14.03.2014 Views

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted Captodative Olefins 1-Acetylvinyl Arenecarboxylates 111<br />

Table 4. Comparison <strong>of</strong> X-ray selected bond distances (Å) (estimated standard deviations) <strong>of</strong> <strong>the</strong> crystal structure <strong>of</strong> 10f with those <strong>of</strong> olefins<br />

1a, 3a, and 7b, and with <strong>the</strong> average lenghts <strong>of</strong> bonds <strong>of</strong> <strong>the</strong> enone, enamine, vinyl ester and bromo vinyl systems.<br />

Bond 10f 1a a 3a b 7b b Average Length c<br />

O(4)-C(3) 1.208 (4) 1.215 (5) 1.20 (3) 1.231 (7) 1.222<br />

C(2)-C(3) 1.470 (5) 1.490 (5) 1.40 (3) 1.41 (1) 1.462<br />

C(1)-C(2) 1.320 (4) 1.306 (6) 1.42 (3) 1.366 (9) 1.340<br />

C(1)-Y(5) 1.725 (4) 1.79 (3) 1.32 (1) 1.712 (S); 1.881 (Br);<br />

1.358 (Nsp 2 ); 1.418 (Nsp 3 )<br />

C(2)-O(6) 1.412 (3) 1.398 (4) 1.41 (3) 1.423 (7) 1.353<br />

O(6)-C(7) 1.355 (4) 1.353 (4) 1.38 (2) 1.354 (6) 1.359<br />

C(7)-O(8) 1.195 (4) 1.200 (4) 1.21 (3) 1.188 (6) 1.201<br />

C(7)-C(9) 1.486 (4) 1.488 (5) 1.50 (3) 1.481 (7) 1.481<br />

a Ref. [11]. b Ref. [6]. c Ref. [19]<br />

Table 5. Ab initio HF/6-31G* calculations <strong>of</strong> coefficientes (C i ) <strong>of</strong> <strong>the</strong> frontier molecular orbitals for olefins 1a, 3a, 7a, 7b, 10a, 10f, and 10g,<br />

and diene 5. a HOMO LUMO<br />

Compd b C 1 C 2 C 3 C 4 ∆C i<br />

c C 1 C 2 C 3 C 4 ∆C ι<br />

c<br />

3a –0.2456 –0.2839 0.0095 0.1277 –0.0383 0.3188 –0.2499 –0.2783 0.2759 0.0689<br />

7a –0.1192 –0.3110 –0.0215 0.1414 –0.1918 0.2701 –0.1547 –0.2314 0.2143 0.1154<br />

7b –0.1711 –0.3702 –0.0190 0.1718 –0.1991 0.2799 –0.1433 –0.2564 0.2316 0.1366<br />

10a –0.1848 –0.3135 –0.0038 0.1475 –0.1287 0.3189 –0.2200 –0.2807 0.2501 0.0989<br />

10f –0.1625 –0.2694 –0.0019 0.1277 –0.1069 0.2872 –0.2073 –0.2506 0.2263 0.0799<br />

10g –0.2082 –0.2400 0.0042 0.1174 –0.0318 0.2843 –0.2404 –0.2579 0.2574 0.0439<br />

1a d –0.3593 –0.3565 0.0236 0.1676 0.<strong>002</strong>8 0.2940 –0.2386 –0.2889 0.2800 0.0554<br />

5 d 0.3247 0.2523 –0.2180 –0.2857 0.0390 0.2591 –0.2236 –0.2306 0.2793 –0.0202<br />

a These are <strong>the</strong> values <strong>of</strong> <strong>the</strong> 2p z coefficients, <strong>the</strong> relative 2p z ’ contributions and <strong>the</strong>ir ∆C i are analogous.<br />

b The FMOs <strong>of</strong> <strong>the</strong> non-planar s-trans conformation for olefins 1a 3a, 7a, 7b, and 10g, and s-cis for 5, 10a, and 10f.<br />

c Carbon 1 - carbon 2 for <strong>the</strong> olefins; carbon 1 - carbon 4 for <strong>the</strong> diene.<br />

d Ref. [11]<br />

Therefore, <strong>the</strong> electronic effect produced by <strong>the</strong> substituent<br />

in <strong>the</strong> beta position <strong>of</strong> <strong>the</strong> captodative olefins 3, 7, and<br />

10 on <strong>the</strong>ir behavior in Diels-Alder reactions could be evaluated<br />

by calculating <strong>the</strong> FMO energies <strong>of</strong> <strong>the</strong>se molecules, and<br />

correlating <strong>the</strong>m with those <strong>of</strong> <strong>the</strong> corresponding FMOs <strong>of</strong> a<br />

diene such as 5.<br />

Table 3 summarizes <strong>the</strong> calculated (HF/6-31G*) FMO<br />

energies <strong>of</strong> bromo and amino alkenes 3a, 7a, and 7b, as well<br />

as <strong>the</strong> thio alkenes 10a, 10f, and 10g. The geometries were<br />

optimized with <strong>the</strong> same basis set, showing that <strong>the</strong> most stable<br />

geometry for 3a, 7a, and 7b, corresponded to <strong>the</strong> s-trans<br />

conformation <strong>of</strong> <strong>the</strong> enone moiety, and <strong>the</strong> non-planar conformation<br />

<strong>of</strong> <strong>the</strong> p-nitrobenzoyloxy group. However, only for<br />

thioe<strong>the</strong>r 10g, <strong>the</strong> enone s-trans conformation was more stable,<br />

while olefins 10a and 10f were <strong>the</strong> exception, since <strong>the</strong> s-<br />

cis conformer for <strong>the</strong> enone conjugate system was slightly<br />

more stable (0.72 kcal/mol for 10a, and 0.24 kcal/mol for<br />

10f), which is not in agreement with <strong>the</strong> X-ray structure <strong>of</strong><br />

10f. Even though <strong>the</strong>se energy differences are negligible, and,<br />

practically, both conformations are isoenergetic, <strong>the</strong> FMO<br />

energy values listed in Table 3 corresponded to those obtained<br />

for <strong>the</strong> most stable confomation in every molecule. The co-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!