración geométrica, efecto que no<br />

aparece en grafito o carbono amorfo.<br />

Referencias<br />

[1] M. S. Dresselhaus, G. Dresselhaus, P. Avouris<br />

(Eds.), Carbon Nanotubes, Synthesis, Structure,<br />

Properties and Applications, Springer, Berlin,<br />

2001.<br />

[2] E. Lidorikis, A. C. Ferrari, Photonics with<br />

multiwall carbon nanotube arrays, ACS Nano 3<br />

(2009) 1238.<br />

[3] R. H. Bauchman, A. A. Zakhidov, W. A. <strong>de</strong><br />

Heer, Carbon Nanotubes - The Route Toward<br />

Applications, Science 297 (2002) 787.<br />

[4] A. V. Krasheninnikov, K. Nordlund, Ion and<br />

electron irradiation-induced effects in nano<br />

structured materials, J. Appl. Phys. 107 (2010)<br />

071301.<br />

[5] J. E. Valdés, P. Vargas, C. Celedón, E.<br />

Sánchez, L. Guillemot, V. A. Esaulov, Electronic<br />

<strong>de</strong>nsity corrugation and crystal azimuthal<br />

orientation effects on energy losses of hydrogen<br />

ions in grazing scattering on a Ag(110) surface,<br />

Phys. Rev. A 78 (2008) 032902.<br />

90 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Bulk plasmon excitation in grazing inci<strong>de</strong>nce ion­metal surface collisions<br />

C.A. Salas 1 , F.A. Gutierrez 1 and H. Jouin 2<br />

1<br />

Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>de</strong> Concepción, Casilla 160­C, Concepción, Chile<br />

2<br />

CELIA, Université <strong>de</strong> Bor<strong>de</strong>aux I, 351Cours <strong>de</strong> la Libération 33405 Talence, France<br />

email address corresponding author: fgutierr@u<strong>de</strong>c.cl<br />

Recent result [1] for the angular distribution<br />

of neutralized He + ions, after interaction<br />

with Al(111) surfaces un<strong>de</strong>r grazing inci<strong>de</strong>nce,<br />

seem to indicate that new neutralization processes,<br />

besi<strong>de</strong>s the Auger and the surface­plasmon<br />

mo<strong>de</strong>s, must be invoked to explain completely<br />

the experimental angular distributions<br />

for that system.<br />

It seems that electron capture with bulk<br />

and/or multipole­surface­plasmon are good candidates<br />

to increase the agreement between theory<br />

and experiment. Multipole­surface­plasmon<br />

can be viewed as bulk plasmon of the low electron<br />

<strong>de</strong>nsity surface region as indicated by Baragiola<br />

et al [2].<br />

The objective of our work is to explore<br />

the possibility that bulk plasmons could contribute<br />

in a nonnegligible way to the angular distributions<br />

for the He + /Al(111) system low energies<br />

of the projectile ion. For that purpose we<br />

shall consi<strong>de</strong>r a second or<strong>de</strong>r electron plasmon<br />

(SOEP) interaction potential obtained<br />

within the Bohm Pines (BP) formalism [3],<br />

[4] and which was applied to study transition<br />

probabilities for hydrogen recombination in<br />

high <strong>de</strong>nsity high temperature plasmas, although<br />

it is better suited for the electrons in<br />

metals interacting with an external positive<br />

charge.<br />

As it is well known in BP theory the<br />

electron gas of a metal is mo<strong>de</strong>lled as a set of<br />

“quasi­electrons” (which interact through<br />

screened Coulomb potentials) plus a set of<br />

oscillations with the bulk plasmon frequency.<br />

Within the Random Phase Approximation<br />

(RPA) these screened electrons and the bulk<br />

plasmons do not couple, which means that<br />

electrons in the metal cannot emit bulk plasmons.<br />

However in the field of an external ion<br />

the electrons can accelerate until it gets<br />

enough velocity to emit a volume plasmon.<br />

The <strong>de</strong>finition of the SOEP potential allows a<br />

simple interpretation of the physics involved.<br />

It contains: (I) the ion­electron interaction<br />

which makes it possible the increment in velocity<br />

of the electron until the bulk plasmon<br />

can be emitted, and (ii) the pole at<br />

ω=q⋅k+k' which signals the collective excitation<br />

of frequency ω and momemtum q<br />

(with k the initial electron momentum and k'<br />

the transferred momentum).<br />

The SOEP potential can also be applied<br />

to evaluate the probability for bulk­plasmon<br />

emission during ion­solid collisions in cases<br />

where the ion penetrates the surface at a velocity<br />

below the threshold for bulk­plasmon<br />

emission.<br />

Furthermore, the above physical picture<br />

for bulk plasmon emission makes it possible<br />

to explore the possibility of ion neutralization<br />

with bulk­plasmon emission for cases<br />

where the slow ions do not cross the surface<br />

(although they remain close to it for a significant<br />

amount of time) as is in grazing inci<strong>de</strong>nce<br />

collisions. This process appears to be<br />

the analog to the above mentioned surface<br />

plasmon induced ion neutralization mo<strong>de</strong>.<br />

References<br />

[1] H. Jouin and F.A. Gutierrez, Nucl. Instrum.<br />

Methods Phys. Res. B. 267, 561 (2009).<br />

[2] R.A. Baragiola, S.M. Ritzau, R.C. Monreal,<br />

C.A. Dukes, and P. Riccardi, Nucl. Instrum.<br />

Methods Phys. Res. B. 157, 110 (1999).<br />

[3] D. Bohm and D. Pines, Phys. Rev. 92, 609<br />

(1953).<br />

[4] F.A. Gutierrez and M.D. Girar<strong>de</strong>au, Phys.<br />

Rev. A. 42, 936 (1990).<br />

91 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Distribuciones <strong>de</strong> Scattering Multiple y Efectos Angulares en la Pérdida <strong>de</strong><br />

energía <strong>de</strong> Protones y Deuterones en Láminas Delgadas <strong>de</strong> Carbono Amorfo<br />

E. D. Cantero 1,2 , G. H. Lantschner 1 , N. R. Arista 1<br />

1 Centro Atómico Bariloche – Instituto Balseiro, S. C. <strong>de</strong> Bariloche, Argentina<br />

2 Consejo Nacional <strong>de</strong> Investigaciones Científicas y <strong>Técnica</strong>s (CONICET), Argentina<br />

email: arista@cab.cnea.gov.ar<br />

Utilizando un acelerador <strong>de</strong> iones <strong>de</strong><br />

bajas energías, se han medido distribuciones<br />

ángulo-energía <strong>de</strong> protones y <strong>de</strong>uterones luego<br />

<strong>de</strong> atravesar una lámina <strong>de</strong> carbono amorfo<br />

<strong>de</strong> 11nm <strong>de</strong> espesor [1].<br />

Se presentan resultados <strong>de</strong> las distribuciones<br />

angulares (Fig. 1) para H + y D + <strong>de</strong> 4, 6<br />

y 9 keV <strong>de</strong> energía inci<strong>de</strong>nte y su comparación<br />

con cálculos <strong>de</strong> la función <strong>de</strong> scattering<br />

múltiple (FMS) mediante el formalismo <strong>de</strong><br />

Sigmund y Winterbon [2], hallándose un muy<br />

buen acuerdo para los potenciales <strong>de</strong> scattering<br />

tipo Moliere y ZBL.<br />

Se estudió también la <strong>de</strong>pen<strong>de</strong>ncia angular<br />

<strong>de</strong> la pérdida <strong>de</strong> energía <strong>de</strong> los iones<br />

(Fig. 2). Se presentan los resultados experimentales<br />

y cálculos utilizando el mo<strong>de</strong>lo teórico<br />

presentado en [3]. Este mo<strong>de</strong>lo contempla<br />

tres contribuciones principales para la<br />

pérdida <strong>de</strong> energía:<br />

a) Efecto que produce el alargamiento <strong>de</strong> camino<br />

en la pérdida <strong>de</strong> energía inelástica.<br />

b) Efecto <strong>de</strong> la rugosidad <strong>de</strong> la lámina (los<br />

iones dispersados en ángulos pequeños han<br />

atravesado con mayor probabilidad las regiones<br />

más <strong>de</strong>lgadas <strong>de</strong> la lámina).<br />

c) Contribución <strong>de</strong>l mecanismo elástico.<br />

Se observa un muy buen acuerdo con<br />

los resultados experimentales para ambos<br />

proyectiles en todo el rango <strong>de</strong> energías investigado,<br />

ampliando la aplicación <strong>de</strong>l mo<strong>de</strong>lo<br />

<strong>de</strong> la Ref. [3] a nuevas combinaciones proyectiles-blanco.<br />

Figura 1. Distribución angular <strong>de</strong> protones <strong>de</strong> 9 keV<br />

luego <strong>de</strong> atravesar un blanco <strong>de</strong> carbono amorfo <strong>de</strong><br />

11nm. Líneas: cálculos <strong>de</strong> FMS [2] para diferentes<br />

potenciales <strong>de</strong> scattering.<br />

Figura 2. Depen<strong>de</strong>ncia angular <strong>de</strong> la pérdida <strong>de</strong><br />

energía. Líneas: efecto <strong>de</strong> cada una <strong>de</strong> las contribuciones<br />

<strong>de</strong>l mo<strong>de</strong>lo teórico [3], y resultado total.<br />

Referencias<br />

[1] Blanco <strong>de</strong> tipo ultrasmooth, A C F - Metals<br />

Arizona Carbon Foil Inc.<br />

[2] P. Sigmund and K. B. Winterbon, Nucl. Instrum.<br />

Methods 119, 541 (1974).<br />

[3] M. Famá, G. H. Lantschner, J. C. Eckardt, C.<br />

D. Denton, and N. R. Arista, Nucl. Instrum.<br />

Methods B 164, 241 (2000).<br />

92 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Stopping power y Straggling <strong>de</strong> protones en Pd<br />

P. A. Miranda 1 , A. Sepúlveda 1 , E. Burgos 1 , H. Fernán<strong>de</strong>z 1 ,<br />

J. R. Morales 1<br />

1 Depto. <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias, <strong>Universidad</strong> <strong>de</strong> Chile, Casilla 653, Santiago, Chile<br />

asepulveda@hotmail.es<br />

La pérdida <strong>de</strong> energía <strong>de</strong> las partículas<br />

cargadas al atravesar un material es un proceso<br />

<strong>de</strong> vital importancia en variados campos <strong>de</strong> la<br />

<strong>Física</strong>, tales como el estudio <strong>de</strong> superficies en<br />

<strong>Física</strong> <strong>de</strong>l Estado Solido, en diagnóstico y<br />

tratamiento en Medicina Nuclear, y su utilización<br />

en las técnicas basadas en haces iónicos<br />

(PIXE, RBS, NRA). Aunque existen diversas<br />

teorías que mo<strong>de</strong>lan a<strong>de</strong>cuadamente este<br />

proceso, la medición <strong>de</strong>l po<strong>de</strong>r <strong>de</strong> frenado (stopping<br />

power cross section) y <strong>de</strong> su straggling <strong>de</strong><br />

energía, permiten validar estas predicciones y<br />

mejorar la exactitud <strong>de</strong> los valores actualmente<br />

aceptados.<br />

En este trabajo se presentan mediciones<br />

<strong>de</strong>l po<strong>de</strong>r <strong>de</strong> frenado y <strong>de</strong> straggling <strong>de</strong> protones<br />

sobre paladio. Las mediciones se llevaron a cabo<br />

en el Laboratorio <strong>de</strong> Haces Iónicos <strong>de</strong> la <strong>Universidad</strong><br />

<strong>de</strong> Chile utilizando un acelerador tipo Van<br />

<strong>de</strong> Graaff, el que genera un haz <strong>de</strong> protones <strong>de</strong><br />

corriente estable (5 nA y <strong>de</strong> 2 mm <strong>de</strong> diámetro)<br />

en un rango <strong>de</strong> energías <strong>de</strong> entre 300 y 3100<br />

keV. Los valores se obtuvieron utilizando la<br />

técnica <strong>de</strong> transmisión [1] sobre láminas <strong>de</strong><br />

paladio <strong>de</strong> 0.39±0.06 µm. Este procedimiento<br />

nos permite <strong>de</strong>terminar en forma indirecta tanto<br />

la sección eficaz <strong>de</strong> stopping power S(E AVG ) <strong>de</strong><br />

protones en paladio como el straggling <strong>de</strong> energía<br />

Ω [2].<br />

Los resultados preliminares <strong>de</strong> S(E AVG )<br />

muestran una clara concordancia tanto con predicciones<br />

semiempíricas [3] como con formulaciones<br />

teóricas [4]. Por otra parte, el straggling<br />

normalizado (Ω/Ω B ) 2 en función <strong>de</strong> la energía<br />

inci<strong>de</strong>nte promedio E AVG muestra un comportamiento<br />

aceptable en relación a las teorías <strong>de</strong><br />

Bohr y Bethe-Livingston [5], especialmente a<br />

energías más altas. Cabe <strong>de</strong>stacar que hasta ahora<br />

no existían datos experimentales <strong>de</strong> stopping<br />

power y straggling para este sistema en el rango<br />

<strong>de</strong> energía mencionado.<br />

Referencias<br />

[1] J. Raisanen et al., Nucl. Instr. and<br />

Meth. B 118, 1 (1996).<br />

[2] G. Sun et al., Nucl. Instr. and Meth. B<br />

256, 586 (2007).<br />

[3] J.F. Ziegler, M.D. Ziegler, J.P. Bierzack,<br />

Nucl. Instr. and Meth. B 268, 1818 (2010).<br />

[4] J.C. Moreno-Marín et al., Nucl. Instr.<br />

and Meth. B 249, 29 (2006).<br />

[5] H. Ammi, S. Mammeri, M. Allab,<br />

Nucl. Instr. and Meth. B 213, 60 (2004).<br />

93 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

ENERGY LOSS OF SLOW HYDROGEN IONS IN<br />

CHANNELING CONDITIONS IN AU SINGLE CRYSTAL<br />

J.D. Uribe, A.M. Calle, C. Celedón, E. A. Figueroa, J. E. Valdés<br />

Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>Técnica</strong> Fe<strong>de</strong>rico <strong>Santa</strong> María, Casilla 110-V, Valparaíso, Chile<br />

juan.uribe@postgrado.usm.cl<br />

The study of the interaction of ions<br />

with monocrystalline and polycrystalline<br />

solids is an active area of physics and a<br />

source of multiple technological applications.<br />

We have investigated experimentally<br />

the energy loss of hydrogen ions transmitted<br />

through the direction of a single crystal<br />

gold thin foil in the low energy range (


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Pérdida <strong>de</strong> energía <strong>de</strong> protones en láminas <strong>de</strong>lgadas <strong>de</strong> carbono amorfo<br />

Celedón 1 , J. E. Valdés 1 , P. Vargas 1 , E. Figueroa 1<br />

1 Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>Técnica</strong> Fe<strong>de</strong>rico <strong>Santa</strong> María, Casilla 110-V, Valparaíso, Chile<br />

carlos.celedon@usm.cl<br />

En este trabajo presentamos resultados<br />

experimentales <strong>de</strong> la pérdida <strong>de</strong> energía <strong>de</strong> protones<br />

en láminas <strong>de</strong>lgadas <strong>de</strong> carbono amorfo. El<br />

objetivo <strong>de</strong> éste estudio es verificar el comportamiento<br />

<strong>de</strong> la pérdida <strong>de</strong> energía en función <strong>de</strong><br />

la velocidad <strong>de</strong>l ión y su comparación con los<br />

escasos datos experimentales existentes. Se ha<br />

medido la pérdida <strong>de</strong> energía <strong>de</strong> protones en<br />

geometría <strong>de</strong> transmisión en el rango <strong>de</strong> bajas<br />

energías (


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

dE/dx (eV/A)<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

DFT r s =1.66 I75<br />

DFT r s =1.57 R95<br />

H + → aC A69<br />

H + → aC O79<br />

H + → aC S08<br />

H + → aC 200 Å<br />

H + → aC 200 Å<br />

H + from H 2<br />

+ → hC 180<br />

Å<br />

H + → hC 225 Å<br />

H + from H 2<br />

+ → hC 225<br />

Å<br />

H + → hC 200 Å<br />

H + > a-C<br />

0<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

(a.u.)<br />

Figura 1. Pérdida <strong>de</strong> energía <strong>de</strong> H + sobre láminas <strong>de</strong> carbono amorfo en geometría <strong>de</strong> transmisión.<br />

0,6<br />

0,5<br />

H +<br />

C amorfo<br />

0,4<br />

DFT r s<br />

=1,66<br />

Q (a.u)<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

Mean Velocity (a.u)<br />

Figura 2. Constante <strong>de</strong> Frenamiento H + sobre carbono amorfo datos experimentales<br />

DOS [estados/eV]<br />

6 s+p<br />

p<br />

s<br />

3<br />

0<br />

-20 -15 -10 -5 0<br />

E [eV]<br />

Figura 3. Densidad <strong>de</strong> estados <strong>de</strong>l Carbono, energías respecto <strong>de</strong>l nivel <strong>de</strong> Fermi.<br />

96 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Energy losses of H and F ions in grazing scattering on a missing row reconstructed<br />

Au(110) surface<br />

Lin Chen 1,2 , Jorge E.Valdés 3 , PatricioVargas 3 , Jie Shen 1 and Vladimir A.Esaulov 1<br />

1 Instituit <strong>de</strong>s Sciences Moléculaires d’Orsay, bât 351, Université <strong>de</strong> Paris Sud, Orsay 91405, France<br />

2 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China<br />

3 Department of Physics, <strong>Universidad</strong> Tecnica Fe<strong>de</strong>rico <strong>Santa</strong> Maria, Valparaiso, Casilla 110-V, Chile<br />

Energy loss of low energy ions is<br />

particularly important in relation to<br />

nanoscale materials since current electronic<br />

<strong>de</strong>vices have <strong>de</strong>creasing thicknesses.<br />

However experimental work on ion energy<br />

loss at low energies is not very extensive, in<br />

contrast to theoretical work <strong>de</strong>veloped in<br />

the early sixties and more accurate<br />

approaches using quantum formalisms like<br />

Density Functional Theory (DFT) and<br />

binary collision approximation (BCA). In<br />

recent years, a proper <strong>de</strong>scription of the<br />

electronic structure of the real surface has<br />

been emphasized in the <strong>de</strong>scription of ion<br />

slowing down during scattering on surfaces,<br />

particularly for transition metals like Ag<br />

and Au. The <strong>de</strong>pen<strong>de</strong>nce of<br />

crystallographic orientations of the surface<br />

on energy losses of ions was observed<br />

experimentally, and does not be <strong>de</strong>scribed<br />

well by consi<strong>de</strong>ring an averaged electron<br />

<strong>de</strong>nsity. We thus have <strong>de</strong>veloped an<br />

approach to <strong>de</strong>scribe slowing of ions on<br />

surfaces i.e., Ag (110) surface in conditions<br />

of strongly varying electron <strong>de</strong>nsities.<br />

In scattering of highly charged ions on<br />

surfaces very efficient ion neutralization<br />

occurs and hence slowing down of the<br />

neutralized particles has to be consi<strong>de</strong>red.<br />

Here in or<strong>de</strong>r to test further the mo<strong>de</strong>l we<br />

<strong>de</strong>veloped, we report the main features of<br />

an experimental and theoretical study of the<br />

energy losses of hydrogen and fluorine ions<br />

scattered un<strong>de</strong>r grazing inci<strong>de</strong>nce on a<br />

Au(110) surface for various crystalline<br />

directions. We chose the Au(110) surface<br />

since it displays a missing row<br />

reconstruction and is thus highly<br />

corrugated. The semi-classical simulation is<br />

consistent with experiment and reveals that<br />

various trajectory classes correspond to<br />

different contributions in the energy-loss<br />

spectra for various azimuthal orientations of<br />

the surface. A brief <strong>de</strong>scription of the<br />

apparatus used for the present experiments<br />

is the following . H + ions are produced in a<br />

discharge source using H 2 gas, and fluorine<br />

negative ions are produced using CF 4 . Ions<br />

are mass selected and <strong>de</strong>flected through 10<br />

<strong>de</strong>grees to eliminate photons and neutrals<br />

before entering into the main UHV<br />

chamber. The pressure in the chamber is<br />

typically 5×10 -10 torr. Scattering energy loss<br />

measurements were mainly ma<strong>de</strong> using a<br />

time of flight (TOF) technique, for specular<br />

scattering conditions with an inci<strong>de</strong>nt angle<br />

of 3.5° as measured with respect to the<br />

surface plane. The azimuthal angle is<br />

<strong>de</strong>fined as an angle in the surface plane<br />

relative to a given miller-in<strong>de</strong>x<br />

crystallographic direction as shown in<br />

Fig.1. TOF spectra were recor<strong>de</strong>d for<br />

various azimuthal angular settings. The<br />

energy losses are <strong>de</strong>termined with respect<br />

to the energy of the inci<strong>de</strong>nt electrically<br />

reflected beam. This corresponds to<br />

scattering with a repulsive voltage applied<br />

to the sample so that the ions do not<br />

un<strong>de</strong>rgo any inelastic processes.<br />

Y (angstrom)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

first layer<br />

second layer<br />

third layer<br />

0 0 [1-10] 70.5 0<br />

[001]<br />

90 0<br />

-8<br />

-15 -10 -5 0 5 10 15<br />

X (angstrom)<br />

Au (110)<br />

Fig.1. Schematic diagram of the Au(110)<br />

surface and the angle nomenclature used in the<br />

paper<br />

97 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Energy-loss spectra measured for some<br />

crystal azimuthal directions are shown in<br />

Figs.2(a,b) and 3(a,b) for hydrogen and<br />

fluorine inci<strong>de</strong>nt ions. In Figs.2(a,b), the<br />

Full-Width-at-Half-Maximum (FWHM) of<br />

scattered beam is consi<strong>de</strong>rably broad and<br />

seems to have a large energy loss tail. The<br />

most striking difference is observed for F<br />

ions scattering with an azimuthal angle of<br />

70.5°, where a double peak structure is<br />

observed in Figs. 3(a,b) for 4 keV but<br />

disappears for 1 keV.<br />

Intensity<br />

relative intensity<br />

150<br />

100<br />

50<br />

0<br />

0 200 400 600 800 1000 1200<br />

1.1<br />

1.0<br />

0.9 (b)<br />

simulation<br />

0.8<br />

experiment<br />

0.7<br />

0.6<br />

1 keV H + -Au(110)<br />

0.5<br />

0.4<br />

azimuthal angle 0 0.3<br />

0.2<br />

0.1<br />

0.0<br />

-50 0 50 100 150 200 250 300 350<br />

Fig. 2. (a) and (b) Energy loss spectra of 4 and 1 keV H +<br />

ions scattered off a Au (110) surface along the indicated<br />

azimuthal direction of 0 0 respectively<br />

intensity<br />

200<br />

150<br />

100<br />

50<br />

(a)<br />

(a)<br />

energy Loss (eV)<br />

experiment<br />

selected total<br />

selected on top of the surface<br />

selected bellow the first layer<br />

4 keV H + -Au(110)<br />

azimuthal angle 0 0<br />

experiment<br />

selected on top of the surface<br />

selected bellow the first layer<br />

4 keV F - -Au(110)<br />

azimuthal angle 70.5 0<br />

electron capture again leads to F - formation.<br />

Here we introduce neutralization<br />

empirically, using theoretical treatments as<br />

a gui<strong>de</strong>line. Electron transfer processes<br />

occur over the characteristic distances of<br />

around Z F =5.0 atomic units from the image<br />

plane for fluorine. A similar range of<br />

distances is assumed for Auger<br />

neutralization of hydrogen. Image charge<br />

effects are “switched off” for neutralized<br />

particles.<br />

The simulated [1, 2] energy loss spectra<br />

are also shown in Figs.2(a,b) and 3(a,b),<br />

which are in good agreement with the<br />

experiment. We furthermore observed a<br />

splitting of the energy loss spectrum into<br />

two components due to two different types<br />

of the trajectory, as shown in Figs.2(c) and<br />

3(c). The trajectory a results from scattering<br />

from the most top layer of the surface and b<br />

from subsurface has a longer effective<br />

length.<br />

Energy-loss spectra of hydrogen and<br />

fluorine ions scattered off a Au (110)<br />

single-crystal surface in grazing scattering<br />

conditions were reported for various<br />

orientations of the surface. We presented<br />

simulations which take into account the<br />

corrugation of the electron <strong>de</strong>nsity<br />

above the surface are in good agreement<br />

with the experimental data.<br />

relative intensity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 50 100 150 200 250 300 350<br />

(b)<br />

simulation<br />

experiment<br />

1 keV F - -Au(110)<br />

azimuthal angle 70.5 0<br />

0.0<br />

-20 0 20 40 60 80 100<br />

energy loss (eV)<br />

Fig. 3. (a) and (b) Energy loss spectrum of 4 and 1 keV F -<br />

scattering along the 70.5° direction for Au(110)<br />

respectively.<br />

In <strong>de</strong>scribing H + and F - scattering on Au<br />

one should correctly <strong>de</strong>scribe the effect of<br />

the image potential. This implies a correct<br />

<strong>de</strong>scription of electron transfer processesresonant<br />

and Auger neutralization on the<br />

incoming and outgoing path of the<br />

trajectory. We consi<strong>de</strong>r H + neutralization in<br />

the incoming path and in case of F - we<br />

consi<strong>de</strong>r that at large distances (Z> Z F )<br />

when the affinity level is above the Fermi<br />

level electron loss occurs leading to F°<br />

formation, while at small distances, when<br />

the F - level lies below the Fermi level<br />

References<br />

[1] Valdés J E, Vargas P, Celedón C,<br />

Sanchez E, Guillemot L and<br />

Esaulov V A 2008 Phys. Rev. A<br />

78 32902<br />

[2] Valdés J E, Vargas P, Guillemot L<br />

and Esaulov V A 2007 Nucl.<br />

Inst. And Methods B 256 81<br />

98 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Inverse Photoemission Spectroscopy on Graphene<br />

V. <strong>de</strong>l Campo 1 , P. Häberle 1<br />

1 Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>Técnica</strong> Fe<strong>de</strong>rico <strong>Santa</strong> María, Casilla 110-V, Valparaíso, Chile<br />

email address corresponding author: valeria.<strong>de</strong>lcampo@usm.cl<br />

Graphene is composed by sp 2 carbon<br />

atoms which are arranged in a twodimensional<br />

honeycomb lattice. It has been<br />

observed that carriers behave as massless<br />

Dirac fermions; this makes graphene a<br />

promising material for microelectronics. In this<br />

sense, plenty of research has been ma<strong>de</strong> on<br />

graphene electronic structure. It has been<br />

observed that graphene has a single state at the<br />

Fermi energy in which the π and π* bands<br />

cross at the K point of the Brillouin zone [1]. It<br />

was found that when graphene interacts with<br />

another graphene layer a band gap is opened<br />

[2]. It is also reported that when graphene<br />

grows on a metal surface like Ru(0001) there<br />

is a strong chemical bonding and graphene<br />

looses its 2D properties, but when a second<br />

layer is grown in that system, that layer shows<br />

similar properties to isolated graphene<br />

monolayer [3]. All these studies on graphene<br />

electronic structure have been performed with<br />

techniques which allow analysis of graphene<br />

valence band, no specific studies have been<br />

performed to characterize graphene conduction<br />

band.<br />

For graphene growth we heat a<br />

ruthenium cristal above 1000ºC in Ultra High<br />

Vacuum (~10 -10 Torr). We introduce ethylene<br />

(C 2 H 4 ) to the vacuum chamber, reaching a<br />

pressure of 1.5x10 -7 Torr. After a few minutes<br />

we cool the substrate down to 800ºC and<br />

monitor graphene growth with Low Energy<br />

Electron Diffraction (LEED). Once the<br />

graphene covers the substrate we cool down to<br />

room temperature.<br />

To study the unoccupied band<br />

(conduction band) structure of graphene, we<br />

use Inverse Photoemission Spectroscopy (IPS).<br />

This technique consists on impinging electrons<br />

on the sample. The inciding electrons <strong>de</strong>cay<br />

from one unnocupied state to another<br />

(<strong>de</strong>pending on their initial energy). From this<br />

trasitions photons are emmited from the<br />

sample. We perform isocromat IPS, <strong>de</strong>tecting<br />

only the photons that leave the sample with 9.5<br />

eV. Through the analysis of the photon<br />

intensity as a function of electrons initial<br />

energy we get an insight on the conduction<br />

band of the sample.<br />

Figure 1. Experimental set up for Inverse<br />

Photoemission Spectroscopy. Photons are emitted<br />

after the interaction between electrons and the<br />

sample, only photons with 9.5 eV are <strong>de</strong>tected.<br />

References<br />

[1] S. Marchini, S. Günther, and J. Wintterlin,<br />

Phys. Rev. B 76, 075429 (2007).<br />

[2] T. Ohta, A. Bostwick, J. L. McChesney, T.<br />

Seyller, K. Horn and E. Rotenberg, PRL 98,<br />

206802 (2007).<br />

[3] P. W. Sutter, J. I. Flege and E. A. Sutter,<br />

Nature Materials, 7, 406-411 (2008).<br />

99 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Elemental analysis of the Chaitén volcano ash 2008-2009 eruptions<br />

Shimrit Elimelech, Jorge E. Valdés, P. Vargas<br />

Depto. <strong>de</strong> <strong>Física</strong>, <strong>Universidad</strong> <strong>Técnica</strong> Fe<strong>de</strong>rico <strong>Santa</strong> María, Casilla 110-V, Valparaíso, Chile<br />

Shimrit.elimelech@usm.cl<br />

The Chaitén volcano eruptions in 2008 and 2009<br />

have provi<strong>de</strong>d a significant opportunity to study<br />

the typical heavy elemental content and microstructure<br />

of the ash emitted from one of the most<br />

critical volcanoes in Chile. Recent studies of<br />

Chaitén offer insights about the environmental<br />

effects of the 2008 eruption in the water, vegetation<br />

and air. In this study, we offer new insights<br />

about typical properties of the ash such as composition<br />

and microstructure. This information<br />

allows us un<strong>de</strong>rstanding of the process leading<br />

the eruption phenomena, explaining its effects<br />

and predicting the eruption future consequences.<br />

Microstructure Characterization was done using<br />

scanning electron microscopy (SEM) with<br />

mo<strong>de</strong>s of backscattered electrons (BSE) and<br />

secondary electrons (SE). The elements' content<br />

was found using Scanning electron microscopy–<br />

energy dispersive x-ray spectroscopy (SEM-<br />

EDS) and x-ray diffraction (XRD).<br />

First characterization of the first eruption ash<br />

shows that the ash is highly angular with termination<br />

of needles as is clearly shown in figures 1<br />

and 2. This result corresponds to recent observations,<br />

which were done in 2008 [1].<br />

The microstructure of the first eruption ash can<br />

be characterized mostly by fine grain size particles<br />

(d>4um). It has different shapes,<br />

from glass shard like structures to almost spherical<br />

particles.<br />

However, this fine ash microstructure is consi<strong>de</strong>red<br />

to be the greatest health hazard since it can<br />

pass into the lungs, leading to respiratory illnesses<br />

[2]. In addition, it can easily cause ash resuspension<br />

over large areas behind the immediate<br />

region of the eruption.<br />

On the other hand, the microstructure of the second<br />

eruption ash, as it is observed in figure 3,<br />

reflects a very violent eruption consisting of<br />

rocks, chunks and pyroclastic flows. This microstructure<br />

contains various types of crystals with<br />

difference in their geometry and size. It can easily<br />

be observed that the grains size is varying<br />

from hundreds to 500um. However, some grains<br />

show a shard like structure, others have porous<br />

and rough surfaces as can be seen in figures 3-5.<br />

These may indicate something about the eruption<br />

mechanism; a morphology consisting of<br />

pores usually indicates the expansion of gas<br />

bubbles during the eruption.<br />

.<br />

Figure 1. Backscattered electron (BSE) SEM micrograph<br />

of the first eruption ash.<br />

100 Valparaíso, Chile


∗<br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Needles<br />

Counts (a.u)<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗ ∗<br />

∗ ∗ ∗<br />

∗ ∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗ SiO 2<br />

∗ Al 2 O 3<br />

∗ K 2 O<br />

∗ Na 2 O<br />

∗<br />

∗<br />

∗<br />

0<br />

20 40 60 80<br />

2θ (<strong>de</strong>gree)<br />

Figure 2. Secondary electron (SE) SEM micrograph<br />

of the first eruption ash.<br />

Figure 4. x-ray diffraction of first eruption ash.<br />

Pores<br />

25000<br />

20000<br />

∗<br />

∗ SiO 2<br />

∗ Al 2 O 3<br />

∗ Na 2 O<br />

Counts (a.u)<br />

15000<br />

10000<br />

Rough<br />

Surface<br />

5000<br />

0<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

∗<br />

20 40 60 80<br />

2θ (<strong>de</strong>gree)<br />

Figure 3. Backscattered electron (BSE) SEM micrograph<br />

of the second eruption ash.<br />

The element contents were similar for both sets<br />

of the ashes' specimens. The main concentrations<br />

referred to are SiO 2 and Al 2 O 3 , while<br />

Na 2 O, K 2 O, FeO, CaO and MgO were found in<br />

small quantities. No significant amounts of Arsenic<br />

were found.<br />

Figures 4 and 5 present XRD patterns acquired<br />

from the first and the second eruptions' typical<br />

ash specimens, respectively. Reflections of SiO 2 ,<br />

Al 2 O 3, K 2 O and Na 2 O confirm the presence of<br />

the phases that were found using EDS.<br />

Figure 5. x-ray diffraction of second eruption ash.<br />

References<br />

[1] J Horwell, C.J., Michnowicz, S., Le Blond,<br />

J., 2008. Report on the mineralogical and geochemical<br />

characterisation of Chaitén ash for the<br />

assessment of respiratory health hazard. International<br />

Volcanic Health Hazard Network(IVHNN)<br />

report(available from<br />

www.ivhhn.org).<br />

[2] Watt, S.F.L.; et al., (2009). Fallout and distribution<br />

of volcanic ash over Argentina following<br />

the May 2008 explosive eruption of Chaiten,<br />

Chile. 114. Journal of Geophysical Research.<br />

101 Valparaíso, Chile


Intensida<strong>de</strong><br />

Intensida<strong>de</strong><br />

V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Múltipla ionização <strong>de</strong> Neônio em coincidência com íons <strong>de</strong> B 2 + no regime <strong>de</strong><br />

energia <strong>de</strong> poucos MeV<br />

W. Wolff 1 , H. M. R. <strong>de</strong> Luna 1 , A.C. F. dos Santos 1 , e E. C. Montenegro 1<br />

G.M. Sigaud 2<br />

C.C.Montanari 3,4 , e J.E.Miraglia 3,4<br />

1 Instituto <strong>de</strong> <strong>Física</strong>, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro, Brasil<br />

2 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Pontifícia Universida<strong>de</strong> Católica, Rio <strong>de</strong> Janeiro, Brasil<br />

3 Instituto <strong>de</strong> Astronomía y <strong>Física</strong> <strong>de</strong>l Espacio, Buenos Aires, Argentina<br />

4 <strong>Departamento</strong> <strong>de</strong> <strong>Física</strong>, Facultad <strong>de</strong> Ciencias Exactas y Naturales, <strong>Universidad</strong> <strong>de</strong> Buenos Aires, Buenos Aires,<br />

Argentina<br />

wania@if.ufrj.br<br />

A técnica <strong>de</strong> coincidência projétil-íon<br />

<strong>de</strong> recuo e electron- íon <strong>de</strong> recuo foi utilizada<br />

para investigar a múltipla ionização e os processos<br />

<strong>de</strong> transferência <strong>de</strong> carga em colisões<br />

<strong>de</strong> Boro parcialmente blindado B 2+ com átomos<br />

<strong>de</strong> Neônio na faixa <strong>de</strong> energia <strong>de</strong> 1 até 4<br />

MeV. As experiências foram realizadas usando<br />

o recém <strong>de</strong>senvolvido sistema experimental<br />

baseado em um espectrômetro <strong>de</strong> massa<br />

por tempo <strong>de</strong> vôo que permite <strong>de</strong>tecção tanto<br />

dos elétrons ejetados como dos íons <strong>de</strong> recuo<br />

em coincidência com os projéteis em seus<br />

diferentes estados <strong>de</strong> carga finais coletados<br />

por um <strong>de</strong>tector sensível à posição e/ou barreira<br />

<strong>de</strong> superfície. Um exemplo típico <strong>de</strong><br />

espectro <strong>de</strong> íons <strong>de</strong> recuo correspon<strong>de</strong>ndo a<br />

todos os canais <strong>de</strong> ionização (coincidência<br />

elétron-íon <strong>de</strong> recuo) e ao canal <strong>de</strong> ionização<br />

direta (coincidência íon <strong>de</strong> recuo-B 2+) a uma<br />

energia <strong>de</strong> 2 MeV está ilustrado na figura 1a<br />

e 1b respectivamente. O espectro <strong>de</strong> posição<br />

dos projéteis espalhados na colisão com estados<br />

<strong>de</strong> carga finais B 1, 2 e 3+ está mostrado na<br />

figura 1c.<br />

A contribuição relativa para a ionização<br />

total como para cada um dos processos <strong>de</strong><br />

ionização em estudo (ionização direta, captura<br />

e perda eletrônica simples) na produção<br />

dos íons <strong>de</strong> recuo do Neônio com estados <strong>de</strong><br />

carga q=1-5 foi investigada. A <strong>de</strong>pendência<br />

do estado <strong>de</strong> carga médio do íon <strong>de</strong> recuo<br />

para os diferentes canais foi verificada<br />

em função da energia do projétil inci<strong>de</strong>nte.<br />

As secções <strong>de</strong> choque absolutas totais [1] e<br />

parciais são comparadas com mo<strong>de</strong>los teóricos<br />

e apresentam uma boa concordância qualitativa.<br />

Os dados <strong>de</strong> B 2+ - Ne são também<br />

comparados com o sistema <strong>de</strong> colisão C 3+ -<br />

Ne [2] por ambos íons inci<strong>de</strong>ntes serem isoeletrônicos<br />

com configuração eletrônica (1s 2<br />

2s), tipo lítio.<br />

140<br />

70<br />

0<br />

400<br />

200<br />

0<br />

Ne 5+ Ne 4+ Ne 3+ Ne 2+<br />

20 Ne 1+<br />

22 Ne 1+<br />

200 400 600 800<br />

22 Ne 1+ 20 Ne 1+<br />

Ne 2+<br />

(a)<br />

1000 1200 1400 1600<br />

Canal<br />

Ne 3+<br />

(c)<br />

Figure 1. Espectro <strong>de</strong> Ne q+ para (a) ionização total<br />

(b) ionização direta (c) Espectro dos projéteis<br />

Referências<br />

[1] W. Wolff, H. Luna, A.C.F.Santos and E.C.<br />

Montenegro, Phys. Rev. A 80, 032703 (2009)<br />

[2] T. Kirchner, A.C.F. Santos, H. Luna, M.M.<br />

Sant´Anna, W.S. Melo, G.M. Sigaud, and E.C.<br />

Montenegro, Phys. Rev. A 72, 012707 (2005)<br />

Ne 4+<br />

Ne 5+<br />

(b)<br />

102 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Índice <strong>de</strong> autores<br />

Abril, I...................................................... 36, 44, 59, 89<br />

Alessi, M.................................................................. 75, 77<br />

Amaral, L................................................................ 17, 72<br />

Ancarani, L. U...................................................... 15, 84<br />

Appel, L............................................................................ 72<br />

Archubi, C. D................................................................. 65<br />

Arista, N. R.......................................... 49, 59, 89, 92<br />

Azevedo, G..................................................................... 51<br />

Barrachina, R. O.......................................................... 28<br />

Bernardi, G. ........................................................... 28, 42<br />

Bocán, G.......................................................................... 32<br />

Boufleur, L. A................................................................. 17<br />

Bringa, E. ......................................................................... 18<br />

Burgdörfer, J. .................................................................. 38<br />

Burgos, E.......................................................................... 93<br />

Calle, A. M...................................................................... 94<br />

Cantero, E. D................................................................ 92<br />

Celedón, C. ............................................................ 94, 95<br />

Champion, C. ....................................................... 52, 67<br />

Chen, L.............................................................................. 97<br />

Colavecchia, F. D. ..................................... 15, 26, 84<br />

<strong>de</strong> Barros, A. L. F......................................................... 70<br />

<strong>de</strong> Jesus, V. L. B................................................... 47, 70<br />

<strong>de</strong> Luna, H. M. R............................................ 30, 102<br />

<strong>de</strong> Sanctis, M. L........................................................... 68<br />

<strong>de</strong> Souza, C. T..................................................... 34, 72<br />

Debastiani, R........................................................ 17, 72<br />

Deiss, C. ........................................................................... 38<br />

Del Campo, V............................................................... 99<br />

<strong>de</strong>lla Picca, R................................................................. 85<br />

Denton, C. D...................................... 36, 44, 59, 89<br />

Dias, J. F. ...................................... 17, 20, 22, 59, 72<br />

Díez Muiño, R. ............................................................. 32<br />

Dingfel<strong>de</strong>r, M................................................................ 80<br />

dos Santos, A. C. F. ...............................30, 70, 102<br />

Elimelech, S.................................................................100<br />

Emfietzoglou, D...........................................................36<br />

Esaulov, V......................................................25, 54, 97<br />

Fabrim, Z. E...................................................................55<br />

Fadanelli, R. C...............................................................59<br />

Fainstein, P. D......................................................85, 87<br />

Favero, J. M.....................................................................20<br />

Fernán<strong>de</strong>z, H. ...............................................................93<br />

Fernán<strong>de</strong>z-Varea, J. M....................................44, 80<br />

Ferreira, N..............................................................47, 70<br />

Fichtner, P. F. P.............................................................55<br />

Figueroa, E....................................................89, 94, 95<br />

Fiol, J...........................................................................28, 85<br />

Flores, M. .........................................................................54<br />

Focke, P. ................................................28, 42, 75, 77<br />

Fojón, O. A. .................................23, 52, 57, 67, 68<br />

Frapiccini, A. L......................................................15, 84<br />

Fregenal, D..........................................28, 42, 75, 77<br />

Furdyna, J. K...................................................................46<br />

Galassi, M. E. ..............................................52, 67, 73<br />

García-Molina, R. .............................36, 44, 59, 89<br />

Garibotti, C. R................................................................79<br />

Gasaneo, G...................................................15, 26, 84<br />

Gervasoni, J. L................................................................49<br />

Gran<strong>de</strong>, P. L. .......................................19, 22, 55, 59<br />

Gravielle, M. S.............................................31, 32, 65<br />

Gutierrez, F. A...............................................................91<br />

Häberle, P.......................................................................99<br />

Hanssen, J.....................................................23, 52, 67<br />

Hatori, M.........................................................................72<br />

Hauyón, R. ......................................................................82<br />

Incerti, S............................................................................67<br />

Iochims dos Santos, C. E. ..............................17, 72<br />

103 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Jouin, H............................................................................. 91<br />

Kremer, G........................................................................ 82<br />

Kyriakou, I. ...................................................................... 36<br />

Lamour, E........................................................................ 38<br />

Lantschner, G. H......................................................... 92<br />

Lekadir, H. ............................................................. 52, 67<br />

Liu, X.................................................................................. 46<br />

López, S. D..................................................................... 79<br />

Luce, F. P. ........................................................................ 55<br />

Machado, G................................................................... 19<br />

Martín, F. ......................................................................... 73<br />

Mello, S. L. A.................................................................. 46<br />

Melo, W. S...................................................................... 50<br />

Men<strong>de</strong>s, J. B. S. ............................................................ 46<br />

Menezes, R. S............................................................... 70<br />

Miraglia, J. E.....................................30, 31, 39, 102<br />

Miranda, P. A....................................................... 82, 93<br />

Mišković, Z. L................................................................ 49<br />

Mitnik, D........................................................ 15, 26, 84<br />

Montanari, C. C......................................30, 39, 102<br />

Montenegro, E. C.30, 39, 41, 47, 48, 50, 70,<br />

102<br />

Monti, J. M............................................................. 23, 87<br />

Morales, J. R.......................................................... 82, 93<br />

Mowbray, D. J............................................................... 49<br />

Otranto, S............................................................... 75, 79<br />

Papaléo, R. M............................................................... 34<br />

Penello, G. M................................................................. 46<br />

Peretti, D. E.................................................................... 72<br />

Pires, M. P....................................................................... 46<br />

Politis, M. F..................................................................... 68<br />

Prigent, C......................................................................... 38<br />

Radtke, C......................................................................... 19<br />

Ramond, C...................................................................... 38<br />

Ramos, M. M................................................................ 72<br />

Randazzo, J. M........................................... 15, 26, 84<br />

Rappoport, T. G...........................................................46<br />

Reuschl, R........................................................................38<br />

Rivarola, R. D....................23, 52, 57, 67, 73, 87<br />

Rocha, A. B.....................................................................70<br />

Rozet, J.-P.........................................................................38<br />

Salas, C. A. ......................................................................91<br />

Sanchez, D. F. ...............................................................55<br />

Sant’Anna, M. M................................................46, 50<br />

Santos, A. C. F...............................................................50<br />

Schiwietz, G....................................................................38<br />

Segui, S.....................................................................49, 80<br />

Sepúlveda, A..................................................................93<br />

Shah, M. B. ............................................................47, 70<br />

Shen, J................................................................................97<br />

Shubeita, S. M......................................................22, 59<br />

Sigaud, G. M......................................................50, 102<br />

Sigaud, L..................................................................47, 70<br />

Silkin, V. M.......................................................................65<br />

Sinnecker, E. H. C. P.................................................46<br />

Sortica, M. A. ........................................................19, 55<br />

Souza, D. E. R...............................................................46<br />

Souza, V. S.......................................................................72<br />

Stia, C. R..................................................................57, 68<br />

Stori, E. M...............................................................20, 72<br />

Suárez, S. ................................................................28, 42<br />

Tachino, C. ......................................................................73<br />

Tavares, A. C..................................................................48<br />

Thomaz, R. S..................................................................34<br />

Trassinelli, M..................................................................38<br />

Uribe, J. D........................................................................94<br />

Valdés, J. E. ..............................89, 94, 95, 97, 100<br />

Vargas, P............................................89, 95, 97, 100<br />

Vernhet, D.......................................................................38<br />

Vuilleumier, R.................................................................68<br />

Wolff, W. ...........................................30, 47, 70, 102<br />

Yamazaki. Y...................................................................54<br />

104 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Corres electrónicos participantes<br />

Nombre e-mail País<br />

Ana María Calle Arcila agota13@hotmail.com Chile<br />

André Carlos Tavares<br />

andre.tavares@vdg.fis.puc-rio.br Brasil<br />

Andrea Maricel León Sandoval andre.ooh@gmail.com Chile<br />

Andrés Sepúlveda asepulveda@hotmail.es Chile<br />

Carla Eliete Iochims Dos Santos carlaiochims@yahoo.com.br Brasil<br />

Carlos Celedón carlos.celedon@usm.cl Chile<br />

Carlos Roberto Garibotti gari@cab.cnea.gov.ar Argentina<br />

Christophe Champion champion@univ-metz.fr Francia<br />

Claudia Montanari mclaudia@iafe.uba.ar Argentina<br />

Cláudia Telles <strong>de</strong> Souza claudia.telles@ufrgs.br Brasil<br />

Claudio Archubi archubi@iafe.uba.ar Argentina<br />

Cristian Andrés Salas Domínguez crisalas@u<strong>de</strong>c.cl Chile<br />

Dario Ferreira Sanchez dario@if.ufrgs.br Brasil<br />

Dario Mitnik dmitnik@df.uba.ar Argentina<br />

Diego Oyarzo doyarzo@gmail.com Chile<br />

Elis Moura Stori elistori@gmail.com Brasil<br />

Emilio Figueroa emilio.figueroa@usm.cl Chile<br />

Enio Frota da Silveira enio@fis.puc-rio.br Brasil<br />

Erick Burgos P. eoburgos@gmail.com Chile<br />

Esteban Ramos evramos@fis.puc.cl Chile<br />

Esteban Daniel Cantero canteroe@cab.cnea.gov.ar Argentina<br />

105 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Nombre e-mail País<br />

Geraldo Monteiro Sigaud gms@vdg.fis.puc-rio.br Brasil<br />

Gran<strong>de</strong> Pedro Luis gran<strong>de</strong>@if.ufrgs.br Brasil<br />

Hacène Lekadir lekadir@univ-metz.fr Francia<br />

Hugo Milward Riani <strong>de</strong> Luna hluna@if.ufrj.br Brasil<br />

Isabel Abril ias@ua.es España<br />

Joaquín Díaz <strong>de</strong> Valdés jdiaz@u<strong>de</strong>c.cl Chile<br />

Jocelyn Hanssen jocelyn@univ-metz.fr Francia<br />

Johnny Dias jfdias@if.ufrgs.br Brasil<br />

Jorge E. Valdés jorge.val<strong>de</strong>s@usm.cl Chile<br />

Jorge Esteban Miraglia miraglia@iafe.uba.ar Argentina<br />

José María Fernán<strong>de</strong>z-Varea jose@ecm.ub.es España<br />

Jose Roberto Morales rmorales@uchile.cl Chile<br />

Juan David Uribe Vélez juan.uribe@postgrado.usm.cl Chile<br />

Juan Fiol fiol@cab.cnea.gov.ar Argentina<br />

Juan Martín Randazzo juanm.randazzo@gmail.com Argentina<br />

Liana Appel Boufleur Niekraszewicz liana.boufleur@ufrgs.br<br />

Brasil<br />

Lucas Sigaud lucas@if.ufrj.br Brasil<br />

Marcelo Fiori fiori@unsa.edu.ar Argentina<br />

Marcelo Sant'Anna mms@if.ufrj.br Brasil<br />

Marcos Flores mflorescarra@ing.uchile.cl Chile<br />

Maria Luisa Mora Urrutia metalheart19@gmail.com Chile<br />

María Silvia Gravielle msilvia@iafe.uba.ar Argentina<br />

Mariana Alessi alessi@cab.cnea.gov.ar Argentina<br />

106 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

Nombre e-mail País<br />

Marisa Faraggi faraggi@iafe.uba.ar España<br />

Maurício Sortica mau_ufrgs@yahoo.com.br Brasil<br />

Michael Dingfel<strong>de</strong>r dingfel<strong>de</strong>rm@ecu.edu USA<br />

Moni Behar behar@if.ufrgs.br Brasil<br />

Natalia Ferreira natalia@if.ufrj.br Brasil<br />

Omar Fojón fojon@ifir-conicet.gov.ar Argentina<br />

Pablo Fainstein pablof@cab.cnea.gov.ar Argentina<br />

Paulo Fernan<strong>de</strong>s Costa Jobim pjobim@uol.com.br Brasil<br />

Pedro Focke focke@cab.cnea.gov.ar Argentina<br />

Rafael Garcia-Molina rgm@um.es España<br />

Rafaela Debastiani rafa_<strong>de</strong>bas@yahoo.com.br Brasil<br />

Remigio Cabrera-Trujillo trujillo@fis.unam.mx México<br />

Roberto Rivarola rivarola@fceia.unr.edu.ar Argentina<br />

Roberto Hauyón rhauyon@gmail.com Chile<br />

Samir Shubeita samir.shubeita@ufrgs.br Brasil<br />

Sebastián López sebastlop@gmail.com Argentina<br />

Sebastian Otranto sotranto@uns.edu.ar Argentina<br />

Sebastián Godoy Orellana tatangodoy@gmail.com Chile<br />

Silvina Segui segui@cab.cnea.gov.ar Argentina<br />

Valeria <strong>de</strong>l Campo valeria.<strong>de</strong>lcampo@usm.cl Chile<br />

Vicente Salinas Barrera vicente.salinas@usach.cl Chile<br />

Vladimir Esaulov vladimir.esaulov@u-psud.fr Francia<br />

Wania Wolff wania@if.ufrj.br Brasil<br />

107 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

108 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

109 Valparaíso, Chile


V Encuentro Sud Americano <strong>de</strong> Colisiones Inelásticas en la Materia<br />

110 Valparaíso, Chile

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!