14.03.2014 Views

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SMQ-V047 N-002_ligas_size.pdf - Journal of the Mexican Chemical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

REVISTA de la SOCIEDAD<br />

QUÍMICA<br />

d e<br />

M É X I C O<br />

(Rev. Soc. Quím. Méx.)<br />

Páginas 101-210<br />

Vol. 47, Núm. 2, abril-junio del 2003


Fecha de publicación: Julio 2003<br />

REVISTA de la SOCIEDAD QUÍMICA de MÉXICO<br />

(Rev. Soc. Quím. Méx.) ISSN 0583-7693<br />

Publicación trimestral editada y distribuida por la Sociedad Química<br />

de México, A.C., Barranca del Muerto 26 (esq. Hércules). Col. Crédito<br />

Constructor, Delegación Benito Juárez, C.P. 03940, México, D.F.<br />

Tels.: 5662-6823 y 5662-6837. Fax: 5662-6823.<br />

Editor: Guillermo Delgado Lamas (E-mail: delgado@servidor.unam.mx)<br />

Editor Técnico: Arturo Sánchez y Gándara (E-mail: sygeditores@att.net.mx)<br />

D.R. © Sociedad Química de México, A.C.<br />

Se prohíbe la reproducción o impresión parcial o total<br />

sin la autorización por escrito del titular de los derechos.<br />

Reserva del título número 158-67 (mayo de 1967)<br />

otorgado por la Dirección General de Derechos de Autor, SEP.<br />

Certificado de licitud número 3565 y de contenido número 3867<br />

otorgados por la Comisión Calificadora de Publicaciones<br />

y Revistas Ilustradas de la Secretaría de Gobernación.<br />

Publicación periódica. Registro número 0790 790.<br />

Características 2294 5112, autorizado por SEPOMEX,<br />

23 de julio de 1990. Oficio número 317 Exp. 091.70/2485.<br />

Autorizada como correspondencia de segunda clase por la Dirección<br />

General de Correos con fecha 25 de agosto de 1967.<br />

Edición e impresión: S y G Editores S.A. de C.V., Calle Cuapinol 52,<br />

Col. Santo Domingo, Delegación Coyoacán, 04369 México, D.F.<br />

Tels.: 5619-5293, 5617-5610, E-mail: sygeditores@att.net.mx.


Editorial<br />

La investigación científica es una actividad de gran importancia,<br />

particularmente en los países en vías de desarrollo,<br />

debido, entre muchos otros aspectos, a su incidencia en la<br />

implementación de tecnologías propias que permiten la conservación<br />

y aprovechamiento racional de los recursos naturales<br />

en beneficio de la sociedad. La vegetación constituye un<br />

importante recurso natural en nuestro país, y existe una<br />

amplia tradición en el manejo y utilización de las especies<br />

vegetales que, en algunos casos, puede remontarse prácticamente<br />

a los inicios de nuestra era [1]. Así, desde el inicio de la<br />

institucionalización de la investigación química en México<br />

[2], se abordaron temas referentes a la química de productos<br />

naturales. Es, por lo tanto, oportuno reconocer la trayectoria<br />

de investigación del doctor Alfonso Romo de Vivar, quien<br />

constituye una figura señera en la investigación de la composición<br />

química de la vegetación de nuestro país. Este<br />

fascículo de la Revista de la Sociedad Química de México está<br />

integrado por trabajos de investigación dedicados al distinguido<br />

académico, en reconocimiento a su labor científica desarrollada<br />

durante cinco décadas.<br />

La biografía del doctor Romo de Vivar permite atestiguar<br />

numerosos cambios y vicisitudes [3]. Nació en San Francisco<br />

de los Romo, Aguascalientes, una región donde la familia<br />

Romo de Vivar tiene antecedentes centenarios. La familia<br />

emigró a Aguascalientes, donde concluyó los estudios primarios<br />

e inició la secundaria en el Instituto de Ciencias Autónomo<br />

de Aguascalientes. En 1945, parte de la familia se trasladó<br />

a la Ciudad de México, y en esta ciudad el futuro químico<br />

concluyó su educación media, en la Secundaria 15, ubicada en<br />

Tacuba, donde el doctor Humberto Estrada, de grata memoria<br />

para los pr<strong>of</strong>esionales de la química, impartía clases. Después<br />

de cursar la Preparatoria en el Colegio de San Ildefonso,<br />

Alfonso Romo de Vivar ingresó a la entonces Escuela<br />

Nacional de Ciencias Químicas, y concluyó los estudios de<br />

químico en 1952. En 1953 ingresó al Instituto de Química,<br />

donde desarrolló sus tesis de licenciatura y doctorado bajo la<br />

dirección del doctor Jesús Romo Armería (1922-1977), distinguido<br />

pionero de la investigación química en México, y también<br />

originario de Aguascalientes. Así, Alfonso Romo de<br />

Vivar ingresó al grupo de investigación del Instituto de<br />

Química, formado entonces por Alberto Sandoval, José<br />

Francisco Herrán, Octavio Mancera, José Luis Mateos, Javier<br />

Padilla, Fernando Walls, Jesús Romo, José Iriarte, entre otros<br />

distinguidos académicos (Foto p. 104).<br />

Sus primeros trabajos fueron sobre la química de<br />

esteroides, entre otros temas [4], dada la estrecha relación que<br />

sostenían, durante la década de 1950, el Instituto de Química<br />

y la empresa farmacéutica Syntex, que comercializaba por<br />

aquellos años, la progesterona, sintetizada a partir de la diosgenina,<br />

un producto natural obtenido a partir de la raíz del<br />

barbasco. La tesis doctoral de Alfonso Romo de Vivar versó<br />

sobre el análisis químico de la especie vegetal Helenium mexicanum,<br />

una planta que había llamado su atención desde su<br />

niñez, ya que había observado que las vacas que consumían<br />

este vegetal producían leche amarga. Efectivamente, los principios<br />

amargos aislados de este vegetal, conocido como rosilla<br />

o chapuz, fueron un grupo de substancias conocidas como lactonas<br />

sesquiterpénicas, y denominadas trivialmente como<br />

mexicaninas A, B, C..., entre otras [5]. De 1962 a 1963, el Dr.<br />

Romo de Vivar realizó una estancia con el Dr. Werner Herz,<br />

en Tallahassee, en la Universidad de Florida. Desde los sesentas,<br />

y a lo largo de tres décadas, el grupo del doctor Alfonso<br />

Romo de Vivar llevó a cabo importantes contribuciones al<br />

conocimiento de los constituyentes químicos de varios grupos<br />

de plantas, entre los cuales destacan los géneros Iva, Ambrosia,<br />

Chrysan<strong>the</strong>mum, Zaluzania, Artemisia, Zinnia, Par<strong>the</strong>nium,<br />

Yucca, Pluchea, Viguiera, Tithonia, entre otros. Así, se<br />

configuraron y consolidaron las actividades de una importante<br />

línea de investigación, iniciada por los doctores Herrán [6],<br />

Sandoval [7], Romo [8], Iriarte [9], entre otros, la cual consiste,<br />

en términos generales, en la generación de conocimiento<br />

científico mediante el estudio químico sistemático de la flora<br />

nacional.<br />

Es pertinente mencionar que actualmente, en una<br />

sociedad de economía de mercado, donde se requiere asignar<br />

precio para que algo sea valorado, la biodiversidad de nuestro<br />

país, que es considerada una de las mayores a nivel mundial,<br />

es un patrimonio que no puede ponderarse mediante criterios<br />

utilitarios, ya que aún no está completamente descrita y apenas<br />

se conocen, de manera muy fragmentaria, las estructuras<br />

moleculares de los metabolitos secundarios presentes en las<br />

diversas fuentes naturales. Sin embargo, sí conocemos los


102 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Guillermo D. L.<br />

efectos devastadores de la erosión y la degradación de la biodiversidad.<br />

Hace casi dos décadas Alfonso Romo de Vivar<br />

publicó el libro “Productos Naturales de la Flora <strong>Mexican</strong>a”<br />

[10], el cual compila parte de las investigaciones realizadas en<br />

el Instituto de Química de la UNAM, y que actualmente constituye<br />

una referencia clásica sobre el tema. Más recientemente,<br />

durante la última década, el grupo del doctor Romo de Vivar<br />

ha incidido en el estudio químico del género Senecio [11] y<br />

taxa afines [12], los cuales constituyen un grupo importante<br />

de especies vegetales de notable complejidad taxonómica.<br />

A lo largo de su carrera científica el doctor Alfonso Romo<br />

de Vivar ha recibido numerosas distinciones, tales como el<br />

Premio de la Academia de la Investigación Científica (1968),<br />

el Premio Banamex de Ciencia y Tecnología (1975); el Premio<br />

Nacional de Química Andrés Manuel del Río de la Sociedad<br />

Química de México, y el Premio Nacional de Ciencias<br />

Farmacéuticas (ambos en 1977). Es Investigador Nacional<br />

desde 1984; fue acreedor del Premio Universidad Nacional<br />

(1987); en 1990 se le otorgó el Premio Syntex-IOCD, por la<br />

Sociedad Química Americana; en 1991 recibió la distinción<br />

de Investigador Emérito de la Universidad Nacional, y el<br />

Premio Aguascalientes de Ciencia y Tecnología, y es Investigador<br />

Emérito del Sistema Nacional de Investigadores.<br />

Los pr<strong>of</strong>esionales de la química, los miembros de la<br />

Sociedad Química de México, colegas, amigos y alumnos nos<br />

enorgullecemos de la figura señera que representa Alfonso<br />

Romo de Vivar, y le agradecemos su papel como forjador de<br />

la joven tradición científica de nuestro país.<br />

Referencias<br />

1. Rius, M.; Galdeano, C. La Química Prehispánica. En: Química en<br />

México. Ayer, Hoy y Mañana. Garritz, A., Comp., Edición de la<br />

Facultad de Química. Universidad Nacional Autónoma de<br />

México. 1991. pp. 23-52.<br />

2. Walls, F. El Instituto de Química. Inicio de la Investigación. En:<br />

Química en México. Ayer, Hoy y Mañana. Garritz, A., Comp.,<br />

Edición de la Facultad de Química. Universidad Nacional<br />

Autónoma de México. 1991. pp. 109-121.<br />

3. (a) Romo de Vivar, A. Familia Romo de Vivar: 345 años en<br />

Aguascalientes, 50 años en el Instituto de Química. Serie: Forjadores<br />

de la Ciencia en la UNAM. Coordinación de la Investigación<br />

Científica de la UNAM. 2003. pp. 7-39. (b) Delgado, G.<br />

Alfonso Romo de Vivar. Reseña Biográfica. En: Nuestros<br />

Maestros. Edición de la Universidad Nacional Autónoma de<br />

México. Tomo III. 1996. pp 17-26.<br />

4. (a) Romo, J.; Romo de Vivar, A. J. Org. Chem. 1956, 79, 902-<br />

909. (b) Romo, J.; Romo de Vivar, A. Bol. Inst. Quím. Univ. Nac.<br />

Autón. Méx. 1956, 8, 10-16.<br />

5. (a) Romo, J.; Romo de Vivar, A. Chem. and Ind. 1959, 882. (b)<br />

Romo de Vivar, A.; Romo, J. J. Am. Chem. Soc. 1961, 83, 2326 -<br />

2328. (c) Romo de Vivar, A.; Romo, J. Ciencia (Méx.) 1961, 21,<br />

33-35.<br />

6. Herrán, J. Anuario de la Comisión Impulsora y Coordinadora de<br />

la Investigación Científica 1943, 217-221.<br />

7. (a) Zechmeister, L.; Sandoval, A. Science 1945, 101, 585. (b)<br />

Zechmeister, L.; Sandoval, A. Arch. Biochem. 1945, 8, 425.<br />

8. Romo, J. Bol. Inst. Quím. Univ. Nac. Autón. Méx. 1945, 1, 67-74<br />

9. Iriarte, J. Bol. Inst. Quím. Univ. Nac. Autón. Méx. 1945, 1, 80-87.<br />

10. Romo de Vivar, A. Productos Naturales de la Flora <strong>Mexican</strong>a.<br />

Ed. Limusa, México. 1985. 220 pp.<br />

11. Romo de Vivar, A.; Pérez-Castorena, A. L.; Arciniegas, A.;<br />

Villaseñor, J. L. Rec. Res. Devel. Phytochem. 2000, 4, 61-74.<br />

12. Arciniegas, A.; Pérez-Castorena, A. L.; Reyes, S.; Contreras, J.<br />

L.; Romo de Vivar, A. J. Nat. Prod. 2003, 66, 225-229.<br />

Guillermo Delgado Lamas


Editorial 103<br />

Jacobo Gómez Lara (1935-1999), Derek H.R. Barton (1918-1998) y Alfonso Romo de Vivar (1928).<br />

Vestíbulo del Instituto de Química, UNAM, julio de 1997.


104 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Guillermo D. L.<br />

Personal del Instituto de Química en 1953. Abajo: Maya, Isaac Lerner, Jesús Reynoso,<br />

José Luis Mateos, Jesús Romo Armería, Fernando Walls, José Iriarte y Alfonso Romo de Vivar.<br />

En medio: Nemorio Reynoso, Cristina Pérez-Amador, Pascual Aguinaco y José F. Herrán (agachado).<br />

Atrás: Visitante, Armando Manjarréz, Javier Padilla, Catalina Vélez, Ana Villanueva,<br />

Harry Miller (Fundación Rockefeller) y Octavio Mancera.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 105-106<br />

Scientific Contributions <strong>of</strong> Dr. Alfonso Romo de Vivar<br />

Nikolaus H. Fischer<br />

Department <strong>of</strong> Pharmacognosy and Research Institute <strong>of</strong> Pharmaceutical Sciences, School <strong>of</strong> Pharmacy,<br />

University <strong>of</strong> Mississippi, University, MS 38677, USA<br />

I consider it a great honor to be asked to present <strong>the</strong> “Scientific<br />

Laudatio” <strong>of</strong> Dr. Alfonso Romo de Vivar and it is a<br />

pleasant duty to write a summary <strong>of</strong> Dr. Romo de Vivar’s<br />

accomplishments in natural products chemistry. It speaks for<br />

itself, that his scientific contributions span over a time period<br />

<strong>of</strong> nearly one half century. Alfonso can with pride look back<br />

on a highly productive scientific career with impressive<br />

accomplishments and significant contributions to organic<br />

chemistry, in general, and natural products chemistry, in particular.<br />

Alfonso was born in Mexico on April 30, 1928 in San<br />

Francisco de los Romo, Aguascalientes. He received <strong>the</strong> B.Sc.<br />

degree in Chemistry at <strong>the</strong> School <strong>of</strong> Chemistry, Universidad<br />

Nacional Autonoma de Mexico (UNAM) in Mexico City. He<br />

subsequently entered <strong>the</strong> Postgraduate Program in Organic<br />

Chemistry and completed his Ph.D. in 1959. His dissertation<br />

research was directed toward <strong>the</strong> isolation and chemistry <strong>of</strong><br />

sesquiterpene lactones from Helenium mexicanum.<br />

Alfonso spent his whole research career at <strong>the</strong> Institute <strong>of</strong><br />

Chemistry at UNAM, which began in 1958, and in 1992 he<br />

received <strong>the</strong> status <strong>of</strong> Pr<strong>of</strong>essor Emeritus at <strong>the</strong> Institute <strong>of</strong><br />

Chemistry at UNAM. Since 1994 he is also a National Emeritus<br />

Research Scientist <strong>of</strong> <strong>the</strong> National System <strong>of</strong> Scientific<br />

Research. His early research interests were shared with his<br />

mentor, <strong>the</strong> late Pr<strong>of</strong>essor Jesús Romo Armería, <strong>the</strong> “fa<strong>the</strong>r”<br />

<strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Chemistry. Their main focus was on <strong>the</strong><br />

chemistry <strong>of</strong> plant steroids as well as sesquiterpene lactones<br />

from Helenium mexicanum.<br />

It is most impressive that between 1956 and 1961 eight<br />

publications appeared with <strong>the</strong>se two individuals as sole<br />

authors. The papers were published in highly prestigious international<br />

journals including three publications in <strong>the</strong> <strong>Journal</strong> <strong>of</strong><br />

<strong>the</strong> American <strong>Chemical</strong> Society and two in <strong>the</strong> <strong>Journal</strong> <strong>of</strong><br />

Organic Chemistry [1-6].<br />

His increasing interest in sesquiterpene lactones led to a<br />

one-year sabbatical leave (1962-1963) in <strong>the</strong> laboratory <strong>of</strong><br />

Pr<strong>of</strong>essor Werner Herz at Florida State University in Tallahassee,<br />

Florida, USA. This highly productive collaboration<br />

led to a series <strong>of</strong> pioneering studies on <strong>the</strong> structure and chemistry<br />

<strong>of</strong> pseudoguaianolides from <strong>the</strong> genera Helenium and<br />

related taxa. Six papers [7-12] resulted from this collaboration<br />

and appeared in <strong>the</strong> <strong>Journal</strong> <strong>of</strong> <strong>the</strong> American <strong>Chemical</strong> Society<br />

[7], <strong>the</strong> <strong>Journal</strong> <strong>of</strong> Organic Chemistry [10, 11] and Tetrahedron<br />

[8, 9, 12], which again speaks for <strong>the</strong> high productivity<br />

and caliber <strong>of</strong> <strong>the</strong>se publications.<br />

Dr. Romo de Vivar’s teaching career in <strong>the</strong> School <strong>of</strong><br />

Chemistry at UNAM began in 1957. He was <strong>the</strong> mentor <strong>of</strong><br />

about 40 undergraduate students and eleven students received<br />

<strong>the</strong> Ph.D. degree under his direction. Many <strong>of</strong> his publications<br />

on multiple structural types <strong>of</strong> natural products, ranging from<br />

sesquiterpene lactones to diterpenes, to triterpenes, were coauthored<br />

with his dedicated students. Many <strong>of</strong> <strong>the</strong>m have subsequently<br />

developed <strong>the</strong>ir own highly successful, internationally<br />

recognized research programs at UNAM and o<strong>the</strong>r prestigious<br />

academic institutions. O<strong>the</strong>r collaborators include his<br />

colleagues at <strong>the</strong> Institute <strong>of</strong> Chemistry and natural product<br />

chemists from academic institutions in Mexico and o<strong>the</strong>r<br />

countries.<br />

His high productivity in research publications continued<br />

for over three decades [13-16], with a total <strong>of</strong> about150 peerreviewed<br />

papers and reviews being published. He continues to<br />

do research and publish in top international journals on various<br />

aspects <strong>of</strong> natural products chemistry. Since <strong>the</strong> beginning<br />

<strong>of</strong> <strong>the</strong> year 2000 alone, nearly ten papers have appeared<br />

or are in press. This seems to be a good example <strong>of</strong> a chemist,<br />

who “never stops to react”.<br />

Alfonso was <strong>the</strong> recipient <strong>of</strong> a number <strong>of</strong> significant academic<br />

awards for his scientific work. In 1968, he received <strong>the</strong><br />

Science Award <strong>of</strong> <strong>the</strong> <strong>Mexican</strong> Academy <strong>of</strong> Sciences and in<br />

1977 was awarded <strong>the</strong> National Chemistry Award “Andres<br />

Manuel del Rio” by <strong>the</strong> <strong>Mexican</strong> <strong>Chemical</strong> Society. In 1987<br />

he was <strong>the</strong> recipient <strong>of</strong> <strong>the</strong> National University Science<br />

Award, and in 1990, <strong>the</strong> IOCD-Syntex Award by <strong>the</strong> American<br />

<strong>Chemical</strong> Society.<br />

I wish to conclude with a personal note. My first correspondence<br />

with Dr. Romo de Vivar goes back to October 1976.<br />

At that time Alfonso informed me in a short letter, that Dr.<br />

Ronald Hartman had visited and stored our plant collection at<br />

a safe place in <strong>the</strong> Institute. In a handwritten footnote, he<br />

pointed out that a young scientist in <strong>the</strong> Institute, Dr. Leovigildo<br />

Quijano, would send his application for an advertised postdoctoral<br />

position. Leo joined my research group shortly <strong>the</strong>reafter.<br />

This was <strong>the</strong> beginning <strong>of</strong> a life-long scientific collaboration<br />

and close friendship with Leo, that my wife Helga and I<br />

cherish very much. My association and interaction with many<br />

members <strong>of</strong> <strong>the</strong> faculty in <strong>the</strong> Institute <strong>of</strong> Chemistry and <strong>the</strong><br />

School <strong>of</strong> Chemistry continues to this date.<br />

Thank you, Alfonso. You started it all!


106 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Nikolaus H. Fischer<br />

References<br />

1. Some experiments with 16β-bromo-17α-acetoxy-20-keto<br />

steroids. Syn<strong>the</strong>sis <strong>of</strong> 16α-17α-dihydroxysteroids and related<br />

compounds. Romo, J.; Romo de Vivar, A. J. Org. Chem., 1956,<br />

21, 902-909.<br />

2. The Favorskii rearrangement in <strong>the</strong> pregnane series. cis-trans<br />

Isomerism in some 17,20-dehydro derivatives. Romo, J.; Romo<br />

de Vivar, A. J. Am. Chem. Soc., 1957, 79, 1118-1123.<br />

3. Constituents <strong>of</strong> Helenium mexicanum H.B.K. Romo de Vivar, A.;<br />

Romo, J. Chem. and Ind. 1959, 882.<br />

4. The Beckmann rearrangements <strong>of</strong> <strong>the</strong> acetoxime <strong>of</strong> 5,16-pregnadien-3β-ol-20-one<br />

acetate with boron trifluoride. Romo, J.;<br />

Romo de Vivar, A. J. Am. Chem. Soc. 1959, 81, 3446-3452.<br />

5. <strong>Mexican</strong>in E, a norsesquiterpenoid lactone. Romo de Vivar, A.;<br />

Romo, J. J. Am. Chem. Soc., 1961, 83, 2326-2328.<br />

6. Las lactonas de Helenium mexicanum H.B.K. Romo de Vivar, A.;<br />

Romo, J. Ciencia (Méx.), 1961, 21, 33-35.<br />

7. Constituents <strong>of</strong> Helenium species, XIII. The structure <strong>of</strong> helenalin<br />

and mexicanin A. Herz, W.; Romo de Vivar, A.; Romo, J.;<br />

Viswanathan, N. J. Am. Chem. Soc., 1963, 85, 19-26.<br />

8. Constituents <strong>of</strong> Helenium species, XV. The structure <strong>of</strong> mexicanin<br />

C. Relative stereochemistry <strong>of</strong> its congeners. Herz, W.;<br />

Romo de Vivar, A.; Romo, J.; Viswanathan, N. Tetrahedron,<br />

1963, 19, 1359-1369.<br />

9. Constituents <strong>of</strong> Helenium species, XIV. The structure <strong>of</strong> mexicanin<br />

E. Romo, J.; Romo de Vivar, A.; Herz, W. Tetrahedron,<br />

1963, 19, 2717-2322.<br />

10. Constituents <strong>of</strong> Iva species, III. Structure <strong>of</strong> microcephalin, a new<br />

sesquiterpenic lactone. Herz, W.; Hogenauer, G.; Romo de Vivar,<br />

A. J. Org. Chem., 1964, 29, 1700-1703.<br />

11. Constituents <strong>of</strong> Iva species, IV. Structure <strong>of</strong> pseudoivalin, a new<br />

guaianolide. Herz, W.; Romo de Vivar, A.; Lakshmikantham, M.<br />

V. J. Org. Chem., 1965, 30, 118.<br />

12. Fur<strong>the</strong>r transformations <strong>of</strong> Helenalin and its congeners: <strong>the</strong> 1-epihelenalin<br />

and 1-epiambrosin series. Romo de Vivar, A.; Rodriguez-Hahn,<br />

L.; Lakshmikantham, M.V.; Mirrington, R.N.; Kagan,<br />

J.; Herz, W. Tetrahedron, 1966, 22, 3279.<br />

13. The constituents <strong>of</strong> Zalazania augusta. The structure <strong>of</strong> zaluzanin<br />

A and B. Romo, J.; Romo de Vivar, A.; Joseph-Nathan, P.<br />

Tetrahedron 1967, 23, 29.<br />

14. The constituents <strong>of</strong> Zalazania H. Structure <strong>of</strong> zaluzanins C and D.<br />

Romo de Vivar, A.; Cabrera, A.; Ortega A.; Romo, J. Tetrahedron<br />

1967, 23, 3903.<br />

15. Stevin, a new pseudoguaianolide isolated from Stevia rhombifolia<br />

H.B.K. Rios, T.; Romo de Vivar, A.; Romo, J. Tetrahedron,<br />

1967, 23, 4265.<br />

16. The Pseudoguaianolides. Romo, J.; Romo de Vivar, A. Fortschritte<br />

der Chemie Org. Naturst<strong>of</strong>fe 1967, 25, 90-130.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 107<br />

El aporte a la Química Iberoamericana del doctor Alfonso Romo de Vivar.<br />

Asegurar la inmortalidad de la ciencia para así perpetuar la humanidad<br />

Mario Silva, Ph.D. (London)<br />

Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias,<br />

Universidad de Concepción, Chile. Concepción, Chile. E-mail: mjsilva@udec.cl<br />

El doctor Alfonso Romo de Vivar, hombre de ciencia e investigador<br />

emérito, pero también formador de hombres de ciencia<br />

e investigadores, ha sido un auténtico líder en el ideal del siglo<br />

XX: un científico que labora para encaminar al mundo y a los<br />

hombres hacia la verdad, que no es otra cosa que aquello que<br />

el hombre siempre ha anhelado y buscado con denuedo, por<br />

medios disímiles como lo son el arte, la reflexión, o la ciencia.<br />

Si se puede afirmar que la época renacentista busca a través<br />

del arte y que los siglos XVIII y XIX lo hacen a través de la<br />

reflexión, se puede postular, también, que el siglo XX ha acudido<br />

a la técnica y a la ciencia para encontrar las respuestas a<br />

la gran pregunta: ¿qué somos?<br />

La segunda mitad del siglo XX ha sido obviamente el inicio<br />

de la era de la ciencia, en la que estamos pr<strong>of</strong>undamente<br />

sumergidos y en la que vemos aparecer sus frutos, a veces<br />

espectaculares, pero, las más de las veces, como cuestiones más<br />

bien banales, sin tener conciencia plena del esfuerzo y la<br />

inteligencia invertida por las personas en su realización. En este<br />

sentido, la labor del doctor Romo de Vivar es inconmensurable,<br />

al igual que la tarea de quizás cuántos científicos que, en el aislamiento<br />

del laboratorio, buscan y encuentran respuestas a las<br />

inquietudes que les despiertan las incógnitas del mundo.<br />

La ciencia y su apoyo técnico han sido los motores del<br />

proceso de globalización que se vive en nuestros tiempos,<br />

donde lo que les sucede a nuestros congéneres lejanos nos<br />

afecta sobre manera y donde lo que hagamos o dejemos de<br />

hacer compromete no sólo a nuestros contemporáneos sino,<br />

más aún, a los descendientes nuestros y ajenos.<br />

La globalización obedece a criterios de crecimiento económico<br />

originados en intereses que tienen como objetivo el<br />

éxito de la empresa sin que la felicidad o bienestar humano<br />

sea considerado y que requiere anular o por lo menos mitigar<br />

todas aquellas circunstancias que pudiesen alterar ese buen<br />

éxito. Frente a este proceso de globalización, que ha sido disparado<br />

por la ciencia, pero llevado a cabo por organismos<br />

extra científicos, se alzan visiones, propuestas y actos que<br />

desean preservar algunos tipos de identidad, creencias, prácticas<br />

y destinos: sin negarse a la inserción en el mundo: “quiero<br />

ser yo en mi grupo, con mis divinidades, mis ritos y mi vida<br />

después de mi vida”.<br />

Nota: Agradezco al Dr. Guillermo Delgado y por su intermedio a la Sociedad<br />

Química de México la oportunidad que me brindaron para escribir esta nota<br />

sobre el Dr. Alfonso Romo de Vivar.<br />

El doctor Romo de Vivar ha realizado una labor extensa,<br />

densa y magnífica en pro de la ciencia y de la humanidad. Ha<br />

formado discípulos y con ello ha cumplido con la exigencia<br />

que se le hace al hombre de ciencia: asegurar la inmortalidad<br />

de la ciencia para así perpetuar la humanidad. Aunque, para<br />

bien o para mal, el hombre sea diferente en diferentes latitudes,<br />

y pese a las diversidades que se <strong>of</strong>recen en cuanto a culturas,<br />

idiomas y religiones, así como también en cuanto a tipos<br />

humanos, conductas sociales y cosmovisiones, la ciencia trata<br />

de suputar la esencia del hombre y la del mundo, pero, más<br />

allá, la esencia del hombre en el mundo y la del mundo en el<br />

hombre. En esta perspectiva, no es muy atrevido afirmar que<br />

el doctor Romo de Vivar ha indagado en estas dos últimas<br />

áreas, buscando y encontrando elementos, procedimientos y<br />

modos de acción de aquello que <strong>of</strong>rece el mundo y que puede<br />

ponerse al servicio del hombre para su bienestar y su felicidad.<br />

Como breve resumen de la labor del doctor Romo de Vivar<br />

podemos decir que ha dictado conferencias en diversos centros<br />

de alto nivel mundial, ha entregado sus conocimientos a nivel<br />

de difusión de la Química a estudiantes de pregrado y para el<br />

público en general; ha publicado brillantes trabajos en revistas<br />

científicas del más alto impacto y participado con sus alumnos<br />

en un número muy importante de Congresos <strong>Mexican</strong>os e<br />

Internacionales. Además, el Dr. Romo de Vivar ha dirigido numerosas<br />

tesis de licenciatura, de maestría y de doctorado.<br />

Cabe destacar que este hombre de ciencia ha recibido innumerables<br />

distinciones en México, tanto en su país, como a<br />

nivel internacional, entre las cuales destacan: Premio Universidad<br />

Nacional, Premio IOCD-Syntex para la Excelencia de la<br />

Química, Investigador Emérito Universitario, Investigador<br />

Nacional Emérito, entre otras distinciones.<br />

Finalmente es importante señalar que el doctor Romo de<br />

Vivar está inscrito en el Cuadro de Honor de la Química, de<br />

México y Latinoamérica, junto a los Químicos que han sido<br />

destacados por la relevancia de su labor científica.<br />

El doctor Alfonso Romo de Vivar, ¿un hombre de dos<br />

vidas paralelas, dos hombres en uno, un hombre en el mundo<br />

y otro o el mismo en la ciencia? Lo más cierto es que no hay<br />

respuesta, pero sólo él mismo puede percibir un bosquejo de<br />

sentimiento frente al tema, no como una reflexión acerca de su<br />

ego, sino como apreciación de la proyección de su yo y como<br />

complacencia desde donde puede mirar hacia atrás.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 108-116<br />

Investigación<br />

Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted<br />

Captodative Olefins 1-Acetylvinyl Arenecarboxylates<br />

Jorge A. Mendoza, 1 Hugo A. Jiménez-Vázquez, 1 Rafael Herrera, 2 Jide Liu, 1 and Joaquín Tamariz 1*<br />

1 Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional,<br />

Prol. de Carpio y Plan de Ayala, 11340 México, D.F. México. Tel: (+5255) 5729-6300 / 62411; Fax: (+5255) 5396-3503;<br />

E-mail: jtamariz@woodward.encb.ipn.mx<br />

2 Instituto de Investigaciones Quimicobiológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1,<br />

Ciudad Universitaria, Francisco J. Mujica S/N, 58066 Morelia, Mich., México.<br />

Dedicated to Dr. Alfonso Romo de Vivar on <strong>the</strong> occasion <strong>of</strong> his 50th anniversary <strong>of</strong> relevant contributions in natural<br />

products chemistry at <strong>the</strong> Instituto de Química,UNAM<br />

Recibido el 10 de diciembre del 2<strong>002</strong>; aceptado el 6 de febrero del 2003<br />

Abstract. A new series <strong>of</strong> β-heterosubstituted captodative olefins 1-<br />

acetylvinyl arenecarboxylates (7a and 10a-10h) has been prepared,<br />

by introducing nitrogen or sulphur as heteroatoms substituted by<br />

alkyl and aryl groups. Three preparation methods were evaluated by<br />

modifying <strong>the</strong> leaving group <strong>of</strong> <strong>the</strong> starting material, as well as <strong>the</strong><br />

nucleophilic character <strong>of</strong> <strong>the</strong> adding thiols. All <strong>of</strong> <strong>the</strong>m were efficient<br />

and stereoselective, providing <strong>the</strong> desired alkenes in good yields and<br />

with <strong>the</strong> Z configuration <strong>of</strong> <strong>the</strong> double bond. Ab initio calculations<br />

(HF/6-31G*) <strong>of</strong> <strong>the</strong> FMOs, <strong>of</strong> some <strong>of</strong> <strong>the</strong> beta amino and bromo<br />

olefins, explained <strong>the</strong>ir experimental reactivity in Diels-Alder additions<br />

with respect to <strong>the</strong> unsubstituted olefin 1a. It also appears that<br />

<strong>the</strong> HOMO and LUMO energies <strong>of</strong> <strong>the</strong> beta sulphur analogues are<br />

governed by <strong>the</strong> particular electronic features <strong>of</strong> <strong>the</strong> sulphur atom,<br />

and that <strong>the</strong>ir very low reactivity before a diene is due to steric hindrance.<br />

A comparison between bond distances obtained by X-ray<br />

crystallography <strong>of</strong> different β-substituted and unsubstituted olefins<br />

seems to correlate with <strong>the</strong> delocalization effect <strong>of</strong> <strong>the</strong> heteroatom<br />

lone electron pair for <strong>the</strong> bromo and amino β-substituted olefins.<br />

Keywords: Captodative olefin, structure, reactivity.<br />

Resumen. Se describe la preparación de una nueva serie de olefinas<br />

captodativas β-heterosustituidas 1-acetilvinil arencarboxilatos (7a<br />

and 10a-10h), donde el heteroátomo es nitrógeno o azufre, sustituido<br />

por grupos alquilo y arilo. Se evaluaron tres métodos para su preparación,<br />

modificando el grupo saliente en el sustrato, y el carácter nucle<strong>of</strong>ílico<br />

de los tioles que se adicionaron. Los tres métodos fueron<br />

eficientes y estereoselectivos, proporcionando los alquenos deseados<br />

en buenos rendimientos y con la configuración Z del doble enlace. El<br />

cálculo de orbitales moleculares frontera (ab initio, HF / 6-31G*) de<br />

algunas de las olefinas preparadas permitió explicar sus diferencias<br />

en reactividad experimental con respecto a la olefina no sustituida 1a.<br />

Así, se sugiere que las energías de los orbitales HOMO y LUMO de<br />

los análogos azufrados están gobernadas por las propiedades electrónicas<br />

particulares del átomo de azufre, y que su baja reactividad<br />

ante un dieno depende también del efecto estérico. Una comparación<br />

de los datos de cristalografía de rayos X entre distancias de enlace de<br />

diferentes olefinas β-sustituidas y la no sustituida parece correlacionarse<br />

con el efecto de deslocalización del par de electrones no<br />

compartidos del heteroátomo para las olefinas β-bromo y β-amino<br />

sustituidas.<br />

Palabras clave: Olefina captodativa, estructura, reactividad.<br />

Introduction<br />

Captodative olefins have attracted particular attention in<br />

recent years, due to <strong>the</strong> opposite electronic demand and to <strong>the</strong><br />

syn<strong>the</strong>tic potential displayed by <strong>the</strong>ir geminally substituted<br />

functional groups [1]. We have shown that 1-acetylvinyl p-<br />

arenecarboxylates 1a-1c were highly reactive and selective in<br />

Diels-Alder [2] and 1,3-dipolar cycloadditions [3], and <strong>the</strong>y<br />

also proved to be very useful synthons in natural product syn<strong>the</strong>sis<br />

[4]. More recently, <strong>the</strong> alkyl 2-aroyloxy acrylates 2a-2b<br />

were prepared, showing also high reactivity and selectivity in<br />

Diels-Alder reactions [5]. With <strong>the</strong> aim <strong>of</strong> evaluating <strong>the</strong><br />

effect <strong>of</strong> a third substituent in <strong>the</strong> double bond on <strong>the</strong> reactivity<br />

in [4+2] additions, compound 3a was prepared through a<br />

stereoselective syn<strong>the</strong>tic route starting from 1a [6]. A series <strong>of</strong><br />

amines 3b and thiols 3c and 3d were syn<strong>the</strong><strong>size</strong>d by treatment<br />

<strong>of</strong> 3a with <strong>the</strong> corresponding amines and thiols. In particular,<br />

enaminones are important organic intermediates [7], and have<br />

potential biological activity [8]. Moreover, o<strong>the</strong>r β-substituted<br />

captodative olefins have been prepared, showing interesting<br />

pericyclic behavior and syn<strong>the</strong>tic usefulness [9].<br />

Attempts to carry out <strong>the</strong> Diels-Alder cycloaddition <strong>of</strong><br />

alkenes 3a-3d with dienes such as cyclopentadiene (4) and isoprene<br />

(5) were, however, unsuccessful, except for derivative 3a.<br />

The latter yielded adducts with diene 4 in an unexpectedly high


Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted Captodative Olefins 1-Acetylvinyl Arenecarboxylates 109<br />

Table 1. Preparation <strong>of</strong> <strong>the</strong> β-sulfanyl substituted captodative olefins 10a-10h from olefin 3a.<br />

Entry a RSX Base b T (°C) t (h) 10 (%) c<br />

1 9a (R = Me, X = Na) ___ 25 0.5 10a (85)<br />

2 9b (R = Et, X = Na) ___ 25 0.5 10b (90)<br />

3 9c (R = i-Pr, X = Na) ___ 25 0.5 10c (90)<br />

4 9d (R = Et, X = H) Et 3 N 0-120 d 3.0 10b (78)<br />

5 9e (R = i-Pr, X = H) Et 3 N 0-120 d 3.0 10c (81)<br />

6 9f (R = t-Bu, X = H) Et 3 N 0-120 d 3.0 10d (82)<br />

7 9g (R = Bn, X = H) Et 3 N 0-120 d 3.0 10e (90)<br />

8 9h (R = C 6 H 4 p-Br, X = H) Et 3 N 0-120 d 3.0 10f (96)<br />

9 9i (R = C 6 H 4 p-OMe, X = H) Et 3 N 0-120 d 3.0 10g (80)<br />

10 9j (R = C 6 H 4 p-Me, X = H) Et 3 N 0-120 d 3.0 10h (81)<br />

a All under N 2 atmosphere, with 1.3 mol equiv. <strong>of</strong> RSX, in DMF as solvent.<br />

b With 1.3 mol equiv. <strong>of</strong> Et 3 N.<br />

c After column and radial chromatography.<br />

d The reaction was succesively maintained at 0 °C for 1 h, 20 °C for 1 h, and at 120 °C for 1 h.<br />

Fig. 1. Fig. 2.<br />

exo stereoselectivity, and in comparable para/meta regioselectivity<br />

to that observed for olefin 1a with diene 5 [6].<br />

The high reactivity and selectivity <strong>of</strong> captodative olefins<br />

in cycloaddition reactions is ra<strong>the</strong>r unexpected, since <strong>the</strong> electron-releasing<br />

effect <strong>of</strong> <strong>the</strong> aroyloxy group should decrease<br />

<strong>the</strong>ir reactivity in comparison with a dienophile or dipolarophile<br />

bearing only an electron-withdrawing group, such as<br />

methyl vinyl ketone (6) [10]. Structural and <strong>the</strong>oretical studies<br />

<strong>of</strong> olefin 1a revealed that <strong>the</strong> delocalization <strong>of</strong> <strong>the</strong> oxygen<br />

lone pair <strong>of</strong> <strong>the</strong> electron-donor group toward <strong>the</strong> π-sytem was<br />

inhibited by conformational restrictions [11]. In addition,<br />

FMO calculations suggested a dominant effect <strong>of</strong> <strong>the</strong> acetyl<br />

electron-withdrawing group on <strong>the</strong> polarization <strong>of</strong> <strong>the</strong> olefin<br />

[11]. However, <strong>the</strong> high regioselectivity shown by olefins 1 in<br />

1,3-dipolar additions toward nitrones and nitrile oxides was<br />

better rationalized by DFT/HSAB <strong>the</strong>ory [3c], showing <strong>the</strong><br />

relevance <strong>of</strong> <strong>the</strong> electron-donor group in controlling <strong>the</strong> interaction<br />

<strong>of</strong> <strong>the</strong> cycloaddends. Therefore, electronic and structural<br />

factors should be taken into account to explain <strong>the</strong> reactivity<br />

and regiochemistry observed in both Diels-Alder and 1,3-<br />

dipolar reactions.<br />

It is <strong>the</strong>n relevant to evaluate <strong>the</strong> perturbation <strong>of</strong> <strong>the</strong> beta<br />

substituent in olefins 3 on <strong>the</strong> electronic and structural properties<br />

<strong>of</strong> <strong>the</strong>se molecules and, in particular, on <strong>the</strong> double bond.<br />

Accordingly, we hereby report <strong>the</strong> preparation <strong>of</strong> a large<br />

series <strong>of</strong> new captodative olefins β-substituted with a new<br />

amine, and alkyl and aryl thiols. MO calculations were also<br />

carried out to assess <strong>the</strong> effect <strong>of</strong> <strong>the</strong> third substituent on <strong>the</strong><br />

FMO energies and coefficients.<br />

Results and discussion<br />

Syn<strong>the</strong>sis <strong>of</strong> β-heterosubstituted captodative olefins<br />

The β-amino substituted olefin 7a was prepared by treating α-<br />

bromoalkene 3a with amine 8a, as an extension <strong>of</strong> <strong>the</strong> method<br />

used for <strong>the</strong> preparation <strong>of</strong> amino derivatives 3b [6] (Fig. 1).<br />

Thus, addition <strong>of</strong> N,N-methylphenyl amine (8a), in methylene<br />

chloride at 10 °C for 30 min, satisfactorily led to <strong>the</strong> desired -<br />

substituted olefin 7a in 62 % yield. The Z configuration <strong>of</strong> <strong>the</strong><br />

double bond was established through NOE experiments.<br />

Irradiation <strong>of</strong> proton H-4 resulted in enhancement <strong>of</strong> <strong>the</strong> signal<br />

for <strong>the</strong> acetyl group.<br />

In <strong>the</strong> previous report, <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> β-thio (β-sulfanyl)<br />

olefins was limited to 3c and 3d by treatment <strong>of</strong> 3a with <strong>the</strong><br />

corresponding thiol in <strong>the</strong> presence <strong>of</strong> triethylamine in DMF<br />

at room temperature [6]. The use <strong>of</strong> some o<strong>the</strong>r alkyl mercaptanes<br />

and aryl thiophenols under <strong>the</strong>se conditions was not as<br />

efficient. Therefore, three additional methodologies were<br />

investigated to improve <strong>the</strong> yields. The first method involved<br />

<strong>the</strong> addition <strong>of</strong> <strong>the</strong> sodium salt <strong>of</strong> <strong>the</strong> thiol (9a-9c) to 3a (Fig.<br />

2), leading to products 10a-10c in high yields and under mild<br />

conditions (Table 1, entries 1-3). When thiols 9d-9g were<br />

used, more severe conditions were applied in order to improve<br />

<strong>the</strong> preparation <strong>of</strong> olefins 10b-10e (entries 4-7). The yields<br />

were high even for <strong>the</strong> bulky thiol 9f. Under <strong>the</strong> same reaction<br />

conditions, substituted thiophenols 9h-9j reacted with 3a to<br />

give alkenes 10f-10h also in good yields (entries 8-10).<br />

The leaving group Y at <strong>the</strong> starting alkenes was also evaluated.<br />

Instead <strong>of</strong> <strong>the</strong> bromine atom <strong>of</strong> olefin 3a, <strong>the</strong> dimeth-


110 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Jorge A. Mendoza et al.<br />

Table 2. Preparation <strong>of</strong> <strong>the</strong> β-sulfanyl substituted captodative olefins<br />

10b-10h from olefin 7b.<br />

Entry a RSH 10 (%)b<br />

1 9d (R = Et) 10b (74)<br />

2 9e (R = i-Pr) 10c (77)<br />

3 9f (R = t-Bu) 10d (70)<br />

4 9g (R = Bn) 10e (87)<br />

5 9h (R = C 6 H 4 p-Br) 10f (91)<br />

6 9i (R = C 6 H 4 p-OMe) 10g (93)<br />

7 9j (R = C 6 H 4 p-Me) 10h (90)<br />

a All under N 2 atmosphere, with 1.3 mol equiv. <strong>of</strong> RSH and with 1.3 mol<br />

equiv. <strong>of</strong> Et 3 N, in DMF as solvent. The reaction was succesively maintained<br />

at 0 °C for 1 h, 120 °C for 1 h, and at 20 °C for 1 h.<br />

b After column and radial chromatography.<br />

ylamino group was used, due to its known aptitude as a leaving<br />

group [12]. In <strong>the</strong>se cases <strong>the</strong> optimum reaction conditions<br />

were found to be similar to those employed for olefin 3a, that<br />

is, reacting olefin 7b in <strong>the</strong> presence <strong>of</strong> thiols 9d-9j and triethylamine<br />

as base, and heating from 0 °C up to 120 °C for 3<br />

h (Table 2). The aliphatic thiols 9d-9g provided compounds<br />

10b-10e in quite lower yields than those obtained when olefin<br />

3a was used (Table 2, entries 1-4 vs. Table 1, entries 4-7);<br />

however, <strong>the</strong> yields increased for <strong>the</strong> preparation <strong>of</strong> 10g-10h<br />

when 7b was treated with thiophenols 9i-9j (Table 2, entries<br />

6-7 vs. Table 1, entries 9-10).<br />

For both olefins, 3a and 7b, <strong>the</strong>re were no significant differences<br />

in reactivity or yields to furnish <strong>the</strong> β-substituted<br />

alkenes 10 with <strong>the</strong> para substituted thiophenols 9h-9j (Table<br />

1, entries 8-10 and Table 2, entries 5-7), considering that <strong>the</strong><br />

temperature and <strong>the</strong> reaction time were comparable, regardless<br />

<strong>of</strong> <strong>the</strong> substituent.<br />

It is interesting that sodium thiolates 9a-9c reacted with<br />

olefin 3a to give <strong>the</strong> 1,4-addition products 10a-10c in good<br />

yields, instead <strong>of</strong> providing <strong>the</strong> hydrolisis products by addition<br />

to <strong>the</strong> p-nitrobenzoyloxy group, as observed when <strong>the</strong> corresponding<br />

alcohols were used. As expected, this behavior illustrates<br />

again <strong>the</strong> known greater s<strong>of</strong>tness <strong>of</strong> <strong>the</strong> sulphur atom<br />

with respect to <strong>the</strong> oxygen atom.<br />

The Z configuration <strong>of</strong> <strong>the</strong> double bond is maintained in<br />

all <strong>of</strong> <strong>the</strong> new olefins 10a-10h, as observed for <strong>the</strong> β-amino<br />

alkene 7a, indicating that it is largely more stable than <strong>the</strong> E<br />

Fig. 3. X-ray structure <strong>of</strong> captodative olefin 10f (ellipsoids with 30 %<br />

probability).<br />

configuration [6]. It is likely that <strong>the</strong> higher stability <strong>of</strong> <strong>the</strong> Z<br />

configuration is associated to destabilizing steric interactions<br />

found between <strong>the</strong> acetyl group and <strong>the</strong> beta substituent in <strong>the</strong><br />

opposite E configuration. Such interactions may inhibit <strong>the</strong><br />

effective conjugation <strong>of</strong> <strong>the</strong> enone moiety, and <strong>the</strong> delocalization<br />

<strong>of</strong> <strong>the</strong> heteroatom lone electron pair through <strong>the</strong> π system<br />

[6, 13].<br />

The configuration <strong>of</strong> <strong>the</strong> double bond and <strong>the</strong> planar conformation<br />

<strong>of</strong> <strong>the</strong> enone moiety was confirmed by single crystal<br />

X-ray crystallography <strong>of</strong> olefin 10f (Fig. 3). It shows that<br />

both conjugated moieties, <strong>the</strong> enone and p-nitrobenzoyl<br />

groups, are in a quasi-orthogonal conformation. This agrees<br />

with those structures obtained for o<strong>the</strong>r analogues [5, 6, 11],<br />

as well as in <strong>the</strong> s-trans conformation <strong>of</strong> <strong>the</strong> enone. Interestingly,<br />

<strong>the</strong> p-bromophenyl ring lies out <strong>of</strong> <strong>the</strong> plane formed by<br />

<strong>the</strong> enone π-system.<br />

FMO calculations <strong>of</strong> β-heterosubstituted<br />

captodative olefins<br />

Frontier molecular orbital (FMO) <strong>the</strong>ory has proven to be a<br />

reliable model to predict reactivity and regioselectivity in<br />

Diels-Alder [14] and 1,3-dipolar cycloadditions [15]. It has<br />

been able to explain <strong>the</strong> behavior <strong>of</strong> substituted olefins as<br />

dienophiles in Diels-Alder additions. For instance, <strong>the</strong> rate<br />

increases when <strong>the</strong> dienophile bears electron-withdrawing<br />

groups, whereas it decreases with dienophiles bearing electron-donating<br />

groups [16].<br />

FMO <strong>the</strong>ory has also been useful in explaining <strong>the</strong> reactivity<br />

and regioselectivity <strong>of</strong> captodative olefins with dienes<br />

such as isoprene (5) [2a, 11], showing that <strong>the</strong> interaction was<br />

controlled by normal electron demand (NED), i.e. <strong>the</strong> HOMOdiene/LUMO-dienophile<br />

interaction was <strong>the</strong> energetically<br />

most favorable. Fur<strong>the</strong>rmore, <strong>the</strong>se results were supported by<br />

experimental measurement <strong>of</strong> ionization energies (IEs) and<br />

vertical attachment energies (VAEs) <strong>of</strong> 1a, whose relative values<br />

fit well with <strong>the</strong> calculated HOMO and LUMO energies,<br />

respectively [11].<br />

Table 3. Ab initio HF/6-31G* Frontier Molecular Orbitals energies,<br />

and energy gaps (eV) <strong>of</strong> olefins 3a, 7a, 7b, 10a, 10f, and 10g, and<br />

isoprene (5).<br />

Entry Compound a HOMO LUMO HOMO-LUMO b<br />

1 1ac –11.0460 2.4588 11.0781<br />

2 3a –10.4288 2.1015 10.7208<br />

3 7a –8.4516 2.9375 11.5568<br />

4 7b –8.8119 3.1767 11.7960<br />

5 10a –9.1412 2.4681 11.0874<br />

6 10f –9.2764 2.3162 10.9355<br />

7 10g –10.2014 2.1900 10.8093<br />

8 5c –8.6193 3.5337<br />

a Of <strong>the</strong> non-planar s-trans conformation for olefins 1a, 3a, 7a, 7b, 10f, and<br />

10g, and <strong>of</strong> <strong>the</strong> s-cis conformation for olefin 10a and for <strong>the</strong> diene. b Energy<br />

gaps for <strong>the</strong> energetically more favorable HOMO-diene/LUMO-dienophile<br />

interaction. c Ref. [11].


Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted Captodative Olefins 1-Acetylvinyl Arenecarboxylates 111<br />

Table 4. Comparison <strong>of</strong> X-ray selected bond distances (Å) (estimated standard deviations) <strong>of</strong> <strong>the</strong> crystal structure <strong>of</strong> 10f with those <strong>of</strong> olefins<br />

1a, 3a, and 7b, and with <strong>the</strong> average lenghts <strong>of</strong> bonds <strong>of</strong> <strong>the</strong> enone, enamine, vinyl ester and bromo vinyl systems.<br />

Bond 10f 1a a 3a b 7b b Average Length c<br />

O(4)-C(3) 1.208 (4) 1.215 (5) 1.20 (3) 1.231 (7) 1.222<br />

C(2)-C(3) 1.470 (5) 1.490 (5) 1.40 (3) 1.41 (1) 1.462<br />

C(1)-C(2) 1.320 (4) 1.306 (6) 1.42 (3) 1.366 (9) 1.340<br />

C(1)-Y(5) 1.725 (4) 1.79 (3) 1.32 (1) 1.712 (S); 1.881 (Br);<br />

1.358 (Nsp 2 ); 1.418 (Nsp 3 )<br />

C(2)-O(6) 1.412 (3) 1.398 (4) 1.41 (3) 1.423 (7) 1.353<br />

O(6)-C(7) 1.355 (4) 1.353 (4) 1.38 (2) 1.354 (6) 1.359<br />

C(7)-O(8) 1.195 (4) 1.200 (4) 1.21 (3) 1.188 (6) 1.201<br />

C(7)-C(9) 1.486 (4) 1.488 (5) 1.50 (3) 1.481 (7) 1.481<br />

a Ref. [11]. b Ref. [6]. c Ref. [19]<br />

Table 5. Ab initio HF/6-31G* calculations <strong>of</strong> coefficientes (C i ) <strong>of</strong> <strong>the</strong> frontier molecular orbitals for olefins 1a, 3a, 7a, 7b, 10a, 10f, and 10g,<br />

and diene 5. a HOMO LUMO<br />

Compd b C 1 C 2 C 3 C 4 ∆C i<br />

c C 1 C 2 C 3 C 4 ∆C ι<br />

c<br />

3a –0.2456 –0.2839 0.0095 0.1277 –0.0383 0.3188 –0.2499 –0.2783 0.2759 0.0689<br />

7a –0.1192 –0.3110 –0.0215 0.1414 –0.1918 0.2701 –0.1547 –0.2314 0.2143 0.1154<br />

7b –0.1711 –0.3702 –0.0190 0.1718 –0.1991 0.2799 –0.1433 –0.2564 0.2316 0.1366<br />

10a –0.1848 –0.3135 –0.0038 0.1475 –0.1287 0.3189 –0.2200 –0.2807 0.2501 0.0989<br />

10f –0.1625 –0.2694 –0.0019 0.1277 –0.1069 0.2872 –0.2073 –0.2506 0.2263 0.0799<br />

10g –0.2082 –0.2400 0.0042 0.1174 –0.0318 0.2843 –0.2404 –0.2579 0.2574 0.0439<br />

1a d –0.3593 –0.3565 0.0236 0.1676 0.<strong>002</strong>8 0.2940 –0.2386 –0.2889 0.2800 0.0554<br />

5 d 0.3247 0.2523 –0.2180 –0.2857 0.0390 0.2591 –0.2236 –0.2306 0.2793 –0.0202<br />

a These are <strong>the</strong> values <strong>of</strong> <strong>the</strong> 2p z coefficients, <strong>the</strong> relative 2p z ’ contributions and <strong>the</strong>ir ∆C i are analogous.<br />

b The FMOs <strong>of</strong> <strong>the</strong> non-planar s-trans conformation for olefins 1a 3a, 7a, 7b, and 10g, and s-cis for 5, 10a, and 10f.<br />

c Carbon 1 - carbon 2 for <strong>the</strong> olefins; carbon 1 - carbon 4 for <strong>the</strong> diene.<br />

d Ref. [11]<br />

Therefore, <strong>the</strong> electronic effect produced by <strong>the</strong> substituent<br />

in <strong>the</strong> beta position <strong>of</strong> <strong>the</strong> captodative olefins 3, 7, and<br />

10 on <strong>the</strong>ir behavior in Diels-Alder reactions could be evaluated<br />

by calculating <strong>the</strong> FMO energies <strong>of</strong> <strong>the</strong>se molecules, and<br />

correlating <strong>the</strong>m with those <strong>of</strong> <strong>the</strong> corresponding FMOs <strong>of</strong> a<br />

diene such as 5.<br />

Table 3 summarizes <strong>the</strong> calculated (HF/6-31G*) FMO<br />

energies <strong>of</strong> bromo and amino alkenes 3a, 7a, and 7b, as well<br />

as <strong>the</strong> thio alkenes 10a, 10f, and 10g. The geometries were<br />

optimized with <strong>the</strong> same basis set, showing that <strong>the</strong> most stable<br />

geometry for 3a, 7a, and 7b, corresponded to <strong>the</strong> s-trans<br />

conformation <strong>of</strong> <strong>the</strong> enone moiety, and <strong>the</strong> non-planar conformation<br />

<strong>of</strong> <strong>the</strong> p-nitrobenzoyloxy group. However, only for<br />

thioe<strong>the</strong>r 10g, <strong>the</strong> enone s-trans conformation was more stable,<br />

while olefins 10a and 10f were <strong>the</strong> exception, since <strong>the</strong> s-<br />

cis conformer for <strong>the</strong> enone conjugate system was slightly<br />

more stable (0.72 kcal/mol for 10a, and 0.24 kcal/mol for<br />

10f), which is not in agreement with <strong>the</strong> X-ray structure <strong>of</strong><br />

10f. Even though <strong>the</strong>se energy differences are negligible, and,<br />

practically, both conformations are isoenergetic, <strong>the</strong> FMO<br />

energy values listed in Table 3 corresponded to those obtained<br />

for <strong>the</strong> most stable confomation in every molecule. The co-


112 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Jorge A. Mendoza et al.<br />

efficient differences follow a similar trend in <strong>the</strong> o<strong>the</strong>r conformers.<br />

As expected for <strong>the</strong> amino substituted olefins 7a and 7b,<br />

when an electron-releasing group is introduced into <strong>the</strong> double<br />

bond <strong>of</strong> <strong>the</strong> captodative olefin, both HOMO and LUMO<br />

should increase in energy (Table 3, entry 1 vs. entries 3 and<br />

4). However, for <strong>the</strong> rest <strong>of</strong> <strong>the</strong> olefins, only <strong>the</strong> HOMO was<br />

energetically destabilized, since <strong>the</strong> LUMO energy <strong>of</strong> olefins<br />

3a, 10f, and 10g was lower than that <strong>of</strong> <strong>the</strong> unsubstituted<br />

olefin 1a. It is likely that <strong>the</strong> effect <strong>of</strong> <strong>the</strong> heteroatom on <strong>the</strong><br />

energy <strong>of</strong> <strong>the</strong> FMOs be <strong>the</strong> result <strong>of</strong> an interplay <strong>of</strong> different<br />

factors. The delocalization <strong>of</strong> <strong>the</strong> lone electron pair <strong>of</strong><br />

bromine and sulphur toward <strong>the</strong> π-conjugated enone system<br />

will be less efficient than that <strong>of</strong> <strong>the</strong> nitrogen atom, due to <strong>the</strong><br />

differences in electronic configuration. The inductive effect <strong>of</strong><br />

<strong>the</strong>se electronegative heteroatoms may increase <strong>the</strong> electronwithdrawing<br />

effect <strong>of</strong> <strong>the</strong> beta substituent on <strong>the</strong> electron density<br />

<strong>of</strong> <strong>the</strong> double bond [17].<br />

The delocalization <strong>of</strong> <strong>the</strong> lone electron pair in enaminone<br />

7b was reflected in a shortening <strong>of</strong> <strong>the</strong> C(1)-N and C(2)-C(3)<br />

bonds, and by an increase <strong>of</strong> <strong>the</strong> C(3)=O(4) and C(1)=C(2)<br />

bond lengths [6], as observed for o<strong>the</strong>r analogues by X-ray diffraction<br />

[18]. Similarly, significant delocalization appears in <strong>the</strong><br />

bromo olefin 3a, since <strong>the</strong> C(2)-C(3) bond length is shorter and<br />

<strong>the</strong> C(1)=C(2) bond is longer than <strong>the</strong> corresponding bond<br />

lengths <strong>of</strong> 1a and <strong>of</strong> <strong>the</strong> average values taken from X-ray data<br />

<strong>of</strong> similar functional groups [19] (Table 4). In contrast, <strong>the</strong> X-<br />

ray structure <strong>of</strong> 10f (Fig. 2) provides bond distances similar to<br />

those for <strong>the</strong> β-unsubstituted olefin and for <strong>the</strong> non-delocalized<br />

enone [19] (Table 4). It is noteworthy that <strong>the</strong> bond distances<br />

between <strong>the</strong> atoms <strong>of</strong> <strong>the</strong> aroyloxy group are not really perturbed<br />

by changes in <strong>the</strong> heteroatom at <strong>the</strong> beta position. This<br />

supports <strong>the</strong> idea <strong>of</strong> a non significant interaction between <strong>the</strong><br />

lone pair <strong>of</strong> <strong>the</strong> oxygen atom <strong>of</strong> <strong>the</strong> electron donor group and<br />

<strong>the</strong> double bond, at least, in <strong>the</strong> crystalline state.<br />

According to data in Table 3, one could anticipate a higher<br />

reactivity <strong>of</strong> olefins 3a, 10f, and 10g with respect to 1a in<br />

Diels-Alder cycloadditions with diene 5, since <strong>the</strong> HOMOdiene<br />

/ LUMO-dienophile energy gaps for <strong>the</strong> former dienophiles<br />

are smaller than that found for <strong>the</strong> latter. This expectation<br />

is only partially in agreement with <strong>the</strong> observed reactivity,<br />

since olefin 3a added to 5 under <strong>the</strong>rmal and Lewis acid<br />

catalytic conditions similar to those used for 1a in shorter<br />

reaction times [6]. However, thioalkene 3d, which is analogous<br />

to olefins 10, failed to react even under catalysis. As predicted,<br />

<strong>the</strong> beta amino substituted alkene 7b was less reactive<br />

than 1a, being unable to react with cyclopentadiene (12) [6],<br />

which is considered a very reactive diene.<br />

The unreliable prediction <strong>of</strong> <strong>the</strong> reactivity <strong>of</strong> olefins 10 by<br />

FMO <strong>the</strong>ory may be attributed to steric hindrance [20], which<br />

would counterbalance <strong>the</strong> electronic effect, as suggested previously<br />

by establishing a correlation between <strong>the</strong> reaction rate<br />

and LUMO energies <strong>of</strong> olefins 1a and 6 [11]. In addition, it<br />

has been found that <strong>the</strong> FMO model fails to account for <strong>the</strong><br />

regioselectivity in Diels-Alder reactions with trisusbtituted<br />

dienophiles or with phenylthiosubstituted dienes [21], or in<br />

1,3-dipolar cycloadditions <strong>of</strong> nitrile oxides and nitrones with<br />

olefins such as 1a [3c].<br />

It is noteworthy that, under <strong>the</strong>rmal and catalyzed conditions,<br />

<strong>the</strong> regioselectivity found in <strong>the</strong> Diels-Alder addition <strong>of</strong><br />

dienophile 3a with isoprene (5) was similar to that observed<br />

with <strong>the</strong> β-unsubstituted olefin 1a [2a, 6]. From <strong>the</strong> FMO<br />

viewpoint, regioselectivity can be predicted on <strong>the</strong> basis <strong>of</strong> <strong>the</strong><br />

atomic coefficient differences for <strong>the</strong> appropriate frontier<br />

orbital interaction: HOMO-diene/LUMO-dienophile, under<br />

NED control [14a, 14b]. It can be observed from Table 5 that,<br />

for olefin 3a, <strong>the</strong> relative magnitude <strong>of</strong> <strong>the</strong> LUMO coefficient<br />

in <strong>the</strong> monosubstituted terminus <strong>of</strong> <strong>the</strong> double bond is larger<br />

than that <strong>of</strong> <strong>the</strong> geminally disubstituted carbon. In comparison<br />

with <strong>the</strong> LUMO <strong>of</strong> olefin 1a, <strong>the</strong> difference in coefficients C 1<br />

and C 2 for this olefin and bromo olefin 3a are analogous,<br />

hence a comparable regioselectivity should be observed,<br />

which is, indeed, experimentally found. Thus, for diene 5,<br />

which has <strong>the</strong> HOMO largest coefficient in carbon C-1, a preferred<br />

interaction with <strong>the</strong> largest coefficient on <strong>the</strong> double<br />

bond <strong>of</strong> <strong>the</strong> dienophile agrees with <strong>the</strong> para orientation as <strong>the</strong><br />

major regioisomer.<br />

Polarization <strong>of</strong> <strong>the</strong> π-system in <strong>the</strong> HOMO for <strong>the</strong> amino<br />

olefins 7a and 7b, and for <strong>the</strong> thio olefins 10 is towards <strong>the</strong><br />

substituted captodative carbon <strong>of</strong> <strong>the</strong> double bond (Table 5).<br />

The larger difference in coefficients (∆C i ) <strong>of</strong> <strong>the</strong>se alkenes<br />

with respect to olefin 1a reflects <strong>the</strong> electron-donor effect <strong>of</strong><br />

<strong>the</strong> heteroatom in beta position. In contrast, <strong>the</strong> opposite<br />

polarization is found for <strong>the</strong> LUMO, where <strong>the</strong> larger coefficient<br />

is located in <strong>the</strong> monosubstituted carbon atom (C 1 ) <strong>of</strong> <strong>the</strong><br />

double bond.<br />

Conclusions<br />

The stereoselective syn<strong>the</strong>sis <strong>of</strong> new β-heteroatom substituted<br />

captodative olefins, including amino compound 7a, and sulphur<br />

derivatives 10a-10h, was feasible through three analogous<br />

routes. The common feature among <strong>the</strong>m involved <strong>the</strong><br />

replacement <strong>of</strong> a leaving group at <strong>the</strong> beta position <strong>of</strong> <strong>the</strong><br />

olefin by <strong>the</strong> corresponding amino or thio compound. Both<br />

bromo and dimethylamino were efficient as <strong>the</strong> leaving<br />

groups in <strong>the</strong> starting activated substrates 3a and 7b, respectively.<br />

The former underwent nucleophilic attack <strong>of</strong> alkyl and<br />

aryl thiols or <strong>the</strong> sodium salt <strong>of</strong> some <strong>of</strong> <strong>the</strong>m in good yields.<br />

The Z configuration <strong>of</strong> <strong>the</strong> double bond was established by<br />

NMR and X-ray crystallography. A comparison between bond<br />

distances by X-ray crystallography <strong>of</strong> different β-substituted<br />

and unsubstituted olefins seems to correlate with <strong>the</strong> delocalization<br />

effect <strong>of</strong> <strong>the</strong> heteroatom lone electron pair for <strong>the</strong><br />

bromo and amino β-substituted olefins.<br />

Ab initio calculations <strong>of</strong> FMOs <strong>of</strong> trisubstituted amino<br />

olefins 7a and 7b showed an increase <strong>of</strong> HOMO and LUMO<br />

energies with respect to <strong>the</strong> unsubstituted 1a, as expected for<br />

<strong>the</strong> perturbation <strong>of</strong> <strong>the</strong> π-orbital by an electron-donating<br />

group. The presence <strong>of</strong> a bromine atom and alkyl and aryl thio<br />

groups in olefins 3a, and 10a, 10f, and 10g, however, pro-


Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted Captodative Olefins 1-Acetylvinyl Arenecarboxylates 113<br />

duced an increase <strong>of</strong> <strong>the</strong> HOMO energy and a stabilization <strong>of</strong><br />

<strong>the</strong> LUMO. Based on <strong>the</strong>se results, <strong>the</strong> predicted reactivity <strong>of</strong><br />

<strong>the</strong> Diels-Alder additions with diene 5 agrees with experiment<br />

only for alkenes 3a, 7a and 7b. The regioselectivity observed<br />

for <strong>the</strong> cycloaddition <strong>of</strong> olefin 3a is also explained by FMO<br />

<strong>the</strong>ory. Therefore, <strong>the</strong>se calculations clearly indicate a significant<br />

perturbation <strong>of</strong> <strong>the</strong> double bond <strong>of</strong> <strong>the</strong> captodative olefin<br />

by <strong>the</strong> third substituent in <strong>the</strong> beta position.<br />

Experimental section<br />

General. Melting points (uncorrected) were determined with<br />

an Electro<strong>the</strong>rmal capillary melting point apparatus. IR spectra<br />

were recorded on a Perkin-Elmer 1600 spectrophotometer.<br />

1H and 13 C NMR spectra were obtained on a Varian Gemini-<br />

300 (300 MHz and 75.4 MHz), and Brucker DMX-500 (500<br />

MHz and 125 MHz) instruments, with CDCl 3 as solvent and<br />

TMS as internal standard. The mass spectra (MS) were taken<br />

on a Hewlett-Packard 5971A spectrometer. X-Ray analyses<br />

were collected using Mo Kα radiation (graphite crystal<br />

monochromator, λ = 0.71073 Å). Microanalyses were performed<br />

by M-H-W Laboratories (Phoenix, AZ). Analytical<br />

thin-layer chromatography was carried out using E. Merck<br />

silica gel 60 F 254 coated 0.25 plates, visualizing by long- and<br />

short-wavelength UV lamp. All air moisture sensitive reactions<br />

were carried out under nitrogen using oven-dried glassware.<br />

DMF was freshly distilled and received on molecular<br />

sieves (4 Å), and methylene chloride from calcium hydride,<br />

prior to use. Triethylamine was freshly distilled from NaOH.<br />

All o<strong>the</strong>r reagents were used without fur<strong>the</strong>r purification.<br />

Compounds 3a and 7b were prepared as described previously<br />

[6].<br />

(Z)-4-(N,N-Methylphenylamino)-3-(4-nitrobenzoyloxy)-3-<br />

buten-2-one (7a). To a solution <strong>of</strong> 1.0 g (3.18 mmol) <strong>of</strong> 3a in<br />

CH 2 Cl 2 (25 mL), at 10 °C, 0.443 g (4.14 mmol) <strong>of</strong> 8a were<br />

added, and <strong>the</strong> mixture was stirred for 30 min. The reaction<br />

mixture was diluted with CH 2 Cl 2 (50 mL), and was washed<br />

with a cold 5 % aqueous solution <strong>of</strong> HCl (2 × 25 mL), and a<br />

cold saturated solution <strong>of</strong> NaCl (2 × 30 mL). The organic<br />

layer was dried (MgSO 4 ), and <strong>the</strong> solvent was evaporated<br />

under vacuum. The residue was successively purified by flash<br />

column chromatography on silica gel treated with 10 % <strong>of</strong> triethylamine<br />

(20 g, hexane/EtOAc, 90:10), and by radial chromatography<br />

(hexane/CH 2 Cl 2 , 90:10). The solid was recrystallized<br />

(hexane/CH 2 Cl 2 , 20:80) to give 0.67 g (62 %) <strong>of</strong> 7a as<br />

pale brown crystals: R f 0.14 (hexane/EtOAc, 8:2); mp 141-143<br />

°C; IR (CH 2 Cl 2 ) 1741, 1621, 1591, 1529, 1495, 1350, 1316,<br />

1244, 1096, 896 cm –1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 2.24 (br<br />

s, 3H, CH 3 CO), 3.45 (s, 3H, CH 3 N), 6.99-7.04 (m, 1H, Ph-H),<br />

7.13-7.16 (m, 2H, Ph-H), 7.22-7.27 (m, 2H, Ph-H), 7.48 (br s,<br />

1H, HC=), 8.03-8.06 (m, 2H, Ar-H), 8.21-8.24 (m, 2H, Ar-H);<br />

13C NMR (75.4 MHz, CDCl 3 ) δ 24.3 (CH 3 CO), 42.1 (CH 3 N),<br />

122.7, 123.2, 125.8, 126.8 (C-3), 129.2, 130.9 (C-4), 131.1,<br />

134.3, 145.7, 150.6, 162.7 (ArCO 2 ), 187.0 (CH 3 CO). Anal.<br />

Calcd for C 18 H 16 N 2 O 5 : C, 63.52; H, 4.74; N, 8.23. Found: C,<br />

62.75; H, 4.58; N, 7.71.<br />

General Procedures for <strong>the</strong> Preparation <strong>of</strong> Olefins 10a-<br />

10h. Method A. To a mixture <strong>of</strong> 1.0 g (3.18 mmol) <strong>of</strong> 3a and<br />

1.31 mol equiv. <strong>of</strong> <strong>the</strong> sodium salt <strong>of</strong> <strong>the</strong> corresponding thiol<br />

9a-9c, at 0 °C, anhydrous DMF (10 mL) was added, and <strong>the</strong><br />

mixture was stirred for 30 min. The solution was concentrated<br />

under vacuum, <strong>the</strong> reaction crude was diluted with CH 2 Cl 2 (50<br />

mL), and was washed with a cold 5 % aqueous solution <strong>of</strong><br />

HCl (2 × 25 mL), and a cold saturated solution <strong>of</strong> NaCl (2 ×<br />

30 mL). The organic layer was dried (MgSO 4 ), and <strong>the</strong> solvent<br />

was evaporated under vacuum. The residue was successively<br />

purified by column chromatography on silica gel treated<br />

with 10 % <strong>of</strong> triethylamine (30 g/1 g <strong>of</strong> crude, hexane/<br />

EtOAc, 90:10), and by radial chromatography (hexane/CH<br />

2 Cl 2 , 80:20).<br />

Method B. To a solution <strong>of</strong> 1.0 g (3.18 mmol) <strong>of</strong> 3a in anhydrous<br />

DMF (20 mL) 1.31 mol equiv. <strong>of</strong> <strong>the</strong> corresponding<br />

thiol 9d-9j were added at 20 °C. The mixture was stirred and<br />

cooled down to 0 °C, and a solution <strong>of</strong> 0.42 g (4.16 mmol) <strong>of</strong><br />

triethylamine in anhydrous DMF (3 mL) was added dropwise.<br />

The mixture was maintained at <strong>the</strong> same temperature for 1 h,<br />

<strong>the</strong>n warmed up to 120 °C for 1 h, and cooled down to 20 °C<br />

for 1 h. The solution was concentrated under vacuum, <strong>the</strong><br />

reaction crude was diluted with CH 2 Cl 2 (50 mL), and washed<br />

with a cold 5 % aqueous solution <strong>of</strong> HCl (2 × 25 mL), and a<br />

cold saturated solution <strong>of</strong> NaCl (2 × 30 mL). The organic<br />

layer was dried (MgSO 4 ), and <strong>the</strong> solvent was evaporated<br />

under vacuum. The residue was successively purified by column<br />

chromatography on silica gel treated with 10 % <strong>of</strong> triethylamine<br />

(30 g/1 g <strong>of</strong> crude, hexane/EtOAc, 90:10), and by<br />

radial chromatography (hexane/CH 2 Cl 2 , 90:10). For <strong>the</strong> solid<br />

products, <strong>the</strong> recrystallization was carried out from hexane/CH<br />

2 Cl 2 , 10:90.<br />

Method C. To a solution <strong>of</strong> 1.0 g (3.59 mmol) <strong>of</strong> 7b in anhydrous<br />

DMF (25 mL) 1.3 mol equiv. <strong>of</strong> <strong>the</strong> corresponding thiol<br />

9d-9j were added at 20 °C. The mixture was stirred and<br />

cooled down to 0 °C, and a solution <strong>of</strong> 0.472 g (4.67 mmol) <strong>of</strong><br />

triethylamine in anhydrous DMF (3 mL) was added dropwise.<br />

The mixture was maintained at <strong>the</strong> same temperature for 1 h,<br />

<strong>the</strong>n warmed up to 120 °C for 1 h, and cooled down to 20 °C<br />

for 1 h. The solution was concentrated under vacuum, <strong>the</strong><br />

reaction crude was diluted with CH 2 Cl 2 (50 mL), and was<br />

washed with a cold 5 % aqueous solution <strong>of</strong> HCl (2 × 25 mL),<br />

and a cold saturated solution <strong>of</strong> NaCl (2 × 30 mL). The organic<br />

layer was dried (MgSO 4 ), and <strong>the</strong> solvent was evaporated<br />

under vacuum. The residue was successively purified by column<br />

chromatography on silica gel treated with 10 % <strong>of</strong> triethylamine<br />

(30 g/1 g <strong>of</strong> crude, hexane/EtOAc, 80:20), and by<br />

radial chromatography (hexane/CH 2 Cl 2 , 80:20). For <strong>the</strong> solid<br />

products, <strong>the</strong> recrystallization was carried out from hexane/CH<br />

2 Cl 2 , 10:90.


114 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Jorge A. Mendoza et al.<br />

(Z)-4-Methylsulfanyl-3-(p-nitrobenzoyloxy)-3-buten-2-one<br />

(10a). According to method A with 0.291 g (4.16 mmol) <strong>of</strong><br />

9a, afforded 0.76 g (85 %) <strong>of</strong> 10a as a pale yellow oil: R f 0.21<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1746, 1675, 1589, 1530,<br />

1347, 1248, 1093, 895 cm –1 ; 1 H NMR (300 MHz, CDCl 3 ) δ<br />

2.34 (s, 3H, CH 3 CO), 2.50 (s, 3H, CH 3 S), 7.39 (s, 1H, HC=),<br />

8.32-8.34 (m, 4H, Ar-H); 13 C NMR (75.4 MHz, CDC l3 ) δ 17.3<br />

(CH 3 S), 24.7 (CH 3 CO), 123.7, 131.4, 134.1, 136.9 (C-4),<br />

142.3 (C-3), 151.1, 161.7 (ArCO 2 ), 187.1 (CH 3 CO); MS (70<br />

eV) 281 (M + , 4), 150 (100), 134 (22), 120 (15), 104 (22), 92<br />

(11), 76 (14).<br />

(Z)-4-Ethylsulfanyl-3-(p-nitrobenzoyloxy)-3-buten-2-one<br />

(10b). According to method A with 0.349 g (4.16 mmol) <strong>of</strong><br />

9b, afforded 0.84 g (90 %) <strong>of</strong> 10b as a pale yellow oil.<br />

According to method B with 0.258 g (4.16 mmol) <strong>of</strong> 9d, gave<br />

0.73 g (78 %) <strong>of</strong> 10b. According to method C with 0.289 g<br />

(4.67 mmol) <strong>of</strong> 9d, furnished 0.83 g (74%) <strong>of</strong> 10b: R f 0.22<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1746, 1675, 1588, 1529,<br />

1423, 1348, 1275, 1246, 1217, 1049, 1013 cm –1 ; 1 H NMR<br />

(300 MHz, CDCl 3 ) δ 1.43 (t, J = 7.1 Hz, 3H, CH 3 CH 2 S), 2.35<br />

(s, 3H, CH 3 CO), 2.92 (q, J = 7.1 Hz, 3H, CH 3 CH 2 S), 7.49 (s,<br />

1H, HC=), 8.45-8.47 (m, 4H, Ar-H); 13 C NMR (75.4 MHz,<br />

CDCl 3 ) δ 15.4 (CH 3 CH 2 S), 24.7 (CH 3 CO), 28.4 (CH 3 CH 2 S),<br />

123.6, 131.4, 134.1, 135.1 (C-4), 142.5 (C-3), 151.0, 161.7<br />

(ArCO 2 ), 187.1 (CH 3 CO). Anal. Calcd for C 13 H 13 NO 5 S: C,<br />

52.87; H, 4.44. Found: C, 52.80; H, 4.68.<br />

(Z)-4-Isopropylsulfanyl-3-(p-nitrobenzoyloxy)-3-buten-2-<br />

one (10c). According to method A with 0.408 g (4.16 mmol)<br />

<strong>of</strong> 9c, afforded 0.88 g (90 %) <strong>of</strong> 10c as a pale yellow oil.<br />

According to method B with 0.358 g (4.16 mmol) <strong>of</strong> 9e, gave<br />

0.80 g (81 %) <strong>of</strong> 10c. According to method C with 0.402 g<br />

(4.67 mmol) <strong>of</strong> 9e, furnished 0.90 g (77 %) <strong>of</strong> 10c: R f 0.30<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1746, 1674, 1587, 1530,<br />

1453, 1427, 1348, 1314, 1218, 1157, 1092, 1015, 958, 898,<br />

870, 847 cm –1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.38 (d, J = 7.3<br />

Hz, 6H, (CH 3 ) 2 CHS), 2.35 (s, 3H, CH 3 CO), 3.33 (sept, J = 7.3<br />

Hz, 3H, (CH 3 ) 2 CHS), 7.50 (s, 1H, HC=), 8.38-8.36 (m, 4H,<br />

Ar-H); 13 C NMR (75.4 MHz, CDCl 3 ) δ 23.4 ((CH 3 ) 2 CHS),<br />

24.5 (CH 3 CO), 38.4 ((CH 3 ) 2 CHS), 123.4, 131.1, 133.9, 134.1<br />

(C-4), 141.9 (C-3), 150.7, 161.5 (ArCO 2 ), 187.0 (CH 3 CO).<br />

Anal. Calcd for C 14 H 15 NO 5 S: C, 54.36; H, 4.89. Found: C,<br />

54.30; H, 5.00.<br />

(Z)-4-tert-Butylsulfanyl-3-(p-nitrobenzoyloxy)-3-buten-2-<br />

one (10d). According to method B with 0.375 g (4.13 mmol)<br />

<strong>of</strong> 9f, afforded 0.84 g (82 %) <strong>of</strong> 10d as a pale yellow oil.<br />

According to method C with 0.514 g (4.67 mmol) <strong>of</strong> 9f, furnished<br />

0.86 g (70%) <strong>of</strong> 10d: R f 0.26 (hexane/EtOAc, 8:2); IR<br />

(CH 2 Cl 2 ) 1744, 1673, 1584, 1529, 1349, 1248, 1093, 769, 751<br />

cm –1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.48 (s, 9H, (CH 3 ) 3 CS),<br />

2.35 (s, 3H, CH 3 CO), 7.60 (s, 1H, HC=), 8.33 (br s, 4H, Ar-<br />

H); 13 C NMR (75.4 MHz, CDCl 3 ) δ 24.8 (CH 3 CO), 31.1<br />

((CH 3 ) 3 CS), 45.7 ((CH 3 ) 3 CS), 123.7, 131.4, 131.6 (C-4),<br />

134.2, 142.3 (C-3), 151.0, 162.4 (ArCO 2 ), 198.8 (CH 3 CO).<br />

Anal. Calcd for C 15 H 17 NO 5 S: C, 55.71; H, 5.30. Found: C,<br />

55.50; H, 5.30.<br />

(Z)-4-Benzylsulfanyl-3-(p-nitrobenzoyloxy)-3-buten-2-one<br />

(10e). According to method B with 0.516 g (4.13 mmol) <strong>of</strong><br />

9g, afforded 1.02 g (90 %) <strong>of</strong> 10e as a pale yellow oil.<br />

According to method C with 0.579 g (4.67 mmol) <strong>of</strong> 9g, furnished<br />

1.18 g (87 %) <strong>of</strong> 10e: R f 0.28 (hexane / EtOAc, 8:2); IR<br />

(CH 2 Cl 2 ) 1740, 1677, 1606, 1530, 1348, 1248, 1093 cm –1 ; 1 H<br />

NMR (300 MHz, CDCl 3 ) δ 2.25 (s, 3H, CH 3 CO), 4.08 (s, 2H,<br />

CH 2 Ph), 7.27-7.46 (m, 6H, HC=, Ph-H), 8.28-8.39 (m, 4H,<br />

Ar-H); 13 C NMR (75.4 MHz, CDCl 3 ) δ 24.7 (CH 3 CO), 38.0<br />

(CH 2 Ph), 123.7, 128.2, 129.0, 129.1, 131.4, 134.0, 134.2 (C-<br />

4), 136.7, 142.4 (C-3), 150.9, 161.7 (ArCO 2 ), 187.1 (CH 3 CO).<br />

(Z)-4-(4-Bromophenylsulfanyl)-3-(4-nitrobenzoyloxy)-3-<br />

buten-2-one (10f). According to method B with 0.786 g (4.16<br />

mmol) <strong>of</strong> 9h, afforded 1.29 g (96 %) <strong>of</strong> 10f as pale yellow<br />

crystals. According to method C with 0.883 g (4.67 mmol) <strong>of</strong><br />

9h, furnished 1.45 g (91 %) <strong>of</strong> 10f: mp 174-175 °C; R f 0.16<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1747, 1679, 1531, 1419,<br />

1348, 1243, 1090, 1008 cm –1 ; 1 H NMR (300 MHz, CDCl 3 ) δ<br />

2.35 (s, 3H, CH 3 CO), 7.36-7.40 (m, 2H, Ar-H), 7.46 (s, 1H,<br />

HC=), 7.51-7.55 (m, 2H, Ar-H), 8.30-8.38 (m, 4H, Ar-H); 13 C<br />

NMR (75.4 MHz, CDCl 3 ) δ 24.9 (CH 3 CO), 123.6, 123.7,<br />

130.8, 131.5, 132.9, 133.1, 133.7, 134.1 (C-4), 142.6 (C-3),<br />

151.2, 161.7 (ArCO 2 ), 187.3 (CH 3 CO). Anal. Calcd for<br />

C 17 H 12 BrNO 5 S: C, 48.36; H, 2.86; N 3.32; S, 7.58. Found: C,<br />

48.04; H, 2.80; N, 3.29; S, 7.41.<br />

(Z)-4-(4-Methoxyphenylsulfanyl)-3-(4-nitrobenzoyloxy)-3-<br />

buten-2-one (10g). According to method B with 0.582 g (4.16<br />

mmol) <strong>of</strong> 9i, afforded 0.95 g (80 %) <strong>of</strong> 10g as pale yellow crystals.<br />

According to method C with 0.654 g (4.67 mmol) <strong>of</strong> 9i, furnished<br />

1.25 g (93 %) <strong>of</strong> 10g: mp 122-123 °C; R f 0.20<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1743, 1674, 1592, 1546,<br />

1531, 1492, 1421, 1346, 1264, 1093 cm –1 ; 1 H NMR (300 MHz,<br />

CDCl 3 ) δ 2.33 (s, 3H, CH 3 CO), 3.82 (s, 3H, MeO), 6.88-6.94<br />

(m, 2H, Ar-H), 7.44-7.49 (m, 2H, Ar-H), 7.45 (s, 1H, HC=),<br />

8.34 (s, 4H, Ar-H); 13 C NMR (75.4 MHz, CDCl 3 ) δ 24.8<br />

(CH 3 CO), 55.4 (CH 3 O), 115.3, 122.0, 123.6, 131.5, 134.0,<br />

134.2, 137.2 (C-4), 141.5 (C-3), 150.9, 160.7, 161.7 (ArCO 2 ),<br />

187.2 (CH 3 CO). Anal. Calcd for C 18 H 15 NO 6 S: C, 57.90; H,<br />

4.05; N, 3.75; S, 8.59. Found: C, 58.08; H, 4.12; N 3.74; S, 8.70.<br />

(Z)-4-(4-Methylphenylsulfanyl)-3-(4-nitrobenzoyloxy)-3-<br />

buten-2-one (10h). According to method B with 0.516 g<br />

(4.16 mmol) <strong>of</strong> 9j, afforded 0.92 g (81 %) <strong>of</strong> 10h as pale yellow<br />

crystals. According to method C with 0.58 g (4.67 mmol)<br />

<strong>of</strong> 9j, furnished 1.15 g (90 %) <strong>of</strong> 10h: mp 113-115 °C; R f 0.22<br />

(hexane/EtOAc, 8:2); IR (CH 2 Cl 2 ) 1747, 1677, 1589, 1531,<br />

1348, 1091, 897, 847, 807 cm –1 ; 1 H NMR (500 MHz, CDCl 3 )<br />

δ 2.33 (s, 3H, CH 3 CO), 2.37 (s, 3H, MeAr), 7.20-7.22 (m, 2H,<br />

Ar-H), 7.39-7.41 (m, 2H, Ar-H), 7.50 (s, 1H, HC=), 8.34 (s,<br />

4H, Ar-H); 13 C NMR (125 MHz, CDCl 3 ) δ 21.1 (CH 3 Ar),<br />

24.8 (CH 3 CO), 123.7, 128.2, 130.5, 131.5, 131.9, 134.0, 136.3


Syn<strong>the</strong>sis, Structural, and Theoretical Study <strong>of</strong> New β-Heterosubstituted Captodative Olefins 1-Acetylvinyl Arenecarboxylates 115<br />

(C-4), 138.5, 141.9 (C-3), 151.0, 161.7 (ArCO 2 ), 187.3<br />

(CH 3 CO). Anal. Calcd for C 18 H 15 NO 5 S: C, 60.49; H, 4.23.<br />

Found: C, 60.27; H, 4.50.<br />

Single-Crystal X-Ray Crystallography [22]. Olefin 10f was<br />

obtained as pale yellow crystals. These were mounted in glass<br />

fibers. Crystallographic measurements were performed on a<br />

Siemens P4 diffractometer with Mo Kα radiation (λ = 0.7107<br />

Å; graphite monochromator) at room temperature. Two standard<br />

reflections were monitored periodically; <strong>the</strong>y showed no<br />

change during data collection. Unit cell parameters were<br />

obtained from least-squares refinement <strong>of</strong> 26 reflections in <strong>the</strong><br />

range 2 < 2Θ < 20°. Intensities were corrected for Lorentz and<br />

polarization effects. No absorption correction was applied.<br />

Anisotropic temperature factors were introduced for all nonhydrogen<br />

atoms. Hydrogen atoms were placed in idealized<br />

positions and <strong>the</strong>ir atomic coordinates refined. Unit weights<br />

were used in <strong>the</strong> refinement. The structure was solved using<br />

SHELXTL on a personal computer [23]. Data <strong>of</strong> 10f:<br />

Formula: C 17 H 12 BrNO 5 S; molecular weight: 422.25; cryst.<br />

syst.: monoclinic; space group: P2 1 /c; unit cell parameters: a,<br />

6.4121 (9), b, 12.8041 (11), c, 20.998 (2) (Å); α, 90, β, 94.884<br />

(9), γ, 90 (deg); temp. (°K): 293 (2); Z: 4; No. <strong>of</strong> reflections<br />

collected: 4641; no. <strong>of</strong> independent reflections: 3335; no. <strong>of</strong><br />

observed reflections: 3290; R: 0.0429; GOF: 1.012.<br />

Calculations. The ab initio SCF/HF calculations were carried<br />

out with <strong>the</strong> 6-31G* basis sets using Gaussian 94 [24] and<br />

MacSpartan [24]. Geometries were fully optimized by <strong>the</strong><br />

AM1 semiempirical method [25] and <strong>the</strong>se were employed as<br />

starting point for optimization, at <strong>the</strong> 6-31G* level.<br />

Acknowledgments<br />

We thank Fernando Labarrios for his help in spectrometric<br />

measurements. J.T. would like to acknowledge DEPI/IPN<br />

(Grants 921769 and 200410) and CONACyT (Grants 1570P<br />

and 32273-E) for financial support. H.A.J.-V. thanks<br />

CONACyT (Grant 3251P) for financial support. J.M. and<br />

R.H. are grateful to CONACyT (Grants 86038 and 91187) for<br />

graduate fellowships, to PIFI-IPN program for a scholarship,<br />

and to <strong>the</strong> Ludwig K. Hellweg Foundation for a partial scholarship.<br />

J.L. is grateful to Secretaría de Relaciones Exteriores,<br />

México (Grant DAC-III 811.5/(510)/137) for a research fellowship.<br />

J.T. and H.A.J.-V. are fellows <strong>of</strong> <strong>the</strong> EDD/IPN and<br />

COFAA/IPN programs.<br />

References and notes<br />

1. (a) Viehe, H. G.; Janousek, Z.; Merényi, R.; Stella, L. Acc. Chem.<br />

Res. 1985, 18, 148-154. (b) Cativiela, C.; Fraile, J. M.; García, J.<br />

I.; Mayoral, J. A.; Pires, E.; Royo, A. J.; Figueras, F.; de<br />

Ménorval, L. C. Tetrahedron 1993, 49, 4073-4084. (c) Boucher,<br />

J.-L.; Stella, L. Tetrahedron 1986, 42, 3871-3885. (d) Seerden,<br />

J.-P. G.; Scheeren, H. W. Tetrahedron Lett. 1993, 34, 2669-2672.<br />

(e) Döpp, D.; Libera, H. Tetrahedron Lett. 1983, 24, 885-888. (f)<br />

Rulev, A. Y. Russ. Chem. Rev. 2<strong>002</strong>, 71, 195-221. (g) Seneci, P.;<br />

Leger, I.; Souchet, M.; Nadler, G. Tetrahedron 1997, 53, 17097-<br />

17114. (h) Moody, C. J.; Hughes, R. A.; Thompson, S. P.;<br />

Alcaraz, L. Chem. Commun. 2<strong>002</strong>, 1760-1761. (i) Kozmin, S. A.;<br />

Iwama, T.; Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2<strong>002</strong>,<br />

104, 4628-4641. (j) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro,<br />

L. S. Tetrahedron Lett. 2<strong>002</strong>, 43, 4491-4493. (k) Ferreira, P. M.<br />

T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett. 2<strong>002</strong>, 43,<br />

4495-4497. (l) Huang, C.-G.; Chang, B.-R.; Chang, N.-C.<br />

Tetrahedron Lett. 2<strong>002</strong>, 43, 2721-2723.<br />

2. (a) Reyes, A.; Aguilar, R.; Muñoz, A. H.; Zwick, J.-C.; Rubio,<br />

M.; Escobar, J.-L.; Soriano, M.; Toscano, R.; Tamariz, J. J. Org.<br />

Chem. 1990, 55, 1024-1034. (b) Aguilar. R.; Reyes. A.; Tamariz,<br />

J.; Birbaum, J.-L. Tetrahedron Lett. 1987. 28. 865-868. (c)<br />

García de Alba, O.; Chanona, J.; Delgado, F.; Zepeda, G.;<br />

Labarrios, F.; Bates, R. W.; Bott, S.; Juaristi, E.; Tamariz, J.<br />

Anal. Quím., Int. Ed. 1996, 92, 108-117.<br />

3. (a) Nagarajan, A.; Zepeda, G.; Tamariz, J. Tetrahedron Lett.<br />

1996, 37, 6835-6838. (b) Jiménez, R.; Pérez, L.; Tamariz, J.;<br />

Salgado, H. Heterocycles 1993, 35, 591-598. (c) Herrera, R.;<br />

Nagarajan, A.; Morales, M. A.; Méndez, F.; Jiménez-Vázquez,<br />

H. A.; Zepeda, L. G.; Tamariz, J. J. Org. Chem. 2001, 66, 1252-<br />

1263.<br />

4. (a) Andrade, R. M.; Muñóz, A. H.; Tamariz, J. Synth. Commun.<br />

1992, 22, 1603-1609. (b) Orduña, A.; Zepeda, G.; Tamariz, J.<br />

Syn<strong>the</strong>sis 1993, 375-377. (c) Dienes, Z.; Vogel, P. J. Org. Chem.<br />

1996, 61, 6958-6970. (d) Ochoa, M. E.; Arias, A. S.; Aguilar, R.;<br />

Delgado, F.; Tamariz, J. Tetrahedron 1999, 55, 14535-14546. (e)<br />

Aguilar, R.; Reyes, A.; Orduña, A.; Zepeda, G.; Bates, R. W.;<br />

Tamariz, J. Rev. Soc. Quím. Méx. 2000, 44, 91-96.<br />

5. Herrera, R.; Jiménez-Vázquez, H. A.; Modelli, A.; Jones, D.;<br />

Söderberg, B. C.; Tamariz, J. Eur. J. Org. Chem. 2001, 4657-<br />

4669.<br />

6. Peralta, J.; Bullock, J. P.; Bates, R. W.; Bott, S.; Zepeda, G.;<br />

Tamariz, J. Tetrahedron 1995, 51, 3979-3996.<br />

7. (a) Rappoport, Z., Ed., The Chemistry <strong>of</strong> Enamines. Wiley,<br />

Chichester, 1994. (b) Greenhill, J. V. Chem. Soc. Rev. 1977, 6,<br />

277-294. (c) Granik, V. G. Russ. Chem. Rev. 1984, 53, 383-404.<br />

8. (a) Scott, K. R.; Edafiogho, I. O.; Richardson, E. L.; Farrar, V.<br />

A.; Moore, J. A.; Tietz, E. I.; Hinko, C. N.; Chang, H.; El-Assadi,<br />

A.; Nicholson, J. M. J. Med. Chem. 1993, 36, 1947-1955. (b)<br />

Kesten, S. J.; Degnan, M. J.; Hung, J.; McNamara, D. J.;<br />

Ortwine, D. F.; Uhlendorf, S. E.; Werbel, L. M. J. Med. Chem.<br />

1992, 35, 3429-3447.<br />

9. For some recent examples: (a) Bhathia, G. S.; Lowe, R. F.;<br />

Pritchard, R. G.; Stoodley, R. J. Chem. Commun. 1997, 1981-<br />

1982. (b) Abbiati, G.; Clerici, F.; Gelmi, M. L.; Gambini, A.;<br />

Pilati, T. J. Org. Chem. 2001, 66, 6299-6304. (c) Clerici, F.;<br />

Gelmi, M. L.; Pocar, D.; Pilati, T. Tetrahedron: Asymmetry 2001,<br />

12, 2663-2669. (d) Buñuel, E.; Gil, A. M.; Díaz-de-Villegas, M.<br />

D.; Cativiela, C. Tetrahedron 2001, 57, 6417-6427. (e) Clerici,<br />

F.; Gelmi, M. L.; Gambini, A.; Nava, D. Tetrahedron 2001, 57,<br />

6429-6438. (f) Maekawa, K.; Igarashi, T.; Kubo, K.; Sakurai, T.<br />

Tetrahedron 2001, 57, 5515-5526. (g) Caine, D. Tetrahedron<br />

2001, 57, 2643-2684. (h) Stanovnik, B.; Svete, J. Synlett 2000,<br />

1077-1091. (i) Yonehara, K.; Ohe, K.; Uemura, S. J. Org. Chem.<br />

1999, 64, 9381-9385.<br />

10. (a) Sustmann, R. Tetrahedron Lett. 1971, 2721-2724. (b) Houk,<br />

K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. J. Am. Chem. Soc.<br />

1973, 95, 7301-7315.<br />

11. Jiménez-Vázquez, H. A.; Ochoa, M. E.; Zepeda, G.; Modelli, A.;<br />

Jones, D.; Mendoza, J. A.; Tamariz, J. J. Phys. Chem. A 1997,<br />

101, 10082-10089.<br />

12. (a) Guseinov, F. I.; Yudina, N. A.; Burangulova, R. N.;<br />

Ryzhikova, T. Ya.; Valliullina, R. Zh. Chem. Heterocyclic Comp.<br />

2<strong>002</strong>, 38, 496-497. (b) Toplak, R.; Svete, J.; Stanovnik, B.;<br />

Grdadolnik, S. G. J. Heterocyclic Chem. 1999, 36, 225-235. (c)<br />

Pizzioli, L.; Ornik, B.; Svete, J.; Stanovnik, B. Helv. Chim. Acta<br />

1998, 81, 231-235.


116 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Jorge A. Mendoza et al.<br />

13. Zhuo, J.-C. Magn. Reson. Chem. 1998, 36, 565-572.<br />

14. (a) Fleming, I. Frontier Orbitals and Organic <strong>Chemical</strong> Reactions.<br />

John Wiley & Sons, Chichester, 1976. (b) Houk, K. N. Acc.<br />

Chem. Res. 1975, 8, 361-369. (c) Eisenstein, O.; Lefour, J. M.;<br />

Anh, N. T.; Hudson, R. F. Tetrahedron 1977, 33, 523-531. (d)<br />

Spíno, C.; Pesant, M. Dory, Y. Angew. Chem., Int. Ed. 1998, 37,<br />

3262-3265.<br />

15. (a) Carru<strong>the</strong>rs, W. Cycloaddition Reactions in Organic Syn<strong>the</strong>sis.<br />

Pergamon Press, Oxford, 1990, 269-331. (b) Houk, K. N.; Chang,<br />

Y.-M.; Strozier, R. W.; Caramella, P. Heterocycles 1977, 7, 793-<br />

799. (c) Huisgen, R., in: 1,3-Dipolar Cycloaddition Chemistry,<br />

Vol. 1, Padwa, A., Ed., Wiley-Interscience, New York, 1984. (d)<br />

Jarosková, L.; Fisera, L.; Matejková, I.; Ertl, P.; Prónayová, N.<br />

Monatsh. Chem. 1994, 125, 1413-1425. (e) Houk, K. N.; Sims, J.;<br />

Duke, Jr., R. E.; Strozier, R. W.; George, J. K. J. Am. Chem. Soc.<br />

1973, 95, 7287-7301.<br />

16. (a) Sauer, J.; Sustmann, R. Angew. Chem., Int. Ed. Engl. 1980,<br />

19, 779-807. (b) Anh, N. T.; Canadell, E.; Eisenstein, O.<br />

Tetrahedron 1978, 34, 2283-2288.<br />

17. (a) Exner, O. J. Phys. Org. Chem. 1999, 12, 265-274. (b)<br />

Charton, M. J. Phys. Org. Chem. 1999, 12, 275-282. (c) Galkin,<br />

V. I. J. Phys. Org. Chem. 1999, 12, 283-288.<br />

18. Zhuo, J.-C.; Schenk, K. Helv. Chim. Acta 1997, 80, 2137-2147.<br />

19. Allen, F. H.; Kennard, E.; Watson, D. G.; Brammer, L.; Orpen,<br />

A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19.<br />

20. (a) Fox, M. A.; Cardona, R.; Kiwiet, N. J. J. Org. Chem. 1987,<br />

52, 1469-1474. (b) Bachler, V.; Mark, F. Theoret. Chim. Acta<br />

1976, 43, 121-135. (c) Tripathy, R.; Franck, R. W.; Onan, K. D.<br />

J. Am. Chem. Soc. 1988, 110, 3257-3262. (d) Padwa, A.; Kline,<br />

D. N.; Koehler, K. F.; Matzinger, M.; Venkatramanan, M. K. J.<br />

Org. Chem. 1987, 52, 3909-3917.<br />

21. Kahn, S. D.; Pau, C. F.; Overman, L. E.; Hehre, W. J. J. Am.<br />

Chem. Soc. 1986, 108, 7381-7396.<br />

22. The authors have deposited <strong>the</strong> atomic coordinates for this structure<br />

with <strong>the</strong> Cambridge Crystallographic Data Centre. The coordinates<br />

can be obtained, on request, from <strong>the</strong> Director Cambridge<br />

Crystallographic Data Centre, 12 Union Road, Cambridge, CB2<br />

1EZ, UK.<br />

23. SHELXTL, v. 5.03, Siemens Energy & Automation, Germany,<br />

1995.<br />

24. Calculated with Gaussian 94, Revision E.2: Frisch, M. J.; Trucks,<br />

G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M.<br />

A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery,<br />

J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.;<br />

Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;<br />

Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.;<br />

Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.;<br />

Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees,<br />

D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.;<br />

Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995; and Mac-<br />

Spartan, v. 1.0, WaveFunction Inc., 18401 VonKarman, Suite<br />

370, Irvine, CA 92715.<br />

25. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.<br />

Am. Chem. Soc. 1985, 107, 3902-3909.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 117-123<br />

Investigación<br />

2D 1 H and 13 C NMR from <strong>the</strong> adducts <strong>of</strong> <strong>the</strong> dichloro carbene addition<br />

to β-ionone. The role <strong>of</strong> <strong>the</strong> catalyst on <strong>the</strong> phase transfer reaction<br />

Eduardo Díaz, *a José Luis Nava, a Héctor Barrios, a David Corona, a Ángel Guzmán, a<br />

Ma. de Lourdes Muciño, b and Aydeé Fuentes b<br />

a Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria,<br />

Coyoacán 04510 México D.F.<br />

b Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México.<br />

Recibido el 9 de diciembre del 2<strong>002</strong>; aceptado el 26 de febrero del 2003<br />

En homenaje al Dr. Alfonso Romo de Vivar<br />

Abstract. Several haloderivatives were syn<strong>the</strong><strong>size</strong>d from β-ionone<br />

using CHCl 3 , NaOH and selected tetralkyl ammonium halide. 2D<br />

NMR and X-ray single crystal analysis <strong>of</strong> <strong>the</strong> products are reported.<br />

Keywords: Addition <strong>of</strong> dichlorocarbenes to β-Ionone, phase transfer<br />

addition, formation <strong>of</strong> 1,1 dichlorocyclopropanes. 1 H and 13 C NMR.<br />

Resumen. Algunos haloderivados fueron sintetizados a partir de β-<br />

ionona usando clor<strong>of</strong>ormo, hidróxido de sodio y halogenuros de<br />

tetralquilamonio selectos. Se informan los análisis por 2D RMN y<br />

rayos X de los productos.<br />

Palabras clave: Adición de diclorocarbenos a β-ionona, adición de<br />

transferencia de fase, formación de 1,1 diclorociclopropanos. RMN<br />

de 1 H y 13 C.<br />

Introduction<br />

A large number <strong>of</strong> C13-compounds formed by oxidative<br />

cleavage <strong>of</strong> carotenoids have been isolated from tobacco [1]<br />

and marine sponges [2] or <strong>the</strong>ir derivatives, originated from α<br />

and β ionones (1' and 1). In <strong>the</strong> same way, some o<strong>the</strong>r secondary<br />

metabolites as 4-oxomegastigmenos, important compounds<br />

for <strong>the</strong>ir excellent flavor characteristics are also formed<br />

in <strong>the</strong> tobacco plant from α and β ionones. O<strong>the</strong>r derivatives<br />

from ionones, isolated from rabbit urine and from <strong>the</strong><br />

secretion <strong>of</strong> <strong>the</strong> anal gland <strong>of</strong> <strong>the</strong> red fox have been obtained<br />

when α-ionone was photo-oxygenated [3, 4].<br />

The syn<strong>the</strong>sis <strong>of</strong> several damascones [5] and abscisic<br />

acids [6, 7] using readily available and inexpensive ionones as<br />

raw material encourages us to perform a reaction leading to<br />

some new functionalized and useful unsaturated compounds.<br />

Results and discussion<br />

The present paper deals with <strong>the</strong> syn<strong>the</strong>sis and structure elucidation<br />

<strong>of</strong> new representatives <strong>of</strong> this group <strong>of</strong> compounds. We<br />

describe here <strong>the</strong> products obtained when β-ionone was treated<br />

with CHCl 3 , NaOH, using as catalyst different tetralkyl<br />

quaternary ammonium salts looking to improve yields and<br />

versatility <strong>of</strong> <strong>the</strong> reaction under phase transfer conditions.<br />

Likewise, <strong>the</strong> reaction <strong>of</strong> carbenes with terpenes provides<br />

a simple means <strong>of</strong> examining <strong>the</strong> stereochemistry and regioselectivity<br />

<strong>of</strong> addition <strong>of</strong> such species to a variety <strong>of</strong> double<br />

bonds.<br />

It has been reported that in phase transfer dihalocarbene<br />

addition, stereochemistry and regioselectivity can be controlled<br />

by varying <strong>the</strong> catalyst [8-11]. Phase transfer reactions<br />

are known to be somewhat dependent on <strong>the</strong> exact reaction<br />

conditions and <strong>the</strong> formation <strong>of</strong> products apparently derived<br />

from trihalogenomethyl anion or dihalogen carbene can be<br />

controlled by varying <strong>the</strong> catalyst [9].<br />

Some years ago [12], our group reported β-Ionone when<br />

treated under CHCl 3 , NaOH and triethylbenzyl ammonium<br />

chloride (TEBAC) yield two furenones 2 and 3 which were<br />

isolated in low yield. Their structures were well supported by<br />

2D NMR as well as x-ray crystallographic analysis [13].<br />

On <strong>the</strong> mechanism <strong>of</strong> formation <strong>of</strong> <strong>the</strong>se compounds it<br />

was assumed an initial chemoselective adduct formation on<br />

<strong>the</strong> β-ionone to generate <strong>the</strong> epoxide, which is rapidly transformed<br />

to an intermediate dichloro e<strong>the</strong>r which is hydrolized<br />

to a γ-lactone where <strong>the</strong> presence <strong>of</strong> atmospheric oxygen during<br />

<strong>the</strong> reaction induced free radical dimerization [12].<br />

The low yield observed in this reaction as well as <strong>the</strong> new<br />

findings about <strong>the</strong> phase transfer reactions encourage us to<br />

undertake <strong>the</strong> study <strong>of</strong> <strong>the</strong> dichlorocarbene addition to β-<br />

ionone using different quaternary ammonium catalyst.<br />

Under <strong>the</strong> new catalyst selection, <strong>the</strong> usual γ-lactone<br />

derivatives (2 and 3) were isolated toge<strong>the</strong>r with several new<br />

compounds which display structure versatility and in addition<br />

allowed us to improve yields, as well as products ratio <strong>of</strong> <strong>the</strong><br />

obtained adducts.<br />

Structures <strong>of</strong> compounds 2 and 3 were well discussed in<br />

our previous report and <strong>the</strong>y will not be focused here.


118 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Eduardo Díaz et al.<br />

Scheme 1<br />

O<br />

1 1' 2<br />

Cl<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Cl<br />

H<br />

3 4 5<br />

6 6a 7<br />

OH<br />

OCH 3<br />

**<br />

8 9 * O<br />

9a<br />

O<br />

O<br />

O<br />

10 11<br />

Cl<br />

Cl<br />

O<br />

Scheme 1 shows <strong>the</strong> structures <strong>of</strong> <strong>the</strong> new isolated derivatives.<br />

The IR spectrum <strong>of</strong> 4 showed an absorption at 1717 cm –1<br />

which clearly indicates an unsaturated ketone group. The proton<br />

NMR spectrum showed a one proton doublet and one proton<br />

multiplet at δ = 3.04 and 2.83 respectively. The latter was<br />

converted to a doublet <strong>of</strong> triplet when <strong>the</strong> methyl protons (C7)<br />

were decoupled. A methyl ketone group appeared at δ = 2.45<br />

as a singlet. These findings suggest that in <strong>the</strong> structure <strong>of</strong><br />

compound 4 was lost <strong>the</strong> α,β-unsaturated double bond observed<br />

in <strong>the</strong> starting material 1. The mass spectrum <strong>of</strong> compound<br />

4 shows <strong>the</strong> molecular ions at m/z 274 (M + ), m/z 276<br />

(M + + 2) and m/z 278 (M + + 4) corresponding to <strong>the</strong> molecular<br />

formula <strong>of</strong> C 14 H 20 OCl 2 . It suggests an increase in molecular<br />

weight <strong>of</strong> <strong>the</strong> starting ionone 1 by 82 atomic mass units<br />

(CCl 2 ).<br />

The NOESY experiment enabled us to establish <strong>the</strong> key<br />

proton vicinities. There exist a strong correlations between<br />

methine doublet at δ = 3.04 and methyl signals δ = 2.45 (C-<br />

13), 1.00 (C-9) and a weaker one between methyne multiplet<br />

at =2.83 and <strong>the</strong> methyl singlet at δ = 1.75.<br />

The 13 C 1D NMR and DEPT edited spectra [14] allowed<br />

<strong>the</strong> assignment <strong>of</strong> <strong>the</strong> carbon atoms (protonated carbons), and<br />

<strong>the</strong> long range heterocorrelated spectra [15] enabled us to<br />

establish connectivities between protons and carbons (see<br />

experimental).<br />

Because <strong>the</strong> unusual trans cyclopropane vicinal coupling<br />

between HC 10 -HC 11 (J = 9.0 Hz) and in order to confirm this<br />

adduct structure we carried out an x-ray crystallographic study<br />

<strong>of</strong> compound 4. Fig. 1 display <strong>the</strong> Ortep plot <strong>of</strong> compound 4.<br />

O<br />

O<br />

O<br />

Cl<br />

H<br />

Cl<br />

Cl<br />

O<br />

Cl<br />

O<br />

* *<br />

*<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Cl<br />

Cl<br />

Cl<br />

O<br />

O<br />

O<br />

O<br />

On <strong>the</strong> o<strong>the</strong>r hand, compound 5 shows a molecular<br />

weight as was identified from MS as 274, 276, 278 (C 14 H 20 O<br />

Cl 2 ). The proton NMR presents an AX pattern (δ A = 6.63 (H-<br />

10) and δ X = 6.17 (H-11, J=16.0 Hz), four singlets at δ = 2.30,<br />

1.25, 1.20 and 1.00 for <strong>the</strong> methyls at C-13, C-7, C-8 and C-9<br />

and <strong>the</strong> signals for six protons on C-4, C-5 and C-6 methylenes.<br />

The structure <strong>of</strong> compound 5 supported by <strong>the</strong> assignments<br />

<strong>of</strong> 1 H and 13 C (CDCl 3 , 500 MHz , 125 MHz) spectra<br />

and confirmed by HMQC, HMBC along with HOMOCOSY<br />

and <strong>the</strong> mass spectrum fragmentation pattern matching <strong>the</strong><br />

expected molecular weight for such a structure.<br />

The structure <strong>of</strong> <strong>the</strong> monochlorine furane derivative 6 was<br />

supported by its spectroscopic features. The molecular ion M +<br />

was observed in mass spectrometry (EI) at m/z 238 (M + ), m/z<br />

240 (M + + 2) in agreement with <strong>the</strong> molecular weight for a<br />

furane derivative. Tentatively, two isomeric structures (6 and<br />

6a) emerge to be considered under mechanistic approach<br />

(Scheme 2).<br />

The 1 H and 13 C NMR (CDCl 3 , 300 MHz, 75.0 MHz),<br />

toge<strong>the</strong>r with HETCOR [16, 17] and COLOC [18] spectra<br />

were recorded in order to probe <strong>the</strong> structure 6. At first, since<br />

13CNMR chemical shifts observed (and calculated) [19] for 6<br />

(or 6a) did not enable unambiguously to differentiate between<br />

6 or 6a, we performed a COLOC experiment in order to overcome<br />

such drawback. In this experiment we were able to<br />

observe <strong>the</strong> long range proton-carbon correlation between <strong>the</strong><br />

furane methyl protons (δ = 2.20, C-13) with <strong>the</strong> methine C-11<br />

(δ = 111.0) and with <strong>the</strong> nonprotonated carbon at δ = 149.9<br />

(C-12). It suggests unambiguously structure 6 for this furane<br />

derivative. In <strong>the</strong> structure 6a <strong>the</strong> 3σ bond correlation between<br />

<strong>the</strong> methyl group with <strong>the</strong> carbon at δ = 149.9 is not permissible<br />

(Fig. 2).<br />

The remaining signals that enabled us <strong>the</strong> elucidation <strong>of</strong><br />

structure 6 are described in experimental.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> formation <strong>of</strong> <strong>the</strong> dimeric compound<br />

9 (or 9a, 9a' or 9') can be explained by two different<br />

mechanism approach. At first, if we assume that compound 9a<br />

(or 9a') could be formed by a concerted opening and dimerization<br />

<strong>of</strong> <strong>the</strong> epoxide 7 (Scheme 3) obtained in a small<br />

amount under phase transfer conditions. This assumption was<br />

considered because <strong>the</strong> previously mentioned opening was for<br />

C 6<br />

C 7<br />

C 1<br />

C 5<br />

C 4<br />

C 3<br />

C 8<br />

C 9<br />

C 1 4<br />

Cl 1<br />

C 2<br />

C 1 0<br />

C 1 1<br />

Fig. 1. X-ray ortep plot <strong>of</strong> compound 4.<br />

O 1<br />

C 1 3<br />

Cl 2<br />

C 1 2<br />

6<br />

5<br />

1<br />

7<br />

4<br />

3<br />

2<br />

8<br />

11<br />

10<br />

9<br />

O<br />

12<br />

14<br />

Cl<br />

Cl<br />

13


2D 1 H and 13 C NMR from <strong>the</strong> adducts <strong>of</strong> <strong>the</strong> dichloro carbene addition to β-ionone 119<br />

Scheme 2<br />

1<br />

Cl<br />

CCl 2<br />

Cl<br />

H<br />

Cl<br />

O<br />

O<br />

CCl 2<br />

Cl<br />

O<br />

6<br />

Cl<br />

O<br />

O<br />

us described and probed, since we were able to isolate <strong>the</strong><br />

alcohol-methoxye<strong>the</strong>r derivative 8, whose structure and stereochemistry<br />

were confirmed by an x-ray crystallographic<br />

study [12].<br />

The 13 C NMR chemical shifts were a key element in order<br />

to rule out <strong>the</strong> structures <strong>of</strong> <strong>the</strong> dioxine derivatives 9a, 9a' or <strong>the</strong><br />

oxide 9'. The calculated chemical shifts [19] for <strong>the</strong> non protonated<br />

carbons attached to both oxygen atoms (** and * in<br />

schemes 1 and 3) should to display chemical shifts at δ = 90.0<br />

and 71.0, respectively. However, compound 9 showed in its 13 C<br />

NMR chemical shifts at δ =71.0 and 65.8 ppm respectively,<br />

which definitely support <strong>the</strong> structure 9 (instead 9a, 9a' or 9')<br />

for this compound. About <strong>the</strong> configuration <strong>of</strong> <strong>the</strong> stereogenic<br />

centers, <strong>the</strong>y were established by <strong>the</strong> energetic calculation [20]<br />

<strong>of</strong> <strong>the</strong> isomeric structures shown in scheme 4 (9, 9' and 9")<br />

being 9 those having <strong>the</strong> lesser energy (Scheme 4).<br />

O<br />

Cl<br />

Cl<br />

OH<br />

Cl<br />

-<br />

OH<br />

2<br />

O<br />

O<br />

Cl<br />

O<br />

H<br />

Cl<br />

6a<br />

O<br />

Cl<br />

Additional spectroscopic features <strong>of</strong> compound 9 also<br />

support such structure. For example <strong>the</strong> MS <strong>of</strong> <strong>the</strong> oxidized<br />

derivative 9 shows a molecular ion at m/z 416 (FAB). The 1 H<br />

NMR shown <strong>the</strong> usual doublets for <strong>the</strong> vinylic protons at δ =<br />

6.97 and 6.22 (J = 16.0 Hz) and <strong>the</strong> corresponding methyl singlets<br />

at δ = 2.22 (3H), 1.08 (6H) and 0.86 (3H). The 13 C 1D<br />

and DEPT edited spectra allowed <strong>the</strong> partial assignment <strong>of</strong> <strong>the</strong><br />

chemical shift <strong>of</strong> <strong>the</strong> remaining carbon atoms (protonated carbons)<br />

at δ = 35.4, 33.5, 29.7, 28.1, 25.8 (2C), 20.8 and 16.8.<br />

The singlets at δ = 197.5 (C-12), 70.5 (C-2), 65.8 (C-1) and<br />

33.5 (C-3) matching <strong>the</strong> spectrum for such a structure. The<br />

tentative approach <strong>of</strong> <strong>the</strong> mechanism involved in <strong>the</strong> above<br />

mentioned dimerization is displayed in scheme 3.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> new furenone 10 displayed at IR<br />

spectrum an absorption at 1762 cm –1 , which clearly indicates<br />

an α, β unsaturated γ-lactone moiety. The absorbance at UV<br />

spectrum λ max = 295 nm, reflects an α, β, γ cromophore [21].<br />

The proton spectrum showed a one proton quartet at δ = 7.13<br />

4J = 1.2 Hz and a doublet methyl group at δ = 2.05. The former<br />

was converted to a singlet when <strong>the</strong> methyl protons at δ =<br />

2.05 was decoupled. The 300 MHz 1 H NMR showed in addition<br />

methyl singlets at δ = 1.58 (C-7), 1.30 (C-8) and 1.29 (C-<br />

9). Both, <strong>the</strong> strong IR band at 1762 cm –1 and <strong>the</strong> 13 CNMR<br />

singlet at δ = 170.4 indicate <strong>the</strong> presence <strong>of</strong> an enol lactone<br />

carbonyl. The DEPT edited spectrum allowed <strong>the</strong> observation<br />

<strong>of</strong> two methines at δ = 137.8 (C-11) and 36.2 (C-6). Also, two<br />

methylene carbons at δ = 37.7 and 17.3 assigned for C-4 and<br />

C-5 respectively. Finally, four methyl signals at δ = 10.7,<br />

29.2, 28.1 and 29.6 for C-13, C-7, C-9 and C-8 respectively.<br />

The 1D NMR enabled us <strong>the</strong> assignment <strong>of</strong> <strong>the</strong> nonprotonated<br />

carbons as δ = 149.1 (C-10), 128.3 (C-12), 106.1 (C-2), 71.2<br />

(C-14), 35.0 (C-3), and 29.6 (C-1).<br />

A new unexpected trichloro derivative 11 whose structure<br />

emerge from its observed MS molecular ions [m/z (M + )<br />

Fig. 2.


120 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Eduardo Díaz et al.<br />

Fig. 3.<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

7 9a<br />

O<br />

O<br />

O<br />

O<br />

O<br />

7<br />

9a'<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

1 9<br />

O O<br />

O<br />

O<br />

O<br />

O<br />

1<br />

Scheme 3<br />

O O<br />

O<br />

O<br />

O<br />

** *<br />

O<br />

** *<br />

**<br />

*<br />

**<br />

*<br />

O<br />

O<br />

O<br />

O<br />

9'<br />

309, (M + 2) m/z 311, (M + 4) m/z 313, and (M + 6) m/z<br />

316]. The proton NMR spectrum showed a one proton doublet<br />

<strong>of</strong> doublet δ = 7.12 (J = 15.5, 10.5 Hz) and an one proton<br />

doublet <strong>of</strong> doublet at δ = 6.41 (J = 0.5, 15.5) for CH-10 and<br />

CH-11 respectively. A new methylene signal appeared at δ =<br />

4.22 instead <strong>of</strong> <strong>the</strong> usual methyl ketone singlet (δ = 2.31)<br />

observed in <strong>the</strong> 1 HNMR spectrum <strong>of</strong> starting β-ionone 1 (Fig.<br />

3).<br />

Additionally, we were able to observe a doublet <strong>of</strong> doublet<br />

at δ = 2.40 (J = 10.5, 0.5, CH-2) and three methyl singlets<br />

at δ = 1.30, 0.95 and 0.78 for C-7, C-8, and C-9 respectively.<br />

The 1D 13 C NMR and DEPT edited spectra allowed <strong>the</strong><br />

assignment <strong>of</strong> protonated carbons as four methines at δ =<br />

148.0 (C-10), 129.1 (C-11), 48.1 (C-2) and 32.8 (C-6) respectively.<br />

Three methylenes at δ = 47.2, (C-13), 35.1 (C-4) and<br />

15.9 (C-5). Three methyl signals were also observed at δ =<br />

29.4, 22.5, 19.7 for C-8, C-7 and C-9 respectively. The assignment<br />

<strong>of</strong> <strong>the</strong> non protonated carbons at δ = 190.5 (C-12), 72.8<br />

(C-14), 32.0 (C-3) and 29.8 (C-1) was performed using <strong>the</strong><br />

COLOC [18] spectrum.<br />

The formation <strong>of</strong> compounds 10 and 11 may be inferred<br />

through isomerization [22-26] <strong>of</strong> <strong>the</strong> bond C6-C1 from compound<br />

1' to 1 respectively and <strong>the</strong>n <strong>the</strong> dichlorocarbene addition<br />

to <strong>the</strong> new formed double bond.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> role <strong>of</strong> <strong>the</strong> catalyst used in this<br />

work, play an important role in <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> products<br />

obtained as well as <strong>the</strong> versatility <strong>of</strong> <strong>the</strong> structures and yield.<br />

Graphics 1 and 2 are self explained and show <strong>the</strong> behaviour <strong>of</strong><br />

<strong>the</strong> different catalyst and ratio <strong>of</strong> products.<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Conclusions<br />

Scheme 4<br />

-1<br />

11 6.0 Kcal mol<br />

O<br />

O<br />

135.0 Kcal mol -1<br />

O<br />

-1<br />

135.5 Kcal mol<br />

The successful use <strong>of</strong> several ammonium quaternary catalyst<br />

in <strong>the</strong> phase transfer reactions enabled us to obtain some interesting<br />

derivatives from <strong>the</strong> starting material (β-Ionone). The<br />

structures <strong>of</strong> <strong>the</strong> formed compounds where fully elucidated


2D 1 H and 13 C NMR from <strong>the</strong> adducts <strong>of</strong> <strong>the</strong> dichloro carbene addition to β-ionone 121<br />

Product2 Product3 Product4 Product5 Product6 Product9<br />

80<br />

70<br />

60<br />

Y<br />

i<br />

e<br />

l<br />

d<br />

50<br />

40<br />

%<br />

30<br />

20<br />

10<br />

Graphic 1<br />

0<br />

None I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI<br />

CatalystType<br />

100<br />

90<br />

80<br />

70<br />

60<br />

%<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX XXI XXII<br />

Catalyst type<br />

Graphic 2. Reaction and Breakdown-recovered substrate.<br />

R eaction Breakdow n R ecovered<br />

using 2DNMR, X-ray crystallography, chemical shifts and<br />

molecular modeling calculations.<br />

Experimental<br />

Melting points were determined with a K<strong>of</strong>ler Hot Stage apparatus<br />

and were not corrected. The NMR 1 H and 13 C spectra<br />

were recorded using Varian Unity 300 spectrometer operating<br />

at observation frequency <strong>of</strong> 300.0 MHz for 1 H and 75.0 MHz<br />

for 13 C. The 1 H and 13 C chemical shifts (δ) are given in ppm<br />

relative to tetramethyl silane (TMS). The COSY, NOESY,<br />

HETCOR, DEPT and COLOC spectra were recorded using<br />

<strong>the</strong> usual Varian Unity s<strong>of</strong>tware.<br />

High resolution spectra were recorded on a Varian Unity<br />

500 operating at 500.3 MHz for 1 H and 125.0 MHz for 13 C.<br />

The experiments were performed using an inverse detection<br />

5 mm probe. The COSY, NOESY, HMQC and HMBC<br />

experiments were performed using <strong>the</strong> usual Varian Unity<br />

s<strong>of</strong>tware.<br />

Mass spectra were recorded on instruments using CI/EI<br />

sources on a JEOL-JMS-AX505 HA and JEOL-JMS-10217.<br />

The IR spectra were performed on Nicolet FX-sx and Nicolet<br />

55-X in film mode.<br />

The β-ionona was purchased from Aldrich <strong>Chemical</strong> and<br />

used as received. The ammonium quaternary catalyst were<br />

kindly provided by Akzo <strong>Chemical</strong> Chicago Ill. and <strong>the</strong>y<br />

received <strong>the</strong> trade name usually used. Benzalconium Chloride


122 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Eduardo Díaz et al.<br />

(1); Arquad HT-50 (II); Arquad 2C-75 (III); Arquad S-50<br />

(IV); Arquad 316 (V); Ethoquad C-12 CB75 (VI); Propoquad<br />

C-12 O2A (VII); Arquad M2H TB80 (VIII); Arquad 16-25W<br />

(IX); Propoquad T-12 O2A (X); Tetramethyl ammonium<br />

acetate (XI); Arquad 2HT-75 (XII); Ethoquad O-12 (XIII);<br />

Arquad 12/50 (XIV); Arquad 16/29 (XV); Arquad T-50<br />

(XVI); Arquad 2HT50 (XVII); Arquad 16/50 (XVIII);<br />

TEBAC (XIX); Dimethyldidecyl ammonium chloride (XX);<br />

Tetrabutyl ammonium chloride (XXI).<br />

2,6,6-trimethyl-1-(2-acetyl-3,3-dichlorocyclopropyl) cyclohexene<br />

4. Colorless crystals, mp 54-56 °C. C 14 H 20 OCl 2 . M.W.<br />

274. 1 HNMR. δ 0.96 2 (CH 3 -8); 1.01 s (CH 3 -9; 1.37 m (CH 2 -<br />

4); 1.60 m (CH 2 -5); 1.75 s (CH 3 -7); 2.05 m (CH 2 -6); 2.44 s<br />

(CH 3 -13); 2.86 (CH-10), 3 J = 9.0, 5 J = 1.3; 3.10 d J = 9 (CH-<br />

11). 13 C NMR. δ 196.3 O=C-12; 136.1, C-2; 128.6, C-1; 64.4,<br />

C-14; 44.1 ,C-11; 41.2, CH 2 -4; 38.3, C-10; 34.5, C-3; 32.8,<br />

CH 2 -6; 32.1, CH 3 -13; 28.7, CH 3 -8; 28.6, CH 3 -9; 21.1, CH 3 -7;<br />

19.5, CH 2 -5. IR ν max cm –1 2967, 2934, 2869, 1718, 1170, 842.<br />

MS EI m/z M + 274 (13); M + +2, 276 (7); M + +4, 278 (3); 231<br />

(87); 195 (49); 43 (100).<br />

7,7-dichloro-2,5,6-trimethyl-1-(3-oxo-1-butenyl)bicyclo[4,1,0]<br />

heptane. 5. Colorless liquid C 14 H 20 OCl 2 MW 274.<br />

1HNMR δ 1.01, s CH 3 -9; 1.22, s CH 3 -8; 1.23, s CH 3 -7; 1.42,<br />

m CH 2 -4; 1.84, m CH 2 -5; 2.02, m CH 2 -6; 2.28, s CH 3 -13;<br />

6.16 d, CH-11 3 J = 16.5; 6.63, d CH-10 3 J = 16.5. 13 C NMR δ.<br />

197.7 O=C-12; 143.2, C-10; 136.1, C-11; 76.3, C-14; 40.9, C-<br />

3; 35.9, C-4; 33.8, C-2; 32.1, C-1; 30.2, CH3-8; 28.2, C-6;<br />

27.4, CH 3 -13; 25.7, CH 3 -7; 22.7, CH 3 -9; 17.9, C-5. IR ν max<br />

cm –1 ; 2959, 2935, 2870, 1678, 1253, 837. MS. EI m/z M + 274<br />

(3); M + +2, 276 (1); M + +4, 278; 259 (27), 196 (38); 181 (88);<br />

161 (53); 123 (100); 43 (97).<br />

2-chloro-5-methyl-3-(2,6,6-trimethyl-1-cyclohexenyl)<br />

furane. 6. Colorless liquid. C 14 H 19 OCl, MW 238 1 HNMR. δ<br />

0.91, s CH 3 -8; 1.00, s CH 3 -9; 1.43, s CH 3 -7; 1.53, m CH 2 -4;<br />

1.77, m CH 2 -5; 2.04, m CH 2 -6; 2.25, d , 4 J = 1.0, CH 3 -13;<br />

5.80, q, 4 J = 1.0, CH-11. 13 C NMR δ 149.9, C-12; 132, C-2;<br />

131.1, C-14; 130.1, C-1; 119.5, C-10; 111.0, C-11; 39.1, C-4;<br />

34.9, C-3; 32.0, C-6; 29.1, C-8; 28.3, C-9; 20.8, C-7; 19.3, C-<br />

5; 13.6, C-13. IR ν max cm –1 . 2960, 2931, 2867, 2832, 1614,<br />

1236. MS EI m/z M + 238 (38), M + +2, 240 (15); 223, (100);<br />

187 (34); 159, (24); 145, (31); 129, (53); 115, (40), 91, (50);<br />

77, (49); 65, (35).<br />

4-[4,4,4b, 8,8, 10a-hexamethyl-4a (3-oxo-but-1-enyl)-decahydro-9,10-<br />

dioxa-phenanthren-8a-yl]-but-3-en-2-one. 9.<br />

Colorless liquid C 26 H 40 O 4 MW 416. 1 H NMR δppm 0.86, s<br />

CH 3 -9; 1.08, s CH 3 -8; 1.00 m, CH 2 -4; 1.08 s CH 3 -7; 1.37 m<br />

CH 2 -5; 1.77, CH 2 -6; 2.22, s CH 3 -13; 6.22 d 3 J = 16.0 CH-11;<br />

6.97 d 3 J = 16.0 CH-10. 13 C NMR δ 197.5 C-12; 142.6 C-10;<br />

132.4 C-11; 70.5 C-2,65.8 C-1; 35.4 C-4; 33.5 C-3; 29.7 C-6;<br />

28.1 CH 3 -13; 25.8 (2C) CH 3 -8, CH 3 -9; 20.8 CH 3 -7; 16.8 C-5. IR<br />

ν max cm –1 2960, 2935, 2872, 1677, 1627, 1255. MS FAB m/z<br />

M + 416, 400. 383, 355, 341, 327, 209, 191, 123(100), 69, 43.<br />

5-(7,7-dichloro-1,3,3-trimethylbicyclo[4,1,0]heptyl-2-iden)-<br />

3-methyl-Furan-2-one. 10. Colorless solid m. p. 80-81 ºC<br />

C 15 H 18 Cl 2 O 2 MW 300. UV λ max<br />

nm 295. 1 H NMR δppm 1.29, s<br />

CH 3 -9; 1.30, s CH 3 -8; 1.43, m CH 2 -4; 1.58, s CH 3 -7; 1.68, q<br />

CH 2 -6; 2.10, m CH 2 -5; 2.05, q CH 3 -13; 7.13, q H-11. 13 C<br />

NMR δ 170.4 C-15; 149.1 C-10; 137.8 C-11; 128.3 C-12;<br />

106.1 C-2; 71.2 C-14; 37.7 C-4; 36.2 C-6; 35.0 C-3; 29.6 C-8;<br />

29.2 CH 3 -7; 28.1 CH 3 -9; 27.2 CH 3 -7; 17.3 C-5; 10.7 CH 3 -13.<br />

IR ν max cm –1 2932, 2867, 1762,1207, 802, 741. MS EI, m/z<br />

M + 300 (51), M + + 2, 302 (35); M + + 4 304 (7); 285, 265, 244,<br />

217, 169 (100); 142 (78), 138 (60).<br />

7,7-dichloro-1,3,3-trimethyl-2-(3-oxo-4-chloro-1-<br />

butenyl)bicyclo[4,1,0] heptane. 11. 1 H NMR δppm. 0.78 (s)<br />

CH 3 -9; 0.95 (s) CH 3 -8; 1.30 (s) CH 3 -7; 1.23, (m) CH 2 -4; 1.40<br />

dd, J=10.0, 8.0, CH-6; 1.93 (m) CH 2 -5; 2.38 (m) CH-2; 4.22<br />

CH 2 -13; 6.41, dd J=0.5, 15.5, CH-11; 7.12, dd J=10.5, 15.5,<br />

CH-10. 13 C NMR δ 190.5 (C-12), 148.0, (C-10); 129.1 (CH-<br />

11); 72.8 (C-14); 48.1 (CH-2); 47.2 (CH 2 -13); 37.8 (CH-6);<br />

35.1 (CH 2 -4); 32.1 (C-3); 29.8 (C-1); 29.4 (CH 3 -8); 22.5<br />

(CH 3 -7); 19.7 (CH 3 -9); 15.9 (CH 2 -5). MS CI M + m/z 309<br />

(51), M + 2 m/z 311 (42); M + 4 m/z 313 (17); M + 6 m/z 316<br />

(6); 273 (86); 237 (70); 217 (80); 169 (100); 123 (58). IR ν max<br />

cm –1 . 2957, 2930, 2867, 1715, 1697, 838.<br />

Acknowledgements<br />

We thank M. I. Chávez and B. Quiroz for <strong>the</strong> NMR determinations.<br />

We also thank R. Patiño, L. Velasco and R. A.<br />

Toscano for <strong>the</strong> IR, MS and X-ray determinations, respectively.<br />

L. Muciño thanks to CGI y EA <strong>of</strong> UAEM and SNI-<br />

Conacyt for partial financial support. We thank also E. Rivera<br />

<strong>of</strong> Akzo Chem. Chicago Ill. For <strong>the</strong> samples <strong>of</strong> ammonium<br />

quaternary catalyst used in this work.<br />

References<br />

1. a) Aasen, A. J.; Kimland, B.; Almquist, S.D.; Enzell, C.R. Acta<br />

Chem. Scand. 1972, 26, 2573-2576.<br />

b) Wahlberg, I.; Enzell, C. R. Nat. Prod. Rep. 1987, 4, 237-276.<br />

2. Kernan, M. R.; Faulkner, D. J.; Jacobs, R. S. J. Org. Chem. 1987,<br />

52, 3081-3083.<br />

3. Demole, E.; Enggest, P.; Winter, M.; Furrer, A.; Sculte-Elte, K.<br />

H.; Egger B.; Ohl<strong>of</strong>f, G.; Helv. Chem. Acta 1979, 62, 67-75.<br />

4. Behr, D.; Wahlemberg, I.; Nishida, T.; Enzell, C. R. Acta Chem.<br />

Scand. Ser. B 1977, B31, 609-613.<br />

5. a) Buchi, G.; Vederas, J. C. J. Amer. Chem. Soc. 1972, 94, 9128-<br />

9132.<br />

b) Demole, E.; Ber<strong>the</strong>t, D. Helv. Chim. Acta 1981, 54, 681-686.<br />

c) Snowden, R. L.; Linder, S. M.; Muller, M.L.; Shulte-Elte, K<br />

.H. Helv. Chim. Acta 1987, 70, 1858-1878.<br />

6. Findlay, J. A.; MacKay, W.D. Can. J. Chem. 1971, 49, 2369-<br />

2371.<br />

7. a) Roberts, D. L.; Heckman, R. A.; Hege, B. P.; Bellin, S. A. J.<br />

Org. Chem. 1968, 33, 3566-3569.<br />

b) Ontani, T.; Yamashita, K. Tetrahedron Lett. 1972, 2521-2524.<br />

8. Demlov, E. V.; Prashad, M. J. Chem. Res. 1982, 354.


2D 1 H and 13 C NMR from <strong>the</strong> adducts <strong>of</strong> <strong>the</strong> dichloro carbene addition to β-ionone 123<br />

9. Baird, M. S., Baxter, A. G. W.; Devling, B. R. J.; Searle, R. J .G.<br />

J. Chem. Soc. Chem. Commun. 1979, 210-211.<br />

10. Sydnes, L. K. Acta Chem. Scand. Ser B 1977, 31, 823-828.<br />

11. Sydnes, L. K.; Skattebold, L. Tetrahedron Lett. 1975, 4603-4606.<br />

12. Díaz, E.; Toscano, R. A.; Alvarez A.; Shoolery, J. N.; Jankowski:<br />

Can. J. Chem. 1990, 68, 701-704.<br />

13. Díaz, E.; Fuentes, A.; Villafranca, E.V.; Jankowski, K Acta<br />

Crystallographica 1994, C50, 2030-3032.<br />

14. Doddrell, D. M.; Pegg, D.T.; Bendall, M. R. J. Magn. Reson.<br />

1982, 48, 323-327.<br />

15. a) Bax, A.; Subramanian, S. J. Magn. Reson. 1986, 67, 565-569.<br />

b) Bax, A.; Freeman, R. J. Magn. Reson. 1981, 44, 542-561.<br />

16. a) Derome, A. E. in: Modern Techniques for Chemistry Research,<br />

Pergamon Press, N.Y. 1987, p 240.<br />

b) Martin, G. E.; Sektzer, A. S. in: Two Dimensional NMR<br />

Methods for Establishing Molecular Connectivity, VCH<br />

Publishers, N.Y. 1988, p. 219.<br />

17. a) Bax, A.; Davies, D. G. J. Magn. Reson. 1985, 63, 207-213.<br />

b) Bax, A.; Summers, M. F. J. Amer. Chem. Soc. 1986, 108,<br />

2093-2094.<br />

18. Kessler, H.; M. Gehrke, M.; Griesinger, C. Angew. Chem. Int.<br />

Ed. Engl., 1988, 27, 490-536.<br />

19. a) Furst, A.; Pretsch, E.; Robien, W. Ann. Chem. Acta 1990, 233,<br />

213.<br />

b) Furst, A.; Pretsch, E. Ann. Chim. Acta 1990, 229, 17.<br />

c) Furst, A.; Pretsch, E.; Robien, W. Ann. Chim. Acta 1991, 248,<br />

415.<br />

20. Calculations were first minimized to 0.1 Kcalmol –1 , using semiempirical<br />

method CS Chem 3D version 5 for MacIntosh.<br />

21. Silverstein, R. M.; Bassler, G. C.; Merril, T. C. Identificación<br />

Espectroscópica de Compuestos Orgánicos, Editorial Diana.<br />

México 1980 pp 17-85.<br />

22. Wahlemberg, Enzell, C. R. Nat. Prod. Reports. 1987, 4, 237-276.<br />

23. Bucherer, R.; Hamm, P.; Eugster, C. H. Helv. Chim. Acta 1974,<br />

57, 631-656.<br />

24. Molnar, P.; Szaboles, J. Acta Chim. Acad. Sci. 1979, 99, 155.<br />

25. Bisch<strong>of</strong>berger, N.; Frei, B.; Wirz, J. Helv. Chim. Acta. 1983, 66,<br />

2489.<br />

26. Horspool, W. M. Photochem. 1985, V16, 248.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 124-126<br />

Investigación<br />

Reactivity <strong>of</strong> IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } towards alkene compounds<br />

Valente Gómez-Benítez, Rocío Redón, and David Morales-Morales*<br />

Instituto de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior,<br />

Coyoacán, 04510 México D. F. *E-mail: damor@servidor.unam.mx (D. Morales-Morales)<br />

Dedicated to Dr. Alfonso Romo de Vivar<br />

Recibido el 22 de noviembre del 2<strong>002</strong>; aceptado el 20 de marzo del 2003<br />

Abstract. The reactions <strong>of</strong> IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } with ethylene<br />

and 1-octene have been carried out, products containing <strong>the</strong><br />

olefin compounds coordinated in a η 2 fashion have been obtained.<br />

Both complexes have been characterized by multinuclear NMR probing<br />

unequivocally <strong>the</strong> proposed formulations. Examination <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>rmal stability <strong>of</strong> both complexes under catalytic conditions shows<br />

<strong>the</strong> 1-octene adduct to be more stable.<br />

Keywords: PCP pincer ligands, iridium complexes, olefin complexes,<br />

dehydrogenation, catalysis.<br />

Resumen. Se llevaron a cabo reacciones del complejo IrH 2 {C 6 H 3 -<br />

2,6-(CH 2 PBu t 2) 2 } con etileno y 1-octeno, obteniéndose los derivados<br />

olefínicos coordinados de forma η 2 . Ambos complejos fueron caracterizados<br />

por RMN multinuclear, probando las formulaciones propuestas.<br />

El examen de la estabilidad térmica de ambos complejos<br />

bajo condiciones catalíticas mostró que el aducto 1-octano es más<br />

estable.<br />

Palabras clave: ligandos tipo pinza PCP, complejos de iridio, complejos<br />

olefínicos, deshidrogenación, catálisis.<br />

Introduction<br />

Terminal alkenes (alpha-olefins) are a major feedstock for <strong>the</strong><br />

production <strong>of</strong> plastics, detergents, and lubricants. Their production<br />

through <strong>the</strong> selective dehydrogenation <strong>of</strong> linear alkanes<br />

would be an attractive alternative to <strong>the</strong> present commercial<br />

processes based on hydrogen, ethylene, and trialkylaluminum<br />

catalysts.[1] The iridium PCP pincer complexes:<br />

IrH 2 {C 6 H 3 -2,6-(CH 2 PR 2 ) 2 } (R = Bu t , 1; Pr i , 2) are extraordinarily<br />

active and robust catalysts for aliphatic dehydrogenation<br />

reactions.[2-5] Recent studies <strong>of</strong> this reactivity lead to <strong>the</strong><br />

discovery <strong>of</strong> <strong>the</strong> first efficient catalytic system for <strong>the</strong> selective<br />

dehydrogenation <strong>of</strong> n-alkanes to alpha-olefins [6]. While<br />

this system serves to validate <strong>the</strong> concept <strong>of</strong> producing alphaolefins<br />

through this method, it suffers from several practical<br />

limitations. The concentrations <strong>of</strong> <strong>the</strong> dehydrogenated products<br />

were found to quickly attain a low (1.5-4.0 %), constant<br />

value. Fur<strong>the</strong>rmore, <strong>the</strong> high selectivity for alpha-olefins was<br />

found to be short lived as <strong>the</strong> complexes show secondary catalytic<br />

activity for alkene isomerization and <strong>the</strong> alkene distribution<br />

rapidly shifted towards <strong>the</strong> internal isomers.[6] Finally,<br />

<strong>the</strong> requisite consumption <strong>of</strong> a stoichiometric amount <strong>of</strong> a sacrificial<br />

hydrogen acceptor used in <strong>the</strong> reported selective dehydrogenation<br />

<strong>of</strong> n-alkanes is economically and environmentally<br />

unattractive. Liu and Goldman had previously achieved <strong>the</strong><br />

<strong>the</strong>rmochemical dehydrogenation <strong>of</strong> linear alkanes by 2 without<br />

<strong>the</strong> use <strong>of</strong> a hydrogen acceptor. However, only internal<br />

alkenes were produced in <strong>the</strong>ir experiments [4].<br />

As a part <strong>of</strong> our continuous interest in <strong>the</strong> reaction mechanism<br />

ruling in this process we have tried to identify <strong>the</strong> probable<br />

olefin intermediate species during <strong>the</strong> reaction, although<br />

some <strong>of</strong> <strong>the</strong>se complexes are extremely reactive and shortlived,<br />

reactions with simple alkenes might shed light in both<br />

<strong>the</strong> initial stages <strong>of</strong> <strong>the</strong> olefin isomerization process and <strong>the</strong><br />

deactivation <strong>of</strong> <strong>the</strong> catalyst by product inhibition reactions<br />

which have not yet been explored. Thus, in this paper we wish<br />

to present <strong>the</strong> results obtained from <strong>the</strong> reactions <strong>of</strong> IrH 2<br />

{C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } with ethylene and 1-octene.<br />

Experimental<br />

Materials and methods<br />

Unless stated o<strong>the</strong>rwise, all reactions were carried out under<br />

an atmosphere <strong>of</strong> argon using conventional Schlenk glassware<br />

and Young NMR tubes. Solvents were degassed and dried<br />

using standard procedures. The 1 H NMR spectra were recorded<br />

on a Varian Unity Inova 400 spectrometer. <strong>Chemical</strong> shifts<br />

are reported in ppm down field <strong>of</strong> TMS using <strong>the</strong> solvent as<br />

internal standard (cyclohexane-d 12 , δ 1.38). 13 C and 31 P NMR<br />

spectra were recorded with complete proton decoupling and<br />

are reported in ppm downfield <strong>of</strong> TMS with solvent as internal<br />

standard (cyclohexane-d 12 , δ 26.45) and external 85 % H 3 PO 4<br />

respectively. Elemental analyses were determined on a Perkin-<br />

Elmer 240. Positive-ion FAB mass spectra were recorded on a<br />

JEOL JMS-SX102A mass spectrometer operated at an accelerating<br />

voltage <strong>of</strong> 10 Kv. Samples were desorbed from a<br />

nitrobenzyl alcohol (NOBA) matrix using 3 KeV xenon<br />

atoms. Mass measurements in FAB are performed at a resolution<br />

<strong>of</strong> 3000 using magnetic field scans and <strong>the</strong> matrix ions as<br />

<strong>the</strong> reference material or, alternatively, by electric field scans<br />

with <strong>the</strong> sample peak bracketed by two (polyethylene glycol<br />

or cesium iodide) reference ions. The 1-octene was purchased


Reactivity <strong>of</strong> IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } towards alkene compounds 125<br />

from Aldrich <strong>Chemical</strong>s Co. and used without fur<strong>the</strong>r purification.<br />

The complex, IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (1) was<br />

syn<strong>the</strong><strong>size</strong>d by <strong>the</strong> literature method [2].<br />

Syn<strong>the</strong>sis <strong>of</strong> Ir(η 2 -CH 2 =CH 2 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (3)<br />

A solution consisting <strong>of</strong> 5 mg (8.5 × 10 –3 mmol) <strong>of</strong><br />

IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (1) and 1 mL <strong>of</strong> cyclohexaned<br />

12 , was freeze-pump-thaw degassed 3 times. The solution<br />

was <strong>the</strong>n treated with excess <strong>of</strong> ethylene at room temperature.<br />

An immediate change from orange to deep red-brown is<br />

observed. Removal <strong>of</strong> <strong>the</strong> solvent in vacuo affords Ir(η 2 -<br />

CH 2 =CH 2 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } as a deep red-brown solid<br />

in nearly quantitative yield (based upon 31 P NMR). 1 H NMR<br />

(400.03 MHz, cyclohexane-d 12 ) δ = 1.253 (vt, J HP = 5.8 Hz,<br />

36H, PC(CH 3 ) 3 ), 3.049 (vt, J HP = 3.2 Hz, 4H, CH 2 PC(CH 3 ) 3 ),<br />

3.287 (s, 4H, CH 2 =CH 2 ), 6.825 (t, J HH = 7.4 Hz, 1H, arom),<br />

7.026 (d, J HH = 7.2 Hz, 2H, arom); 13 C NMR (100.59 MHz,<br />

cyclohexane-d 12 ) δ = 178.28 (s, ArC), 153.84 (vt, J = 9.15 Hz,<br />

ArC), 122.81 (s, ArC), 119.77 (vt, J PC = 7.7 Hz, ArC), 40.84<br />

(vt, J PC = 13.53 Hz, CH 2 P), 37.968 (s, CH 2 =CH 2 ), 36.91 (vt,<br />

J PC =8.4 Hz, PC(CH 3 ) 2 ), 31.02 (s, PC(CH 3 ) 3 ); 31 P NMR<br />

(161.93 MHz, cyclohexane-d 12 ) δ = 54.68 (s, 1P). Anal calcd<br />

for C 26 H 47 P 2 Ir 1 (613.82) C, 50.87 %; H, 7.72 %. Found: C,<br />

50.76 %; H, 7.70 %.<br />

Syn<strong>the</strong>sis <strong>of</strong> Ir(η 2 -CH 2 =CH(CH 2 ) 5 CH 3 ){C 6 H 3 -2,6-<br />

(CH 2 PBu t 2) 2 } (4)<br />

IrH 2 {C 6 H 3 -2,6-(CH 2 PBut 2 ) 2 } (1) (5 mg, 8.5 × 10 –3 mmol) was<br />

dissolved in 1 mL <strong>of</strong> 1-octene, an immediate release <strong>of</strong> hydrogen<br />

was observed. A change in color from deep orange to<br />

bright yellow was also observed, <strong>the</strong> reaction was stirred at<br />

room temperature for fur<strong>the</strong>r 5 min after this time <strong>the</strong> excess<br />

<strong>of</strong> 1-octene is evaporated under vacuo for 36 h to yield a<br />

Ir(η 2 -CH 2 =CH(CH 2 ) 5 CH 3 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } as a<br />

bright yellow microcrystalline powder in nearly quantitative<br />

yield (based upon 31 P NMR). 1 H NMR (400.03 MHz, cyclohexane-d<br />

12 ) δ = 0.895 (bs, 10H, -(CH 2 ) n -), 1.30 (bs, 36H,<br />

PC(CH 3 ) 3 ), 1.56 (bs, 3H, -(CH 2 ) n -CH 3 ), 2.00 (bs, 4H,<br />

CH 2 PC(CH 3 ) 3 ), 2.18 (bs, 2H, CH 2 =CH-R), 2.27 (s, 1H,<br />

CH 2 =CH-R), 6.50 (t, J HH = 7.3 Hz, 1H, arom), 6.64 (d, J HH =<br />

7.2 Hz, 2H, arom); 13 C NMR (100.59 MHz, cyclohexane-d 12 )<br />

δ = 150.0 (bs, ArC), 148.0 (bs, ArC), 122.8 (bs, ArC), 121.0<br />

Scheme 1<br />

PBu t<br />

H<br />

Ir +<br />

H<br />

PBu t<br />

PBu t 2<br />

H<br />

Ir<br />

H<br />

PBu t 2<br />

+<br />

H 2<br />

H 2<br />

PBu t 2<br />

Ir<br />

PBu t 2<br />

PBu t<br />

Ir<br />

PBu t<br />

(bs, ArC), 32.79 (bs, CH 2 P), 32.40 (bs, CH 2 =CH-R), 32.24<br />

(bs, PC(CH 3 ) 2 ), 30.29 (s, PC(CH 3 ) 3 ), 23.42 (bs, -(CH 2 )n-),<br />

14.41 (bs, -(CH 2 ) n -CH 3 ); 31 P NMR (161.93 MHz, cyclohexane-d<br />

12 ) δ = 54.97 (s, 1P). Anal calcd for C 32 H 59 P 2 Ir 1 (697.98)<br />

C, 55.07 %; H, 8.52 %. Found: C, 54.94 %; H, 8.47 %.<br />

Results and discussion<br />

Syn<strong>the</strong>sis and characterization <strong>of</strong> Ir(η 2 -CH 2 =CH 2 )<br />

{C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (3) and Ir(η 2 -<br />

CH 2 =CH(CH 2 )5CH 3 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (4)<br />

The reaction <strong>of</strong> <strong>the</strong> PCP pincer complex IrH 2 {C 6 H 3 -2,6-<br />

(CH 2 PBu t 2) 2 } (1) with excess <strong>of</strong> ethylene or 1-octene affords<br />

complexes Ir(η 2 -CH 2 =CH 2 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (3) and<br />

Ir(η 2 -CH 2 =CH(CH 2 ) 5 CH 3 ){C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } (4) as<br />

unique products (Scheme 1) in quantitative yields as red<br />

brown or bright yellow powders respectively. The 1 H NMR<br />

spectrum <strong>of</strong> 3 clearly shows a singlet at 3.29 ppm corresponding<br />

to <strong>the</strong> ethylene molecule coordinated in a η 2 fashion to <strong>the</strong><br />

metal center, moreover <strong>the</strong> fact that only one signal is<br />

observed for this molecule implies that is placed in a highly<br />

symmetrical environment. Besides <strong>the</strong> presence <strong>of</strong> <strong>the</strong> coordination<br />

<strong>of</strong> <strong>the</strong> ethylene, <strong>the</strong> signals corresponding to <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> PCP pincer ligand can also be clearly identified.<br />

Thus, a signal corresponding to <strong>the</strong> methyl groups in <strong>the</strong><br />

PC(CH 3 ) 3 can be observed at 1.25 ppm. A virtual triplet due<br />

to <strong>the</strong> CH 2 group can be observed at 3.5 ppm, <strong>the</strong> multiplicity<br />

<strong>of</strong> <strong>the</strong> signal being due to <strong>the</strong> coupling <strong>of</strong> <strong>the</strong> protons on <strong>the</strong><br />

CH 2 group with <strong>the</strong> phosphorous nuclei in CH 2 PC(CH 3 ) 3 ). A<br />

signal corresponding to <strong>the</strong> aromatic proton 4-H can be<br />

observed as a triplet centered at 6.83 ppm, while that corresponding<br />

to <strong>the</strong> aromatic protons 3,5-H is located at 7.03 ppm,<br />

no signals corresponding to <strong>the</strong> presence <strong>of</strong> metal-hydrides<br />

where detected at higher field. Analogously, signals in <strong>the</strong> 1 H<br />

NMR spectrum <strong>of</strong> 4 corresponding to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> 1-<br />

octene coordinated in a η 2 fashion can be observed as broad<br />

singlets in 2.18 and 2.27 ppm, o<strong>the</strong>r signals corresponding to<br />

<strong>the</strong> rest <strong>of</strong> <strong>the</strong> coordinated 1-octene molecule can be observed<br />

at 0.9 ppm for <strong>the</strong> -(CH 2 ) n - groups and a broad singlet at 1.56<br />

ppm which can be assigned to <strong>the</strong> terminal -(CH 2 )n-CH 3 , signals<br />

due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> PCP pincer ligand can be<br />

observed at similar chemical shifts as those observed for <strong>the</strong><br />

analogous complex with ethylene. As is <strong>the</strong> case for 3, no signals<br />

for <strong>the</strong> presence <strong>of</strong> hydride ligands were detected at higher<br />

field.<br />

The 13 C NMR spectrum <strong>of</strong> 3 exhibits all <strong>the</strong> signals<br />

expected for <strong>the</strong> proposed formulation, it is noteworthy that<br />

<strong>the</strong> signal at 37.97 ppm corresponding to <strong>the</strong> coordinated ethylene<br />

is a singlet, thus <strong>the</strong> same conclusion regarding <strong>the</strong> molecule<br />

to be in a highly symmetrical environment can be<br />

deducted. The 13 C NMR spectrum <strong>of</strong> 4 exhibits signals corresponding<br />

to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> aliphatic moiety and <strong>the</strong> tertbutyl<br />

groups in <strong>the</strong> PCP pincer ligand as well as those for <strong>the</strong>


126 Rev. Soc. Quím. Méx. Vol. 47, Núm. 1 (2003) Valente Gómez-Benítez et al.<br />

CH 2 directly coordinated to <strong>the</strong> P centers. It is noteworthy <strong>the</strong><br />

presence <strong>of</strong> a signal at 32.40 ppm which evidences <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> coordinated olefin, <strong>the</strong> shift to higher field <strong>of</strong> this<br />

particular signal clearly illustrates <strong>the</strong> protecting effects <strong>of</strong> <strong>the</strong><br />

aliphatic chain moiety in <strong>the</strong> case <strong>of</strong> <strong>the</strong> 1-octene adduct 4.<br />

In both cases, <strong>the</strong> 31 P NMR spectra shows a unique signal<br />

at 54.7 and 54.97 ppm for 3 and 4 respectively which is consistent<br />

with a trans configuration for both phosphorus nuclei<br />

in <strong>the</strong> two molecules. Elemental analysis are also consistent<br />

with <strong>the</strong> proposed formulations. The FAB + -Mass spectra <strong>of</strong> 3<br />

exhibits a peak at 585 M/z [M + -H 2 C=CH 2 ] corresponding to<br />

<strong>the</strong> loss <strong>of</strong> <strong>the</strong> ethylene molecule while that <strong>of</strong> 4 shows <strong>the</strong><br />

molecular ion at [M + = 698 M/z].<br />

Both complexes have been exposed to catalytic conditions<br />

where <strong>the</strong> reaction temperature reaches 200 °C, at this<br />

temperature <strong>the</strong> complex containing ethylene, releases <strong>the</strong> ethylene<br />

molecule which makes this complex an excellent candidate<br />

for fur<strong>the</strong>r studies oriented to <strong>the</strong> possible functionalization<br />

<strong>of</strong> this molecule, however <strong>the</strong> complex containing <strong>the</strong> 1-<br />

octene it is resistant even at this temperatures, <strong>the</strong>refore it can<br />

be conclude that it is precisely this stability <strong>the</strong> problem<br />

(product inhibition) we have to go against in order to optimize<br />

<strong>the</strong> present system for <strong>the</strong> dehydrogenation process, o<strong>the</strong>r<br />

alternatives will involve <strong>the</strong> design <strong>of</strong> new ligands where electronic<br />

and steric factors could be tuned in such way that <strong>the</strong><br />

elimination <strong>of</strong> <strong>the</strong> alkene molecule could be carried out easier<br />

and faster. Efforts aimed to achieve this goals are currently<br />

under investigation in our laboratory.<br />

Acknowledgements<br />

V. G.-B. would like to thank CONACyT and DGAPA for<br />

financial support. We would like to thank Chem. Eng. Luis<br />

Velasco Ibarra and M. Sc. Francisco Javier Perez Flores for<br />

<strong>the</strong>ir invaluable help in <strong>the</strong> running <strong>of</strong> <strong>the</strong> FAB-Mass Spectra.<br />

The support <strong>of</strong> this research by CONACyT (J41206-Q) and<br />

DGAPA-UNAM (IN116001) is gratefully acknowledged.<br />

References<br />

1. Behr, A. Ullmann's Encyclopedia <strong>of</strong> Industrial Chemistry, 5th<br />

edn.; Elvers, B.,Hawkins, S., Russey, W., Eds.; VCH<br />

Verlagsgesellschaft: Weinheim, 1994, pp 242-249.<br />

2. (a) Gupta, M.; Hagen, C.; Kaska, W. C.; Flesher, R.; Jensen, C.<br />

M. Chem. Commun., 1996, 2083-2084. (b) Gupta, M.; Hagen, C.;<br />

Kaska, W. C.; Cramer, V.; Jensen, C. M. J. Am. Chem. Soc.,<br />

1997, 119, 840-841. (c) Gupta, M.; Kaska, W. C.; Jensen, C. M.<br />

Chem. Commun., 1997, 461-462.<br />

3. Xu, W. -W.; Rosini, G. P.; Gupta, M.; Jensen, C. M.; Kaska, W.<br />

C. Krough-Jespersen, K.; Goldman, A. S. Chem. Commun., 1997,<br />

2273-2274.<br />

4. Liu, F.; Goldman, A. S. Chem. Commun., 1999, 655-656.<br />

5. Jensen, C. M. Chem. Commun., 1999, 2443-2449.<br />

6. Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J.<br />

Am. Chem. Soc. 1999, 121, 4086-4087.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 127-129<br />

Investigación<br />

The Use <strong>of</strong> N,N’-Di[α-phenylethyl]-diamines as Phosphorylated Chiral<br />

Derivatizing Agents for <strong>the</strong> Determination <strong>of</strong> <strong>the</strong> Enantiomeric Purity <strong>of</strong><br />

Chiral Secondary Alcohols<br />

Gloria E. Moreno, 1,2 Virginia M. Mastranzo, 1,2 Leticia Quintero, 2 Cecilia Anaya de Parrodi, *,1<br />

and Eusebio Juaristi *, 3<br />

1 Centro de Investigaciones Químico Biológicas, Universidad de las Américas-Puebla, Santa Catarina Mártir, Cholula,<br />

72820 Puebla, México. E-mail: anaya@mail.pue.udlap.mx<br />

2 Centro de Investigación de la Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 72570 Puebla, México.<br />

3 Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,<br />

07000 México, D. F. E-mail: juaristi@relaq.mx<br />

Recibido el 17 de febrero del 2003; aceptado el 26 de marzo del 2003<br />

This paper is dedicated to Dr. Alfonso Romo de Vivar in appreciation <strong>of</strong> his contributions to chemistry<br />

Abstract: The influence <strong>of</strong> <strong>the</strong> framework structure in C 2 -symmetric<br />

N,N’-di[α-phenylethyl]diamines as chiral derivatizing agents, on<br />

<strong>the</strong>ir effectiveness for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> enantiomeric composition<br />

<strong>of</strong> chiral secondary alcohols by 31 P-NMR spectroscopy <strong>of</strong><br />

derived diastereomeric phosphonamides, is described.<br />

Key words: chiral derivatizing agents, enantiomeric composition,<br />

C 2 -symmetric diamines, 31 P-NMR spectroscopy.<br />

Resumen: Se describe la influencia de la estructura de N,N’-di[αfeniletil]-diaminas<br />

con eje de simetría C 2 , como agentes derivatizantes<br />

quirales en la determinación de la composición enantiomérica<br />

de alcoholes secundarios quirales empleando RMN de 31 P.<br />

Palabras clave: Agente derivatizante quiral, composición enantiomérica,<br />

diaminas con simetría C 2 , RMN de 31 P.<br />

Introduction<br />

Chiral derivatizing agents (CDAs) for NMR spectroscopy represent<br />

one <strong>of</strong> <strong>the</strong> most effective tools to satisfy <strong>the</strong> great<br />

demand for rapid and reliable methods for <strong>the</strong> determination<br />

<strong>of</strong> <strong>the</strong> enantiomeric composition <strong>of</strong> chiral substrates [1]. Their<br />

use involves <strong>the</strong> derivatization reaction <strong>of</strong> an enantiomerically<br />

pure chiral auxiliary with <strong>the</strong> substrates to be analyzed, in<br />

order to obtain diastereoisomeric products presenting<br />

anisochronous absorptions in <strong>the</strong>ir NMR spectra. Efforts<br />

directed to <strong>the</strong> development <strong>of</strong> fast and reliable CDAs continue<br />

[2]. In this context, <strong>the</strong> high sensitivity afforded by 31 P<br />

NMR spectroscopic methods makes attractive <strong>the</strong> use <strong>of</strong> phosphorus-containing<br />

derivatives towards this goal [3].<br />

Chiral diamines have been shown to be useful chiral<br />

reagents and ligands for chemical catalysis, with especial<br />

application in asymmetric syn<strong>the</strong>sis [4]. By <strong>the</strong> same token,<br />

(R)- and (S)-α-phenylethylamine are simple, yet powerful<br />

stereodifferentiating auxiliaries in organic transformations [5].<br />

Presently, <strong>the</strong>re exist several reports in <strong>the</strong> literature<br />

describing <strong>the</strong> use <strong>of</strong> diamines containing diverse N-substituents<br />

as CDAs, which are based on <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> chiral<br />

phospholidines for <strong>the</strong> determination <strong>of</strong> enantiomeric composition<br />

<strong>of</strong> chiral alcohols, amines, carboxylic acids, halohydrins<br />

and thiols. In particular, N,N’-di[(S)-α-phenylethyl]ethane-<br />

1,2-diamine, A, and N,N’-di[(S)-α-phenylethyl]propane-1,3-<br />

diamine, B, (Fig. 1) have been reported as effective and inexpensive<br />

CDAs [6]. In addition, <strong>the</strong> use <strong>of</strong> chiral diamines<br />

based on enantiopure trans-1,2-diaminocyclohexane as CDAs,<br />

such as C has been demonstrated [7]. Fur<strong>the</strong>rmore, our group<br />

also reported <strong>the</strong> use <strong>of</strong> trans-N,N’-di-[(S)-α-phenylethyl]-<br />

cyclohexane-1,2-diamines, D and E as convenient CDAs [8].<br />

Figure 1.<br />

Ph<br />

S<br />

NH<br />

S<br />

S<br />

Ph<br />

A<br />

D<br />

HN<br />

S<br />

NH<br />

NH<br />

S<br />

Ph<br />

S<br />

Ph<br />

Ph<br />

S<br />

CH 3<br />

R<br />

NH<br />

NH<br />

R<br />

CH 3<br />

C<br />

NH HN<br />

B<br />

S<br />

R<br />

NH<br />

NH<br />

R<br />

Ph<br />

S<br />

E<br />

Ph S<br />

Ph


128 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Gloria E. Moreno et al.<br />

Figure 2.<br />

Ph<br />

S<br />

NH<br />

Ph<br />

NH<br />

NH<br />

4a<br />

HN<br />

Ph<br />

S<br />

Ph<br />

Results and discussion<br />

S<br />

S<br />

S<br />

S<br />

1<br />

Ph<br />

R<br />

S<br />

S<br />

Ph<br />

3<br />

S<br />

NH<br />

NH<br />

S<br />

Ph<br />

R<br />

HN<br />

Ph<br />

2<br />

Ph<br />

R<br />

NH<br />

R<br />

NH<br />

NH<br />

R<br />

Ph<br />

S<br />

S<br />

4b<br />

R<br />

Ph<br />

Ph<br />

Table 1. Syn<strong>the</strong>sis <strong>of</strong> P-chloro-1,3-diazaphospholidines.<br />

Entry Diamine Reaction Conversion δ (ppm) 31 P-NMR<br />

time, h % a <strong>of</strong> Phospholidine<br />

1 1 0.5 100 165.21<br />

2 2 0.5 100 168.93<br />

3 3 24 23 166.50<br />

4 4a 0.5 100 177.40<br />

5 4b 0.5 100 175.25<br />

a The percent <strong>of</strong> conversion were determined from <strong>the</strong> 31 P-NMR spectra<br />

in relation to <strong>the</strong> amount <strong>of</strong> PCl 3 .<br />

The use <strong>of</strong> C 2 -symmetric N,N’-di[α-phenylethyl]-diamines 1, 2,<br />

3, 4a and 4b as chiral ligands (Fig. 2) will be reported [9]. In<br />

<strong>the</strong> present work <strong>the</strong>ir application as chiral derivatizing agents<br />

(CDAs), via <strong>the</strong> formation <strong>of</strong> <strong>the</strong> corresponding P-chloro-1,3-<br />

diazaphospholidines is described. These CDAs can be prepared<br />

directly in <strong>the</strong> NMR tube employed for 31 P NMR analysis [8].<br />

To this end, each diamine in CDCl 3 solvent was treated<br />

with one equivalent <strong>of</strong> PCl 3 in CH 2 Cl 2 at room temperature to<br />

give <strong>the</strong> corresponding phospholidines as intermediates. The<br />

formation <strong>of</strong> <strong>the</strong> P-chloro-1,3-diazaphospholidines <strong>of</strong> interest<br />

was very fast and quantitative with diamines 1, 2, 4a, and 4b,<br />

but ra<strong>the</strong>r slow and incomplete with diamine 3 (Table 1).<br />

Apparently, <strong>the</strong> reaction <strong>of</strong> diamine 3 with PCl 3 is also unfavorable,<br />

because <strong>of</strong> strain in <strong>the</strong> trans-fused five-membered<br />

bicyclic phospholidine formed.<br />

Gratifyingly, <strong>the</strong> P-Cl bond <strong>of</strong> <strong>the</strong> phospholidines 2, 4a<br />

and 4b were readily cleaved, upon treatment with <strong>the</strong><br />

carbinols <strong>of</strong> interest. So, derivatization was carried out by<br />

addition <strong>of</strong> 0.8 equiv <strong>of</strong> <strong>the</strong> racemic secondary alcohols, 5a-d,<br />

to afford <strong>the</strong> respective P-alkoxy-1,3-diazaphosphonamides<br />

(Table 2). The all-(S) diamine 4a afforded <strong>the</strong> largest differences<br />

<strong>of</strong> chemical shifts (∆δ) in <strong>the</strong> 31 P NMR spectra <strong>of</strong> <strong>the</strong><br />

diastereomeric phosphonamides. Never<strong>the</strong>less, <strong>the</strong> P-Cl bond<br />

<strong>of</strong> <strong>the</strong> P-chloro-1,3-diazaphospholidine derived from 1 was<br />

specially resistant upon treatment with carbinols. Thus,<br />

diamines 1 and 3 were not useful as CDAs.<br />

In summary, <strong>the</strong> P-chloro-1,3-diazaphospholidines<br />

derived from chiral diamines 2, 4a, and 4b, incorporating N-<br />

(α-phenylethyl) substituents, are convenient chiral derivatizing<br />

agents for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> enantiomeric purity <strong>of</strong><br />

chiral alcohols. The quantitative and fast P-Cl bond cleavage<br />

upon alcoholysis leads to phosphonamide formation, directly<br />

in <strong>the</strong> NMR tube prior to measurement. Large differences in<br />

Table 2. 31 P NMR data <strong>of</strong> P-alkoxy-1,3-diazaphospholidines derived from secondary alcohols 5a-d recorded in CDCl 3 .<br />

Entry Diamine R*OH Diastereoisomeric A B C D E<br />

P-OR, ∆δ lit. 6 ∆δ lit. 6 ∆δ lit. 7a ∆δ lit. 8 ∆δ lit. 8 ∆δ<br />

1 4a 5a 1.48<br />

2 4b 0.44<br />

— 2.73 0.27 1.07 0.38<br />

3 4a 5b 1.61<br />

4 4b 0.37<br />

— — 0.27 0.98 0.31<br />

5 4a 5c 2.79<br />

6 4b 0.21<br />

0.39 3.69 — 6.34 1.01<br />

7 2 0.44<br />

8 4a 5d 1.21<br />

9 4b 0.18<br />

0.20 1.38 0.40 4.71 0.58


The Use <strong>of</strong> N,N’-Di[α-phenylethyl]-diamines as Phosphorylated... 129<br />

<strong>the</strong> 31 P NMR chemical shifts (∆δ) for <strong>the</strong> diastereomeric phosphonamides<br />

were observed, allowing accurate integration and<br />

quantitative determination <strong>of</strong> <strong>the</strong> diastereomeric ratios.<br />

Experimental section<br />

31P NMR spectra were measured on a Varian Mercury-200<br />

MHz spectrometer. <strong>Chemical</strong> shifts are given as δ values<br />

(ppm). All reagents were purchased from Aldrich <strong>Chemical</strong><br />

Co.<br />

General Procedure for Chiral Alcohol Derivatization<br />

In an NMR tube are placed with vigorous stirring 0.16 mmol<br />

<strong>of</strong> free diamine, 0.5 mL <strong>of</strong> CDCl 3 , 119 mg (0.80 mmol) <strong>of</strong><br />

diethylaniline, and 23 mg (0.16 mmol) <strong>of</strong> PCl 3 previously dissolved<br />

in 50 µL <strong>of</strong> CH 2 Cl 2 , affording <strong>the</strong> chlorodiazaphospholidine<br />

and <strong>the</strong> 31 P NMR spectra are recorded (Table I). Immediately<br />

after, 0.13 mmol <strong>of</strong> racemic secondary alcohols is<br />

added, and <strong>the</strong> resulting mixture is stirred for 30 minutes<br />

before 31 P NMR spectra are recorded at room temperature<br />

(Table 2).<br />

Acknowledgment<br />

We thank CONACyT for financial support (Projects No.<br />

32202-E and 33023-E, and Grants No. 91275 and 144937).<br />

References<br />

1. (a) For a detailed review, see: Parker, D. Chem. Rev. 1991, 91,<br />

1441-1457. See, also: (b) Dale, J. A.; Mosher, H. S. J. Am. Chem.<br />

Soc. 1973, 95, 512-519. (c) Pirkle, W. H.; Hoover, D. J. Top.<br />

Stereochem. 1982, 13, 263-331. (d) Benson, S. C.; Cai, P.; Colon,<br />

M.; Haiza, M. A.; Tokles, M.; Snyder, J. K. J. Org. Chem. 1988,<br />

53, 5335-5341. (e) Jursic, B. S.; Zdravkovski, Z.; Zuanic, M.<br />

Tetrahedron: Asymmetry 1995, 5, 1711-1716.<br />

2. (a) Uccello-Barreta, G.; Bernardini, R.; Lazzaroni, R.; Salvadori,<br />

P. Org. Lett. 2000, 2, 1795-1798. (b) Reymond, S.; Brunel, J. M.;<br />

Buono, G. Tetrahedron: Asymmetry 2000, 11, 1273-1278. (c)<br />

Alexakis, A.; Chauvin, A.-S. Tetrahedron: Asymmetry 2001, 12,<br />

1411-1416.<br />

3. (a) Verkade, L. D.; Quin, L. D. Phosphorus-31 NMR<br />

Spectroscopy in Stereochemical Analysis; VCH Publishers:<br />

Deerfield Beach, 1987. (b) See, also: Juaristi, E. Introduction to<br />

Stereochemistry and Conformational Analysis; Wiley: New<br />

York, 1991; pp 137-138. (c) Johnson, C. R.; Elliott, R. C.;<br />

Penning, T. D. J. Am. Chem. Soc. 1984, 106, 5019-5020. (d)<br />

Kato, N. J. Am. Chem. Soc. 1990, 112, 254-257. (e) Anderson, R.<br />

C.; Shapiro, M. J. J. Org. Chem. 1984, 49, 1304-1305. f) Hulst,<br />

R.; Kellogg, R. M.; Feringa, B. L. Rec. Trav. Chim. Pays-Bas<br />

1995, 114, 115-138.<br />

4. For excellent reviews, see: (a) Togni, A.; Venanzi, L. M. Angew.<br />

Chem., Int. Ed. 1994, 33, 497-526. (b) Bennani, Y. L.; Hanessian,<br />

S. Chem. Rev. 1997, 97, 3161. (c) Lucet, D.; Le Gall, T.;<br />

Miokowski, Ch. Angewandte Chem., Int. Ed. 1998, 37, 2580-<br />

2627.<br />

5. (a) Jaen, J. In Encyclopedia <strong>of</strong> Reagents for Organic Syn<strong>the</strong>sis,<br />

Paquette, L. A., Ed.; Wiley: New York, 1995, Vol. 5, pp 3427-<br />

3431. (b) Juaristi, E.; Escalante, J.; León-Romo, J. L.; Reyes, A.<br />

Tetrahedron: Asymmetry 1998, 9, 715-740. (c) Juaristi, E.; León-<br />

Romo, J. L.; Reyes, A.; Escalante, J. Tetrahedron: Asymmetry<br />

1999, 10, 2441-2495.<br />

6. Hulst, R.; de Vries, K.; Feringa, B. L. Tetrahedron: Asymmetry<br />

1994, 5, 699-708.<br />

7. (a) Alexakis, A.; Mutti, S.; Mangeney, P. J. Org. Chem. 1992, 57,<br />

1224-1237. (b) Alexakis, A.; Frutos, J. C.; Mutti, S.; Mangeney,<br />

P. J. Org. Chem. 1994, 59, 3326-3334. For o<strong>the</strong>r chiral derivatizing<br />

agents based on enantiopure trans-1,2-diaminocyclohexane,<br />

see: (c) Resch, J. F.; Meinwald, J. Tetrahedron Lett. 1981, 22,<br />

3159-3162. (d) Staubach, B.; Buddrus, J. Angew. Chem., Int. Ed.<br />

1996, 35, 1344-1346.<br />

8. Anaya de Parrodi, C.; Moreno, G. E.; Quintero L.; Juaristi, E.<br />

Tetrahedron: Asymmetry 1998, 9, 2093-2099.<br />

9. Mastranzo, V. M.; Quintero, L.; Anaya de Parrodi, C.; Juaristi,<br />

E.; Walsh, P. J. Unpublished results.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 130-131<br />

Investigación<br />

Terpenoids and Flavones from Achillea falcata (Asteraceae)<br />

Maurizio Bruno, 1 Sergio Rosselli, 1 Rosa Angela Raccuglia, 1 Antonella Maggio, 1 Felice Senatore, 2<br />

Nelly Apostolides Arnold, 3 Claire A. Griffin 4 and Werner Herz 4<br />

1 Dipartimento di Chimica Organica, Universitá di Palermo, Viale de Scienze, Pardo d'Orleans II, 90128 Palermo, Italy<br />

2 Dipartimento Chimica Sostanze Naturali, Universitá Federico II, via D. Montesano, 49-80131 Napoli, Italy<br />

3 Faculté des Sciences Agronomiques, Université Saint Esprit, Kaslik (Beirut), Lebanon.<br />

4 Department <strong>of</strong> Chemistry and Biochemistry, The Florida State University, Tallahassee, FL 32306-4390, USA.<br />

Tel: (1)-850-644-2774; Fax: (1)-850-644-8281; E-mail: jdulin@chem.fsu.edu<br />

Recibido el 25 de febrero del 2003; aceptado el 2 de abril del 2003<br />

Dedicated to Pr<strong>of</strong>essor Alfonso Romo de Vivar, a valued collaborator during <strong>the</strong> early stages <strong>of</strong> his career<br />

Abstract. Aerial parts <strong>of</strong> Achillea falcata L. furnished <strong>the</strong> monoterpenes<br />

3,7-dihydroxy-3,7-dimethyl-1,5-octadiene and 3,6-dihydroxy-<br />

3,7-dimethyl-1,7-octadiene, <strong>the</strong> sesquiterpene lactone sintenin and<br />

<strong>the</strong> flavonoids 5-hydroxy-6,7,3', 4'-tetramethoxyflavone (6-hydroxyluteolin-6,7,3',4'-tetramethyl<br />

e<strong>the</strong>r) and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone<br />

(desmethoxynobiletin).<br />

Keywords: Achillea falcata, Asteraceae, monoterpenes, sesquiterpene<br />

lactone, sintenin, flavonoids.<br />

Resumen. El análisis químico de las partes aéreas de Achillea falcata<br />

permitió la caracterización de los monoterpenos 3,7-dihidroxi-3,7-<br />

dimetil-1,5-octadieno y 3,6-dihidroxi-3,7-dimetil-1,7-octadieno, la<br />

lactona sesquiterpénica sintenina y los flavonoides 5-hidroxi-6,7,3',4'-<br />

tetrametoxi-flavona (6,7,3',4'-tetrametil éter de 6-hidroxi-luteolina) y<br />

5-hidroxi-6,7,8,3',4'-pentametoxiflavona (desmetoxinobiletina).<br />

Palabras clave: Achillea falcata, asteraceae, monoterpenos, lactona<br />

sesquiterpénica, sintenina, flavonas.<br />

Our groups have previously described <strong>the</strong> chemistry <strong>of</strong> two<br />

Achillea species, A. ligustica All. from Sicily [1] and A. cretica<br />

L. from Cyprus [2]. We now report <strong>the</strong> results <strong>of</strong> our study<br />

<strong>of</strong> Achillea falcata L. from Lebanon.<br />

Aerial parts <strong>of</strong> A. falcata L. (syns. A. damascene DC, A.<br />

sulfurea Boiss.) were extracted at room temperature with acetone;<br />

<strong>the</strong> extract was purified by silica gel chromatography<br />

and radial chromatography to afford five compounds. Of<br />

<strong>the</strong>se, 5-hydroxy-6,7,3',4'-tetramethoxyflavone(6-hydroxyluteolin-6,7,3',4'-tetramethyl<br />

e<strong>the</strong>r) and 5-hydroxy-6,7,8,3'4'-pentamethoxyflavone<br />

(desmethoxynobiletin) were identified by<br />

MS and comparison <strong>of</strong> <strong>the</strong>ir 1 H-NMR spectra with spectra in<br />

our files. Two o<strong>the</strong>rs, <strong>the</strong> monoterpenes 3,7-dihydroxy-3,7-<br />

dimethyl-1,5-octadiene (1) and its isomer 3,6-dihydroxy-3,7-<br />

dimethyl-1,7-octadiene (2), have been previously reported<br />

from Cinnamum camphora [3]; diene 1 has also been isolated<br />

in our laboratories from Achillea ligustica All. [1] where its<br />

high resolution 1 H NMR spectrum was reported. Doubling <strong>of</strong><br />

<strong>the</strong> signals <strong>of</strong> H-1a, H-1b and H-2 in our 500 MHz 1 H NMR<br />

spectrum <strong>of</strong> 2 (see Experimental section) indicated that it was<br />

a 1:1 mixture <strong>of</strong> C-3 epimers. The remaining constituent was<br />

<strong>the</strong> germacradienolide sintenin (3) first reported with incorrect<br />

C-9 stereochemistry from Achillea sintenisii Hub.-Mor. [4], a<br />

matter subsequently corrected with material from Achillea<br />

biebersteinii Afran (as A. micrantha Willd.) [5].<br />

Sintenin has also been isolated from <strong>the</strong> near Eastern<br />

species A. aleppica DC. and pseudoaleppica Hub. Mor. [6], A.<br />

cucullata (Hausskn.) Bornm., A. goniocephala Boiss. et Bal.<br />

and A. vermicularis Trin. [7] as well as from A. teretifolia<br />

Willd. [8], all, like A. sintenisii, A. biebersteinii and now A.<br />

falcata, members <strong>of</strong> Achillea sect. Santolinoidea C. Koch [9]<br />

which suggests that sintenin might be a marker for <strong>the</strong> section.<br />

An exception is <strong>the</strong> Balkan species A. crithmifolia Waldst. et<br />

Kit. several collections <strong>of</strong> which [10-13] yielded a variety <strong>of</strong><br />

sesquiterpene lactone types among which sintenin appeared<br />

only once [12].<br />

OH<br />

OH<br />

Experimental section<br />

OH<br />

General experimental procedures. Column chromatography<br />

was performed using Merck Si gel (No. 7734). 1 H NMR spectra<br />

were obtained on a Varian Inova 500 MHz NMR spectrometer<br />

in CDCl 3 , whereas 13 C NMR spectra were run on an<br />

IBM/Bruker WP27OSY NMR spectrometer at 67.5 MHz in<br />

CDCl 3 . Mass spectra were acquired on a JEOL MS Route 600<br />

H instrument.<br />

Plant material. Aerial parts <strong>of</strong> Achillea falcata L. were collected<br />

at Jab. Kneissé, Lebanon at 1700 m s / l in July 2000.<br />

OH<br />

AcO<br />

1 2 3<br />

OAc<br />

O<br />

O


Reactivity <strong>of</strong> IrH 2 {C 6 H 3 -2,6-(CH 2 PBu t 2) 2 } towards alkene compounds 131<br />

A voucher specimen (leg., det. and confirmed by N. Arnold<br />

s.n. is deposited in <strong>the</strong> herbarium <strong>of</strong> <strong>the</strong> Botanical Garden and<br />

<strong>the</strong> Botanische Museum, Freie Universität Berlin, Germany.<br />

Extraction and isolation. Dried and powdered aerial parts<br />

(750 g) were extracted with acetone (3 × 5 l) at room temperature<br />

for one week each time. The extracts were combined and<br />

evaporated at reduced pressure and low temperature (35 °C) to<br />

give 58 g <strong>of</strong> residue. The residue was subjected to dry column<br />

chromatography over Si gel with a solvent gradient ranging<br />

from petroleum e<strong>the</strong>r (bp 50-70 °C) to EtOAc (100 %) and<br />

finally with EtOAc-MeOH (19:1 and 9:1). The fraction eluted<br />

with petroleum e<strong>the</strong>r-EtOAc (2:3) was resubmitted to chromatography<br />

using petroleum e<strong>the</strong>r-EtOAc (4:1, 3:7 and 1:1)<br />

as eluent to afford several subfractions. The subfraction eluted<br />

with petroleum e<strong>the</strong>r-EtOAc (3:70 weighing 250 mg was subjected<br />

to radial chromatography using CH 2 Cl 2 -MeOH (99:1)<br />

as eluent to afford, in order <strong>of</strong> increasing polarity, desmethokynobiletin<br />

(20 mg) identified by MS and 1 H NMR spectrometry,<br />

sintenin (10 mg), identified by MS, 1 H and 13 C NMR<br />

spectrometry [5], and 10 mg <strong>of</strong> 2. The subfraction eluted with<br />

petroleum e<strong>the</strong>r-ethyl acetate (1:1) weighing 200 mg was subjected<br />

to radial chromatography using CH 2 Cl 2 -MeOH (49:1)<br />

as eluent to afford in order <strong>of</strong> increasing polarity 60 mg <strong>of</strong> 5-<br />

hydroxy-6,7,3',4'-tetramethoxyflavone and 45 mg <strong>of</strong> 1.<br />

3,7-Dihydroxy-3,7-dimethyl-1,5-octadiene (1): Mass and 1 H<br />

NMR spectra corresponded to data reported earlier.<br />

3,6-Dihydroxy-3,7-dimethyl-1,7-octadiene (2): 1:1 mixture<br />

<strong>of</strong> C-3 epimers; oil, MS CI (isobutene) 153.1279 (25),<br />

135.1174 (21.9); calcd for C 10 H 18 -O 2 H 2 O + H 153.1279; for<br />

C 10 H 18 O 2 - 2H 2 O + H, 135.1174; 1 H NMR (CDCl 3 ) δ 5.89 and<br />

5.88 (both dd, J = 17.3, 10.8 Hz, H-2 <strong>of</strong> epimers A and B),<br />

5.22 and 5.21 (both dd, J = 17.3, 1.4 Hz, H-1a <strong>of</strong> epimers A<br />

and B), 4.94 and 4.93 (both q, J = 4, 1 Hz, H-8a <strong>of</strong> both<br />

epimers), 4.83 and 4.82 (both q, 4 Hz, H-8b <strong>of</strong> both epimers),<br />

4.04 (brq, 6.3 Hz, H-6 <strong>of</strong> both epimers, 1.70 (brs, 3H, H-8),<br />

1.64-1.53 (c, 4H, H-4a,b H-5a,b), 1.28 s (3H, H-10).<br />

References<br />

1. Bruno, M.; Herz, W. Phytochemistry 1988, 27, 1871-1872.<br />

2. Bruno, M.; Bondi, M. L.; Paternostro, M. P.; Arnold, N. A.; Diaz,<br />

J. G.; Herz, W. Phytochemistry 1996, 42, 737-740.<br />

3. Takaoka, D.; Hiroi, M. Phytochemistry 1976, 15, 330-331.<br />

4. Gören, N.; Öksüz, S.; Ulubelen, A. Phytochemistry 1988, 27,<br />

2346-2347.<br />

5. Hatam, N. A. R.; Yousif, N. J.; Porzel, A.; Seifert, K.<br />

Phytochemistry 1992, 31, 2160-2162.<br />

6. Appendino, G.; Jakupovic, J.; Özen, A. C.; Schuster, A.<br />

Phytochemistry 1993, 34, 1171-1172.<br />

7. Öksüz, S.; Gümüs, S.; Alpinar, K. Biochem. Syst. Ecol. 1991, 19,<br />

439.<br />

8. Öksüz, S.; Ulubelen, A.; Tuslaci, E. Fitoterapia 1990, 61, 283.<br />

9. Davis, P. H. Ed., Flora <strong>of</strong> Turkey, Vol. 5, pp. 224-251, 1975.<br />

Edinburgh University Press.<br />

10. Miloslavljevic, S.; Aljancic, I.; Macura, S.; Milinkovic, D.; Stefanovic,<br />

M. Phytochemistry 1991, 30, 3464-3466.<br />

11. Miloslavljevic, S.; Macura, S.; Stefanovic, M.; Aljancic, I.;<br />

Milinkovic, D. J. Nat. Prod. 1994, 57, 64-67.<br />

12. Todorova, M. N.; Markova, M. M.; Tsankova, E. T.<br />

Phytochemistry 1998, 49, 2429-2432.<br />

13. Todorova, M. N.; Vogler, B.; Tsankova, E. T. Natural Prod. Lett.<br />

2000, 14, 463-468.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 132-138<br />

Investigación<br />

Preparation <strong>of</strong> 11-Hydroxylated 11,13-Dihydrosesquiterpene Lactones<br />

Howard G. Pentes, 1 Francisco A. Macias 2 and Nikolaus H. Fischer *1,a<br />

1 Department <strong>of</strong> Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA<br />

a Present address: Department <strong>of</strong> Pharmacognosy, School <strong>of</strong> Pharmacy, University <strong>of</strong> Mississippi, University, MS 38677,<br />

USA. Tel: (662) 915-7026; Fax: (662)-915-6975; E-mail: nfischer@olemiss.edu<br />

2 Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Apdo. 40,11080 Puerto Real, Cádiz, Spain<br />

Recibido el 4 de febrero del 2003; aceptado el 24 de abril del 2003<br />

Dedicated to Pr<strong>of</strong>essor Alfonso Romo de Vivar<br />

Abstract. Hydroxylations <strong>of</strong> <strong>the</strong> α-position <strong>of</strong> lactonic carbonyl<br />

groups <strong>of</strong> four different skeletal types (germacranolides, eudesmanolides,<br />

guaianolides, and elemanolides) <strong>of</strong> 11,13-dihydrosesquiterpene<br />

lactones were achieved by LDA-mediated generation <strong>of</strong> <strong>the</strong> corresponding<br />

lactone enolates and trapping with gaseous oxygen or with a<br />

chiral oxidizing agent, (camphorylsulfonyl)oxaziridine. The oxidations<br />

with oxygen were non-stereospecific and generated both, <strong>the</strong> 11<br />

α- and 11β-hydroxylactones in combined yields ranging from 13-47<br />

% along with norsesquiterpene ketones which are most likely formed<br />

by decomposition <strong>of</strong> <strong>the</strong> hydroperoxide anion intermediates.<br />

Hydroxylation <strong>of</strong> <strong>the</strong> germacranolide-type 11,13-dihydropar<strong>the</strong>nolide<br />

with ei<strong>the</strong>r (+)- or (-)-(camphorylsulfonyl)oxaziridine gave exclusively<br />

<strong>the</strong> 11β-hydroxylactone (66-72 %) with no detection <strong>of</strong> <strong>the</strong> norsesquiterpene<br />

ketone.<br />

Keywords: Sesquiterpene lactones, hydroxylation, LDA, enolates,<br />

oxidations, nor-sesquiterpene ketones, germacranolides, eudesmanolides,<br />

guaranolides, elemanolides.<br />

Resumen. Se llevaron a cabo hidroxilaciones de las posiciones α- del<br />

grupo carbonilo lactónico en cuatro esqueletos diferentes de 11,13-<br />

dihidro- derivados de lactonas sesquiterpénicas (germacranólidas,<br />

eudesmanólidas, guayanólidas y elemanólidas), mediante la generación<br />

del enolato con LDA y su atrapamiento con oxígeno gaseoso<br />

o con un agente oxidante quiral, (canforilsulfonil)aziridina. Las oxidaciones<br />

con oxígeno no fueron estereo-específicas y generaron las<br />

hidroxi-lactonas 11α- y 11β- en rendimientos combinados que fluctúan<br />

entre 13 al 47 %, junto con cetonas nor-sesquiterpénicas, que se<br />

forman probablemente por la descomposición de los aniones hidroperóxidos<br />

intermediarios. La hidroxilación de la germacranólida<br />

11,13-dihidropartenólida, con (+)- o (-)- (canforilsulfonil)-aziridina<br />

produjo la 11β-hidroxi-lactona exclusivamente (66-72 %), sin detectarse<br />

la cetona nor-sesquiterpénica.<br />

Palabras clave: Lactonas sesquiterpénicas, hidroxilaciones, LDA,<br />

enolatos, oxidaciones, cetonas nor-sesquiterpénicas, germacranólidas,<br />

eudesmanólidas, guayanólidas, elemanólidas.<br />

Introduction<br />

7-Hydroxyl-bearing sesquiterpene lactones are uncommon in<br />

nature [1]. However, <strong>the</strong>y show very interesting biological<br />

activities. For example, 7α-hydroxydehydrocostus lactone<br />

(21a) exhibits molluscicidal activity against Biomphalaria<br />

glabrata snails [2], that are hosts in <strong>the</strong> life cycle <strong>of</strong> <strong>the</strong> blood<br />

fluke which is responsible for human Schistosomiasis (bilharzia),<br />

a disease which affects more than 200 million people<br />

in Africa, Asia, and South America [3]. In contrast, dehydrocostus<br />

lactone (21b) is not active against Biomphalaria [1].<br />

7α-Hydroxydehydrocostus lactone (21a) has been shown to<br />

inhibit <strong>the</strong> in vitro activity <strong>of</strong> mammalian phosph<strong>of</strong>ructokinase<br />

(PFK), and exhibits a twenty-fold higher in vitro inhibitory<br />

activity towards PFK than dehydrocostus lactone (21b) [4].<br />

While <strong>the</strong>re is no direct correlation <strong>of</strong> molluscicidal activity<br />

and PFK inhibition by sesquiterpene lactones, it is interesting<br />

to note that <strong>the</strong> most potent molluscicidal sesquiterpene lactone<br />

is also <strong>the</strong> most active PFK inhibitor [4]. Most biological<br />

activities <strong>of</strong> sesquiterpene lactones seem to depend on <strong>the</strong><br />

presence <strong>of</strong> <strong>the</strong> α-methylene-γ-lactone moiety which is a<br />

receptor <strong>of</strong> biological nucleophiles such as essential thiol<br />

groups present in a number <strong>of</strong> enzymes and proteins [5, 6].<br />

While <strong>the</strong> presence <strong>of</strong> <strong>the</strong> α-methylene-γ-lactone moiety certainly<br />

enhances <strong>the</strong> inhibition <strong>of</strong> PFK, Vargas et al. [4]<br />

showed that a hydroxyl group located in proximity to <strong>the</strong> lactone<br />

functionality <strong>of</strong> sesquiterpene lactones also enhances<br />

inhibition <strong>of</strong> PFK. The hydroxyl group <strong>of</strong> 7-hydroxysesquiterpene<br />

lactones is possibly enhancing PFK inhibition by hydrogen<br />

bonding to <strong>the</strong> active site <strong>of</strong> <strong>the</strong> enzyme. With <strong>the</strong><br />

assumption that 11-hydroxysesquiterpene lactones might show<br />

biological activities similar to <strong>the</strong>ir 7-hydroxy analogs, <strong>the</strong><br />

syn<strong>the</strong>sis <strong>of</strong> a series <strong>of</strong> 11-hydroxylated sesquiterpene lactones<br />

as syn<strong>the</strong>tic models for <strong>the</strong> study PFK inhibition was desired.<br />

In this paper, we describe <strong>the</strong> preparation <strong>of</strong> 11-hydroxysesquiterpene<br />

lactones from <strong>the</strong> corresponding 11,13-dihydrosesquiterpene<br />

lactones by reaction <strong>of</strong> <strong>the</strong> lactone enolates<br />

with oxygen (Scheme 1) [7]. Transformations <strong>of</strong> four skeletal<br />

types <strong>of</strong> 11, 13-dihydrosesquiterpene lactones (germacrolides,<br />

eudesmanolides, guaianolides, and elemanolides) were carried<br />

out.<br />

Results and discussion<br />

Dihydropar<strong>the</strong>nolide (4) was oxidized as outlined in Scheme<br />

2. The enolate <strong>of</strong> 4 was generated at –70 °C in THF by deprotonation<br />

with LDA under argon atmosphere. Subsequently


Preparation <strong>of</strong> 11-Hydroxylated 11,13-Dihydrosesquiterpene Lactones 133<br />

Table 1. Selected 1 H NMR data a .<br />

Sesquiterpene lactone CH 3 -13 H-6<br />

Dihydropar<strong>the</strong>nolide (4) 1.26 (d) 3.80 (dd)<br />

11α-Hydroxyhydropar<strong>the</strong>nolide<br />

(5) 1.31 (s) 3.79 (dd)<br />

11β-Hydroxydihydropar<strong>the</strong>nolide<br />

(6) 1.39 (s) 4.12 (dd)<br />

a <strong>Chemical</strong> shifts in ppm, multiplicity in paren<strong>the</strong>sis,<br />

s = singlet, d = doublet.<br />

oxygen, dried over P 2 O 5 , was bubbled through <strong>the</strong> solution for<br />

about 20 minutes. The reaction was quenched by <strong>the</strong> addition<br />

<strong>of</strong> 3-4 mL <strong>of</strong> distilled water. The solution was <strong>the</strong>n carefully<br />

neutralized with 5 % HCl and extracted with diethyl e<strong>the</strong>r.<br />

Sesquiterpene lactones 1, 10, 15, 21, and 24 were reacted<br />

under similar conditions. The products were separated using<br />

silica gel column chromatography, preparative thin-layer<br />

chromatography, or reversed-phase HPLC.<br />

The 11-hydroxylactones were analyzed by application <strong>of</strong><br />

IR, 1 H and 13 C NMR, and MS methods. The IR spectra <strong>of</strong> <strong>the</strong><br />

OH O<br />

OO -<br />

-<br />

HO<br />

B<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

O -<br />

O<br />

CH 3<br />

O -<br />

CH 3<br />

LDA<br />

H 2 O<br />

CO 3<br />

2-<br />

O<br />

A<br />

O<br />

O<br />

o - Li +<br />

O 2<br />

CH 3<br />

O O -<br />

O<br />

1. H 2 O<br />

2. Neutralize<br />

Scheme 1. Proposed mechanism <strong>of</strong> lactone enolate oxidations.<br />

O<br />

CH 3<br />

OH<br />

derivatives clearly showed a broad absorption signal near<br />

3400 cm –1 due to <strong>the</strong> lactonic 11-hydroxyl group. The 1 H<br />

NMR data also indicated hydroxylation at C-11 by collapse to<br />

a methyl singlet <strong>of</strong> <strong>the</strong> dihydrolactone C-11-methyl doublets<br />

(C-13). The 1 H NMR data was also used to distinguish<br />

between <strong>the</strong> 11α- and 11β-hydroxy-derivatives. Due to <strong>the</strong><br />

through-space deshielding effect <strong>of</strong> <strong>the</strong> C-11β hydroxyl group,<br />

<strong>the</strong> chemical shift <strong>of</strong> <strong>the</strong> lactonic signal (H-6β) for all 11βhydroxy-derivatives<br />

had shifted downfield by approximately<br />

0.3-0.5ppm, when compared to <strong>the</strong> corresponding nonhydroxylated<br />

starting compounds. In contrast, <strong>the</strong> chemical<br />

shifts <strong>of</strong> <strong>the</strong> H-6β signals for all 11α-hydroxyderivatives<br />

remained about <strong>the</strong> same as those <strong>of</strong> <strong>the</strong> corresponding dihydroprecursors<br />

(Table 1). The total yield <strong>of</strong> <strong>the</strong> 11-hydroxylactones<br />

in <strong>the</strong>se reactions ranged from 13-47 % with no apparent<br />

trends in stereoselectivity (Table 2).<br />

Norsesquiterpene ketones 13, 14, 20, and 28 were obtained<br />

as minor products <strong>of</strong> <strong>the</strong> reactions <strong>of</strong> 4, 10, 15, and 24,<br />

respectively, and in some cases <strong>the</strong>y represented <strong>the</strong> only<br />

product. The IR spectra <strong>of</strong> <strong>the</strong>se compounds showed absorptions<br />

near 3400 cm –1 due to <strong>the</strong> C-6 hydroxyl group and<br />

ano<strong>the</strong>r at about 1710 cm –1 due to <strong>the</strong> C-11-ketone carbonyl<br />

stretch absorption. The 1 H NMR data also showed methyl singlets<br />

near 2.10-2.20 ppm, indicative <strong>of</strong> a methyl ketone. The<br />

13C NMR spectra <strong>of</strong> <strong>the</strong>se compounds indicated <strong>the</strong> presence<br />

<strong>of</strong> only 14-carbons. Based on <strong>the</strong> above data, structures 13,<br />

14, 20, and 28 were proposed. Table 3 summarizes <strong>the</strong> 13 C<br />

NMR assignments <strong>of</strong> compounds 1-16, 20, and 21.<br />

A possible mechanism for <strong>the</strong> formation <strong>of</strong> <strong>the</strong> norsesquiterpene<br />

ketones may involve <strong>the</strong> decarboxylation <strong>of</strong> a<br />

hydroperoxide anion intermediate (Scheme 1). Hydroperoxides<br />

have been reported as <strong>the</strong> major products in reactions <strong>of</strong><br />

ester enolates with t-BuOK instead <strong>of</strong> LDA [9]. The existence<br />

<strong>of</strong> lactonic hydroperoxide intermediates was supported by <strong>the</strong><br />

isolation <strong>of</strong> 18 and 27 from <strong>the</strong>ir respective product mixtures.<br />

The hydroperoxide intermediates (Scheme 1, A) are <strong>the</strong>n<br />

reduced to <strong>the</strong> alcohols, probably by <strong>the</strong> conjugate acid, diisopropylamine,<br />

generated from LDA during formation <strong>of</strong> <strong>the</strong><br />

enolate [10]. 1,2-Dioxetane formation could arise following<br />

hydrolysis <strong>of</strong> <strong>the</strong> hydroperoxide anion (Scheme 1, B). 1,2-<br />

dioxetanes have been observed to decompose cleanly to carbonyl<br />

compounds which would generate <strong>the</strong> decomposition<br />

products isolated [11].<br />

The respective 1,10-epoxyderivatives 8, 9, 10 and 12<br />

were obtained by stereo- and regiospecific epoxidations <strong>of</strong> <strong>the</strong><br />

1,10-double bond <strong>of</strong> <strong>the</strong> 11-hydroxy-derivatives 2, 3, 4, and 6<br />

with m-chloroperbenzoic acid (m-CPBA) in <strong>the</strong> presence <strong>of</strong><br />

sodium acetate as a buffer to prevent fur<strong>the</strong>r cyclizations [12].<br />

Scheme 2


134 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Howard G. Pentes et al.<br />

9<br />

29 8a<br />

30<br />

N 2 N<br />

4 3<br />

S O<br />

O S<br />

O<br />

1 2 O 2<br />

Fig. 1. (+)-(2R, 8aS)-(Camphorylsulfonyl)oxaziridine (29) and (-)-<br />

(2S, 8aR)-(Camphorylsulfonyl)oxaziridine (30).<br />

Oxidation <strong>of</strong> <strong>the</strong> enolate anion <strong>of</strong> dihydropar<strong>the</strong>nolide (4)<br />

with (-)-(camphorylsulfonyl)oxaziridine provided 11β-hydroxydihydropar<strong>the</strong>nolide<br />

(6) in 66 % yield. Nei<strong>the</strong>r <strong>the</strong> 11αhydroxydihydropar<strong>the</strong>nolide<br />

(5) nor <strong>the</strong> norsesquiterpene<br />

ketone (13) were detected (Table 2). The same results were<br />

observed for <strong>the</strong> oxidation <strong>of</strong> <strong>the</strong> enolate anion <strong>of</strong> 4 with (+)-<br />

(camphorylsulfonyl)oxaziridine, except that <strong>the</strong> yield <strong>of</strong> 11βhydroxy-11,13-dihydropar<strong>the</strong>nolide<br />

(6) was slightly higher<br />

(72 %). When compared to <strong>the</strong> enolate oxidation with oxygen,<br />

<strong>the</strong> (camphorylsulfonyl)oxaziridine oxidizing agents are clearly<br />

superior due <strong>the</strong> higher yields and <strong>the</strong> regio- and stereospecificity<br />

<strong>of</strong> <strong>the</strong> reactions.<br />

Apparently, <strong>the</strong> frozen solute conformation <strong>of</strong> <strong>the</strong> 12,6-<br />

trans-lactone 4, favors a β-attack by <strong>the</strong> (camphorylsulfonyl)oxaziridine<br />

oxidizing agents from <strong>the</strong> β-face <strong>of</strong> <strong>the</strong> enolate<br />

intermediate. This is in analogy to protonations that follow<br />

NaBH 4 reductions in methanol <strong>of</strong> <strong>the</strong> α-methylene-γ-lactone<br />

group in similar sesquiterpene lactones such as par<strong>the</strong>nolide<br />

(4a) and costunolide (1a). Enolate oxidations with (camphorylsulfonyl)oxaziridines<br />

may not be stereospecific with<br />

conformationally more flexible sesquiterpene lactones such as<br />

12,8-lactonized or 12,6-cis-lactonized germacranolides.<br />

Conclusions<br />

In summary, four skeletal types <strong>of</strong> 11,13-dihydrosesquiterpene-γ-lactones<br />

(germacrolides, eudesmanolides, guaianolides,<br />

and elemanolides) were transformed into 11-hydroxy-


Preparation <strong>of</strong> 11-Hydroxylated 11,13-Dihydrosesquiterpene Lactones 135<br />

Table 2. Yield (%) <strong>of</strong> Products from Enolate Oxidation <strong>of</strong> Sesquiterpene Lactones a .<br />

Sesquiterpene Oxidizing Total Yield<br />

lactone Agent <strong>of</strong> 11-OH-products 11α-OH 11β-OH Norketone<br />

1 oxygen 37 15 22 —<br />

4 oxygen 47 29 18 16<br />

4 (–)-oxaziridine 66 — 66 —<br />

4 (+)-oxaziridine 72 — 72 —<br />

10 oxygen — — — 37<br />

15 oxygen 24 15 9 14<br />

21 oxygen 29 12 17 —<br />

24 oxygen 13 5 8 13<br />

aYields are based on recovered starting materials.<br />

Tabla 3a. 13 C NMR Data for Compounds 1-11 a .<br />

Carbon 1 2 3 4[13] 5 6 7 8 9<br />

1 127.0 127.0 127.1 b 125.1 125.0 124.5 67.4 67.7 67.5<br />

2 25.7 24.0 23.2 24.0 23.9 23.9 b 24.5 24.6 b 21.8<br />

3 40.6 40.9 41.2 36.6 36.6 36.8 35.9 36.1 36.3<br />

4 136.5 136.9 137.2 61.4 62.0 61.7 143.0 143.7 143.4<br />

5 126.4 127.0 126.7 b 66.3 66.2 66.5 123.9 123.9 124.0<br />

6 80.9 79.5 81.1 82.1 80.8 82.4 80.2 78.4 79.9<br />

7 54.2 55.9 56.4 51.9 53.2 53.7 54.9 56.5 56.9<br />

8 28.0 26.1 25.9 29.7 24.7 24.1 b 25.6 25.0 b 24.6<br />

9 39.1 39.5 39.5 41.1 41.0 41.2 39.2 39.2 39.6<br />

10 139.6 140.6 140.7 134.4 134.5 135.1 61.1 61.3 61.4<br />

11 41.7 75.3 75.5 42.4 75.5 75.3 42.1 75.2 75.3<br />

12 178.0 179.6 177.8 177.3 178.8 176.9 178.0 178.2 177.2<br />

13 12.8 19.2 22.0 13.2 19.0 21.7 12.7 19.0 20.6<br />

14 15.6 16.1 16.1 16.8 16.7 b 16.9 c 17.3 b 17.6 c 17.5 b<br />

15 16.7 17.1 17.1 17.1 16.9 b 17.0 c 16.9 b 17.2 c 17.2 b<br />

Table 3b. 13 C NMR Data <strong>of</strong> Compounds 12-16, 20 and 21 a .<br />

Carbon 10 11 12 13 14 15 16 20 21<br />

1 64.1 b 64.3 b 64.8 b 125.2 64.9 23.0 e 22.8 e 23.3 c 46.9<br />

2 23.6 20.8 21.7 23.7 23.5 b 35.7 d 35.8 c 34.6 b 41.9<br />

3 34.9 35.3 35.5 37.2 36.1 122.1 122.6 123.5 28.6<br />

4 60.2 c 60.5 c 60.5 c 60.2 59.3 133.0 132.7 134.4 151.6<br />

5 63.4 b 64.2 c 63.4 b 64.5 63.4 50.5 b 51.0 b 51.0 51.8<br />

6 81.2 80.0 81.6 69.5 67.5 81.8 79.6 69.2 85.1<br />

7 51.2 53.3 53.7 71.0 71.2 53.9 b 56.1 b 60.8 49.7<br />

8 25.0 23.8 23.7 28.1 23.7 b 23.5 e 23.5 e 24.5 c 32.4 c<br />

9 39.7 39.9 40.3 40.1 39.1 37.6 c 37.6 c 38.0 b 38.6 c<br />

10 60.3 c 60.8 c 60.9 c 135.0 60.6 39.1 39.1 39.5 149.8<br />

11 42.3 75.3 74.9 209.8 210.0 74.0 74.0 212.7 42.1 b<br />

12 176.8 178.2 176.2 — — 179.6 180.4 — 178.5<br />

13 12.6 19.2 19.5 29.6 30.6 12.3 f 19.0 f 29.4 13.1<br />

14 16.6 d 16.9 d 16.9d 17.2 17.1 c 17.2 f 18.1 f 16.6 111.7<br />

15 17.1 d 17.5 d 17.4 d 17.2 17.1 c 22.7 f 17.3 f 22.9 109.0<br />

a = Spectra were determined in CDCl 3 at 200 MHz with Me 4 Si as internal standard. <strong>Chemical</strong> shifts are in ppm.<br />

Assignments were made (except for 4) by comparison with 13 C NMR data <strong>of</strong> similar known compounds.<br />

b-f = Assignments are interchangeable.


136 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Howard G. Pentes et al.<br />

lactone analogs by LDA-mediated generation <strong>of</strong> <strong>the</strong> corresponding<br />

lactone enolates followed by trapping with gaseous<br />

oxygen or chiral oxidizing agent, (camphorylsulfonyl)<br />

oxaziridines. The oxidations with oxygen were non-specific,<br />

resulting in low to moderate yields (13-47 %) <strong>of</strong> mixtures <strong>of</strong><br />

11α- and 11β-hydroxylactone derivatives plus norsesquiterpene<br />

ketones formed as degradation products <strong>of</strong> <strong>the</strong> hydroperoxide<br />

intermediates. Improved yields (66-72 %) and stereoselectivity<br />

were observed for enolate oxidations <strong>of</strong> 11,13-dihydrosesquiterpene<br />

lactones with <strong>the</strong> respective (+)- and (-)-<br />

(2S,8aR)-(camphorylsulfonyl)oxaziridine [8], providing <strong>the</strong><br />

11β-hydroxylactones exclusively.<br />

Experimental section<br />

1H and 13 C NMR spectra were recorded on a Bruker-AC200<br />

spectrometer in CDCl 3 using SiMe 4 as an internal standard.<br />

Mass spectra were obtained on a HP5985 spectrometer. IR<br />

spectra were recorded ei<strong>the</strong>r on a Perkin-Elmer 257 or 1760x<br />

spectrometer as a film on NaCl plates.<br />

(-)-(2S,8aR)-(Camphorylsulfonyl)oxaziridine and (+)-<br />

(2R,8aS)-(camphorylsulfonyl) oxaziridine (Aldrich) were<br />

used without fur<strong>the</strong>r purification. Reagent grade THF was<br />

freshly distilled over Li metal before use to remove any traces<br />

<strong>of</strong> water. A 1.5 M solution <strong>of</strong> LDA in cyclohexane (Aldrich)<br />

was used without fur<strong>the</strong>r purification.<br />

Chromatographic separations were made on silica gel<br />

(60-200 mesh, J.T.Baker <strong>Chemical</strong> Co.). HPLC separations<br />

were carried out on a Milton-Roy HPLC using RSIL-C18-10<br />

µ semi-preparative column (Alltech/Applied Science).<br />

Dihydropar<strong>the</strong>nolide (4) was isolated from <strong>the</strong> dichloromethane<br />

(DCM) extract <strong>of</strong> <strong>the</strong> aerial parts <strong>of</strong> Ambrosia artimisiifolia<br />

[13,14]. Costunolide and dehydrocostus lactone (1a<br />

and 21b) were isolated by vacuum liquid chromatography<br />

[15] from Costus Resinoid (Pierre Chauvet, S.A.). The exocyclic<br />

methylene groups <strong>of</strong> costunolide and dehydrocostus<br />

lactone were reduced with NaBH 4 in methanol at 0 °C [16] to<br />

give 1 and 21 respectively. α-Cyclodihydrocostunolide (15)<br />

was prepared via acidic transannular cyclization <strong>of</strong> 1 [16].<br />

Saussurea lactone (24) was prepared by <strong>the</strong>rmolysis <strong>of</strong> 1 [17].<br />

Spectroscopic and physical data for compounds 1, 4, 15, 21<br />

and 24 are consistent with those previously reported in <strong>the</strong> literature.<br />

11α-Hydroxydihydrocostunolide (2) and 11β-Hydroxydihydrocostunolide<br />

(3). Compound 1 (325 mg, 1.39 mmol), dissolved<br />

in 5 mL <strong>of</strong> dry THF, was added slowly over 15 min<br />

by syringe to a stirred solution <strong>of</strong> 1.2 mL <strong>of</strong> LDA in 5 mL <strong>of</strong><br />

THF under argon at –70 °C. After an additional 15 min., dry<br />

oxygen was bubbled through <strong>the</strong> solution for 20 min at 0 °C.<br />

The reaction was <strong>the</strong>n quenched with 5 mL <strong>of</strong> water. The<br />

solution was neutralized with 5 % aq. HCl and extracted with<br />

diethyl e<strong>the</strong>r. The e<strong>the</strong>r solution was dried over anhydrous<br />

Na 2 SO 4 , filtered, and <strong>the</strong> solvent evaporated. Column chromatography<br />

on silica gel using DCM / acetone (95:5) yielded<br />

21 mg (15 %) <strong>of</strong> 2 and 31 mg (22 %) <strong>of</strong> 3. Lactone 2 was isolated<br />

as a colorless powder: IR 3434, 1773, 1668 cm –1 ; 1 H<br />

NMR: δ 4.80 (m, 1H, C 1 -H); 4.60 (dd, 1H, C 6 -H); 1.69 (s,<br />

3H, C 15 -CH 3 ); 1.40 (s, 3H, C 14 -CH 3 ); 1.33 (s, 3H, C 13 -CH 3 );<br />

MS m/z (relative intensity) 250 (M + ) (1.2), 232 (M-18 + ) (0.4),<br />

222 (M-28 + ) (2.6), 207 (M-43 + ) (2.3). Compound 3 was isolated<br />

as a colorless powder: IR 3435, 1754 cm –1 ; 1 H NMR: δ<br />

4.94 (dd, 1H, C 6 -H); 4.80 (m, 1H, C 1 -H); 4.60 (d, 1H, C 5 -H, J<br />

= 10 Hz); 1.77 (s, 3H, C 15 -CH 3 ); 1.45 (s, 3H ,C 13- or C 14-<br />

CH 3 ); 1.42 (s, 3H, C 13- or C 14 -CH 3 ); MS m/z (relative intensity)<br />

250 (M + ) (0.7), 222 (M-28 + ) (2.8), 207 (M-43 + ) (0.7).<br />

11 α-Hydroxydihydropar<strong>the</strong>nolide (5), 11 β-Hydroxydihydropar<strong>the</strong>nolide<br />

(6), and Ketone (13). Compound 4 (372<br />

mg) was reacted with LDA and oxygen as described above.<br />

Column chromatography on silica gel with hexane / EtOAc<br />

(1:1) yielded 8 8mg (29%) <strong>of</strong> 5, 55 mg (18%) <strong>of</strong> 6, and 45 mg<br />

(16%) <strong>of</strong> 13.<br />

Compound 5 was isolated as a white powder: IR 3412, 1784<br />

cm –1 ; 1 H NMR: δ 5.18 (dd, 1H, C 1 -H, J= 10 Hz); 3.79 (dd,<br />

1H, C 6 -H, J = 9 Hz); 2.76 (d, 1H, C 5 -H, J = 9 Hz); 1.70 (s,<br />

3H, C 14 -CH 3 ); 1.31 (s, 6H, C 13 - and C 15 -CH 3 ); MS m/z (relative<br />

intensity) 266 (M + ) (0.02), 223 (M-43 + ) (0.07), 207 (M-<br />

59 + ) (0.08), 43 (C 2 H 3 O + ) (100).<br />

Lactone 6 was obtained as a white powder: IR 3443, 1753<br />

cm –1 ; 1 H NMR: δ 5.15 (dd, 1H,C 1 -H, J = 2, 9 Hz); 4.12 (dd,<br />

1H, C 6 -H, J = 9 Hz); 2.66 (d, 1H, C 5 -H, J = 9 Hz); 1.69 (s, 3H,<br />

C 14 -CH 3 ); 1.39 (s, 3H, C 13 -CH 3 ); 1.28 (s, 3H, C 15 -CH 3 ); MS<br />

m/z (relative intensity) 266 (M + ) (0.03), 231 (M-35 + ) (0.04),<br />

223 (M-43 + ) (0.02), 207 (M-59 + ) (0.14).<br />

Compound 13 was isolated as a colorless gum: IR 3438, 1761<br />

cm –1 ; 1 H NMR: δ 5.14 (dd, 1H, C 1 -H, J = 4, 7 Hz); 3.56 (dd,<br />

1H, C 6 -H, J = 9 Hz); 2.75 (d, 1H, C 5 -H); 2.19 (s, 3H, C 13 -<br />

CH 3 ); 1.65 (s, 3H, C 14 -CH 3 ); 1.27 (s, 3H, C 15 -CH 3 ); MS m/z<br />

(relative intensity) 238 (M + ) (0.1), 223 (M-15 + ) (0.2), 220 (M-<br />

18 + ) (0.7), 195 (M-43 + ) (0.4), 177 (M-61 + ) (6.1).<br />

1,10-Epoxydihydrocostunolide (7). Compound 1 (200 mg)<br />

was dissolved in 10 mL <strong>of</strong> DCM and stirred at room temp.<br />

Sodium acetate (200 mg) was added to <strong>the</strong> solution to buffer<br />

<strong>the</strong> epoxidation and prevent possible acid-catalyzed transannular<br />

cyclization [12]. m-CPBA (220 mg) was added to <strong>the</strong><br />

suspension. After stirring at room temp. for 1 h, <strong>the</strong> solution<br />

was filtered and washed with 5 % Na 2 CO 3 (2 × 50 mL) and<br />

H 2 O (3 × 50 mL). The DCM solution was dried over anhydrous<br />

Na 2 SO 4 , filtered, and <strong>the</strong> solvent evaporated yielding<br />

181 mg (85 %) <strong>of</strong> 7: IR 1771, 1672 cm –1 ; 1 H NMR: δ 5.12 (d,<br />

1H, C 5 -H, J = 10 Hz); 4.54 (dd, 1H, C 6 -H, J = 10 Hz); 2.61<br />

(dd, 1H, C 1 -H, J = 2, 11 Hz); 1.75 (s, 3H, C 15 -CH 3 ); 1.14 (d,<br />

3H, C 13 -CH 3 , J=7 Hz); 1.06 (s, 3H, C 14 -CH 3 ); MS m/z (relative<br />

intensity) 250 (M + ) (0.9), 235 (M-15 + ) (0.3), 232 (M-18 + )<br />

(0.3), 207 (M-43 + ) (0.6), 193 (M-57 + ) (1.8).


Preparation <strong>of</strong> 11-Hydroxylated 11,13-Dihydrosesquiterpene Lactones 137<br />

1,10-epoxy-11α-hydroxydihydrocostunolide (8). Compound<br />

2 (7 mg) was epoxidized as described above yielding 4 mg (54<br />

%) <strong>of</strong> 8: IR 3418, 1775, 1671 cm –1 ; 1 H NMR: δ 5.20 (d, 1H,<br />

C 5 -H, J = 10 Hz); 4.60 (dd, 1H, C 6 -H, J=10 Hz); 2.68 (dd, 1H,<br />

C 1 -H); 1.83 (s, 3H, C 15 -CH 3 ); 1.33 (s, 3H, C 13 -CH 3 ); 1.12 (s,<br />

3H, C 14 -CH 3 ); MS m/z (relative intensity) 266 (M + ) (0.3), 221<br />

(M-45 + ) (0.1), 210 (M-56 + ) (0.1), 189 (M-77 + ) (0.7).<br />

1,10-epoxy-11β-hydroxydihydrocostunolide (9). Compound<br />

3 (9 mg) was epoxidized as described above yielding 7 mg <strong>of</strong><br />

9: IR 3443, 1773, 1674 cm –1 ; 1 H NMR: δ 5.15 (d, 1H, C 5 -H, J<br />

= 10 Hz); 4.97 (dd, 1H, C 6 -H, J = 10 Hz); 2.66 (dd, 1H, C 1 -H,<br />

J = 2, 11 Hz); 1.80 (s, 3H, C 15 -CH 3 ); 1.43 (s, 3H ,C 13 -CH 3 );<br />

1.14 (s, 3H, C 14 -CH 3 ). MS m/z (relative intensity) 266 (M + )<br />

(0.1), 244 (M-22 + ) (0.1), 222 (M-44 + ) (0.2), 207 (M-59 + )<br />

(0.2), 189 (M-77 + ) (0.3).<br />

1,10-epoxydihydropar<strong>the</strong>nolide (10). Compound 4 (150 mg)<br />

was epoxidized as described above yielding 151 mg (95 %) <strong>of</strong><br />

10. Spectroscopic and physical data for <strong>the</strong> title compound are<br />

consistent with those reported in <strong>the</strong> literature [18].<br />

1,10-epoxy-11α-hydroxydihydropar<strong>the</strong>nolide (11).<br />

Compound 5 (31 mg) was epoxidized as described above<br />

yielding 4 mg (10 %) <strong>of</strong> 11: IR 3422, 1782 cm –1 ; 1 H NMR: δ<br />

3.86 (dd, 1H, C 6 -H, J = 10 Hz); 2.87 (d, 1H, C 5 -H, J = 10 Hz);<br />

2.80 (dd, 1H, C1-H); 1.40 (s, 3H, C 13 -CH 3 ); 1.33 (s, 6H, C 14 -<br />

and C 15 -CH 3 ); MS m/z (relative intensity) 282 (M + ) (0.03),<br />

257 (M-25 + ) (0.6), 219 (M-63 + ) (0.3), 211 (M-71 + ) (0.5), 197<br />

(M-85 + ) (0.9).<br />

1,10-epoxy-11β-hydroxydihydropar<strong>the</strong>nolide (12).<br />

Compound 6 (25 mg) was epoxidized as described above<br />

yielding 25 mg (95 %) <strong>of</strong> 12: IR 3391,1781 cm –1 ; 1 H NMR:<br />

δ 4.20 (dd, 1H, C 6 -H, J = 9 Hz); 2.81 (d, 1H, C 1 -H); 2.80 (d,<br />

1H, C 5 -H, J = 9 Hz); 1.46 (s, 3H, C 13- ,C 14- , or C 15 -CH 3 ); 1.43<br />

(s, 3H, C 13- , C 14- , or C 15 -CH 3 ); 1.36 (s, 3H, C 13- ,C 14- , or C 15 -<br />

CH 3 ); MS m/z (relative intensity) 282 (M + ) (0.1), 210 (M-72 + )<br />

(0.1), 195 (M-87 + ) (0.1).<br />

Ketone 14. Compound 10 (114 mg) was reacted with LDA and<br />

O 2 as described before yielding 40 mg <strong>of</strong> ketone 14: IR 3449,<br />

1711 cm –1 ; 1 H NMR: δ 3.65 (dd, 1H, C 6 -H, J = 9 Hz); 2.86 (d,<br />

1H, C 5 -H); 2.24 (s, 3H, C 13 -CH 3 ); 1.38 (s, 3H, C 14 - or C 15 -<br />

CH 3 ); 1.30 (s, 3H, C 14- or C 15 -CH 3 ); MS m/z (relative intensity)<br />

193 (M-61 + ) (0.1), 179 (M-75 + ) (1.4), 161 (M-93 + ) (1.2).<br />

11α-Hydroxy-α-cyclodihydrocostunolide (16), 11β-<br />

Hydroxy-α-cyclodihydrocostunolide (17), 11α-Hydroperoxy-α-cyclodihydrocostunolide<br />

(18), 7,11-Dehydro-α-cyclodihydrocostunolide<br />

(19), and Ketone 20. Compound 15 (102<br />

mg) was reacted with LDA and O 2 as described before yielding<br />

16 mg (15 %) <strong>of</strong> 16, 10 mg (9 %) <strong>of</strong> 17, 14 mg (14 %) <strong>of</strong><br />

20, 1 mg <strong>of</strong> 18, and 1 mg <strong>of</strong> 19. Compounds 17, 18, and 19<br />

were isolated by HPLC following column chromatography.<br />

16: IR 3449, 1770 cm –1 ; 1 H NMR: δ 5.37 (s, br, 1H, C 3 -H);<br />

3.92 (dd, 1H, C 6 -H, J = 11 Hz); 2.75 (s, br, OH); 1.76 (s, 3H,<br />

C 15 -CH 3 ); 1.36 (s, 3H, C 13 -CH 3 ); 0.90 (s, 3H, C 14 -CH 3 ); MS<br />

m/z (relative intensity) 250 (M + ) (1.3), 207 (M-43 + ) (0.4), 191<br />

(M-59 + ) (0.7).<br />

17: IR 3458, 1761 cm –1 ; 1 H NMR: δ 5.38 (s, br, 1 H,C 3 -H);<br />

4.36 (dd, 1 H, C 6 -H, J = 5 Hz); 1.82 (s, 3H, C 15 -CH 3 ); 1.45 (s,<br />

3H, C 13 -CH 3 ); 0.92 (s, 3H, C 14 -CH 3 ); MS m/z (relative intensity)<br />

250 (M + ) (2.0), 207 (M-43 + ) (1.2).<br />

18: IR 3414, 1778 cm –1 ; 1 H NMR: δ 8.73 (s, 1H, OOH); 5.39<br />

(s, br, 1H,C 3 -H); 3.96 (dd, 1H, C 6 -H, J = 10 Hz); 1.80 (s, 3H,<br />

C 15 -CH 3 ); 1.37 (s, 3H, C 13 -CH 3 ); 0.91 (s, 3H ,C 14 -CH 3 ); MS<br />

m/z (relative intensity) 266 (M + ) (0.04), 223 (M-43 + ) (0.5),<br />

220 (M-46 + ) (0.2), 216 (M-50 + ) (0.3).<br />

19: IR 1752, 1682 cm –1 ; 1 H NMR: δ 5.43 (s, br, 1H, C 3 -H);<br />

4.67 (d, 1H, C 6 -H, J = 11 Hz); 1.89 (s, 3H, C 15 -CH 3 ); 1.83 (s,<br />

3H, C 13 -CH 3 ); 0.99 (s, 3H, C 14 -CH 3 ); MS m/z (relative intensity)<br />

232 (M + ) (2.7), 217 (M-15 + ) (7.3), 207 (M-25 + ) (7.4).<br />

20: IR 3449, 1700 cm –1 ; 1 H NMR: δ 5.35 (s, br, 1H, C 3 -H); 4.02<br />

(ddd, 1H, C 6 -H, J = 5, 11 Hz); 2.21 (s, 3H, C 13 -CH 3 ); 1.83 (s,<br />

3H, C 15 -CH 3 ); 0.81 (s, 3H, C 14 -CH 3 ); MS m/z (relative intensity)<br />

222 (M + ) (0.6), 123 (M-99 + ) (12.7), 121 (M-101 + ) (17.1).<br />

11α-Hydroxydihydrodehydrocostuslactone (22) and 11β-<br />

Hydroxydihydrodehydrocostuslactone (23). Compound 21<br />

(235 mg) was reacted with LDA and O 2 as described before<br />

yielding 30 mg (12 %) <strong>of</strong> 22 and 42 mg (17 %) <strong>of</strong> 23.<br />

22: IR 3467, 1770, 1638 cm –1 ; 1 H NMR: δ 5.16 (s, 1H, C 15 -<br />

H); 5.05 (s, 1H, C 15 -H); 4.87 (s, 1H, C 14 -H); 4.77 (s, 3H, C 14 -<br />

H); 3.87 (dd, 1H, C 6 -H, J = 9 Hz); 1.30 (s, 3H, C 13 -CH 3 ); MS<br />

m/z (relative intensity) 248 (M + ) (1.7), 220 (M-28 + ) (1.5), 202<br />

(M-46 + ) (0.3), 192 (M-56 + ) (0.2).<br />

23: IR 3423, 1761, 1630 cm –1 ; 1 H NMR: δ 5.20 (s, 1H, C 15 -<br />

H); 5.05 (s, 1H, C 15 -H); 4.88 (s, 1H, C 14 -H); 4.80 (s, 1H, C 14 -<br />

H); 4.20 (dd, 1H, C 6 -H, J = 9 Hz); 1.43 (s, 3H, C 13 -CH 3 ); MS<br />

m/z (relative intensity) 248 (M + ) (11.0), 204 (M-44 + ) (2.5),<br />

191 (M-57 + ) (2.3), 189 (M-59 + ) (2.3).<br />

11α-Hydroxysaussurea lactone (25), 11β-Hydroxysaussurea<br />

lactone (26), 11α-Hydroperoxysaussurea lactone<br />

(27), and Ketone 28. Compound 24 (93 mg) was reacted with<br />

LDA and O 2 as described before yielding 4 mg (5 %) <strong>of</strong> 25, 6<br />

mg (8 %) <strong>of</strong> 26, 9 mg (13 %) <strong>of</strong> 28, and less than 1 mg <strong>of</strong> 27.<br />

25: IR 3440, 1778, 1638 cm –1 ; 1 H NMR: δ 5.79 (dd, 1H, C 1 -<br />

H, J = 11, 17 Hz); 5.04 (m, 4H, C 2 -Ha,b, C 3 -Ha,b); 4.14 (dd,<br />

1H, C 6 -H, J = 11 Hz); 2.27 (d, 1H, C 5 -H, J = 9 Hz); 1.79 (s,<br />

3H, C 15 -CH 3 ); 1.38 (s, 3H, C 13 -CH 3 ); 1.08 (s, 3H, C 14 -CH 3 );<br />

MS m/z (relative intensity) 250 (M + ) (0.2), 223 (M-28 + ) (1.7),<br />

207 (M-43 + ) (1.3), 189 (M-61 + ) (1.0).


138 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Howard G. Pentes et al.<br />

26: IR 3449, 1752, 1638 cm –1 ; 1 H NMR: δ 5.80 (dd, 1H, C 1 -<br />

H, J = 11, 17 Hz); 5.00 (m, 4H, C 2 -Ha,b, C 3 -Ha,b); 4.60 (dd,<br />

1H, C 6 -H, J = 10, 11Hz); 2.20 (d, 1H, C 5 -H, J = 12 Hz); 1.79<br />

(s, 3H, C 15 -CH 3 ); 1.46 (s, 3H, C 13 -CH 3 ); 1.10 (s, 3H, C 14 -<br />

CH 3 ); MS m/z (relative intensity) 250 (M + ) (0.3), 204 (M-46 + )<br />

(0.4), 121 (M-129 + ) (3.2).<br />

27: IR 3353, 1770, 1638 cm –1 ; 1 H NMR: 8.68 (s, 1H, OOH);<br />

5.80 (dd, 1H, C 1 -H, J = 11, 17 Hz); 5.00 (m, 4H, C 2 -Ha,b, C 3 -<br />

Ha,b); 4.17 (dd, 1H, C 6 -H, J = 11 Hz); 2.32 (d, 1H, C 5 -H, J =<br />

11 Hz); 1.78 (s, 3H, C 15 -CH 3 ); 1.39 (s, 3H, C 13 -CH 3 ); 1.08 (s,<br />

3H, C 14 -CH 3 ); MS m/z (relative intensity) 266 (M + ) (0.5), 216<br />

(M-50 + ) (0.5), 166 M-100 + ) (0.9).<br />

28: IR 3466, 1708, 1638 cm –1 ; 1 H NMR: δ 5.76 (dd, 1H, C 1 -H,<br />

J = 11, 17 Hz); 4.90 (m, 4H, C 2 -Ha,b, C 3 -Ha,b); 4.10 (dd, 1H,<br />

C 6 -H, J = 11 Hz); 2.25 (s, 3H, C 13 -CH 3 ); 1.78 (s, 3H, C 15 -CH 3 );<br />

1.04 (s, 3H, C 14 -CH 3 ); MS m/z (relative intensity) 222 (M + )<br />

(2.0), 204 (M-18 + ) (1.5), 189 (M-33 + ) (1.0), 161 (M-61 + ) (3.6).<br />

Oxidation <strong>of</strong> <strong>the</strong> enolate anion <strong>of</strong> dihydropar<strong>the</strong>nolide (4)<br />

with (-)-(2S,8aR)-(camphorylsulfonyl)oxaziridine.<br />

Dihydropar<strong>the</strong>nolide (4) (200 mg, 0.8 mmol) dissolved in 5<br />

mL <strong>of</strong> dry THF was added slowly over 15 min by syringe to a<br />

stirred solution <strong>of</strong> 0.7 mL (1.04 mmol) <strong>of</strong> LDA in 5 mL <strong>of</strong><br />

THF under argon at –70 °C. After stirring <strong>the</strong> solution for an<br />

additional 15 min, a THF solution <strong>of</strong> (-)-(2S,8aR)-(camphorylsulfonyl)oxaziridine<br />

(30, 370 mg, 1.6 mmol) was added to <strong>the</strong><br />

reaction flask by syringe over a 5 min period at –70 °C. After<br />

5 more min, <strong>the</strong> reaction was quenched with <strong>the</strong> addition <strong>of</strong> 5<br />

mL <strong>of</strong> a saturated aqueous NH 4 Cl solution. The reaction mixture<br />

was extracted with diethyl e<strong>the</strong>r (6 × 10 mL). The e<strong>the</strong>r<br />

solution was dried over anhydrous Na 2 SO 4 , filtered, and <strong>the</strong><br />

solvent was evaporated.<br />

Attempted precipitation <strong>of</strong> <strong>the</strong> unreacted oxaziridine and<br />

its reduced form, <strong>the</strong> imine, at –78 °C in diethyl e<strong>the</strong>r only<br />

removed 60-70 % <strong>of</strong> <strong>the</strong>se reagents. Repeated precipitations<br />

did not fur<strong>the</strong>r purify <strong>the</strong> product. Dry column (silica gel)<br />

chromatography [19] was used to separate <strong>the</strong> product mixture<br />

eluting with DCM/acetone (9:1). The oxaziridine and <strong>the</strong><br />

imine eluted in <strong>the</strong> very early fractions. Dihydropar<strong>the</strong>nolide<br />

(4) (58 mg) was recovered and 100 mg (66 %) <strong>of</strong> 11β-hydroxydihydropar<strong>the</strong>nolide<br />

(6) was isolated. The 1 H NMR data <strong>of</strong><br />

compound 6 was identical with <strong>the</strong> data for <strong>the</strong> product isolated<br />

from <strong>the</strong> reaction <strong>of</strong> oxygen with <strong>the</strong> enolate anion <strong>of</strong> dihydropar<strong>the</strong>nolide<br />

(4). The norsesquiterpene ketone 13 and 11αhydroxydihydropar<strong>the</strong>nolide<br />

(5) were not detected.<br />

References<br />

1. Fronczek, F.R.; Vargas, D.; Fischer, N.H.; Hostettmann, K. J.<br />

Nat. Prod. 1984, 47, 1036-1039.<br />

2. Vargas, D.; Fronczek, F.R.; Fischer, N.H.; Hostettmann, K. J.<br />

Nat. Prod. 1986, 49, 133-138.<br />

3. Hostettmann, K.; Marston, A. "Plants Used in African Traditional<br />

Medicines." in Folk Medicine. The Art and <strong>the</strong> Science, editor<br />

R.P. Steiner, 1986, ACS, Wash., D.C. pp. 111-124.<br />

4. Vargas, D.; Younathan, E.S.; Fischer, N.H. Rev. Soc. Quím. Méx.<br />

2001, 45, 159-162.<br />

5. Picman, A.K. Biochem. System. Ecol. 1986, 14, 255-281.<br />

6. Rodriguez, E.; Towers, G.H.N.; Mitchell, J.C. Phytochemistry<br />

1976, 15, 1573-1580.<br />

7. Collado, I.G.; Macías, F.A.; Massanet, G.M.; Molinillo, J.M.G.;<br />

R.-Luis, F. J. Org. Chem. 1987, 52, 3323-3326.<br />

8. Davis, F.A.; Hague, M.J.; Ulatowski, T.G.; Towson, J.C. J. Org.<br />

Chem. 1986, 51, 2402-2404.<br />

9. Gersmann, H.R.; Bickel, A.F. J. Chem. Soc. (B) 1971, 11, 2230-<br />

2237.<br />

10. Biloski, A.; Ganem, B. Syn<strong>the</strong>sis 1983, 7, 537-538.<br />

11. Bartlett, P.D.; Schaap, A.P. J. Amer. Chem. Soc. 1970, 92, 3223-<br />

3226.<br />

12. Rodriguez, A.A.S.; Garcia, M.; Rabi, J. Phytochemistry 1978, 17,<br />

953-954.<br />

13. Lu, T.; Fischer, N.H. Spectroscopy Letters 1996, 29, 437-448;<br />

references <strong>the</strong>rein.<br />

14. Parodi, F.J.; Fronczek, F.R.; Fischer, N.H. J. Nat. Prod. 1989, 52,<br />

554-566.<br />

15. Coll, J.C.; Bowden, B.F. J. Nat. Prod. 1986, 49, 934-936.<br />

16. Lee, I.-Y. "New Sesquiterpene Lactones from <strong>the</strong> Genera Calea<br />

berlandiera (Asteraceae) and <strong>the</strong> Fragmentation Reactions <strong>of</strong> 1,3-<br />

Dihydroxyeudesmanolide Derivatives." Dissertation, Louisiana<br />

State University, 1983.<br />

17. Rao, A.S.; Sadgopal, A.P.; Bhattacharyya, S.C. Tetrahedron<br />

1961, 13, 319.<br />

18. Govindachari, T.R.; Joshi, B.S.; Kamat, V.N. Tetrahedron 1965,<br />

21, 1509-1519.<br />

19. Loev, B.; Goodman, M. M. Chem. and Ind. 1967, 48, 2026-2032.<br />

Oxidation <strong>of</strong> enolate anion <strong>of</strong> dihydropar<strong>the</strong>nolide (4) with<br />

(+)-(2R,8aS)-(camphorylsulfonyl)oxaziridine. Dihydropar<strong>the</strong>nolide<br />

(4) (200 mg) was oxidized as described above with (+)-<br />

(2R,8aS)-(camphorylsulfonyl)oxaziridine 29. The product mixture<br />

was separated by dry column (silica gel) chromatography<br />

[19] eluting with DCM/acetone (9:1). Dihydropar<strong>the</strong>nolide (4)<br />

(56 mg) was recovered and 110 mg (72 %) <strong>of</strong> 11β-hydroxydihydropar<strong>the</strong>nolide<br />

(6) was isolated as <strong>the</strong> only product.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 139-142<br />

Investigación<br />

<strong>Chemical</strong> Composition and Antimicrobial Activity <strong>of</strong> <strong>the</strong> Essential Oils<br />

from Annona cherimola (Annonaceae)<br />

María Yolanda Ríos, 1* Federico Castrejón, 2 Norma Robledo, 2 Ismael León, 1 Gabriela Rojas, 3<br />

and Víctor Navarro 3<br />

1 Centro de Investigaciones Químicas de la Universidad Autónoma del Estado de Morelos. Av. Universidad 1001,<br />

Col. Chamilpa, Cuernavaca, Morelos, México, 62210. Phone +52 (777) 329-997 ext. 6024; Fax: +52 (777) 329-7997.<br />

E-mail: myolanda@buzon.uaem.mx<br />

2 Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional. Carretera Yautepec-Jojutla Km. 8,<br />

Yautepec, Morelos, México, 62731.<br />

3 Centro de Investigación Biomédica del Sur, Instituto <strong>Mexican</strong>o del Seguro Social. Argentina No. 1,<br />

Col. Centro, Xochitepec, Morelos, México, 62790.<br />

Recibido el 25 de febrero del 2003; aceptado el 23 de mayo del 2003<br />

This paper is dedicated to Pr<strong>of</strong>essor Alfonso Romo de Vivar<br />

Abstract. The chemical composition <strong>of</strong> <strong>the</strong> essential oils obtained by<br />

steam distillation <strong>of</strong> <strong>the</strong> fresh leaves, flowers and fruits from Annona<br />

cherimola was analyzed by means <strong>of</strong> Gas Chromatography-Mass<br />

Spectrometry (GC/MS). Sixty constituents were identified from <strong>the</strong><br />

oils. While bicyclogermacrene, trans-caryophyllene and δ-amorphene<br />

were found to be <strong>the</strong> major constituents in <strong>the</strong> oil <strong>of</strong> <strong>the</strong> leaves;<br />

bicyclogermacrene, α-terpinolene and germacrene D were <strong>the</strong> major<br />

constituents in <strong>the</strong> oil <strong>of</strong> <strong>the</strong> flowers and β-pinene, α-terpinolene, β-<br />

fenchyl alcohol and α-pinene were <strong>the</strong> major constituents in <strong>the</strong> oil <strong>of</strong><br />

<strong>the</strong> fruits. The in vitro antimicrobial activity <strong>of</strong> <strong>the</strong> three essential oils<br />

and <strong>of</strong> some <strong>of</strong> <strong>the</strong>ir major constituents against five Gram (±) bacteria<br />

and one fungus is reported.<br />

Keywords: Annona cherimola, essential oil, Gas Chromatography-<br />

Mass Spectrometry, bicyclogermacrene, trans-caryophyllene, α-<br />

amorphene, α-copaene, α-terpinolene, germacrene D, linalool, β-<br />

fenchyl alcohol, β-pinene, α-pinene.<br />

Resumen. La composición química de los aceites esenciales obtenidos<br />

por arrastre de vapor de las hojas, flores y frutos frescos de Annona<br />

cherimola fue analizada por Cromatografía de Gases-Espectrometría<br />

de Masas (GC/MS). Sesenta componentes fueron identificados<br />

en los aceites esenciales. Mientras que el biciclogermacreno, el<br />

trans-cari<strong>of</strong>ileno y el δ-amorfeno se identificaron como los constituyentes<br />

mayoritarios en el aceite esencial de las hojas; el biciclogermacreno,<br />

el α-terpinoleno y el germacreno D fueron los constituyentes<br />

mayoritarios del aceite esencial de las flores, y el β-pineno,<br />

el α-terpinoleno, el alcohol β-fenchílico y el α-pineno fueron los<br />

principales componentes del aceite esencial de los frutos. La actividad<br />

antimicrobiana in vitro de los tres aceites esenciales y de algunos<br />

de sus contituyentes mayoritarios fue evaluada contra cinco bacterias<br />

Gram (+), (-) y un hongo.<br />

Palabras clave: Annona cherimola, aceite esencial, Cromatografía<br />

de Gases-Espectrometría de Masas, biciclogermacreno, trans-cari<strong>of</strong>ileno,<br />

α-amorfeno, α-copaeno, α-terpinoleno, germacreno D,<br />

linalool, alcohol β-fenchílico, β-pineno, α-pineno.<br />

Introduction<br />

The Annonaceae family includes 80 genera and about 850<br />

species distributed in tropical and subtropical areas <strong>of</strong><br />

America, Africa and Asia. Only four genera <strong>of</strong> this family are<br />

<strong>of</strong> economic importance, and <strong>the</strong> genus Annona is one <strong>of</strong><br />

<strong>the</strong>m. Annona cherimola is highly appreciated for its exquisite<br />

fruits and for its use in traditional medicine in <strong>the</strong> treatment <strong>of</strong><br />

skin diseases [1], tumors and cancer [2], and is reported to<br />

have antimicrobial and insecticidal properties [3,4]. Although<br />

several reports on <strong>the</strong> chemical composition <strong>of</strong> A. cherimola<br />

have been published [1-9], to date <strong>the</strong>re are no reports on <strong>the</strong><br />

chemical analysis <strong>of</strong> <strong>the</strong> essential oil <strong>of</strong> this species. We present<br />

here <strong>the</strong> chemical composition and <strong>the</strong> antimicrobial<br />

activity <strong>of</strong> <strong>the</strong> essential oils from <strong>the</strong> leaves, flowers and fruits<br />

<strong>of</strong> A. cherimola.<br />

Results and discussion<br />

CG/MS analysis <strong>of</strong> <strong>the</strong> three oils led to <strong>the</strong> identification <strong>of</strong><br />

sixty constituents, which are listed in Table 1 along with <strong>the</strong>ir<br />

quantitative data. The identification <strong>of</strong> each component was<br />

based on a comparison <strong>of</strong> its mass spectrum with those contained<br />

in <strong>the</strong> HP CHEMSTATION-Wiley275.L Library. A<br />

high proportion <strong>of</strong> <strong>the</strong> essential oils is constituted by four<br />

main compounds: more than 40 % <strong>of</strong> <strong>the</strong> essential oil from <strong>the</strong><br />

leaves is composed by bicyclogermacrene (18.20 %), transcaryophyllene<br />

(11.50 %), α-amorphene (7.57 %) and α-<br />

copaene (5.63 %); similarly, 34.02 % <strong>of</strong> <strong>the</strong> essential oil from<br />

<strong>the</strong> flowers corresponds to bicyclogermacrene (11.73 %), α-<br />

terpinolene (9.75 %), germacrene D (7.01 %) and linalool<br />

(5.53 %); finally, almost 45 % <strong>of</strong> <strong>the</strong> essential oil from <strong>the</strong><br />

fruits corresponds to β-pinene (15.48 %), α-terpinolene (13.59


140 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Ríos Gómez et al.<br />

Table 1. <strong>Chemical</strong> composition <strong>of</strong> <strong>the</strong> essential oils <strong>of</strong> leaves, flowers and fruits from A. cherimola.<br />

Compound a rt b KI c d GC Area %<br />

A e B e C e<br />

1 Isoprene 2.41 421 0.35 0.08 —<br />

2 α-Pinene 3.29 800 1.60 0.14 6.37<br />

3 Camphene 3.41 804 — — 0.45<br />

4 β-Terpinene 3.67 813 — 0.08 —<br />

5 β-Pinene 3.73 815 4.11 1.32 15.48<br />

6 Mircene 3.85 819 0.23 2.75 —<br />

7 β-Phellandrene 4.02 825 — — 0.20<br />

8 1,8-Cineole 4.30 837 0.32 0.30 4.02<br />

9 trans-β-Ocimene 4.53 846 0.15 0.08 0.30<br />

10 δ-3-Carene 4.67 853 — — 0.19<br />

11 trans-Linalool oxide 4.79 868 — — 1.18<br />

12 α-Terpinolene 5.13 876 — 9.75 13.59<br />

13 Linalool 5.27 885 3.06 5.53 0.29<br />

14 Borneol 6.00 939 — — 2.02<br />

15 α-Terpinene-4-ol 6.21 959 0.17 1.67 2.04<br />

16 β-Fenchyl alcohol 6.31 970 — 1.70 8.81<br />

17 α-Terpineol 6.66 982 — 0.15 0.83<br />

18 Borneyl Acetate 7.60 989 — — 0.21<br />

19 α-Bisabolene 8.51 1085 1.69 1.74 1.38<br />

20 α-Cubebene 8.67 1109 0.89 0.11 5.88<br />

21 α-Copaene 9.04 1170 5.63 1.04 3.28<br />

22 β-Cubebene 9.13 1189 — — 1.09<br />

23 β-Elemeno 9.19 1202 3.57 1.82 —<br />

24 Unknown 9.35 1204 — — 1.79<br />

25 cis-Caryophyllene 9.40 1205 1.34 — 3.60<br />

26 trans-Caryophyllene 9.60 1207 11.50 2.30 —<br />

27 (-)Caryophyllene oxide 9.68 1209 — 0.16 0.81<br />

28 β-gurjunene 9.70 1210 0.30 — 1.40<br />

29 α-gurjunene 9.82 1213 1.37 — —<br />

30 (-)Isoledene 9.90 1215 0.60 — 0.33<br />

31 α-Humulene 9.97 1217 3.05 0.24 1.48<br />

32 Aromadendrene 10.05 1220 0.39 0.18 0.43<br />

33 α-Amorphene 10.26 1226 2.20 — —<br />

34 Germacrene D 10.31 1228 3.75 7.01 1.44<br />

35 Alloaromadendrene 10.40 1231 2.36 — —<br />

36 Bicyclogermacrene 10.46 1233 18.20 11.73 1.49<br />

37 10-Hydroxy-α-gurjunene 10.55 1236 4.47 1.01 0.69<br />

38 δ-Amorphene 10.61 1239 7.57 1.08 —<br />

39 γ-Cadinene 10.69 1242 2.50 0.14 —<br />

40 Unknown 10.77 1244 0.60 — —<br />

41 δ-Cadinene 10.81 1247 4.63 1.98 3.01<br />

42 Cadina-1,4-diene 10.93 1251 1.27 0.12 —<br />

43 9-Aromadendrene 10.99 1256 0.70 — —<br />

44 β-Elemol 11.11 1259 — 0.40 —<br />

45 Nerolidol 11.19 1264 — — 0.81<br />

46 1(10),4,11-Germacratrien-9-ol 11.28 1269 2.99 4.57 1.01<br />

47 γ-Cadinol 11.50 1281 0.24 0.86 2.00<br />

48 Lauric acid 11.66 1287 — 0.58 0.27<br />

49 T-cadinol 12.25 1407 0.42 3.40 2.03<br />

50 α-Cadinol 12.39 1410 0.70 3.30 1.48<br />

51 Muurolol 12.58 1415 — 2.39 2.48<br />

52 Unknown 12.76 1430 — — 1.21<br />

53 Azuleno 13.27 1434 — 1.51 —<br />

54 Unknown 13.79 1452 0.39 2.90 —<br />

55 Dehydroaromadendrene 14.63 1493 0.23 — —<br />

56 9,10-Dehydroisolongifolene 15.14 1607 1.43 — —<br />

57 Cycloisolongifolene 15.20 1610 1.39 — —<br />

58 Unknown 16.34 1674 0.87 — —<br />

59 Unknown 16.92 1732 1.40 — —<br />

60 Palmitic acid 18.30 1801 0.27 12.97 —<br />

61 (8 β,13β)-Kaur-16-ene 18.57 1811 0.49 — 0.44<br />

62 Oleic acid 20.84 1886 0.57 6.64 —<br />

63 Kauran-16-ol 21.56 1905 — — 0.99<br />

64 Stearic acid 21.62 1908 — 6.25 —<br />

65 Kaur-16-en-19-ol 21.84 1913 — — 0.64<br />

66 Kaur-16-en-18-oic acid 24.52 2170 — — 1.90<br />

Total <strong>of</strong> compounds identified (%) 96.70 97.08 96.25<br />

a Composition listed in order <strong>of</strong> elution from a HP-1 column. b Retention times (rt) in minutes. c Kovats Indices (KI) on HP-1 capillary column<br />

dGas Chromatography. e A, B and C represent <strong>the</strong> essential oil <strong>of</strong> leaves, flowers and fruits <strong>of</strong> Annona cherimola, respectively<br />

- no detected


<strong>Chemical</strong> Composition and Antimicrobial Activity <strong>of</strong> <strong>the</strong> Essential Oils from Annona cherimola (Annonaceae) 141<br />

Table 2. Proportion (%) <strong>of</strong> mono- and sesquiterpenes in <strong>the</strong> essential oils from A. cherimola.<br />

Monoterpenes<br />

Sesquiterpenes<br />

Sample hydrocarbons alcohols oxides total hydrocarbons alcohols oxides total<br />

Leaves 6.09 3.23 0.32 9.64 76.56 8.82 0.00 85.38<br />

Flowers 14.12 9.05 0.3 23.47 31.00 15.93 0.16 47.09<br />

Fruits 36.58 13.99 5.41 55.98 24.81 10.50 0.81 36.12<br />

Table 3. Principal skeleta (%) <strong>of</strong> mono- and sesquiterpenes in <strong>the</strong> essential oils from A. cherimola.<br />

Monoterpenes<br />

Sesquiterpenes<br />

Sample acyclic monoterpenes pinene p-menthane total caryophyllene germacrene aromadendrene total<br />

Leaves 3.21 5.71 0.72 100.00 12.84 21.95 17.00 60.65<br />

Flowers 5.61 1.46 14.70 92.70 2.46 18.74 2.09 49.45<br />

Fruits 1.77 21.85 20.68 79.10 0.81 2.93 2.09 16.14<br />

%), β-fenchyl alcohol (8.81 %) and α-pinene (6.37 %). The<br />

identified components represent between 96-97% <strong>of</strong> <strong>the</strong> total<br />

composition <strong>of</strong> <strong>the</strong> oils.<br />

The monoterpenes and sesquiterpenes are <strong>the</strong> main type<br />

<strong>of</strong> compounds in <strong>the</strong> three essential oils (Table 2). The essential<br />

oil <strong>of</strong> <strong>the</strong> leaves have a high proportion <strong>of</strong> sesquiterpenes<br />

(85.38 %) and showed a weak antimicrobial activity against<br />

<strong>the</strong> assayed microorganisms (Tabla 4). In <strong>the</strong> essential oil <strong>of</strong><br />

<strong>the</strong> flowers <strong>the</strong> proportion <strong>of</strong> sesquiterpenes was lowest (47.09<br />

%), increasing <strong>the</strong> proportion <strong>of</strong> monoterpenes (23.47 %), and<br />

for this essential oil <strong>the</strong> MIC values observed were minor in<br />

all <strong>the</strong> assayed microorganisms, with <strong>the</strong> exception <strong>of</strong> E. faecalis.<br />

In <strong>the</strong> essential oil <strong>of</strong> <strong>the</strong> fruits <strong>the</strong> monoterpenes are <strong>the</strong><br />

major constituents (55.98 %) being this essential oil <strong>the</strong> most<br />

active against S. aureous and P. mirabilis. These results indicate<br />

that <strong>the</strong> antimicrobial activity <strong>of</strong> <strong>the</strong>se essential oils could<br />

be associated to <strong>the</strong> presence and amount <strong>of</strong> <strong>the</strong> monoterpenic<br />

compounds. The mono- and sesquiterpenes isolated could be<br />

classified as hydrocarbons, alcohols and oxides, being <strong>the</strong><br />

hydrocarbons <strong>the</strong> major components <strong>of</strong> <strong>the</strong> three essential oils<br />

(Table 2).<br />

In <strong>the</strong> three essential oils more than 79 % <strong>of</strong> <strong>the</strong> monoterpenes<br />

belongs to acyclic monoterpenes, and monoterpenes<br />

with pinene and p-menthane skeleton. In <strong>the</strong> essential oils<br />

from <strong>the</strong> leaves and flowers 60 % and 49 %, respectively, <strong>of</strong><br />

<strong>the</strong> sesquiterpenes have <strong>the</strong> skeleton <strong>of</strong> caryophyllene, germacrene<br />

and aromadendrene, while in <strong>the</strong> essential oil from fruits<br />

<strong>the</strong> proportion <strong>of</strong> this sesquiterpenes is very lowest (16 %)<br />

(Table 3).<br />

The three essential oils <strong>of</strong> A. cherimola showed a significant<br />

activity against Gram-positive, Gram-negative bacteria<br />

and one fungus (Table 4). Although no previous reports on <strong>the</strong><br />

antimicrobial activity <strong>of</strong> <strong>the</strong> major constituents <strong>of</strong> <strong>the</strong> essential<br />

oil from <strong>the</strong> leaves were found in <strong>the</strong> literature, trans-caryophyllene<br />

showed moderate activity against Staphylococcus<br />

aureus, Enterococcus faecalis, Escherichia coli and Shigella<br />

sonei. The essential oil from <strong>the</strong> flowers was <strong>the</strong> most active<br />

against all <strong>the</strong> microorganisms tested, and <strong>the</strong> second most<br />

active against S. aureus, this activity could be associated with<br />

its high concentration <strong>of</strong> linalool, that was very active against<br />

all <strong>the</strong> microorganisms included in <strong>the</strong> Table 2, and which is<br />

known to possess antimicrobial and antifungal activity<br />

[10,11]. Previous reports have been carried out <strong>of</strong> <strong>the</strong> antimicrobial<br />

activity for α-pinene [10,12,13], who in our hands<br />

showed moderate activity, however, a very important activity<br />

was observed for β-fenchyl alcohol, both presents in high proportion<br />

in <strong>the</strong> essential oil <strong>of</strong> <strong>the</strong> fruits, which shows <strong>the</strong> best<br />

effect against <strong>the</strong> bacteria S. aureus, E. faecalis and Proteous<br />

mirabilis. Although at least one <strong>of</strong> <strong>the</strong> major constituents <strong>of</strong><br />

each essential oil showed antimicrobial activity against <strong>the</strong><br />

tested microorganisms, <strong>the</strong> MIC values obtained in each case<br />

are biggest that those <strong>of</strong> <strong>the</strong>ir corresponding essential oils, this<br />

suggest that <strong>the</strong> antimicrobial activity could be due to a synergistic<br />

effect between <strong>the</strong> constituents <strong>of</strong> each essential oil.<br />

Experimental section<br />

Plant material: The leaves (442 g), flowers (309 g) and green<br />

fruits with an average <strong>size</strong> <strong>of</strong> 2.5 cm (206 g) were collected from<br />

10 individuals <strong>of</strong> a wild population <strong>of</strong> A. cherimola. The plant<br />

material was collected during <strong>the</strong> flowering and fruiting stage in<br />

April-May <strong>of</strong> 2<strong>002</strong>. A specimen (voucher No. 18854) was<br />

deposited at <strong>the</strong> Herbarium <strong>of</strong> <strong>the</strong> Universidad Autónoma del<br />

Estado de Morelos (HUMO), Cuernavaca, Morelos, México.<br />

<strong>Chemical</strong> analysis: The leaves, flowers and fruits <strong>of</strong> A. cherimola<br />

were finely cuted and subjected to steam distillation (1.5<br />

h) using a modified Clevenger-type apparatus, to yield 0.63<br />

%, 0.39 %, and 0.83 % <strong>of</strong> a yellow oil, respectively. The<br />

physical properties for each sample were: leaves ([α] D<br />

25 +<br />

16.1 (CHCl 3 , c = 1.1), d 25 0.83), flowers ([α] D<br />

25 + 6.4 (CHCl 3 ,<br />

c = 0.97), d 25 0.87) and fruits ([α] D<br />

25 + 8.3 (CHCl 3 , c = 0.92),<br />

d 25 0.84). The oils were subjected to GC / MS analysis in a<br />

Hewlett Packard 6890 GC / 5972 MSD chromatograph<br />

equipped with a HP-1 capillary column (length 30 m, id 0.25<br />

mm, ft 0.25 µm). The carrier gas was helium and <strong>the</strong> linear<br />

gas velocity was 36 cm/s. The injector temperature was 250


142 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Ríos Gómez et al.<br />

Table 4. Antimicrobial activity <strong>of</strong> <strong>the</strong> essential oils <strong>of</strong> leaves, flowers and fruits from A. cherimola.<br />

MIC (mg / mL)<br />

Sample Staphylococcus Enterococcus Escherichia Shigella Proteous Candida<br />

aureus faecalis coli sonei mirabilis albicans<br />

Leaves 0.25 0.5 10 5 5 5<br />

Flowers 0.125 0.5 2 2.5 2 0.5<br />

Fruits 0.06 0.5 2 2.5 1 2<br />

trans-caryophyllene 8.0 16 16 16 > 16 > 16<br />

Terpinolene > 16 > 16 > 16 > 16 > 16 > 16<br />

linalool 2 4 2 2 2 4<br />

β-Pinene > 16 > 16 > 16 > 16 > 16 > 16<br />

α-Pinene 16 16 4 16 16 8<br />

β-fenchyl alcohol 4 2 2 2 2 8<br />

Gentamicin 0.004 0.004 0.008 0.008 0.008 —<br />

Nystatin — — — — — 0.004<br />

ºC and <strong>the</strong> column temperature, initially at 60 ºC, was gradually<br />

increased at a rate <strong>of</strong> 10 ºC/min up to 160 ºC and <strong>the</strong>n<br />

gradually increased at a rate <strong>of</strong> 5º C/min up to 220 ºC and kept<br />

at 220 ºC for 5 min. For detection, a flame ionization detector<br />

at 280 ºC, IE (Scan 30-550 uma) was used.<br />

Standards <strong>of</strong> pure metabolites. trans-caryophyllene (Aldrich,<br />

C-9653), terpinolene (Fluka, 86485), linalool (Aldrich, L260-<br />

2), β-pinene (Fluka, 80608), α-pinene (Aldrich, 26,807-0) and<br />

β-fenchyl alcohol (Aldrich, 19,644-4) were obtained from<br />

commercial sources.<br />

Antimicrobial Activity: The bacteria Staphylococcus aureus<br />

(ATCC 25213), Enterococcus faecalis (ATCC 29212), Escherichia<br />

coli (ATCC 25922), Proteus mirabilis (ATCC 12453)<br />

and Shigella sonei (ATCC 11060) were maintained on Trypticase<br />

soya agar, while Candida albicans (ATCC 10231) was<br />

maintained on Sabouraud 4 % dextrose agar. The inoculum<br />

for each organism was 10 4 colony forming units (CFU)/ mL.<br />

The minimum inhibitory concentrations (MICs) were measured<br />

as described previously for essential oils [12]. Initial<br />

emulsions <strong>of</strong> <strong>the</strong> oils (20 mg/mL) and <strong>the</strong> standards <strong>of</strong> pure<br />

metabolites (16 mg/mL) were prepared in sterile distilled water<br />

with 10 % DMSO. Serial dilutions <strong>of</strong> <strong>the</strong> stock solutions in<br />

both media (100 µL <strong>of</strong> Muller Hinton broth or Sabouraud<br />

broth) were prepared in a microtiter plate and 2 µL <strong>of</strong> microbial<br />

suspension was added to each well. For each strain, <strong>the</strong><br />

growth conditions and <strong>the</strong> sterility <strong>of</strong> <strong>the</strong> medium were proved<br />

and <strong>the</strong> plates were incubated 24 h at 37 °C for <strong>the</strong> bacteria,<br />

and 48 h at 28 °C for <strong>the</strong> yeast. Standard antibiotics (gentamicin<br />

and nystatin) were used as positive controls, and MICs<br />

were determined as <strong>the</strong> lowest concentrations preventing visible<br />

growth. To indicate <strong>the</strong> bacterial growth, p-Iodonitrotetrazolium<br />

violet (SIGMA I-8377) was added to <strong>the</strong> microplate<br />

wells, as described by El<strong>of</strong>f [14].<br />

Copies <strong>of</strong> <strong>the</strong> original GC and GC-MS chromatographs<br />

and spectra can be obtained from <strong>the</strong> author <strong>of</strong> correspondence.<br />

Acknowledgements<br />

We thank Enrique Salazar Leyva for technical assistance.<br />

References<br />

1. Chen, Ch.Y.; Chang, F.R.; Pan, W.B.; Wu, Y.C. Phytochemistry<br />

2001, 56, 753-757.<br />

2. Chen, Ch.Y.; Chang, F.R.; Chiu, H.F.; Wu, M.J.; Wu, Y.C.<br />

Phytochemistry 1999, 51, 429-433.<br />

3. Cortes, D.; Myint, S.H.; Dupont, B.; Davoust, D. Phytochemistry<br />

1993, 32, 1475-1482.<br />

4. Simeon, S.J.; Ríos, L.; Villar, A. Pharmazie 1990, 45, 442-443.<br />

5. Woo, M.H.; Kim, D.H.; Fotopoulos, S.S.; McLaughlin, J.L. J.<br />

Nat. Prod. 1999, 62, 1250-1255.<br />

6. Chen, Ch.Y.; Chang, F.R.; Yen, H.F.; Wu, Y.Ch. Phytochemistry<br />

1998, 49, 1443-1447.<br />

7. Chen, Ch.Y.; Chang, F.R.; Wu, Y.Ch. Tetrahedron Letters 1997,<br />

38, 6247-6248.<br />

8. Sahpaz, S.; González, M.C.; Hocquemiller, R.; Zafra-Polo, M.C.;<br />

Cortes, D. Phytochemistry 1996, 42, 103-107.<br />

9. Cortes, D.; Myint, S.H.; Leboeuf, M.; Cavé, A. Tetrahedron<br />

Letters 1991, 32, 6133-6134.<br />

10. Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis,<br />

M. J. Agric. Food Chem. 1998, 46, 1739-1745.<br />

11. Skaltsa, H.; Lazari, D.; Mavromati, A.; Tiligada, E.;<br />

Constantinidis T. Planta Medica 2000, 66, 672-674.<br />

12. Aligiannis, N.; Kalpoutzakis, E.; Chinou, I.; Mitakou, S. J. Agric.<br />

Food Chem. 2001, 49, 811-815.<br />

13. Tzakou, O.; Pitarokili, D.; Chinou, I.; Harvala C. Planta Medica<br />

2001, 67, 81-83.<br />

14. El<strong>of</strong>f, J.N. Planta Medica 1998, 64, 711-713.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 143-145<br />

Investigación<br />

Sesquiterpene Lactone Sequestration by <strong>the</strong> Tortoise Beetle<br />

Physonota arizonae (Cassidinae)<br />

Manuel Aregullín and Eloy Rodríguez *<br />

Natural Products Laboratory, Biotechnology 259, College <strong>of</strong> Agriculture and Life Sciences, Cornell University,<br />

Ithaca, NY 14853-4301, USA<br />

In honor <strong>of</strong> Dr. Alfonso Romo de Vivar for his contributions to <strong>the</strong> field <strong>of</strong> phytochemistry<br />

<strong>the</strong> chemistry <strong>of</strong> sesquiterpene lactones<br />

Recibido el 24 de marzo del 2003; aceptado el 28 de mayo del 2003<br />

Abstract. The phenomenon <strong>of</strong> sequestration <strong>of</strong> plant secondary<br />

metabolites by herbivorous arthropods and its importance as an<br />

arthropod defense strategy is well documented in chemical ecology<br />

studies. Damsin (1), and <strong>the</strong> related terpene damsinic acid (2), are<br />

sesquiterpene lactones sequestered by <strong>the</strong> tortoise beetle Physonota<br />

arizonae (Cassidinae) from its host plant Ambrosia ambrosioides<br />

(Asteraceae) for possible chemical protection.<br />

Keywords: Sequestration, sesquiterpene lactones, Asteraceae, Ambrosia<br />

ambrosioides, Cassidinae, Physonota arizonae, Coleoptera,<br />

tortoise beetles.<br />

Resumen. El fenómeno de secuestro de metabolitos secundarios de<br />

plantas por artrópodos hervíboros, y su importancia como estrategia<br />

de defensa artrópoda, se encuentra bien documentado en estudios de<br />

ecología química. Damsina (1), y el terpeno ácido damsinico (2), son<br />

sesquiterpen lactonas secuestradas por el escarabajo tortuga Physonota<br />

arizonae (Cassidinae) de su planta anfitrión Ambrosia ambrosioides<br />

(Asteraceae) para su posible protección química.<br />

Palabras clave: Secuestro, sesquiterpen lactonas, Asteraceae, Ambrosia<br />

ambrosioides, Cassidinae, Physonota arizonae, Coleoptera,<br />

escarabajos tortuga.<br />

Introducción<br />

The phenomenon <strong>of</strong> sequestration <strong>of</strong> natural products is a well<br />

documented biological event occurring extensively in <strong>the</strong><br />

Arthropoda [1, 2]. The uptake <strong>of</strong> toxic substances <strong>of</strong> exogenous<br />

origin, for purposes <strong>of</strong> defense, has been dramatically<br />

demonstrated in several plant-insect interactions [3, 4]. In <strong>the</strong><br />

class Insecta, plant-derived chemicals are <strong>of</strong>ten stored internally<br />

in <strong>the</strong> hemolymph or in specialized glands, and used in<br />

acts <strong>of</strong> reflex bleeding or active secretion triggered by <strong>the</strong><br />

encounter with a potential predatorial threat [1].<br />

However, less common are <strong>the</strong> cases <strong>of</strong> sequestration in<br />

which <strong>the</strong> toxic chemicals are stored externally (i.e., appendages<br />

or whole body coatings). The possible advantage <strong>of</strong><br />

such a defense posture is its utilization as visual or olfactory<br />

warning <strong>of</strong> chemical protection. It is only recently that <strong>the</strong><br />

chemistry <strong>of</strong> <strong>the</strong>se defense strategies or “shields” has been<br />

recognized [5-7].<br />

In this study, we investigated <strong>the</strong> chemistry <strong>of</strong> an interesting<br />

case <strong>of</strong> external sequestration in <strong>the</strong> family Cassidinae<br />

within <strong>the</strong> Coleoptera.<br />

One such tortoise beetle species, Physonota arizonae [8], is<br />

endemic to <strong>the</strong> southwest United States and nor<strong>the</strong>rn Mexico<br />

and it uses as host plant a commonly occurring shrub from <strong>the</strong><br />

family Asteraceae, Ambrosia ambrosioides (canyon ragweed).<br />

We became very interested in learning <strong>the</strong> chemical composition<br />

<strong>of</strong> <strong>the</strong> caudal globe <strong>the</strong> nymphal stages carry, in an<br />

attempt to infer from this composition any potential defensive<br />

value.<br />

Because <strong>of</strong> <strong>the</strong> external adult morphology (i.e., analogous<br />

to <strong>the</strong> reptilian Chelonia), <strong>the</strong> beetles in <strong>the</strong> family Cassidinae<br />

are commonly referred to as tortoise beetles (Fig. 1a). The<br />

pronotum and elytra in <strong>the</strong>se beetles extend to cover completely<br />

<strong>the</strong> margins <strong>of</strong> <strong>the</strong> body, and is an excellent example <strong>of</strong><br />

mechanical defense for <strong>the</strong> adult life stage. However, <strong>the</strong><br />

nymphal stages possess a very different morphology (i.e.,<br />

platyform with lateral segmental appendages) that cannot be<br />

used effectively for protection. The nymphal stages possess a<br />

caudal bifurcated process (i.e., urogomphi) where exuvia are<br />

accumulated, as <strong>the</strong> beetle develops, and covered with fecal<br />

matter, this assemblage can be best described as a small green<br />

caudal globe that can represent from 1 / 5 to 1 / 3 <strong>of</strong> <strong>the</strong> overall<br />

<strong>size</strong> <strong>of</strong> <strong>the</strong> beetle (Fig. 1b). Because <strong>the</strong> urogomphi are<br />

articulated with muscles, <strong>the</strong> beetle can raise this caudal globe<br />

over <strong>the</strong> body in an umbrella or shield like fashion and conspicuously<br />

display it. Moreover, in <strong>the</strong> event <strong>of</strong> a threat, this<br />

display is accompanied by a typical defensive behavior in<br />

which <strong>the</strong> caudal globe is actually pointed in <strong>the</strong> direction <strong>of</strong><br />

<strong>the</strong> threat (scorpion syndrome). Thus, we propose that <strong>the</strong><br />

nymphal stages are protected chemically by <strong>the</strong>se accumulations<br />

<strong>of</strong> fecal matter in combination with a behavioral response,<br />

and that this protection represents a case <strong>of</strong> external sequestration<br />

<strong>of</strong> plant derived chemicals.<br />

We have now shown that P. arizonae covers its exuvia with<br />

resinous fecal deposits that comprise up to 90 % (w/w) <strong>of</strong> a mixture<br />

<strong>of</strong> two sesquiterpene lactones, Damsin (1) and Damsinic<br />

acid (2), sequestered from A. ambrosioides. Flavonoids were<br />

also present in <strong>the</strong> mixture but were not characterized.


144 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Manuel Aregullin and Eloy Rodriguez<br />

Fig. 1. 1a (left) Adult tortoise beetle Physonota arizonae with typical Cassidinae morphology.<br />

1b (right) Larval stages <strong>of</strong> Physonota arizonae feeding on host plant Ambrosia ambrosioides and displaying defensive fecal shields (FS).<br />

Experimental<br />

Collection <strong>of</strong> Plant Material and Beetles. Ambrosia ambrosioides<br />

leaf material containing feeding Physonota arizonae<br />

beetles were collected from wild populations in washes, in <strong>the</strong><br />

Coyote Mountains <strong>of</strong>f <strong>of</strong> Hwy 86, approximately 20 mi. west<br />

<strong>of</strong> Tucson, Arizona during <strong>the</strong> months <strong>of</strong> July and August.<br />

The leaf plant material was brought to <strong>the</strong> laboratory, and <strong>the</strong><br />

beetles were removed manually and processed separately. The<br />

leaf plant material was air-dried and ground prior to solvent<br />

extraction, and from <strong>the</strong> beetles <strong>the</strong> exuviae and its resinous<br />

coating were collected and extracted fresh with organic solvents.<br />

Ambrosia ambrosioides Extraction and <strong>Chemical</strong> Analysis.<br />

Dried and ground leaf plant material (250 g) was extracted<br />

with 1500 mL <strong>of</strong> chlor<strong>of</strong>orm and magnetic stirring overnight.<br />

The chlor<strong>of</strong>ormic extract was filtered and <strong>the</strong> solvent evaporated<br />

to dryness in a rotavapor under vacuum. The residue was<br />

retaken in methanol to remove most <strong>of</strong> <strong>the</strong> hydrocarbons and<br />

filtered. The filtrate was evaporated to dryness to yield 24 g<br />

(9.6 %) <strong>of</strong> methanol soluble crude extract.<br />

The crude extract was dissolved in methanol and applied<br />

to a Sephadex LH-20 chromatographic column and eluted<br />

with methanol. Fractions from <strong>the</strong> column were collected<br />

according to <strong>the</strong>ir fluorescence under longwave light from a<br />

portable ultraviolet lamp. Fractions 1 and 2 showed to contain<br />

a mixture <strong>of</strong> hydrocarbons that was not fur<strong>the</strong>r characterized.<br />

Fraction 5 was shown to contain <strong>the</strong> sesquiterpene lactone<br />

Damsin (1). Fraction 6 was shown to contain <strong>the</strong> sesquiterpene<br />

lactone Damsinic acid (2). The structures <strong>of</strong> <strong>the</strong> two<br />

sesquiterpene lactones were established by spectroscopic<br />

methods (i.e., UV, IR, 1 H-NMR and 13 H-NMR, and MS), and<br />

comparison with au<strong>the</strong>ntic samples. Fractions 7-10 were<br />

shown to contain a mixture <strong>of</strong> flavonoids that was not fur<strong>the</strong>r<br />

characterized.<br />

Beetle Resinous Coating Extraction and <strong>Chemical</strong><br />

Analysis. Approximately 50 to 100 exuvia covered with feces<br />

were removed from <strong>the</strong> beetles and extracted fresh with chlor<strong>of</strong>orm.<br />

The chlor<strong>of</strong>ormic extract was filtered, and <strong>the</strong> solvent<br />

evaporated to dryness in a rotavapor under vacuum. The<br />

residue was redissolved in methanol, <strong>the</strong> insoluble fraction<br />

was discarded, and <strong>the</strong> filtrate evaporated to dryness to yield a<br />

gummy residue.<br />

The residue was dissolved in methanol and applied to a<br />

Sephadex LH-20 chromatographic column and eluted with<br />

methanol. Several fractions from <strong>the</strong> column were collected<br />

according to <strong>the</strong>ir different fluorescence under longwave ultraviolet<br />

light. Two fractions showed to contain each one a<br />

discrete sesquiterpene lactone that upon spectral analysis were<br />

shown to be Damsin (1) and Damsinic acid (2). The structures<br />

<strong>of</strong> (1) and (2) were established by spectroscopic analysis and<br />

comparison with au<strong>the</strong>ntic samples.<br />

Results and discussion<br />

Field observations have revealed <strong>the</strong> occurrence <strong>of</strong> <strong>the</strong> tortoise<br />

beetle Physonota arizonae on wild populations <strong>of</strong> canyon ragweed<br />

(Ambrosia ambrosioides), suggesting high host-plant<br />

specificity for this Asteraceae. All four life stages <strong>of</strong> <strong>the</strong> beetle<br />

(i.e., eggs, larvae, pupae and adults) were present on <strong>the</strong> host<br />

plant. Field observations also suggested that <strong>the</strong> appearance <strong>of</strong><br />

<strong>the</strong> beetle on <strong>the</strong> plant is closely associated with <strong>the</strong> initiation<br />

<strong>of</strong> <strong>the</strong> regional monsoon season that usually starts in July-<br />

August [9]. We suspected that <strong>the</strong> highly conspicuous accumulation<br />

<strong>of</strong> fecal matter (primarily derived from plant material),<br />

in combination with a discrete defensive behavior by <strong>the</strong><br />

nymphal stages, could be implicated in <strong>the</strong> chemical protection<br />

<strong>of</strong> <strong>the</strong> beetle from potential predators (i.e., birds, lizards, etc.).<br />

P. arizonae larvae, feeding on <strong>the</strong> plants, were collected<br />

from wild populations <strong>of</strong> A. ambrosioides to obtain enough<br />

material for chemical analysis. It was found that <strong>the</strong> fecal<br />

excretions covering <strong>the</strong> urogomphi were essentially lipophilic<br />

and that dissolved in chlor<strong>of</strong>orm ra<strong>the</strong>r easily. Thus, <strong>the</strong> chlor<strong>of</strong>ormic<br />

solution <strong>of</strong> <strong>the</strong> excretions was analyzed preliminary<br />

by tlc using a standard solvent system for terpenic chemicals<br />

(i.e., chlor<strong>of</strong>orm-acetone, 9:1) [10], <strong>the</strong> tlc plates were sprayed<br />

with a vanillin spray reagent highly specific for terpenoids<br />

[11]. This preliminary analysis revealed <strong>the</strong> presence <strong>of</strong> two<br />

major components in <strong>the</strong> excretion.


Sesquiterpene Lactone Sequestration by <strong>the</strong> Tortoise Beetle Physonota arizonae (Cassidinae) 145<br />

In fur<strong>the</strong>r analysis, <strong>the</strong> chlor<strong>of</strong>orm washings were combined<br />

and <strong>the</strong> solvent evaporated to yield a green resinous<br />

material. The green resinous material was dissolved in<br />

methanol to remove <strong>the</strong> lipid fraction, and filtered. The filtrate<br />

was concentrated and applied to a Sephadex LH-20 chromatographic<br />

column and eluted with methanol. Several fractions<br />

were collected and tlc analysis revealed that fractions 5 and 6<br />

contained <strong>the</strong> two major constituents <strong>of</strong> <strong>the</strong> fecal excretions<br />

identical to <strong>the</strong> ones originally detected by tlc. Final purification<br />

<strong>of</strong> <strong>the</strong> constituents <strong>of</strong> fractions 5 and 6 was achieved by<br />

preparative tlc. The 1 H-NMR spectra <strong>of</strong> fractions 5 and 6 had<br />

a very important diagnostic value in determining that fraction<br />

5 contained a sesquiterpene lactone (i.e., doublets at 6.27 and<br />

5.57 ppm with a coupling constant <strong>of</strong> approximately 3 Hz corresponding<br />

to <strong>the</strong> two protons in <strong>the</strong> exocyclic double bond<br />

<strong>of</strong> <strong>the</strong> γ-butyrolactone), and that fraction 6 contained a structurally<br />

related compound. This initial finding suggested that<br />

<strong>the</strong> origin <strong>of</strong> <strong>the</strong>se sesquiterpene lactones was actually <strong>the</strong><br />

host-plant. The sesquiterpene lactone chemistry <strong>of</strong> A. ambrosioides<br />

has been previously reported [12-14] and it is known<br />

that <strong>the</strong>re are geographical variations in <strong>the</strong> chemistry <strong>of</strong> A.<br />

ambrosioides [15]. Following <strong>the</strong> same isolation procedure as<br />

<strong>the</strong> one used in <strong>the</strong> case <strong>of</strong> <strong>the</strong> beetle excretions our study<br />

revealed that <strong>the</strong> population sampled, contained <strong>the</strong> sesquiterpene<br />

lactones Damsin (1) and Damsinic acid (2). Moreover,<br />

we determined by 1 H- and 13 C-NMR that <strong>the</strong>se sesquiterpene<br />

lactones are identical to <strong>the</strong> compounds in fractions 5 and 6<br />

from <strong>the</strong> beetle secretions.<br />

It is well known that sesquiterpene lactones are plant secondary<br />

metabolites with a wide array <strong>of</strong> very important biological<br />

activities (i.e., antifungal, insecticidal, allergenic, antitumoral,<br />

etc.) on different biological systems [16-18]. It is reasonable<br />

to suggest that for purposes <strong>of</strong> insect chemical protection,<br />

<strong>the</strong> sesquiterpene lactones occurring naturally in plants<br />

should be effective deterrents <strong>of</strong> predators.<br />

We are currently conducting experiments to demonstrate<br />

that arthropods that sequester and use sequiterpene lactones as<br />

chemical defenses are capable <strong>of</strong> deterring more effectively<br />

potential predators (i.e., birds, lizards, and o<strong>the</strong>r arthropods),<br />

and parasites (i.e., wasps).<br />

In summary, this is <strong>the</strong> first instance in which sesquiterpene<br />

lactones are shown to be in <strong>the</strong> repertoire <strong>of</strong> plant chemicals<br />

that are <strong>of</strong> defensive value to arthropods. Moreover, <strong>the</strong><br />

study <strong>of</strong> sequestration as presented by <strong>the</strong> tortoise beetles<br />

should provide us with better insights into <strong>the</strong> evolution <strong>of</strong><br />

sequestration. Fur<strong>the</strong>r study <strong>of</strong> tortoise beetles species within<br />

<strong>the</strong> genus Physonota, its related genera, and <strong>the</strong>ir associations<br />

with o<strong>the</strong>r plant species will shed light on <strong>the</strong> plant-insect<br />

coevolutionary and adaptive aspects and <strong>the</strong> insect-predator<br />

and insect-parasite relationships.<br />

It is now necessary to evaluate <strong>the</strong> defensive value to <strong>the</strong><br />

insect <strong>of</strong> this new type <strong>of</strong> sequestered substance in order to<br />

understand better <strong>the</strong> efficacy <strong>of</strong> its deterring activity.<br />

Acknowledgements<br />

The authors wish to thank Dr. William S. Bowers and Dr.<br />

Floyd G. Werner for <strong>the</strong>ir support and technical assistance.<br />

The authors also wish to thank NIH grant TW000076-0751,<br />

and Cornell Hatch funds for financial support.<br />

References<br />

1. Blum, M.S. <strong>Chemical</strong> Defenses <strong>of</strong> Arthropods. Academic Press,<br />

London, 1981.<br />

2. Duffey, S.S. Sequestration <strong>of</strong> Plant Natural Products by Insects.<br />

Annual Review <strong>of</strong> Entomology 1980, 25, 447.<br />

3. Rothschild, M. Secondary plant substances and warning colourations<br />

in insects, In H.F. Van Emden (ed.). Insect / Plant<br />

Relationships, Symp. R. Entomol. Soc. London 6, Blackwell Sci.,<br />

Oxford, 1972. Pg. 59-83.<br />

4. Schilknecht, H. Endeavour 1970, 30, 136.<br />

5. Olmstead, K.L.; Denno, R.F. Ecology 1993, 74, 1394.<br />

6. Gomez-Nelida, E.; Witte, L.; Hartmann, T. J. Chem. Ecol. 1999,<br />

25, 1007.<br />

7. Vencl, F.V.; Morton, T.C.; Mumma, R.O.; Schultz, J.C. J.<br />

Chem. Ecol. 1999, 25, 549.<br />

8. Sanderson, M.W. Ann. Entomol. Soc. Am. 1948, XLI, 468.<br />

9. Werner, F. Personal communication.<br />

10. Yoshioka, H.; Mabry, T.J.; Timmermann, B.N. Sesquiterpene<br />

Lactones. Chemistry, NMR and Plant Distribution. University <strong>of</strong><br />

Tokyo Press, Japan, 1973.<br />

11. Picman, A.K.; Ranieri, R.L.; Towers, G.H.N.; Lam, J. J. Chrom.<br />

1980, 189, 187.<br />

12. Doskotch, R.W. and Hufford, C.D. J. Org. Chem. 1970, 35, 486.<br />

13. Higo, A.; Hammam, Z.; Timmermann, B.N.; Yoshioka, H.; Lee,<br />

J.; Mabry, T.J. Phytochemistry 1971, 10, 2241.<br />

14. Romo, J.; Romo de Vivar, A.; Velez, A.; Urbina, E. Can. J.<br />

Chem. 1968, 46, 1535.<br />

15. Seaman, F.C. Bot. Rev. 1982, 48, 121.<br />

16. Rodríguez, E.; Towers, G.H.N.; Mitchell, J.C. Phytochemistry<br />

1976, 15, 1573.<br />

17. Picman, A.K. Biochem. Syst. Ecol. 1986, 14, 255.<br />

18. Robles, M., Aregullin, M., West, J., and Rodriguez, E. Planta<br />

Medica 1995, 61, 199.<br />

H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

(1 ) Damsin D a m sin (2) Damsinic acid acid


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 146-150<br />

Investigación<br />

Mechanism <strong>of</strong> Glutamate Neurochemistry: Electron Transfer<br />

and Reactive Oxygen Species<br />

Peter Kovacic 1 , Ratnasamy Somanathan 2* and Michelle Inzunza 1<br />

1 Department <strong>of</strong> Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.<br />

2 Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo Postal 1166, 22000 Tijuana, B.C.<br />

México. E-mail: somanatha@sundown.sdsu.edu<br />

Recibido el 8 de abril del 2003; Aceptado el 3 de junio del 2003<br />

Dedicated to Pr<strong>of</strong>essor Alfonso Romo de Vivar<br />

Abstract. Glutamate (Glu) undergoes metabolism to an imine derivative.<br />

We propose involvement <strong>of</strong> <strong>the</strong> conjugated α-iminocarboxylic<br />

acid in neurotoxicity and possibly in neurotransmission. Electrochemistry,<br />

captodative effect and bioactivity <strong>of</strong> related cyclic α-imino<br />

acids are relevant. There is also consistency with background literature<br />

<strong>of</strong> Glu indicating participation <strong>of</strong> oxidative stress, reactive oxygen<br />

species, and electron transfer. Alternatively, metal chelates <strong>of</strong><br />

Glu and Glu imine may play a role. Various analogs <strong>of</strong> Glu imine<br />

were syn<strong>the</strong><strong>size</strong>d, namely, oxime and a cyclic model derived from<br />

cyclization <strong>of</strong> <strong>the</strong> intermediate hydrazone.<br />

Keywords: Glutamate, neurotransmission, toxicity, imine, electron<br />

transfer, reactive oxygen species.<br />

Resumen. El glutamato (Glu) se metaboliza a un derivado de imina.<br />

Se propone la inclusión del ácido iminocarboxílico conjugado en la<br />

neurotoxocidad y posiblemente en la neurotransmisión. La electroquímica,<br />

el efecto captodativo y la bioactividad del los ácidos α-<br />

imino-cíclicos son relevantes. Los hallazgos son consistentes con los<br />

antecedentes de la literatura que indican la participación de Glu en el<br />

estrés oxidativo, en la química de las especies reactivas de oxígeno, y<br />

en la transferencia electrónica. Alternativamente, los quelatos metálicos<br />

de Glu y de iminas Glu, juegan un papel importante. Varios análogos<br />

de imina Glu fueron sintetizados, en particular la oxima, y un<br />

modelo cíclico derivado de la ciclización de la hidrazona intermediaria.<br />

Palabras clave: Glutamato, neurotransmisión, toxicidad, iminas,<br />

transferencia electrónica, especies reactivas de oxígeno.<br />

Introduction<br />

During <strong>the</strong> last score <strong>of</strong> years extensive evidence has accumulated<br />

in support <strong>of</strong> involvement <strong>of</strong> oxidative stress (OS) with<br />

both endogenous and exogenous agents, including anti-infective<br />

drugs [1], anticancer agents [2], carcinogens [3], reproductive<br />

toxins [4], nephrotoxins [5], hepatotoxins [6], and various<br />

o<strong>the</strong>rs [7a].<br />

The most common reactive oxygen species (ROS) are<br />

superoxide, hydrogen peroxide, peroxyl radicals, and <strong>the</strong><br />

important hydroxyl radical, that are generated by electron<br />

transfer (ET). ET functionalities comprise quinones (or precursors),<br />

metal complexes (or chelators), aromatic nitro compounds<br />

(or reduced products), and imines (or iminiums),<br />

which on redox cycling with oxygen give rise to ROS. The<br />

present article will focus on <strong>the</strong> conjugated imine category. In<br />

some cases, ET occurs without oxygen participation. Very<br />

many bioactive substances or <strong>the</strong>ir metabolites incorporate ET<br />

groups. OS can produce beneficial results, as with drugs, or<br />

unwanted side effects in toxicity. The mode <strong>of</strong> action is usually<br />

complex and probably multifaceted in many instances.<br />

This report deals with <strong>the</strong> mode <strong>of</strong> action <strong>of</strong> glutamate<br />

(Glu), both in neurotransmission and in toxicity. We propose<br />

that <strong>the</strong> α-imino metabolite may play a role as an ET agent in<br />

<strong>the</strong>se processes. Glu metabolism, generation <strong>of</strong> ROS and prior<br />

literature on bioactivity <strong>of</strong> related α-iminocarboxylic acids<br />

lend support to <strong>the</strong> <strong>the</strong>sis. Several syn<strong>the</strong>tic analogs, both<br />

acyclic and cyclic, <strong>of</strong> <strong>the</strong> α-imino metabolite were syn<strong>the</strong><strong>size</strong>d.<br />

Metabolism<br />

In relation to mechanism, Glu metabolism has attracted scant<br />

attention even though metabolites <strong>of</strong>ten play an important role<br />

in physiological activity. It is significant that Glu can serve as<br />

substrate for an enzyme that effects conversion to <strong>the</strong> imine<br />

derivative (1a), particularly since Glu dehydrogenase plays a<br />

central role in amino acid deamination because in most<br />

organisms Glu is <strong>the</strong> only amino acid that has an active dehydrogenase<br />

[8].<br />

The labile product (1a) can undergo several subsequent<br />

conversions. Nucleophilic attack by a basic primary amino<br />

O<br />

OH<br />

a.) R= H<br />

1<br />

NR<br />

HO<br />

b) R= Substituent<br />

O


Mechanism <strong>of</strong> Glutamate Neurochemistry: Electron Transfer and Reactive Oxygen Species 147<br />

entity, such as protein lysine, with elimination <strong>of</strong> ammonia,<br />

gives rise to <strong>the</strong> more stable imine 1b possessing a substituent<br />

on nitrogen. Alternatively, 1a could undergo hydrolysis to <strong>the</strong><br />

α-keto acid which also serves as precursor <strong>of</strong> (1b) by reaction<br />

with pri-amine [8]. We will explore possible ramifications relative<br />

to mode <strong>of</strong> action resulting from generation <strong>of</strong> conjugated<br />

imine (1b). Several common routes are generally available<br />

for imine and iminium syn<strong>the</strong>sis in biological systems, including<br />

oxidation <strong>of</strong> aliphatic amines and nonenzymatic condensation<br />

<strong>of</strong> carbonyl compounds with <strong>the</strong> pri-amino moiety <strong>of</strong><br />

basic amino acids in protein. Hence, <strong>the</strong>se transformations are<br />

applicable to Glu, making for relevance to our report. Regarding<br />

<strong>the</strong> iminium types, <strong>the</strong>y can also be derived simply by<br />

alkylation or protonation <strong>of</strong> imine.<br />

Syn<strong>the</strong>sis<br />

Cyclic iminocarboxylates were syn<strong>the</strong><strong>size</strong>d from α-ketoglutaric<br />

acid (2a), by condensing with hydrazine in methanol to<br />

yield cyclic ester 2 which on hydrolysis gave <strong>the</strong> cyclic<br />

iminocarboxylic acid (2c) in good yield. Similarly, acyclic<br />

types were prepared by condensing 2a with hydroxylamine in<br />

methanol to provide <strong>the</strong> corresponding methyl iminocarboxylate<br />

2d and <strong>the</strong> carboxylic acid 2e, which were separated by<br />

preparative thin layer chromatography (Scheme-1).<br />

Neurotoxicity<br />

Even before a decade ago, substantial data had built up pointing<br />

to OS as a factor in neuropathology by excitory amino<br />

acids, with Glu as <strong>the</strong> major effector [9].<br />

O<br />

OH<br />

NH 2 NH 2 . HCl<br />

CH 3 OH<br />

O<br />

OCH 3<br />

2a<br />

O<br />

O<br />

OH<br />

O<br />

NH 2 OH.HCl<br />

CH 3 OH<br />

N<br />

OH<br />

O<br />

HO<br />

O<br />

Prominent evidence includes generation <strong>of</strong> ROS and subsequent<br />

oxidative damage; radical scavengers and inhibitors<br />

prevent neuronal degradation. O<strong>the</strong>r suspected sources <strong>of</strong> OS<br />

are nitric oxide, peroxynitrite, calcium, iron, and activated<br />

ROS-generating enzymes.<br />

Two broad mechanisms were <strong>of</strong>fered to account for cell<br />

vulnerability, based on OS and excessive activation <strong>of</strong> Glu<br />

receptors. In one case, a sequential process pertains, whereas<br />

<strong>the</strong> o<strong>the</strong>r, <strong>of</strong> particular interest, entails interaction <strong>of</strong> <strong>the</strong> two.<br />

Four years later, increasing evidence supported <strong>the</strong> claim that<br />

excitotoxicity and oxidative stress play important roles in<br />

pathogenesis <strong>of</strong> both acute and chronic neurologic diseases<br />

[10]. The view was reiterated that <strong>the</strong> two effects may cooperate<br />

to induce neuronal degeneration. Hydroxyl radical levels<br />

and <strong>the</strong> volume <strong>of</strong> lesions were attenuated by spin trapping,<br />

pointing to radical scavenging. From our standpoint, <strong>the</strong> cooperative<br />

effect consists <strong>of</strong> ET entailing <strong>the</strong> receptor bound<br />

species. On <strong>the</strong> o<strong>the</strong>r hand, ET by imine might occur at ano<strong>the</strong>r<br />

site in keeping with <strong>the</strong> sequential scheme. The literature provides<br />

little discussion <strong>of</strong> specific, detailed pathways for OS generation<br />

from Glu, partly due to lack <strong>of</strong> working hypo<strong>the</strong>ses. We<br />

suggest that <strong>the</strong> α-imine metabolite may play a role in redox<br />

cycling to produce ROS, at least in toxicity. This approach is in<br />

harmony with various observations, “Although <strong>the</strong> activation <strong>of</strong><br />

Glu receptors is a key step in <strong>the</strong> sequence <strong>of</strong> events leading to<br />

neuronal degeneration, it is by no means all that is necessary…<br />

thus delayed neurotoxicity has been effectively dissociated<br />

from neuronal excitation...” [9]. A goodly number <strong>of</strong> o<strong>the</strong>r<br />

investigations document involvement <strong>of</strong> OS, <strong>of</strong> which several<br />

will be cited, including generation <strong>of</strong> ROS [11-13], induction <strong>of</strong><br />

lipid peroxidation [13a], DNA fragmentation [13b] and protection<br />

by antioxidants [13-15]. In addition, involving OS from<br />

Glu imine in neurotoxocity represents yet ano<strong>the</strong>r example in<br />

<strong>the</strong> widespread documentation <strong>of</strong> ROS from conjugated imine<br />

or iminium in toxic manifestations [3-7a].<br />

R<br />

H 2 N<br />

3<br />

N<br />

O<br />

M n+<br />

O<br />

n+<br />

M<br />

O<br />

N<br />

H<br />

N<br />

2b<br />

OCH 3<br />

2d<br />

OCH 3<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

N<br />

H<br />

2c<br />

N<br />

O<br />

OH<br />

O<br />

OH<br />

2e<br />

N<br />

OH<br />

OH<br />

O<br />

Neurotransmission<br />

4<br />

Glu and related amino acids appear to be <strong>the</strong> major excitatory<br />

neurotransmitters in <strong>the</strong> brain with involvement in 40 % <strong>of</strong> <strong>the</strong><br />

synapses [9]. The importance <strong>of</strong> Glu is reflected by its presence<br />

in <strong>the</strong> CNS in relatively large quantities. An hypo<strong>the</strong>ti-


148 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Peter Kovacic et al.<br />

cal role for ET by Glu imine might also be invoked in this category.<br />

Although ROS at high concentrations induce adverse<br />

effects, OS at low levels may contribute in <strong>the</strong> transmission<br />

process. By analogy, ROS have both beneficial and damaging<br />

effects, depending on various factors, on sperm in <strong>the</strong> fertilization<br />

process [16].<br />

There is general consensus that neurotransmission occurs<br />

by ionic pathways [17]. It should be recognized that ET is not<br />

necessarily incompatible with polar processes. Movement <strong>of</strong><br />

negative electrons (ET) induces an electric field which could<br />

affect <strong>the</strong> migration <strong>of</strong> negative and positive ions, e.g. Cl, Ca,<br />

Na and K, in <strong>the</strong> vicinity. Electrons have been shown to migrate<br />

over substantial distances [18]. Ano<strong>the</strong>r analogy might comprise<br />

movement <strong>of</strong> electrons in a conducting copper wire. The<br />

ET framework may also be applicable to o<strong>the</strong>r neurotransmitters,<br />

such as, nitric oxide [19] and catacholamines [7b].<br />

Metal complexes<br />

Ano<strong>the</strong>r plausible scenario for ET by Glu involves <strong>the</strong> corresponding<br />

metal complexes. This general class <strong>of</strong> ET agents is<br />

omnipresent in <strong>the</strong> major drug and toxin categories [1-7].<br />

There is <strong>the</strong> favorable feature generally <strong>of</strong> quite positive<br />

reduction potentials which energetically favor ET in vivo.<br />

Since <strong>the</strong> α-aminoacid moiety is a facile chelator, metal derivatives<br />

(3) are well documented [20].<br />

Similarly metal chelates (4) <strong>of</strong> <strong>the</strong> α-imino metabolites<br />

should also be considered. Hence, it is conceivable that such<br />

complexes 3 and 4 might participate in toxicity and/or transmission.<br />

Possible involvement <strong>of</strong> cyclic analogs in physiological<br />

activity is discussed in <strong>the</strong> subsequent section.<br />

Cyclic α-iminocarboxylic acids<br />

Prior literature contains various reports on participation <strong>of</strong><br />

<strong>the</strong>se species in physiological activity from <strong>the</strong> ET viewpoint.<br />

ß-Lactams inactivate bacterial cell wall enzyme by covalent<br />

binding. Little attention has been given to <strong>the</strong> fact that a-<br />

iminocarboxylic acids, e.g., 5 from cephalosporins, arise in<br />

<strong>the</strong> process [21].<br />

HO 2 C<br />

In relation to bioactivity <strong>of</strong> ∆ 2 -thiazoline-2-carboxylate<br />

(8), this compound in <strong>the</strong> category has been <strong>the</strong> object <strong>of</strong> most<br />

attention [22]. Hypo<strong>the</strong>ses have been advanced that it is an<br />

intracellular messenger for insulin, and an effector <strong>of</strong> diverse<br />

metabolic activities, such as diuretic response and cell growth<br />

[23]. Also, it is a potent inhibitor <strong>of</strong> dopamine-ß-hydroxylase<br />

[24], a metalloenzyme responsible for producing norepinephrine.<br />

Compound 8 possessed electron affinity compatible with<br />

ET in vivo [21]. Alternatively, all ligands (6-8) in this category<br />

are expected to be avid chelators <strong>of</strong> metal ions in <strong>the</strong> biological<br />

milieu, forming complexes <strong>of</strong> type (9). Cu and Fe<br />

chelates with (6) and (8) exhibit quite positive reduction<br />

potentials [22]. The role <strong>of</strong> ET-OS in eliciting a variety <strong>of</strong><br />

physiological responses from metal complexes is discussed<br />

elsewhere [1-7a].<br />

N<br />

-O<br />

N<br />

8<br />

HO 2 C<br />

6 7<br />

S<br />

O<br />

A related chelator is pyridine-2-carboxylic acid [25],<br />

whose anticancer activity has been attributed to redox cycling<br />

entailing OS by a derived metal complex [26].<br />

Conformational Restriction and Bioactivity<br />

The relatively high activities <strong>of</strong> kainic (10) [27] and domoic<br />

(11) [28] acids in neurotransmission have been attributed to<br />

conformational restriction [29] imposed by <strong>the</strong> cyclic structures.<br />

Just how this property translates into improved activity<br />

is unknown.<br />

n +<br />

N<br />

M<br />

N<br />

O<br />

9<br />

S<br />

O<br />

EO<br />

NHCOR<br />

S<br />

O<br />

N<br />

CO 2 H<br />

5<br />

Model compounds, such as 6 and 7, displayed favorable<br />

reduction potentials, raising <strong>the</strong> possibility <strong>of</strong> ET participation<br />

by 5 in vivo subsequent to site binding, both in toxicity and in<br />

antibacterial action. The values increased with decreasing pH<br />

in line with formation <strong>of</strong> conjugated iminium which conceivably<br />

might be an actor in <strong>the</strong> physiological manifestations.<br />

It is indicative that thiazolidine-4-carboxylic acid undergoes<br />

dehydrogenation in vivo to <strong>the</strong> corresponding α-imino<br />

acid (7) [22]. By analogy, 10 and 11 would be converted into<br />

derivatives <strong>of</strong> 6 which has favorable properties for ET in biosystems.


Mechanism <strong>of</strong> Glutamate Neurochemistry: Electron Transfer and Reactive Oxygen Species 149<br />

Although <strong>the</strong> syn<strong>the</strong>tic counterpart (2c) fits into <strong>the</strong> cyclic<br />

imino acid category, it is deficient in lacking an N-alkyl containing<br />

substituent and a second carboxyl group.<br />

The favorable influence shown by 10 and 11 may result<br />

from assistance in coplanarity for <strong>the</strong> radical anion formed<br />

from <strong>the</strong> proposed imine metabolite on electron uptake, thus<br />

promoting resonance stabilization. There is widespread presence<br />

<strong>of</strong> a γ-carboxyl group in <strong>the</strong> various neurotransmitters,<br />

whose role has not been delineated, perhaps as a site binder.<br />

In <strong>the</strong> acyclic structures, <strong>the</strong> γ-carboxyl may decrease adverse<br />

steric interaction with <strong>the</strong> o<strong>the</strong>r carboxyl by association with<br />

iminium nitrogen, as depicted in 12, but not as effectively as<br />

for <strong>the</strong> covalent cyclic category.<br />

Captodative effect<br />

Various reports have shown that carbon radicals benefit from<br />

enhanced stabilization when attached to both an electron withdrawing<br />

and electron donating substituent [30]. As a result,<br />

<strong>the</strong> combined influence is synergistic. Investigators predicted<br />

that this effect would find application in vivo [30]. The following<br />

examples can be cited: paraquat, flavins and quinones<br />

[22]. The captodative radical formed from one- electron<br />

reduction <strong>of</strong> α-iminium carboxylic acid is depicted in 13.<br />

Future studies with model compounds 2c and 2e might<br />

provide fur<strong>the</strong>r insight into mechanistic aspects. The unifying<br />

<strong>the</strong>me <strong>of</strong> ET and ROS in neurochemistry is fur<strong>the</strong>r elaborated<br />

in a review [31] dealing with nitric oxide, catecholamines, and<br />

Glu.<br />

Experimental<br />

O<br />

HN..<br />

HO<br />

.<br />

12<br />

δ+ δ-<br />

O<br />

H<br />

R<br />

+<br />

H<br />

O N<br />

13<br />

Syn<strong>the</strong>sis <strong>of</strong> 1,4,5,6-tetrahydro-6-oxo-3-pyridazine carboxylic<br />

acid methyl ester (2b). α-Ketoglutaric acid (1.61g,<br />

11 mmol) and hydrazine dihydrochloride (1.16g, 11 mmol)<br />

were stirred toge<strong>the</strong>r in methanol at room temperature<br />

overnight. Following removal <strong>of</strong> solvent under reduced pressure,<br />

<strong>the</strong> residue was dissolved in dichloromethane and<br />

washed with water. After <strong>the</strong> organic phase was dried over<br />

O<br />

-<br />

O<br />

anhydrous sodium sulfate, removal <strong>of</strong> solvent gave a colorless<br />

solid (1.37 g, 80 % yield). mp. 120-125 °C; IR (KBr) 3138,<br />

2938, 1714, 1622, 1435, 1287, 1206, 1000 cm –1 ; 1 H NMR<br />

(200 MHz, CDCl 3 ) δ 3.91( s, 3H), 2.86 ( t, 3H, J=8.0Hz), 2.60<br />

(t, 3H, J=8.0Hz) ppm; EIMs: 156 (100 %), 124.<br />

1,4,5,6-Tetrahydro-6-oxo-3-pyradazinecarboxylic acid<br />

(2c). The above ester (2b) (0.5g) was hydrolyzed with 10 %<br />

methanolic sodium hydroxide and neutralized with DOWEX<br />

cation exchange resin to give <strong>the</strong> acid (2c) in quantitative<br />

yield. mp. 194-196 °C; IR ( KBr) 3382, 1720; 1 H NMR ( 200<br />

MHz, CDCl 3 ) δ 10.85 (s, 1H), 2.84 (t, 2H, J= 8.0 Hz), 2.48 ( t,<br />

2H, J=8 Hz) ppm. Prior syn<strong>the</strong>sis: α-Ketoglutaric acid and<br />

hydrazine [32,33], lit. [34] mp.194 °C for 2c.<br />

Syn<strong>the</strong>sis <strong>of</strong> 2-(Hydroxyimino)pentanedioic acid dimethyl<br />

ester (2d) and 2-(Hydroxyimino)pentanedioic acid (2e)<br />

[35]. α-Ketoglutaric acid (1.61 g, 11 mmol) and hydroxylamine<br />

hydrochloride (0.77 g, 11 mmol) were dissolved in<br />

methanol (20 mL) and stirred overnight at room temperature.<br />

After solvent was removed under reduced pressure, <strong>the</strong><br />

residue was dissolved in dichloromethane and <strong>the</strong> organic<br />

phase was washed with water. The organic phase was dried<br />

over anhydrous sodium sulfate and removal <strong>of</strong> solvent gave a<br />

viscous liquid which on triturating with diethyl e<strong>the</strong>r gave a<br />

crystalline solid (1.76g, 85 % yield). The crude solid was separated<br />

on Chromatotron using dichloromethane: methanol (3<br />

%) as eluting solvent to give (2d) and (2e) in 30 and 45 %<br />

yields, respectively, which were characterized as follows:<br />

2-(Hydroxyimino)pentanedioic acid dimethyl ester (2d).<br />

[35]. Colorless solid (30 %); mp 113-115 °C; IR(KBr) 3382,<br />

2956, 1733, 1442, 1127, 1035, 801 cm –1 ; 1 H NMR (200 MHz,<br />

CDCl 3 ) δ 3.70 (s, 3H ), 3.60 (s, 3H), 2.82 ( t, 2H, J= 8.0 Hz),<br />

2.52 ( t, 2H, J= 8.0 Hz) ppm; 13 C (50 MHz, CDCl 3 ) δ 172.92,<br />

163.75, 150.87, 52.40, 51.58, 29,59, 20.03 ppm; MS (EI) 189,<br />

156 (100 %).<br />

2-(Hydroxyimino)pentanedioic acid (2e) [36]. Colorless<br />

solid (45 %); mp. 152-153 °C; lit. [36] mp. 152 °C. IR (KBr)<br />

3422, 1734, 1666, 1448, 1029, 635 cm –1 ; 1 H NMR (200 MHz,<br />

CDCl 3 ) δ 12.16 ( 2H), 2.83 (t, 3H J= 8.00 Hz), 2.52 ( t, 2H, J=<br />

8.0 Hz) ppm.<br />

References<br />

1. Kovacic, P.; Becvar, L.E. Curr. Pharmaceut. Des. 2000, 6, 143-<br />

167.<br />

2. Kovacic, P.; Osuna, J.A. Curr. Pharmaceut. Des. 2000, 6, 277-<br />

309.<br />

3. Kovacic, P.; Jacintho, J.D. Curr. Med. Chem. 2001, 8, 773-796.<br />

4. Kovacic, K.; Jacintho, J.D. Curr. Med. Chem. 2001, 8, 863-892.<br />

5. Kovacic, P.; Sacman, A.; Wu-Weis, M. Curr. Med. Chem. 2<strong>002</strong>,<br />

9, 823-847.<br />

6. Poli, G.; Cheeseman, K.H.; Bianzani, M.U.; Slater, T.F. Eds.<br />

Free Radicals in <strong>the</strong> Pathogenesis <strong>of</strong> Liver Injury. Pergamon<br />

Press, New York. 1989.


150 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Peter Kovacic et al.<br />

7. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and<br />

Medicine. Oxford University Press, New York, 1999, (a) pp. 1-<br />

859. (b) p. 570.<br />

8. Lehninger, A. Biochemistry. Worth, New York, 1975, pp. 565-<br />

566.<br />

9. Coyle, J.T.; Puttfarcken, P. Science 1993, 262, 689-695.<br />

10. Lancelot, E.; Revaud, M.L.; Boulu, R.G.; Plokine, M.; Callebert,<br />

J. Free Rad. Biol. Med. 1997, 23, 1031-1034.<br />

11. Said, S.I.; Pakbaz, H.; Berisha, H.I.; Raza, S. Free Rad. Biol.<br />

Med. 2000, 28, 1300-1302.<br />

12. Loikkanen, J.J.; Naarala, J.; Savolainen, K.M. Free. Rad. Biol.<br />

Med. 1998, 24, 377-384.<br />

13. Yasui, Y.; Mawatari, K.; Higuchi, Y.; Tanu, H.; Kato, S. In: Free<br />

Radicals in Brain Physiology and Disorders, Packer, L.;<br />

Hiramatsu, M.; Yoshikawa, T. Eds., Academic Press, New York,<br />

1996, (a) p.58, (b) pp. 60, 6<br />

14. Kobayashi, M.S.; Han, D.; Packer, L. Free Rad. Res. 2000, 32,<br />

115-124.<br />

15. Hampson, A.J.; Grimaldi, M.; Lolic, M.; Wink, D.; Rosenthal,<br />

R.; Axelrod, J.; Ann. N.Y. Acad. Sci. 2000, 899, 274-282.<br />

16. Sikka, S.C. Curr. Med. Chem. 2001, 8, 851-862.<br />

17. Voet, D.; Voet, J.G. Biochemistry, Wiley, New York. 1995, Sect.<br />

34C.<br />

18. McLendon, G. Acc. Chem. Res. 1988, 21,160-167.<br />

19. Kovacic, P. Bioelectrochem. Bioenerg. 1996, 39, 155-159.<br />

20. Lipschitz, J.; Schouteden, F.L.M. Rec. Trav. Chim. 1939, 58,<br />

411-422.<br />

21. Kovacic, P.; Jawdosiuk, M.; Ames, J.R.; Ryan, M.D. Bioorg.<br />

Chem. 1987, 15, 423.<br />

22. Kovacic, P.; Popp, W.J.; Timberlake, J.W.; Ryan, M.D. Chem.<br />

Biol. Interact. 1989, 69, 235- 244 and references <strong>the</strong>rein.<br />

23. Hamilton, G.A. Adv. Enzymol. 1985, 57, 85-178.<br />

24. Naber, N.; Venkatesan, P.P.; Hamilton, G.A. Biochem. Biophys.<br />

Res. Commun. 1982, 107, 374-380.<br />

25. Schneider, F.; Schaeg, W. Z. Physiol. Chem. 1962, 327, 74<br />

26. Kovacic, P.; Ames, J.R.; Lumme, P.; Elo, H.; Cox, O.; Jackson,<br />

H.; Rivera, L.A.; Ramirez, L.; Ryan, M.D. Anti- Canc. Drug.<br />

Des. 1986, 1, 197-214.<br />

27. Cooper, J.R.; Bloom, F.E.; Roth, R.H. The Biochemical Basis <strong>of</strong><br />

Neuropharmacology, Oxford University Press, New York, 1996,<br />

p. 174.<br />

28. June, D.E.; Hoo, K.; Kamboj.; Deversill, M.; Blackman, D.;<br />

Mandelzys, A.J. Med. Chem. 1997, 40, 3645-3650.<br />

29. Gur<strong>of</strong>f, G. Molecular Neurobiology, Marcel Dekker, New York,<br />

1980, p. 430.<br />

30. Viehe, H.G.; Janousek, Z.; Merenyi, R.; Stella, L. Acc. Chem.<br />

Res. 1985, 18, 148-154.<br />

31. Jacintho, J. D.; Kovacic, P. Curr. Med. Chem. in press.<br />

32. Lagna, W.M.; Callery, P.S. J. Labelled Compd. Radiopharm.<br />

1984, 21, 337.<br />

33. Kline, G.B.; Cox, S.H. J. Org. Chem. 1961, 26, 1854-1856.<br />

34. Kaupp, G.; Schmeyer, J. J. Phys. Org. Chem. 2000, 13, 388.<br />

35. H<strong>of</strong>fman, C.; Tanke, R.S.; Miller, M. J. Org. Chem. 1989, 54,<br />

3750-3751.<br />

36. Ahmad, A.; Spenser, I. D. Can. J. Chem. 1961, 39, 1340-1359.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 151-154<br />

Investigación<br />

Cumarinas presentes en especies del género Casimiroa<br />

Aída N. García-Argáez, 1 Nadia M. González-Lugo, 2 Carmen Márquez 2 y Mariano Martínez-Vázquez 2*<br />

1 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México,<br />

Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México D. F.<br />

2 Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,<br />

Coyoacán 04510, México D. F. Tel: +(52) 56224403; Fax: + (52) 56162203; E-mail: marvaz@servidor.unam.mx<br />

Recibido el 21 de abril del 2003; aceptado el 13 de junio del 2003<br />

Dedicado al Dr. Alfonso Romo de Vivar<br />

Resumen. Los extractos orgánicos de hojas y semillas de Casimiroa<br />

pubescens, C. edulis y C. calderoniae se analizaron mediante cromatografía<br />

líquida de alta resolución; los resultados mostraron la<br />

presencia de las cumarinas felopterina (6), isopimpinelina (9), heraclenol<br />

(15) y heraclenina (16) en las tres especies estudiadas. En<br />

promedio la mayor concentración de este tipo de metabolitos se presentó<br />

en C. calderoniae. Estos resultados, además de los previamente<br />

reportados en la literatura indican la presencia de 16 cumarinas en el<br />

género. Aun cuando se ha postulado que las cumarinas aisladas del<br />

género Casimiroa tienen como precursor común a la umbeliferona,<br />

existe una clara diferencia entre las cumarinas sintetizadas por C.<br />

greggii y al resto de las especies estudiadas. Así la seselina y el O-<br />

geranil-ostenol, ambas provenientes de la umbeliferona prenilada en<br />

C-8, son sintetizadas por C. greggii, mientras que las furanocumarinas<br />

sintetizadas por las demás especies tienen como precursor a la<br />

umbeliferona prenilada en C-6. El presente trabajo constituye el<br />

primer estudio fitoquímico de C. pubescens y C. calderoniae.<br />

Palabras clave: Casimiroa, cumarinas, Rutaceae, umbeliferona.<br />

Abstract. Leaf and seeds extracts <strong>of</strong> Casimiroa pubescens, C. edulis<br />

and C. calderoniae were analyzed by HPLC. The results showed that<br />

coumarins phellopterin (6), isopimpinellin (9), heraclenol (15) and<br />

heraclenin (16) were present in all species studied. Of all species, C.<br />

calderoniae showed <strong>the</strong> highest concentration <strong>of</strong> this type <strong>of</strong> metabolites.<br />

These results, in addition to those previously reported, indicate<br />

that 16 different coumarins occur in <strong>the</strong> genus. Even though it has<br />

been proposed that <strong>the</strong> umbelliferone is a common precursor in <strong>the</strong><br />

biogenesis <strong>of</strong> <strong>the</strong> Casimiroa coumarins, <strong>the</strong>re is a clear difference<br />

between <strong>the</strong> coumarins syn<strong>the</strong><strong>size</strong>d by C. greggii and those present in<br />

<strong>the</strong> rest <strong>of</strong> <strong>the</strong> species. Thus, seselin and O-geranyl-os<strong>the</strong>nol, both<br />

syn<strong>the</strong><strong>size</strong>d from an umbelliferone prenylated at C-8, are present in<br />

C. greggii, while <strong>the</strong> coumarins present in <strong>the</strong> o<strong>the</strong>r species originate<br />

from umbelliferone prenylated at C-6.<br />

This is <strong>the</strong> first study <strong>of</strong> C. pubescens and C. calderoniae.<br />

Keywords: Casimiroa, coumarins, Rutaceae, umbelliferone.<br />

Introducción<br />

Las cumarinas son probablemente los metabolitos más comunes<br />

derivados de la ruta biosintética del shikimato-corismato<br />

(1). En miembros de la familia Rutaceae se han encontrado<br />

aproximadamente 200 cumarinas y las evidencias experimentales<br />

han demostrado que éstas se sintetizan por las mismas<br />

rutas biosintéticas observadas en otras familias de plantas,<br />

donde la umbeliferona se considera el intermediario común<br />

para la biosíntesis de cumarinas lineales y angulares (2).<br />

El principal factor de diversificación estructural de las<br />

cumarinas en las Rutaceae es la amplia incorporación de unidades<br />

prenilo al núcleo cumarínico; en algunas especies de<br />

esta familia se ha demostrado que la prenilación ocurre cuando<br />

se ha formado la umbeliferona (1, 2). Las modificaciones<br />

secundarias sobre los grupos prenilo, usualmente iniciadas por<br />

epoxidación del doble enlace, contribuyen a esta diversificación<br />

estructural de manera importante. La transformación del<br />

doble enlace al diol respectivo en la cadena prenilada lateral,<br />

teniendo al epóxido como intermediario, ha sido demostrada<br />

con marcadores radioactivos (1).<br />

Se ha postulado que las furano- y pirano-cumarinas se<br />

forman biogenéticamente cuando al núcleo cumarínico se adiciona<br />

un grupo prenilo y éste interacciona con un grupo ort<strong>of</strong>enólico,<br />

de tal modo que se generan diferentes estructuras<br />

con un anillo heterocíclico adicional. Con base a lo anterior se<br />

ha propuesto que una prenilación en la posición 6 de la umbeliferona<br />

da origen a las furanocumarinas lineales como el psoraleno,<br />

mientras que una prenilación en la posición 8 da origen<br />

a las furanocumarinas angulares como la angelicina (3).<br />

Algunos autores argumentan que las pirano- y furanocumarinas,<br />

tanto lineales como angulares, comparten caminos<br />

biosintéticos y solo se diferencian en la etapa final de ciclización;<br />

lo anterior se ha demostrado experimentalmente, utilizando<br />

marcadores radioactivos, en la elucidación de la transformación<br />

biogenética de la demetilsuberosina a psoraleno en<br />

Ruta graveolens (3).<br />

En el presente trabajo se dan a conocer los resultados del<br />

análisis por cromatografía de líquidos de alta resolución, de<br />

las cumarinas presentes en extractos de hojas y semillas de<br />

Casimiroa pubescens, C. edulis y C. calderoniae. Adicionalmente<br />

se comparan los resultados obtenidos, con los diferentes<br />

tipos de cumarinas presentes en C. greggii.


152 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Aída N. García-Argáez et al.<br />

Tabla 1. Cumarinas presentes en el género Casimiroa.<br />

Compuestos<br />

Especie<br />

C. greggii C. pringlei C. edulis C. pubescens C. calderoniae<br />

Seselina (1)<br />

√<br />

O-Geranil-ostenol (2)<br />

√<br />

8-Geraniloxipsoraleno (3) √ √<br />

Bergapteno (4) √ √<br />

Xantotoxol (5)<br />

√<br />

Felopterina (6) √ √ √ √<br />

Cumarina 7<br />

√<br />

Cumarina 8<br />

√<br />

Isopimpinelina (9) √ √ √<br />

Escopoletina (10)<br />

√<br />

Ester metílico de escopoletina (11)<br />

√<br />

5-Geranil-oxipsoraleno (12)<br />

√<br />

8-Geranil-5 metoxi-oxipsoraleno (13)<br />

√<br />

9-Hidroxi-4-metoxi-furano-(3,2,6) benzopiran-7-ona (14)<br />

√<br />

Heraclenol (15) √ √ √<br />

Heraclenina (16) √ √ √<br />

Resultados y discusión<br />

Los resultados del análisis cromatográfico indicaron la presencia<br />

de las cumarinas felopterina (6), isopimpinelina (9), heraclenol<br />

(15) y heraclenina (16), tanto en hojas como en semillas<br />

de las tres especies estudiadas (Tabla 1). La presencia de<br />

estos compuestos se comprobó mediante procedimientos de<br />

co-cromatografía. Sin embargo, no se detectó la presencia de<br />

la seselina (1), cumarina previamente aislada de C. greggii<br />

(5). El análisis de resultados para cada especie se presenta por<br />

separado.<br />

C. pubescens. El extracto de las hojas de esta especie mostró a<br />

la heraclenina como la única y más abundante cumarina presente<br />

en los cinco individuos estudiados; la felopterina se<br />

detectó en cuatro individuos, mientras que la isopimpinelina<br />

se encontró en dos individuos y el heraclenol solamente en<br />

uno. La misma tendencia se observó en el análisis del extracto<br />

de semillas.<br />

Estos resultados indicaron que en esta etapa de crecimiento<br />

de las plantas, y en este sitio de colecta, la especie acumula<br />

y/o sintetiza preferentemente heraclenina y felopterina (Fig.<br />

1).<br />

C. edulis. El estudio del extracto de las hojas de esta especie<br />

mostró una presencia abundante de las cuatro cumarinas de<br />

referencia (6, 9, 15 y 16). Por otra parte, en el extracto de las<br />

semillas, la presencia de las cuatro cumarinas fue escasa; la<br />

única cumarina presente en todos los individuos fue la felopterina<br />

mientras que el heraclenol solamente se detectó en un<br />

solo individuo (Fig. 1).<br />

C. calderoniae. Los resultados del análisis de esta especie<br />

muestran un patrón similar al observado en C. pubescens, i.e.<br />

la presencia de 6, 9, 15 y 16, tanto en frecuencia como en concentración,<br />

es mayor en las hojas que en las semillas. Sin<br />

embargo son notables las altas concentraciones de heraclenina<br />

(20.9 mg / g) y de felopterina (23.8 mg / g) en el extracto de<br />

hojas (Fig. 1).<br />

Estos resultados combinados con los reportados previamente,<br />

demuestran la presencia de 16 cumarinas en el género<br />

(Tabla 1) (2, 5-10).<br />

La presencia de 10 y 11 en el género se puede considerar<br />

un hecho poco frecuente ya que solo la C. edulis sintetiza este<br />

tipo de cumarinas.<br />

La distribución del resto de las cumarinas en el género<br />

indican claramente que difieren en el sitio de prenilación; en<br />

C-8 en C. greggii como en 1 y en C-6 en C. edulis, C. pubescens,<br />

C. pringlei y C. calderoniae, como en 3-9.<br />

Conclusión<br />

Los resultados de las tres especies estudiadas indican que la<br />

presencia de 6, 9, 15 y 16, pero no de 1, previamente aislada<br />

de C. greggii. No obstante existen diferencias notables en los<br />

resultados de los análisis de hojas, así en C. pubescens y C.<br />

calderoniae las cumarinas con mayor presencia fueron heraclenina<br />

(16) y felopterina (6). Sin embargo, la concentración<br />

de estas cumarinas fue del orden de cien veces más en C.<br />

calderoniae que en C. pubescens.<br />

Hasta el momento, las cumarinas aisladas del género Casimiroa<br />

indican que tienen como precursor común a la umbeliferona,<br />

propuesta biogenética que es general a la familia<br />

Rutaceae (2). Sin embargo, tomando en cuenta nuestros resultados<br />

y lo reportado hasta el momento, existe una clara diferencia<br />

de la distribución entre las cumarinas sintetizadas por la<br />

C. greggii y las especies C. edulis, C. pringlei, C. pubescens y<br />

C. calderoniae.


Cumarinas presentes en especies del género Casimiroa 153<br />

Esquema 1<br />

Parte experimental<br />

O O O Geranil O<br />

O O<br />

O<br />

R 1<br />

R<br />

O<br />

1<br />

O<br />

MeO<br />

RO<br />

10 R=H<br />

11 R=Me<br />

3 R = O-geranil R 1 = H<br />

4 R = H R 1 = OMe<br />

5 R = OH R 1 = H<br />

6 R = isoprenil R 1 = OMe<br />

7 R = 6,7-dihidroxi-3,7-dimetil-2-octenil R 1 = H<br />

8 R = 4-acetoxi-3-metil-butil R 1 = H<br />

9 R = R 1 = OMe<br />

12 R = H R 1 = O-geranil<br />

13 R = O-geranil R 1 = OMe<br />

14 R = OH R 1 = OMe<br />

15 R = O-(2,3-dihidroxi-3-metil)butil R 1 = H<br />

16 R = O-(2,3-en-3-metil)butil R 1 = H<br />

O<br />

2<br />

O<br />

(15) y heraclenina (16), aislados previamente de Decatropis<br />

bicolor (4). De cada cumarina se prepararon disoluciones en<br />

acetato de etilo a concentraciones de 2.9, 2.6, 2.6, 2.7 y 3.6<br />

mg / mL, respectivamente. Las soluciones estándar se utilizaron<br />

para preparar cinco diluciones de cada cumarina en el<br />

rango de 0.013 a 0.13 mg / mL. Las curvas de calibración se<br />

prepararon inyectando, por triplicado, las diferentes diluciones<br />

estándar. Los coeficientes de correlación (r 2 ) para cada gráfica<br />

de cada cumarina se calcularon teniendo valores para r 2 mayores<br />

a 0.997.<br />

Obtención y análisis de los extractos hexánico y metanólico.<br />

Hojas o semillas secas y molidas de cada individuo se<br />

extrajeron tres veces con hexano, por maceración a temperatura<br />

ambiente durante 24 h. Los extractos se combinaron y<br />

después de evaporar el disolvente a presión reducida se obtuvo<br />

el extracto hexánico. Este procedimiento se repitió utilizando<br />

metanol para obtener el extracto metanólico correspondiente<br />

a cada muestra. De cada extracto se prepararon disoluciones<br />

de concentración conocida y se inyectaron en el cromatógrafo<br />

de líquidos. Con el fin de identificar la presencia de<br />

las cumarinas de referencia a las muestras analizadas se les<br />

adicionaron cantidades conocidas de las soluciones estándar.<br />

Para el procesamiento de los datos se empleó el s<strong>of</strong>tware<br />

Millenium (Waters), que calcula la cantidad de cada componente<br />

presente en cada mililitro de disolución inyectada,<br />

Se realizaron los análisis a cinco individuos de cada especie,<br />

recolectados en el mismo sitio y en etapa de fructificación.<br />

Las cumarinas 1, 6, 9, 15 y 16, utilizadas como metabolitos<br />

secundarios de referencia, se aislaron previamente de Decatropis<br />

bicolor (Rutaceae) (4).<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

mg/g de compuesto<br />

mg/g de compuesto<br />

Material biológico. Se colectaron cinco individuos de cada<br />

especie, y los ejemplares de herbario se depositaron en el<br />

Herbario de la Facultad de Ciencias de la Universidad Nacional<br />

de México, (FCME). Casimiroa edulis se colectó en el<br />

Mpio. de Comala, Colima, en julio de 2000 (Nos. de registro<br />

del herbario 84847, 84849-84852). C. pubescens se colectó en<br />

Ixmiquilpan, Hidalgo, en junio de 2000 (Nos. de registro<br />

84835-84839), y C. calderoniae en la zona árida oaxaqueñopoblana,<br />

Oaxaca, en octubre de 2000, (Nos. de registro 84876-<br />

8480).<br />

mg/g de compuesto<br />

0.1<br />

0.0<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

15<br />

15<br />

9 16<br />

9 16<br />

6<br />

6<br />

0.0<br />

Casimiroa pubescens<br />

C. edulis<br />

mg/g de compuesto<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

15<br />

15<br />

9 16<br />

9 16<br />

6<br />

6<br />

Cromatografía Líquida de Alta Resolución. La cromatografía<br />

líquida de alta resolución (CLAR) se efectuó en un cromatógrafo<br />

de líquidos Waters modelo Delta PREP 4000,<br />

equipado con detector UV modelo 486 que se mantuvo a una<br />

longitud de onda de 310 nm. Se utiliizó 1 mL / min de flujo<br />

del disolvente. Se utilizó MeOH / H 2 O 50/50 en gradiente<br />

hasta MeOH / H 2 O 90/10 en 20 min. Para el procesamiento<br />

de los datos se utilizó el s<strong>of</strong>tware Millenium (Waters).<br />

mg/g de compuesto<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

15<br />

9 16 6 C. calderoniae<br />

Hojas<br />

mg/g de compuesto<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

15 9 16 6<br />

Semillas<br />

Estándares y curvas de calibración. Se utilizaron estándares<br />

de seselina (1), felopterina (6), isopimpinelina (9), heraclenol<br />

Fig. 1.<br />

15 = heraclenol, 9= isopimpinelina, 16= heraclenina felopterina, 6= felopterina


154 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Aída N. García-Argáez et al.<br />

tomando como base las curvas de calibración preparadas con<br />

los estándares. La cantidad de cada cumarina presente en el<br />

extracto hexánico se suma a la de la cumarina correspondiente<br />

presente en el extracto metanólico y de esta manera se obtiene<br />

el rendimiento de cada producto por gramo de planta seca.<br />

Agradecimientos<br />

Los autores agradecen el apoyo en el financiamiento parcial<br />

del CONACyT (proyecto No. 34992-N) y la Beca de PASPA,<br />

DGAPA para los estudios de doctorado de la M. en C. García-<br />

Argáez.<br />

Referencias<br />

1. Dewick, P.M. Nat. Prod. Rep. 1994, 11, 173-203.<br />

2. Gray, A. I.; Waterman, P.G. Phytochem. 1978, 17, 845-864.<br />

3. Murray, R.; Méndez, J.; Brown, S. The Natural Coumarins, John<br />

Wiley & Sons Ltd.; Norwich; 1982; 163-185.<br />

4. García-Argáez, A. N.; Ramírez, A. T. O.; Parra, D. H.;<br />

Velázquez, G.; Martínez-Vázquez, M. Planta Medica 2000, 66,<br />

279-281.<br />

5. Meyer, B. N., Wall, M.E., Wani, M.C., Taylor, H.L. J. Nat. Prod.<br />

1985, 48, 952-956.<br />

6. Castellanos, S. V. Tesis FES Zaragoza, UNAM, México, 1998.<br />

124 pp.<br />

7. Rizvi, S. H.; Kapil, R.S.; Shoe, A. J. Nat. Prod. 1985, 48, 146.<br />

8. Iriarte, J.; Kincl, F.A.; Rosenkranz, G.; Sondheimer, F. J. Chem.<br />

Soc. 1956, 4170-4173.<br />

9. Kincl, F.; Romo, J.; Rosenkranz, G.; Sondheimer, F. J. Chem.<br />

Soc., 1956, 4163-4169.<br />

10. Enríquez, R. G.; Romero, M. L.; Escobar, L. I.; Joseph-Nathan,<br />

P.; Reynolds, W. F. J. Chrom., 1984, 287, 209-214.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 155-159<br />

Investigación<br />

Preparación de materiales mesoporosos tipo Ti-MCM-41<br />

y su uso en la apertura nucleófilica de epiclorhidrina con L-prolinol<br />

Deyanira Ángeles Beltrán, 1 Ana Marisela Maubert Franco, 1 Leticia Lomas, 2<br />

Victor Hugo Lara Corona, 2 Jorge Cárdenas 3 y Guillermo Negrón 1<br />

1 Área de Química Aplicada. Universidad Autónoma Metropolitana Azcapotzalco, México 02200, D.F.<br />

E-mail: gns@correo.azc.uam.mx<br />

2 Departamento de Química. Universidad Autónoma Metropolitana Iztapalapa, México 09340, D.F.<br />

3 Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,<br />

Coyoacán 04510, México D. F.<br />

Recibido el 7 de abril del 2003; aceptado el 23 de junio del 2003<br />

En homenaje al Dr. Alfonso Romo de Vivar<br />

Resumen. Materiales mesoporosos del tipo Ti-MCM-41 preparados<br />

por tratamiento hidrotérmico, se caracterizaron por DRX, SEM, FT-<br />

IR, Si 29 -RMN y análisis textural, fueron utilizados en la reacción de<br />

apertura nucle<strong>of</strong>ílica de epiclorhidrina con L-prolinol.<br />

Palabras clave: Ti-MCM-41, tratamiento térmico, β-aminoalcoholes.<br />

Abstract. Mesoporous materials Ti-MCM-41 were prepared by<br />

hydro<strong>the</strong>rmal treatment <strong>the</strong>n characterized by DRX, SEM, FT-IR,<br />

Si 29 -NMR and textural analysis to be used in a nucleophilic opening<br />

reaction <strong>of</strong> epichlorydrine with L-prolinol.<br />

Keywords: Ti-MCM-41, hydro<strong>the</strong>rmal treatment, β-aminoalcohols.<br />

Las características del MCM-41 (Mobil Composition <strong>of</strong> Matter-<br />

41) así como los demás miembros de la familia M41S que<br />

fueron sintetizados por primera vez en 1992 [1,2]. Pueden<br />

clasificarse como materiales ordenados o semicristalinos, intermedio<br />

en la clasificación de cristalinidad existente entre los<br />

geles porosos y los silicatos laminares [3]. Particularmente el<br />

MCM-41, posee canales unidimensionales en forma de panal de<br />

abeja y una composición química modificable, mediante la adición<br />

de cationes metálicos o variaciones en las condiciones de<br />

síntesis. Una de las características más importante del MCM-41<br />

es el tamaño de sus poros, los cuales pueden variarse, modificando<br />

el surfactante que se utilice en su síntesis. En general los<br />

MCM-41, pueden usarse para la adsorción de moléculas orgánicas<br />

grandes, en separaciones cromatográficas, como anfitrión<br />

para confinar moléculas huésped y arreglos atómicos, así como<br />

también en catálisis de selectividad de forma [4]. La adición de<br />

aluminio al MCM-41 silícico, ha permitido otorgarle acidez al<br />

material, aunque siendo de naturaleza débil, tiene aplicación<br />

catalítica en reacciones de síntesis química debido a su gran<br />

área superficial [5]. Son variadas las técnicas de obtención del<br />

MCM-41, ya que su morfología, propiedades y uso son función<br />

de las condiciones experimentales de preparación [6].<br />

La incorporación de titanio al MCM-41 convencional<br />

estudiada desde 1993, ha generado importante información<br />

sobre los efectos de dicho elemento en la red original del<br />

material, demostrándose que el titanio se incorpora tetrahédricamente<br />

en ésta, para constituir un catalizador útil en reacciones<br />

de oxidación selectiva de moléculas orgánicas de gran<br />

tamaño, hidroxilación de compuestos aromáticos [7], epoxidación<br />

de olefinas [8], oxidación de sulfuros a sulfóxidos [9],<br />

epoxidación de α-terpineol al epóxido correspondiente [10] y<br />

oxidación de aminas, esta última reacción con interés por<br />

parte de las industrias farmacéuticas [11].<br />

La presencia de grupos Ti-OH en el Ti-MCM-41 permite<br />

la adsorción de epóxidos, haciendo posible la apertura del<br />

anillo oxiránico dando origen a dioles. Sobre estos antecedentes,<br />

se consideró pertinente que estos materiales podrían ser<br />

útiles en la obtención de pirrolidinas quirales, al usar como<br />

materia prima un epóxido racémico barato, tal como la epiclorhidrina<br />

y un nucleófilo quiral nitrogenado de cinco miembros<br />

como el L-prolinol, seguida de una separación diastereoisomérica<br />

de los productos pirrolidínicos. La obtención de pirrolidinas<br />

ópticamente activas son de gran importancia, pues,<br />

además de ser subunidades estructurales de substancias naturales<br />

y sintéticas con actividad biológica, también pueden ser<br />

utilizadas como catalizadores quirales en adiciones enantioselectivas<br />

de dietilzinc a aldehídos [12].<br />

Resultados y discusión<br />

El patrón de difracción de rayos X del Ti-MCM-41 muestra<br />

tres picos .que corresponden a los planos 100, 110 y 200 de la<br />

estructura hexagonal del material característicos de los materiales<br />

MCM-41 [13]. El primer pico, que usualmente se<br />

encuentra en 2θ = 2.5, en el MCM-41 se observa desplazado<br />

a la izquierda, comportamiento que se explica por la presencia<br />

de titanio en la red del silicato mesoporoso. La distancia interplanar<br />

calculada es de 38.65 Å (Fig. 1).<br />

La gráfica de comparación de la función de distribución<br />

radial de Ti-MCM-41 y un patrón de sílice nos demuestran<br />

que el Titanio se encuentra dentro de la red (Fig. 2).


156 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Deyanira Ángeles Beltrán et al.<br />

Fig. 1.<br />

Tabla 1.<br />

Longitud ideal Longitud por FDR Átomos vecinos<br />

(Å)<br />

(Å)<br />

1.62 1.7 Si-O<br />

2.65 2.55 O-O<br />

3.24 3.10 Si-Si<br />

3.90 Ti-Ti<br />

4.10 4.05 Si-Si-O-O<br />

4.90 Si-Ti<br />

5.10 5.10 Si-Si<br />

8.30 Ti-O<br />

9.20 Ti-O<br />

Fig. 2.<br />

Tabla 2.<br />

Oxígeno Silicio Titanio<br />

57.25 41.49 1.24<br />

60.09 37.79 2.11<br />

58.11 39.93 1.92<br />

65.03 33.55 1.41<br />

O<br />

Cl<br />

H<br />

N<br />

OH<br />

1 2 3 4 5<br />

Esquema 1<br />

N<br />

OH<br />

Cl<br />

OH<br />

N<br />

O<br />

OH<br />

N<br />

OH<br />

O<br />

O<br />

OH<br />

N<br />

En la Tabla 1 se comparan los valores de longitud (Å)<br />

entre átomos vecinos de los elementos componentes de la<br />

muestra de Ti-MCM-41 (titanio, silicio y oxígeno) calculados<br />

por función de distribución radial, FDR y los valores teóricos<br />

de distancia entre vecinos de los mismos elementos en la<br />

muestra de referencia de sílice.<br />

Las distancias entre vecinos Si-O así como Si-Si, corresponden<br />

a las teóricas, por lo que no se aprecia alteración en la<br />

estructura de silicato del material mesoporoso con la adición de<br />

titanio a la red. Además los valores de proximidad entre átomos<br />

de Si y titanio son similares a los valores de referencia.<br />

Mediante el análisis semicuantitativo por microscopía<br />

electrónica de barrido, se calculó el porcentaje atómico de<br />

titanio, silicio y oxígeno presentes en la muestra en distintos<br />

puntos del analito. Se encontró una distribución promedio de<br />

titanio igual a 1.67 en el material como se ilustra en la Tabla 2.<br />

La muestra presenta un área superficial de 950 m 2 / g, con<br />

una isoterma de adsorción-desorción de la forma IV de BET y<br />

posee un ciclo de histéresis indicativo de la condensación<br />

capilar, que ocurre frecuentemente en materiales clasificados<br />

como mesoporosos [14] (Fig. 3).<br />

La gráfica de distribución de tamaño de poro tiene tendencia<br />

unimodal con diámetro de poros de 39.5255 Å y<br />

0.9458 cc / g (Fig. 4).<br />

Por análisis de RMN de Si 29 de sólidos se asignaron las<br />

siguientes señales; una pequeña cercana a los –120 ppm asociada<br />

con las uniones de enlace Si-Ti-O y un hombro en –110<br />

ppm debido a interacciones [15] del tipo Q 4 como los Si(4Si),<br />

otros más cercanos a –100 ppm de silicios Q 3 sobre sitios<br />

Si(OSi) 3 OH (Fig. 5).<br />

En el espectro de infrarrojo se observa un hombro en 957<br />

cm –1 , que es atribuido al titanio incorporado a la red de los silicatos<br />

mesoporos, la banda que aparece en 3746 cm –1 se relaciona<br />

con los grupos silanol y las demás entre 1200 y 1300<br />

cm –1 son vibraciones de enlace entre átomos de silicio y<br />

oxígeno [16] (Fig. 6).<br />

Al hacer reaccionar a temperatura ambiente dos milimoles<br />

de epiclorhidrina (1) con dos milimoles de L-prolinol<br />

(2), en presencia de 400 mg de Ti-MCM-41 calcinado, se<br />

obtienen los productos 3, 4 y 5 con rendimientos del 84 %, 9<br />

% y trazas, respectivamente. El primero es resultado de un<br />

ataque nucle<strong>of</strong>ílico del L-prolinol (2) sobre el oxiránico y el<br />

segundo mediante una reacción intramolecular del producto 3<br />

(Esquema 1).<br />

La caracterización de los productos, así como los rendimientos<br />

de la reacción fueron calculados de los crudos de<br />

reacción usando la cromatografía de gases acoplado a un<br />

detector de masas. En el espectro de masas del producto mayoritario<br />

del cromatograma con tiempo de retención de 12.69<br />

minutos se observan los iones moleculares a m/z 194 [M+1] +<br />

que es también el pico base; 222 [M+29] + y 234 [M+41] + ;<br />

todos estos iones con la contribución isotópica debida al cloro.<br />

También se observan los iones a m/z 176 [M + -OH]; 158 [M + -<br />

Cl] y 114 [M + -CHOH-CH 2 Cl] que corresponden con la<br />

estructura (Espectro 1).


Preparación de materiales mesoporosos tipo Ti-MCM-41 y su uso en la apertura nucle<strong>of</strong>ílica de epiclorhidrina con L-prolinol 157<br />

Isoterma de adsorción-desorción de Nitrógeno muestra D19<br />

-110ppm<br />

Volumen adsorbido (cc/g)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

Presión reducida, (P/Po)<br />

-122ppm<br />

Fig. 3.<br />

Fig. 5.<br />

100<br />

98<br />

96<br />

94<br />

92<br />

90<br />

1371.54<br />

%Transmittance<br />

88<br />

86<br />

84<br />

82<br />

80<br />

78<br />

3746.45<br />

1708.21<br />

1626.76<br />

1235.79<br />

957.84<br />

816.20<br />

76<br />

74<br />

72<br />

UAMAZCAPOTZALCO<br />

*D19<br />

70<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Wavenumbers (cm-1)<br />

Fig. 4.<br />

Fig. 6.<br />

Abundance<br />

Abundance<br />

3500000<br />

3000000<br />

2500000<br />

Scan 1553 (12.699 min): 110.D<br />

194<br />

N<br />

OH<br />

Cl<br />

OH<br />

260000<br />

240000<br />

220000<br />

200000<br />

180000<br />

160000<br />

Scan 710 (8.020 min): 110.D<br />

140<br />

158<br />

N<br />

O<br />

OH<br />

2000000<br />

140000<br />

1500000<br />

158<br />

176<br />

120000<br />

100000<br />

1000000<br />

500000<br />

0<br />

m/z--><br />

Espectro 1<br />

114<br />

222<br />

234<br />

70 84<br />

140<br />

102 126 206 250 262 278 292<br />

60 80 100 120 140 160 180 200 220 240 260 280 300<br />

70<br />

80000<br />

60000<br />

84<br />

40000<br />

186<br />

20000<br />

102 114 198<br />

126<br />

0<br />

170 223<br />

267<br />

212 281<br />

241 255 297<br />

240 260 300<br />

60 80 100 120 140 160 180 200 220 280<br />

m/z--><br />

Espectro 2<br />

El pico del cromatograma con tiempo de retención 8.02<br />

min., presenta un espectro de masas con los iones moleculares<br />

a m/z 158 [M+1] + ; 186 [M+29] + y 198 [M+41] + ; el pico base<br />

se encuentra a m/z 140 [M-OH] + (Espectro 2).<br />

El producto 5 podría resultar de la dimerización de 3 o 4<br />

y la estructura que se propone se hace sobre la base de la existencia<br />

de los iones moleculares a m/z 315 [M+1] + , siendo también<br />

el pico base; 343 [M+29] + y 356 [M+41] + . El tiempo de<br />

retención es de 17.72 min (Espectro 3).<br />

Parte experimental<br />

Para la preparación del material sólido catalítico se usó un<br />

reactor Parr 4243. La caracterización de los sólidos se hizo<br />

por difracción de rayos X de polvos, en un difractómetro<br />

Siemens con radiación monocromática de CuK en un rango 2θ<br />

= 0-10. Las determinaciones de adsorción-desorción de<br />

nitrógeno, se llevaron a cabo en un equipo Micrometrics<br />

ASAP 2000 a una temperatura de desgasificación de 400 °C.<br />

El análisis semicuantitativo elemental se realizó con un microscopio<br />

electrónico de barrido Leica-Zeiss LEO 440. Los


158 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Deyanira Ángeles Beltrán et al.<br />

Abundance<br />

50000<br />

315<br />

Scan 1124 (17.745 m in): 176.D<br />

45000<br />

40000<br />

35000<br />

OH<br />

30000<br />

25000<br />

20000<br />

299<br />

N<br />

O<br />

O<br />

N<br />

15000<br />

OH<br />

10000<br />

5000<br />

0<br />

343<br />

355<br />

283<br />

242 269 329 357 373 389 415 429 445458 475 489 503516530 552565<br />

240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540<br />

Espectro 3<br />

m /z--><br />

espectros de infrarrojo se realizaron en un instrumento Magna<br />

Nicolet Spectrometer modelo 750 por la técnica de reflectancia<br />

difusa de polvo.<br />

Los productos de reacción de apertura nucle<strong>of</strong>ílica de la<br />

epiclorhidrina fueron analizados en un cromatografo de gases<br />

con detector de masas, en el modo de ionización química, HP<br />

5890 Serie II Plus con columna HP 5 de 60 m × 0.25 µm ×<br />

0.25 mm con detector de masas HP modelo 5973.<br />

Preparación del Ti-MCM-41<br />

A una solución acuosa de bromuro de cetiltrimetilamonio, agitanda<br />

vigorosamente, se agregó etilamina e hidróxido de<br />

tetrametilamonio al 10 %. Posteriormente se adicionó tetracloruro<br />

de titanio y tetraetilortosilicato. El gel obtenido<br />

(TEOS:0.2CTMABr:0.02Ti:0.6EA:0.20TMAOH:150H 2 O) se<br />

trató a 140 °C bajo presión autógena en un reactor de acero<br />

inoxidable con recubrimiento de teflón por 68 h. Una vez terminado<br />

el tratamiento hidrotérmico, se recuperó por filtración<br />

el sólido obtenido y se lavó con suficiente agua desionizada<br />

para eliminar el exceso de surfactante. Se secó a temperatura<br />

ambiente y se calcinó a 600 °C por 7 h en flujo moderado de<br />

aire cromatográfico, obteniéndose un sólido blanco.<br />

Reacción de apertura nucle<strong>of</strong>ílica de la epiclorhidrina<br />

con L-prolinol<br />

(0.156 mL, 2 mmol) de epiclorhidrina y (0.196 mL), 2 mmol<br />

de (S)-(+)-pirrolidinametanol, se hicieron reaccionar en presencia<br />

de 400 mg de TiMCM-41 a temperatura ambiente, bajo<br />

atmósfera de nitrógeno, en 3 mL de acetonitrilo recién destilado,<br />

en un matraz de 50 mL durante 8 h, tiempo en el que se<br />

logra la máxima conversión El crudo de reacción se evaporó a<br />

sequedad bajo presión reducida y se analizó en un cromatógrafo<br />

de gases con detector de masas.<br />

Conclusiones<br />

Se prepararon materiales mesoporosos tipo Ti-MCM-41 usando<br />

la técnica de hidrólisis de sales de Titanio por tratamiento<br />

hidrotérmico. Mediante su caracterización se demostró la<br />

presencia de titanio incorporado a la red del silicato mesoporoso,<br />

sin que se vieran afectadas sus propiedades de superficie,<br />

es decir, se obtuvo un material con amplios poros de<br />

tamaño regular y gran área superficial con la incorporación de<br />

titanio en su estructura. Se discutió la dispersión del metal en<br />

el material mesoporoso y se comprobó su interacción con los<br />

átomos de silicio y oxígeno presentes en la red inicial.<br />

Se utilizó el catalizador preparado en la apertura nucle<strong>of</strong>ílica<br />

de la epiclorhidrina, notándose la influencia positiva del<br />

uso del material Ti-MCM-41 en la formación de un β-aminoalcohol<br />

clorado 3 como producto principal de la reacción, el<br />

cual se transforma al epóxido 4 en el seno de la reacción.<br />

Tanto 3 como 4 pueden dar origen al sistema cíclico 5.<br />

Agradecimientos<br />

Al CONACyT por el apoyo financiero mediante el proyecto<br />

no. 33366-E. A la M. en C. María Isabel Chávez por los espectros<br />

de RMN de sólidos.<br />

Referencias<br />

1. Beck, J.S.; Vartulli, J.C.; Roth, W.J.; Leonowicz, M.E.;<br />

Kresge,C.I.; Schimitt, K.D.; Chu, C. T. W.; Olson, D. H.;<br />

Sheppard, E. W.; McCullen, S. B.; Higgins J.B.; J. L. Schlenker.<br />

J. Am. Chem. Soc. 1992 114, 10834-10843.<br />

2. Tuel. A. Microporous and Mesoporous Materials 1999, 27, 151-<br />

169.<br />

3. Corma, A.; Iglesias, M.; Sánchez, F. Catalysis Letters 1996, 39,<br />

153.


Preparación de materiales mesoporosos tipo Ti-MCM-41 y su uso en la apertura nucle<strong>of</strong>ílica de epiclorhidrina con L-prolinol 159<br />

4. Tuel, A. Mesoporous molecular sieves Studies in Surface Science<br />

and Catalysis 1998, 117, 159-170.<br />

5. Zholobenko, V.L.; Plant, D.; Evans, A.J.; Holms, S.M.<br />

Microporous and Mesoporous Materials 2001, 44-45, 793-799.<br />

6. Corma and D. Kumar. Mesoporous Molecular Sieves 1998. Studies<br />

in Surfaces Science and Catalysis 1998, 117, 201-222.<br />

7. He, J.; Xu, W.; Evans, D.G.; Duan, X.; Li, C. Microporous and<br />

Mesoporous Materials 2001, 44-45, 581-586.<br />

8. Laha, S.C.; Kumar, R. Microporous and Mesoporous Materials<br />

2<strong>002</strong>, 53, 163-177.<br />

9. Corma, A.; Domine, M.; Gaona, J.A.; Jordá, J.L.; Navarro, M.T.;<br />

Rey, F.; Pérez-Pariente, J.; Tsuji, J.; McCulloch, B.; Nemeth,<br />

L.T. Chem. Commun. 1998, 2211.<br />

10. Blasco, T.; Corma, A.; Navarro, M.T.; Pérez, P. <strong>Journal</strong> <strong>of</strong><br />

Catalysis 1995, 156, 65-74.<br />

11. Berlini, C.; Ferraris, G.; Uiotti, M.; Moretti, G.; Psaro, R.;<br />

Ravasio, N. Microporous and Mesoporous Materials 2001, 44-<br />

45, 595-602<br />

12. Soai, K.; Konishi, T.; Shibata, T. Heterocycles, 1998, 51, 6.<br />

13. Ahn, W.S.; Lee, D.E.; Kim, T.J.; Kim, J.H.; Seo, G; Ryoo, R.<br />

Applied Catalysis 1999, 181, 39-49.<br />

14. Thieme, M.; Schüth, F. Microporous and Mesoporous Materials<br />

1999, 27, 193-2001.<br />

15. Alba M.D.; Zhaohua Luan, Z.; Klinowski, J. J. Phys. Chem.<br />

1996, 100, 2178-2182.<br />

16. Bhaumik, A.; Tatsumi, T. <strong>Journal</strong> <strong>of</strong> Catalysis 2000, 189, 31-39.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 160-166<br />

Investigación<br />

New Eremophilanoids from <strong>the</strong> Roots <strong>of</strong> Psacalium radulifolium.<br />

Hypoglycemic, Antihyperglycemic and Anti-Oxidant Evaluations<br />

María Luisa Garduño-Ramírez 1 and Guillermo Delgado 2,*<br />

1 Centro de Investigaciones Químicas de la Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001,<br />

Chamilpa 62210, Cuernavaca, Morelos, México.<br />

2 Instituto de Química de la Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,<br />

Coyoacán 04510, México, D.F. E-mail: delgado@servidor.unam.mx<br />

Recibido el 21 de abril del 2003; aceptado el 23 de junio del 2003<br />

Dedicated to Dr. Alfonso Romo de Vivar<br />

Abstract. The investigation <strong>of</strong> <strong>the</strong> chemical constituents from <strong>the</strong><br />

roots <strong>of</strong> Psacalium radulifolium (Compositae), a member <strong>of</strong> <strong>the</strong><br />

matarique complex <strong>of</strong> medicinal plants, resulted in <strong>the</strong> isolation <strong>of</strong><br />

four additional new eremophilanoids: radulifolin D, radulifolin E<br />

(ketodecompostin), radulifolin F (3β-hydroxy-cacalone-3-O-β-D-glucopyranoside)<br />

and epi-radulifolin F (3β-hydroxy-6-epi-cacalone-3-Oβ-D-glucopyranoside),<br />

toge<strong>the</strong>r with <strong>the</strong> known compounds maturinone,<br />

acetylmaturine, dimaturine, triacontanol, hydroxycacalolide,<br />

epi-hydroxycacalolide, β-sitosteryl-3-O-β-D-glucopyranoside, β-Dglucopyranose<br />

and saccharose. The methanol extract from <strong>the</strong> roots<br />

<strong>of</strong> this species displayed hypoglycemic activity, but cacalol, cacalone,<br />

epi-cacalone, O-methyl-1,2-dehydrocacalol and decompostin<br />

did not exhibit activity. The antihyperglycemic evaluation <strong>of</strong> <strong>the</strong><br />

extract demontrated that it was inactive. Some isolated compounds<br />

were also tested for antioxidant activity, and cacalol was found to be<br />

active.<br />

Keywords: Psacalium radulifolium, Compositae, matarique, radulifolin<br />

D, radulifolin E, radulifolin F, epi-radulifolin F, eremophilanoids,<br />

hypoglycemic activity, antihyperglycemic activity, anti-oxidant<br />

activity.<br />

Resumen. La investigación de los constituyentes químicos de las<br />

raíces de Psacalium radulifolium (Compositae), una especie<br />

perteneciente al complejo matarique de plantas medicinales, resultó<br />

en el aislamiento de cuatro nuevos erem<strong>of</strong>ilanoides: radulifolina D,<br />

radulifolin E (cetodecompostina), radulifolina F (3-O-β-D-glucopiranósido<br />

de 3β-hidroxicacalona) y epi-radulifolina F (3-O-β-D-glucopiranósido<br />

de 3β-hidroxi-6-epi-cacalona), junto con las substancias<br />

conocidas maturinona, acetil maturina, dimaturina, triacontanol,<br />

hidroxicacalólida, epi-hidroxicacalólida y 3-O-β-D-glucopiranósido<br />

de β-sitosterilo, β-D-glucopiranosa y sacarosa. El extracto metanólico<br />

de las raices de esta especie mostró actividad hipoglucémica, pero<br />

cacalol, cacalona, epi-cacalona, el éter metílico de 1,2-deshidrocacalol<br />

y la decompostina no mostraron actividad. La evaluación<br />

antihiperglucémica del extracto demostró su inactividad. La actividad<br />

anti-oxidante fue ensayada para algunas substancias, y se encontró<br />

que el cacalol es activo.<br />

Palabras clave: Psacalium radulifolium, Compositae, matarique,<br />

radulifolina D, radulifolina E, radulifolina F, epi-radulifolina F, erem<strong>of</strong>ilanoides,<br />

actividad hipoglicémica, actividad antihiperglicémica,<br />

actividad anti-oxidante.<br />

Matarique is <strong>the</strong> common name for a group <strong>of</strong> plants used in<br />

<strong>Mexican</strong> traditional medicine for <strong>the</strong> treatment <strong>of</strong> diabetes,<br />

kidney pains, infections, and general body pains, among o<strong>the</strong>r<br />

ailments [1-4]. This group includes Psacalium decompositum,<br />

P. palmeri, P. peltatum, P. sinuatum, and A. thurberi.<br />

Psacalium belongs to <strong>the</strong> Tussilaginoid genera <strong>of</strong> <strong>the</strong><br />

Senecioneae (Compositae), and includes ca. 40 species which<br />

are located chiefly in Mexico [5]. The structures and chemistry<br />

<strong>of</strong> <strong>the</strong> secondary metabolites isolated from P. decompositum<br />

(syn: Cacalia decomposita) have been <strong>the</strong> subject <strong>of</strong> several<br />

investigations [6], and <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> main constituents,<br />

cacalol (1), cacalone (2) and structural analogs have<br />

been achieved [7]. Cacalol (1) has been found as <strong>the</strong> bioactive<br />

constituent in anti-microbial [8], antioxidant [9], allelopatic<br />

and phytopathogenic assays [10]. The hypoglycemic activity<br />

<strong>of</strong> extracts <strong>of</strong> P. decompositum and P. peltatum in mice have<br />

been evaluated [11,12], and <strong>the</strong> antihyperglycemic activity <strong>of</strong><br />

aqueous extracts and some constituents from P. decompositum<br />

using diabetic mice have been determined [13].<br />

P. radulifolium is considered a substitute for <strong>the</strong> preferred<br />

P. decompositum in <strong>the</strong> matarique complex <strong>of</strong> medicinal<br />

plants, and previous examination <strong>of</strong> <strong>the</strong> less polar constituents<br />

<strong>of</strong> <strong>the</strong> roots <strong>of</strong> this species allowed <strong>the</strong> isolation <strong>of</strong> 1, 2, epicacalone<br />

(3), radulifolin A (4), epi-radulifolin A (5), radulifolin<br />

B (6), radulifolin C (7), O-methyl-1,2-dehydrocacalol<br />

(8), adenostin A (9), decompostin (10) and neoadenostylone<br />

(11), from which 1 displayed major antimicrobial activity<br />

[14]. Here we report <strong>the</strong> hypoglycemic and antihyperglycemic<br />

evaluations <strong>of</strong> <strong>the</strong> methanol extract <strong>of</strong> <strong>the</strong> roots <strong>of</strong> P. radulifolium,<br />

and <strong>the</strong> isolation <strong>of</strong> <strong>the</strong> polar constituents, which<br />

resulted in <strong>the</strong> characterization <strong>of</strong> four new metabolites: radulifolin<br />

D (12), radulifolin E (ketodecompostin, 13), radulifolin<br />

F (3β-hydroxy-cacalone-3-O-β-D-glucopyranoside, 14) and<br />

epi-radulifolin F (3β-hydroxy-6-epi-cacalone-3-O-β-D-glucopyranoside,<br />

15), toge<strong>the</strong>r with <strong>the</strong> known compounds<br />

maturinone (16), acetylmaturine (17), triacontanol, dimaturine<br />

(18), hydroxycacalolide (19), epi-hydroxy-cacalolide (20), β-<br />

sitosteryl-β-D-glucopyranoside, β-D-glucopyranose and sac-


New Eremophilanoids from <strong>the</strong> Roots <strong>of</strong> Psacalium radulifolium. Hypoglycemic, antihyperglycemic and anti-oxidant evaluations 161<br />

charose. The anti-oxidant activity <strong>of</strong> some isolated compounds<br />

is also reported.<br />

Results and discussion<br />

Compound (12) was isolated as a yellow solid, and its<br />

HREIMS established <strong>the</strong> molecular formula C 15 H 14 O 4 . UV<br />

spectrum showed bands <strong>of</strong> a conjugated ketone at lmax 336,<br />

277, 245, and 207 nm, and <strong>the</strong> IR spectrum revealed <strong>the</strong> presence<br />

<strong>of</strong> hydroxyl group (3583 cm –1 ), conjugated carbonyl<br />

(1664 cm –1 ) and multiple carbon-carbon bonds (1585, 1463<br />

cm –1 ). The 1 H NMR spectrum (Table 1) showed considerable<br />

similarity with that <strong>of</strong> radulifolin C (7), a compound previously<br />

isolated from this species [14], establishing a close structural<br />

relationship. The most significant difference was <strong>the</strong><br />

downfield shift and multiplicity <strong>of</strong> H-14 (δ 1.85), which<br />

appeared as a singlet, in comparison with <strong>the</strong> chemical shift <strong>of</strong><br />

<strong>the</strong> same protons <strong>of</strong> radulifolin C (δ 1.43), which resonated as<br />

a doublet, indicating <strong>the</strong> presence <strong>of</strong> a hydroxyl at C-6 in 12,<br />

in agreement with <strong>the</strong> molecular formula. 13 C NMR data<br />

showed <strong>the</strong> expected chemical shifts, and <strong>the</strong> assignments<br />

were corroborated by HMQC and HMBC experiments.<br />

Therefore this substance was 6-hydroxy-radulifolin C, and<br />

named radulifolin D (12). The 3-O-methyl derivative <strong>of</strong> 12<br />

has been characterized from a chemical analysis <strong>of</strong> Cacalia<br />

hastata L. var. tanakae [15], but it was considered as an artifact<br />

due to <strong>the</strong> lack <strong>of</strong> optical activity. Radulifolin D (12) is<br />

dextrorotatory, while radulifolin C (7) is levorotatory.<br />

Considering that <strong>the</strong> twisting <strong>of</strong> <strong>the</strong> A/C rings is in <strong>the</strong> opposite<br />

direction to <strong>the</strong> pseudo-axial methyl group at C-6 (to<br />

avoid interactions with <strong>the</strong> methyls at C-13 and C-15), <strong>the</strong><br />

hydroxyl group at C-6 <strong>of</strong> radulifolin D could be tentatively<br />

proposed with <strong>the</strong> β- configuration (12), to explain <strong>the</strong> opposite<br />

specific rotation to that observed for radulifolin C (7).<br />

Radulifolin E (13) was isolated as a UV active solid (λ max<br />

320, 280, 257 nm), with a molecular formula C 17 H 18 O 5 established<br />

from EIMS and NMR data. The IR spectrum contained<br />

bands at 1740 and 1668 cm –1 consistent with <strong>the</strong> presence<br />

<strong>of</strong> an acetate and an α,β-unsaturated ketone, respectively.<br />

The 13 C NMR spectrum (Table 2) showed 17 signals (four<br />

methyls, one methylene, four methines and eight quaternary<br />

carbons, including three carbonyls), and <strong>the</strong> chemical shifts<br />

and multiplicity observed in <strong>the</strong> 1 H NMR spectrum (Table 1)<br />

could be accounted by <strong>the</strong> furanoeremophilane skeleton with<br />

an acetate at C-6 similar to that <strong>of</strong> decompostin (10). The<br />

major difference between radulifolin E (13) and decompostin<br />

was <strong>the</strong> downfield chemical shift for H-1, due to <strong>the</strong> presence<br />

<strong>of</strong> a ketone at C-2. Therefore, radulifolin E (13) was established<br />

as 2-ketodecompostin, previously obtained as a derivative<br />

<strong>of</strong> decompostin via bromination (NBS) and oxidation<br />

(AgNO 3 ) [6d]. 1 H and 13 C NMR assignments (Tables 1 and 2)<br />

were confirmed by HMQC and HMBC experiments.<br />

The FABMS, 1 H and 13 C NMR data for compounds 14<br />

and 15 were consistent with <strong>the</strong> molecular formula C 21 H 28 O 9 .<br />

An intense IR band at ca. 3400 cm –1 for both compounds suggested<br />

<strong>the</strong> presence <strong>of</strong> several hydroxyl groups, and bands at<br />

ca. 1660 cm –1 were ascribed to α,β-unsaturated carbonyl<br />

groups. 1 H and 13 C NMR spectra (Tables 1 and 2) indicated <strong>the</strong><br />

presence <strong>of</strong> a β-D-glucopyranose fragment and a cacalone<br />

aglycon. The anomeric hydrogen <strong>of</strong> 14 was observed at δ 4.42<br />

and <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> COSY spectrum determined <strong>the</strong> sequen-<br />

OH<br />

1<br />

4<br />

15 14<br />

O<br />

12<br />

13<br />

O<br />

R 1 R 2<br />

O<br />

OH<br />

OH<br />

R 1<br />

R 2<br />

O O<br />

1 Cacalol<br />

R 1 R 2<br />

2 CH 3 OH Cacalone<br />

3 OH CH 3 Epi-cacalone<br />

R 1 R 2<br />

4 CH 3 OH Radulifolin A<br />

5 OH CH 3 Epi-radulifolin A<br />

OCH 3<br />

O<br />

OH<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

OCH 3<br />

OH<br />

O<br />

OH<br />

O<br />

R 1 R 2<br />

O<br />

O<br />

R<br />

10 Ac Decompostin<br />

11 Ang Neoadenostylone<br />

6 Radulifolin B<br />

R 1 R 2<br />

7 CH 3 H Radulifolin C<br />

12 OH CH 3 Radulifolin D<br />

8 O-Methyl-1,2-<br />

dehydrocacalol<br />

9 Adenostin<br />

OAc


162 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) María Luisa Garduño-Ramírez and Guillermo Delgado<br />

Table 1. 1 H NMR (500 MHz) <strong>Chemical</strong> Shift Assignments for Compounds 12-15.<br />

H 12 a 13 b 14 c 15 c<br />

1 8.05 d (8) 6.83 s 2.39 m 2.38 dd (3)<br />

2a 6.95 d (8) 1.99 m 2.0 m<br />

2b 1.87 m 1.79 m<br />

3a 2.41 d (11) 4.03 ddd (3,3,3) 4.03 ddd (3,3,3)<br />

3b 2.38 dd (11, 5)<br />

4 2.54 qd (7, 5) 3.37 dq (7, 3) 3.02 qd (7,3)<br />

6 6.43 s<br />

12 7.43 q (1.5) 7.53 q (1) 7.52 q (1) 7.50 q (1)<br />

13 2.31 d (1.5) 1.97 d (1) 2.21 d (1) 2.21 (1)<br />

14α 1.85 s 1.31 s 1.63 s 1.60 s<br />

14β<br />

15 2.65 s 1.08 d (7) 1.21 d (7) 1.22 d (7)<br />

OCOCH 3<br />

2.25 s<br />

1’ 4.42 d (8) 4.44 d (8)<br />

2’ 3.01 dd (8, 8) 3.07 dd (9,8)<br />

3’ 3.31 dd (9,8) 3.37 dd (9,9)<br />

4’ 3.17 dd (9,9) 3.29 dd (9,9)<br />

5’ 3.32 m 3.31 m<br />

6’a 3.52 m 3.65 m<br />

6’b 3.78 m 3.84 m<br />

-OH 4.13 br s 4.18 br s<br />

4.39 br s 4.26 br s<br />

4.51 br s<br />

a Recorded in CDCl 3 + DMSO. b Recorded in CDCl 3 . c Recorded in CD 3 COCD 3 . J values (in Hz).<br />

Table 2. 13 C NMR <strong>Chemical</strong> Shifts Assignments for Compounds 12-15.<br />

Position 12 a 13 b 14 c 15 c<br />

C-1 126.45 (d) 129.715 (d) 18.36 (t) 18.44 (t)<br />

C-2 114.30 (d) 198.11 (s) 20.88 (t) 20.40 (t)<br />

C-3 161.03 (s) 43.26 (t) 79.15 (d) 77.34 (d)<br />

C-4 124.28 (s) 38.43 (d) 33.88 (d) 36.00 (d)<br />

C-5 148.14 (s) 47.53 (s) 158.81 (s) 161.18 (s)<br />

C-6 71.216 (s) 72.63 (d) 70.70 (s) 72.43 (s)<br />

C-7 142.82 (s) 137.065 (s) 142.34 (s) 142.53 (s)<br />

C-8 144.345 (s) 146.415 (s) 146.09 (s) 146.07 (s)<br />

C-9 172.99 (s) 173.45 (s) 174.88 (s) 175.05 (s)<br />

C-10 123.65 (s) 156.35 (d) 131.02 (s) 129.94 (s)<br />

C-11 120.90 (s) 121.59 (d) 121.52 (s) 121.40 (s)<br />

C-12 145.08 (d) 147.76 (s) 145.14 (d) 144.83 (d)<br />

C-13 8.956 (q) 8.446 (q) 9.01 (q) 8.86 (q)<br />

C-14 27.46 (q) 14.38 (q) 27.39 (q) 28.15 (q)<br />

C-15 13.44 (q) 16.904 (q) 20.32 (q) 20.89 (q)<br />

OCOCH 3<br />

21.271 (q)<br />

OCOCH 3<br />

170.374 (s)<br />

C-1’ 102.71 (d) 102.24 (d)<br />

C-2’ 74.78 (d) 74.91 (d)<br />

C-3’ 77.65 (d) 77.87 (d)<br />

C-4’ 71.64 (d) 71.83 (d)<br />

C-5’ 77.65 (d) 77.40 (d)<br />

C-6’ 62.97 (t) 63.08 (t)<br />

a Recorded at 125 MHz in CDCl 3 + DMSO. b Recorded at 75 MHz in CDCl 3 .<br />

c Recorded at 125 MHz in CD 3 COCD 3 at 25 °C. Multiplicity (in paren<strong>the</strong>sis) deduced by DEPT.


New Eremophilanoids from <strong>the</strong> Roots <strong>of</strong> Psacalium radulifolium. Hypoglycemic, antihyperglycemic and anti-oxidant evaluations 163<br />

O<br />

HO<br />

OCH 3<br />

CH=O<br />

O<br />

OAc<br />

13 Radulifolin E<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

OCH 3<br />

O<br />

OH<br />

O<br />

tial vecinity for <strong>the</strong> carbinolic hydrogens <strong>of</strong> <strong>the</strong> β-D-glucopyranose<br />

(δ 3.78 – δ 3.01), which correlated with <strong>the</strong> corresponding<br />

signals at δ 74.78 (C-2’), 77.65 (C-3’), 71.64 (C-4’), 77.60 (C-<br />

5’), 62.97 (C-6’) in <strong>the</strong> HMQC spectrum. The crosspeaks in<br />

<strong>the</strong> HMBC spectrum between H-3 (δ 4.03) and H-2’ (δ 3.01)<br />

with C-1’ (δ 102.71) confirmed that <strong>the</strong> glucopyranose was<br />

bound to C-3 <strong>of</strong> <strong>the</strong> modifoed eremophilane. NOESY interactions<br />

between H-1’ and H-3, and between H-3 and H-4, confirmed<br />

<strong>the</strong> stereochemical assignments. Similar crosspeaks<br />

were observed for 15, and <strong>the</strong>refore, <strong>the</strong> difference between <strong>the</strong><br />

two substances was in <strong>the</strong> aglycon fragment. The stereochemistry<br />

at C-6 was deduced by comparing <strong>the</strong> 1 H NMR data <strong>of</strong> 14<br />

and 15 with those <strong>of</strong> 2 and 3 [7d]. Specifically, <strong>the</strong> downfield<br />

shift <strong>of</strong> H-4 in 14 (δ 3.37) with respect to that <strong>of</strong> H-4 in 15 (δ<br />

3.18) was in agreement with <strong>the</strong> α- and β- orientation <strong>of</strong> <strong>the</strong><br />

hydroxyl groups, respectively [16].<br />

The methanol extract obtained directly from <strong>the</strong> roots <strong>of</strong><br />

P. radulifolium was evaluated as hypoglucemic agent in normoglycemic<br />

rats, following <strong>the</strong> standard procedures [17], and<br />

<strong>the</strong> results are shown in Table 3. This residue showed significant<br />

decrease <strong>of</strong> blood glucose concentration (p < 0.05) at 7 h<br />

using several doses (30, 100 and 300 mg/kg), without returning<br />

to <strong>the</strong> basal blood glucose level. The effect <strong>of</strong> <strong>the</strong> hypoglycemic<br />

model drug is also included (glybenclamide, 10<br />

mg/kg). Cacalol (1), The mixture <strong>of</strong> 2 + 3, O-methyl-1,2-<br />

dehydrocacalol (8), and decompostin (10) did not display significant<br />

hypoglycemic activity at doses <strong>of</strong> 3.1, 10 and 31<br />

mg/kg.<br />

The antihyperglycemic effect <strong>of</strong> <strong>the</strong> methanol extract was<br />

also tested at <strong>the</strong> same doses using male diabetic Wistar rats,<br />

OH<br />

O<br />

O<br />

R 1 R 2<br />

R 1 R 2<br />

14 CH 3 OH Radulifolin F<br />

15 OH CH 3 Epi-radulifolin F<br />

OCH 3<br />

CH=O<br />

16 Maturinone 17 Acetylmaturine<br />

18 Dimaturine<br />

OH<br />

O<br />

O<br />

O<br />

R 1<br />

R 2<br />

O<br />

OAc<br />

R 1 R 2<br />

19 CH 3 OH Hydroxycacalolide<br />

20 OH CH 3 Epi-hydroxycacalolide<br />

diabetized via streptozotocin injection, following <strong>the</strong> standard<br />

procedures. The results obtained indicated that this residue did<br />

noy display significant antihyperglycemic effect in comparison<br />

with <strong>the</strong> model drug.<br />

It has been proposed that <strong>the</strong> anti-oxidant activity may<br />

play a role in <strong>the</strong> antihyperglycemic and hipoglycemic activities<br />

[18], and some reactive oxygen species (superoxide anion,<br />

hydrogen peroxide and hydroxyl fee radical) are involved in<br />

<strong>the</strong> physiology <strong>of</strong> several diseases, including diabetes [19].<br />

Therefore, <strong>the</strong> antioxidant activity <strong>of</strong> some isolated compounds<br />

(cacalol (1), <strong>the</strong> mixture <strong>of</strong> cacalone and epi cacalone<br />

(2 + 3), radulifolin C (7), neoadenostylone (11), radulifolin D<br />

(12) and radulifolin F (14)) was evaluated via <strong>the</strong> interaction<br />

with <strong>the</strong> stable free radical DPPH, following <strong>the</strong> procedures<br />

described in <strong>the</strong> experimental section. The results are included<br />

in Table 4, and <strong>the</strong>y showed that only cacalol (1) exhibited<br />

significant activity, in agreement with previous reports [20].<br />

It is interesting to note that some pure secondary metabolites<br />

did not display hypoglicemic effect, while <strong>the</strong> activity <strong>the</strong><br />

methanolic extract <strong>of</strong> <strong>the</strong> roots <strong>of</strong> P. radulifolium was evident.<br />

Although <strong>the</strong> mechanism <strong>of</strong> action <strong>of</strong> <strong>the</strong> eremophilanes, modified<br />

eremophilanes or o<strong>the</strong>r natural products [21] in changing<br />

<strong>the</strong> blood glucose levels remains unknown, <strong>the</strong> described<br />

results suggest that <strong>the</strong>re is some correlation with <strong>the</strong> ethnomedical<br />

use <strong>of</strong> <strong>the</strong> plant as antidiabetic agent. However, this<br />

plant, as all <strong>the</strong> plants used in traditional medicine, should not<br />

be used until safety studies are completed.<br />

Experimental Section<br />

General Experimental Procedures. Melting points are<br />

uncorrected. The 1 H and 13 C NMR spectra were recorded on a<br />

Varian Unity Plus-500 instrument, and <strong>the</strong> chemical shifts are<br />

expressed in parts per million (δ) relative to tetramethylsilane.<br />

Infrared spectra were recorded with a Nicolet Magna IR TM<br />

750 and Perkin Elmer 283B instruments. MS data were<br />

recorded with a JEOL JMS-AX 505 HA mass spectrometer.<br />

Electron impact mass spectra were obtained at 70 eV ionization<br />

energy. Vacuum chromatography was performed on<br />

Merck Kieselgel 60 (0.040-0.863 mm). TLC analyses were<br />

performed on TLC plates with Si gel 60 F 254 (Merck) or ALU-<br />

GRAM ® SIL G/UV 254 silica gel plates. The compounds were<br />

detected by <strong>the</strong>ir absorbance under UV 254 and UV 366 , or with<br />

a charring solution (12 g <strong>of</strong> ceric ammonium sulfate dihydrate,<br />

22.2 mL <strong>of</strong> concentrated H 2 SO 4 and 350 g <strong>of</strong> ice).<br />

Solvents were distilled prior to use.<br />

Plant material. The roots <strong>of</strong> P. radulifolium (HBK) H. Rob.<br />

& Brettell were collected in San Luis Potosí in 1995. Plant<br />

material was identified by Dr. Robert Bye and M. Sc.<br />

Edelmira Linares from <strong>the</strong> Instituto de Biología de la UNAM.<br />

The voucher Bye & Linares 2<strong>002</strong>8 was deposited in <strong>the</strong><br />

Ethnobotanical Collection, and <strong>the</strong> voucher Bye & Linares<br />

20149 was deposited in <strong>the</strong> National Herbarium, <strong>of</strong> <strong>the</strong><br />

Instituto de Biología de la UNAM.


164 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) María Luisa Garduño-Ramírez and Guillermo Delgado<br />

Table 3. Hypoglycemic Effect (Variation <strong>of</strong> Percentage Values) <strong>of</strong> <strong>the</strong> Methanol Extract<br />

<strong>of</strong> <strong>the</strong> Roots <strong>of</strong> P. radulifolium (Oral administration).<br />

Glybenclamide a Doses (extract)<br />

Time (h) 10 mg/kg 30 mg/kg 100 mg/kg 300 mg/kg<br />

1.5 –15.68 ± 3.66* –0.56 ± 5.87 –3.11 ± 3.91 –0.39 ± 4.66<br />

3 –31.56 ± 7.75* –3.95 ± 6.52 0.16 ± 7.19 0.03 ± 4.75<br />

5 –35.79 ± 6.74* –12.74 ± 2.97 –10.10 ± 5.70 –11.80 ± 3.43<br />

7 –35.75 ± 4.33* –21.70 ± 1.77* –12.92 ± 8.51 –21.66 ± 3.09*<br />

a Glibenclamide was used as positive control. *Significative values (p < 0.05).<br />

The values represent <strong>the</strong> mean ± standard deviations from five independent experiments.<br />

The negative value (–) indicates a decrease in glucemia.<br />

Extraction and isolation. Previously we reported preparation<br />

<strong>of</strong> <strong>the</strong> n-hexane, CH 2 Cl 2 -EtOH (3:2) and MeOH extracts from<br />

<strong>the</strong> roots <strong>of</strong> this species, and <strong>the</strong> chemical analysis <strong>of</strong> <strong>the</strong> less<br />

polar residue [14]. The CH 2 Cl 2 -EtOH (3:2) extract (10 g) was<br />

loaded onto a column chromatography which was developed<br />

under reduced pressure using a gradient <strong>of</strong> n-hexane-EtOAc<br />

as elution system, to afford seven main fractions (named H to<br />

N). Fractions H and I were combined (31.2 mg), and this mixture<br />

was applied to a preparative TLC which was eluted with<br />

n-hexane-EtOAc (20:1), to yield maturinone [6b] (16, 5.6<br />

mg), acetylmaturine [22] (17, 1.7 mg), and triacontanol (9<br />

mg). Column rechromatography over silica gel <strong>of</strong> fraction J<br />

(350 mg) using n-hexane-EtOAc gradient as elution system<br />

afforded dimaturine [23] (18, 2.6 mg). Fractions K (15 mg)<br />

and L (1.3 g) were combined and subjected to Si-gel column<br />

chromatography using n-hexane-EtOAc (4:1) as elution system,<br />

affording decompostine [6d] (10, 896.5 mg). Fraction M<br />

(3.135 g) was chromatographed over Si gel using n-hexane-<br />

EtOAc gradient, to give several fractions. Some <strong>of</strong> <strong>the</strong>se fractions<br />

were purified by column chromatography on Si gel using<br />

n-hexane-EtOAc gradient, leading to a mixture hydroxycacalolide<br />

[13a] (19) and epi-hydroxycacalolide [13a] (20, 3.3<br />

mg), cacalone (2) and 6-epi-cacalone (3, 20 mg), radulifolin C<br />

[14] (7, 2.7 mg), radulifolin D (12, 7.1 mg), radulifolin E<br />

(ketodecompostine, 13, 2.2 mg). Column chromatography<br />

over Si gel <strong>of</strong> fraction N (2.56 g) using n-hexane-EtOAc as<br />

gradient elution system yielded β-sitosteryl 3-O-β-D-glucopyranoside,<br />

14, 8.9 mg, radulifolin F (3-β-hydroxycacalone-3β-<br />

O-D-glucopyranoside, 14, 13.2 mg) and epi-radulifolin F (3-<br />

β-hydroxy-6-epi-cacalone-3β-O-D-glucopyranoside, 15, 26.3<br />

mg) and β-D-glucopyranose. From <strong>the</strong> polar fractions <strong>of</strong> <strong>the</strong><br />

metanolic extract (fractions Ñ to S) were identified O-methyl-<br />

1,2-dehydrocacalol [6e] (8), cacalol (1), decompostin (10), β-<br />

sitosterol, stigmasterol, cacalone (2) and 6-epi-cacalone (3),<br />

saccharose and β-D-glucopyranose.<br />

Radulifolin D (12). 7.1 mg, yellow solid mp 122-124 °C, Rf:<br />

0.226 (7:3 hex-AcOEt), mp 122-124 ºC, [α] D = + 30.0 (c 0.05,<br />

MeOH); UV λ max (log ε) 207 (4.50), 245 (4.20), 277 (4.00),<br />

336 (4.00); IR (CHCl 3 , cm –1 ): 3583, 3268, 2928, 2854, 1762,<br />

1664, 1585, 1463, 1419, 1354, 1288, 1156, 1113, 996, 996,<br />

918; 1 H and 13 C NMR data, see Tables 1 and 2; EIMS:<br />

C 15 H 14 O 4 , 258 [M + ] (26), 243 (100), 240 (7), 215 (10), 201<br />

(3), 187 (3), 85 (3), 157 (3), 135 (6), 128 (6), 115 (8), 109<br />

(11), 91 (3), 77 (6), 55 (3), 43 (6).<br />

Radulifolin E (ketodecompostin, 13). 4.4 mg, yellow solid<br />

mp 222-225 °C (lit. [6d] 220-221 °C), Rf: 0.413 (3:2 hex-<br />

AcOEt); Mp. 222-225 ºC; UV λ max (log ε): 319.5 (3.95);<br />

280.5 (3.58); 257 (3.71); 240.5 (3.65); 232 (3.66); 224.5<br />

(3.65); 205.5 (3.72).; IR (CHCl 3 , cm –1 ): 3037, 2971, 2940,<br />

1747, 1672, 1606, 1531, 1463, 1415, 1372, 1315, 1176, 1050,<br />

1030, 983, 928; 1 H and 13 C NMR data, see Tables 1 and 2;<br />

EIMS: C 17 H 18 O 5 , 302 [M + ] (10), 274 (0.5), 260 (64), 242<br />

(100), 227 (15), 214 (9), 199 (14), 191 (24), 163 (5), 161 (5),<br />

137 (20), 123 810), 115 (9), 109 (8), 91 (7), 77 (7), 65 (4), 53<br />

(8), 43 (32), 41 (5).<br />

Radulifolin F (3β-hydroxycacalone-3-O-β-D-glucopyranoside,<br />

14). 13.2 mg, yellow oil; Rf: 0.295 (85:15 hex-<br />

AcOEt); IR (CHCl 3 , cm –1 ): 3401, 2936, 1660, 1619, 1603,<br />

1535, 1459, 1445, 1421, 1363, 1162, 1079, 1035, 923, 887; 1 H<br />

and 13 C NMR data, see Tables 1 and 2; FABMS + : C 21 H 28 O 9 ,<br />

447 [M + + Na] (58), 407 (20), 263 (48), 245 (100), 227 (72),<br />

191 (24), 154 (31), 136 (28), 91 (20), 77 (19), 44 (17).<br />

Epi-radulifolin F (3β-hydroxy-6-epi-cacalone-3-O-β-D-glucopyranoside,<br />

15). 26.3 mg yellow oil; Rf: 0.295 (85:15 hex-<br />

AcOEt); IR (KBr, cm –1 ): 3411, 2930, 1654, 1614, 1535, 1451,<br />

1422, 1369, 1256, 1224, 1201, 1164, 1078, 1038, 936, 888,<br />

814, 623, 595, 532; 1 H and 13 C NMR data, see Tables 1 and 2;<br />

Table 4. Percentage <strong>of</strong> Inhibition <strong>of</strong> <strong>the</strong> Free Radical (DPPH) by<br />

Compounds 1-3, 7, 11, 12 and 14.<br />

Concentrations<br />

Compound 1 µM 10 µM 100 µM<br />

1 15.27 47.70 73.13<br />

2 + 3 8.91 13.60 26.98<br />

7 9.47 11.72 14.01<br />

11 6.77 10.23 25.79<br />

12 8.8 9.09 16.76<br />

14 5.06 11.37 19.55


165 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) María Luisa Garduño-Ramírez and Guillermo Delgado<br />

FABMS + : C 21 H 28 O 9 , 447 [M + + Na] (100), 425 (17), 399 (8),<br />

371 (38), 263 (49), 245 (44), 227 (26), 191 (21), 177 (35), 154<br />

(59), 136 (51), 91 (26), 77 (25), 55 (24), 41 (25), 23 (58).<br />

Biological evaluations. The methanol extract used for biological<br />

assays was obtained by direct maceration <strong>of</strong> <strong>the</strong> dried<br />

roots <strong>of</strong> <strong>the</strong> plant at room temperature (1 L per each 100 g) by<br />

48 h two times. Male Wistar normoglycaemic rats <strong>of</strong> 60-65<br />

days old, generally weighing 200-250 g, were used. The animals<br />

were housed under standard laboratory conditions and<br />

maintained on standard pellet diet and water ad libitum. Rats<br />

were placed in single cages with wire-net floors and deprived<br />

<strong>of</strong> food for 18 h before experimentation but allowed free<br />

access to tap water throughout. All experiments were carried<br />

out using 5 animals per group. Male Wistar rats were made<br />

diabetic by an intraperitoneal injection <strong>of</strong> streptozotocin (60<br />

mg/kg) in citrate buffer, pH 6.3 [24]. Extracts were suspended<br />

in 0.05 % <strong>of</strong> Tween 80 in saline solution. Glibenclamide (10<br />

mg/kg) was used as a hypoglycemic model drug [25]. All<br />

extracts were prepared freshly immediately before <strong>the</strong> experimentation<br />

and administered by intragastrical route at 30, 100<br />

and 300 mg/kg. Control rats received <strong>the</strong> vehicle (0.05 %<br />

Tween 80) in <strong>the</strong> same volume (0.5 mL/100 g) by <strong>the</strong> same<br />

route. Blood samples were collected from caudal vein by<br />

means <strong>of</strong> a little incision in <strong>the</strong> end <strong>of</strong> <strong>the</strong> tail at 0, 1.5, 3, 5, 7<br />

and 9 h after drug administration. Blood glucose concentration<br />

was estimated by enzymatic glucose oxidase method using a<br />

commercial glucometer (One Touch Basic I, Jonhsons-Johnsons).<br />

The percentage variation <strong>of</strong> glycemia for each group<br />

was calculated with respect to initial (0 h) level according to:<br />

% variation <strong>of</strong> glycemia = [(G t – G i ) / G i ] × 100,<br />

Where G i was initial glycemia values and G t was <strong>the</strong><br />

hypoglycemia value at +1.5, +3, +5, and +7 h, respectively<br />

[17b]. Statistical significance was estimated by analysis <strong>of</strong> variance<br />

(ANOVA) followed by Dunnett’s test t. p < 0.05 implies<br />

significance.<br />

Evaluation <strong>of</strong> antioxidant activity. The potential antioxidant<br />

activity <strong>of</strong> plant extracts and pure compounds was assessed on<br />

<strong>the</strong> basis <strong>of</strong> <strong>the</strong> scavenging activity <strong>of</strong> <strong>the</strong> stable 1,1-diphenyl-<br />

2-picrylhydrazyl (DPPH) free radical [26]. Reaction mixtures<br />

containing test samples (dissolved in ethanol, at 1, 10 and 100<br />

µM) and DPPH ethanolic solution (66.66 µM) in ambar vials<br />

(4 mL) were stirred for 30 min, and absorbances were measured<br />

at 515 nm. Percent <strong>of</strong> inhibition by sample treatment was<br />

determined by comparison with a control group [27].<br />

Acknowledgements<br />

We thank Rocío Patiño, Beatriz Quiroz, María Isabel Chávez,<br />

Héctor Ríos, Luis Velasco, Javier Pérez-Flores, María Teresa<br />

Ramírez-Apan, and Antonio Nieto from <strong>the</strong> Instituto de<br />

Química de la UNAM for technical assistance; and Dr. Andrés<br />

Navarrete, Facultad de Química de la UNAM, for <strong>the</strong> use<br />

<strong>of</strong> certain research facilities and guidance in some hypoglycemic<br />

evaluations assays. Financial support by grants from <strong>the</strong><br />

DGAPA-UNAM and PROMEP-UAEMor is gratefully acknowledged.<br />

References<br />

1. Linares, E.; Bye, R. A. J. Ethnopharmacol. 1987, 19, 153-186<br />

2. Bye, R. A. Econ. Bot. 1986, 40, 103-124.<br />

3. Pérez, R. M.; Ocegueda, G. A.; Muñoz, J. L.; Ávila, J. G.;<br />

Morrow, W., W. J. Ethnopharmacol. 1984, 12, 253-262.<br />

4. Sullivan, G. Vet. Hum. Toxicol. 1981, 23, 6-7.<br />

5. Barkley, T. M.; Clark, B. L.; Funston, M. Compositae:<br />

Systematics. Proceedings <strong>of</strong> <strong>the</strong> International Compositae<br />

Conference, Kew, 1994. Hind, D. N. J., Ed. Royal Botanic<br />

Gardens, Kew, 1996; Vol. 1., pp. 613-620.<br />

6. (a) Romo, J.; Joseph-Nathan, P. Tetrahedron 1964, 20, 2331-<br />

2337. (b) Correa, J.; Romo, J. Tetrahedron 1966, 22, 685-691. (c)<br />

Joseph-Nathan, P.; Morales, J. J.; Romo, J. Tetrahedron 1966,<br />

22, 301-307. (d) Rodríguez-Hahn, L.; Guzmán, A.; Romo, J.<br />

Tetrahedron 1968, 24, 477-483. (e) Romo, J.; Rodríguez-Hahn,<br />

L.; Manjarrez, A.; Rivera, E.; Bellido, J. Bol. Inst. Quím. Univ.<br />

Nac. Autón. Méx. 1968, 20, 19-29. (f) Brown, M.; Thompson, R.<br />

H. J. Chem. Soc. 1969, 1184-1186. (g) Ruiz, R. M.; Correa, J.;<br />

Maldonado, L. A. Bull. Soc. Chim. Fr. 1969, 3612-3614. (h)<br />

Romo, J. Bol. Inst. Quím. Univ. Nac. Autón. Méx. 1969, 21, 92-<br />

96. (i) Kakisawa, H.; Inouye, Y.; Romo, J. Tetrahedron Lett.<br />

1969, 1929-1932. (j) Samek, Z.; Harmatha, J.; Novotný, L.;<br />

Sorm, F. Coll. Czech. Chem. Comm. 1969, 34, 2792-2808. (k)<br />

Joseph-Nathan, P.; Negrete, M. C.; González, M. P. Phytochemistry<br />

1970, 9, 1623-1628.<br />

7. (a) Inouye, Y.; Uchida, Y.; Kakisawa, H. Chem. Lett. 1975,<br />

1317-1318. (b) Yuste, F.; Walls, F. Aust. J. Chem. 1976, 29,<br />

2333-2336. (c) Cásares, A.; Maldonado, L. A. Tetrahedron Lett.<br />

1976, 2485-2488. (d) Yuste, F.; Díaz, E.; Walls, F.; Jankowski,<br />

K. J. Org. Chem. 1976, 41, 4103-4106. (e) Inouye, Y.; Uchida,<br />

Y.; Kakisawa, H. Bull. Chem. Soc. Jpn. 1977, 50, 961-966. (f)<br />

Huffman, J. W.; Pandian, R. J. Org. Chem. 1979, 44, 1851-1855.<br />

(g) Gar<strong>of</strong>alo, A. W.; Litvak, J.; Wang, L.; Dubenko, L. G.; Cooper,<br />

R.; Bierer, D. E. J. Org. Chem. 1999, 64, 3369-3372.<br />

8. Jiménez, M.; Cruz, R.; Valdés, J.; León, J.; Alarcón, G.; Sveshtarova,<br />

B. Rev. Latinoam. Quím. 1992, 23, 14-17.<br />

9. Krasovaskaya, N. P.; Kulesh, N. I.; Denisenko, V.; Khim. Prirod.<br />

Soed. 1989, 643-645. Chem. Abst. 1990, 112, 95533u.<br />

10. Anaya, A. L.; Hernández-Bautista, B. E.; Torres-Barragán, A.;<br />

León-Cantero, J.; Jiménez-Estrada, M. J. Chem. Ecol. 1996, 22,<br />

393-406.<br />

11. Román Ramos, R.; Lara, L. A.; Alarcón Aguilar, F. J.; Flores<br />

Sáenz, J. L. Arch. Med. Res. 1992, 23, 105-109.<br />

12. Alarcón, F. J.; Román-Ramos, R.; Jiménez-Estrada, M.; Reyes-<br />

Chilpa, R.; González-Paredes, B.; Flores Sáenz, J. L. J. Ethnopharmacol.<br />

1997, 55, 171-177.<br />

13. (a) Inman, W. D.; Luo, J.; Jolad, S. D.; King, S. R.; Cooper, R. J.<br />

Nat. Prod. 1999, 62, 1088-1092. (b) Alarcón Aguilar, F. J.;<br />

Jiménez-Estrada, M.; Reyes Chilpa, R.; González Paredes, B.;<br />

Contreras Weber, C. C.; Román Ramos, R. J. Ethnopharmacol.<br />

2000, 69, 207-215.<br />

14. Garduño-Ramírez, M. L.; Trejo, A.; Navarro, V.; Bye, E.;<br />

Linares, E.; Delgado, G. J. Nat. Prod. 2001, 64, 432-435.<br />

15. Naya, K.; Miyoshi, Y.; Mori, H.; Takai, K.; Nakanishi, M. Chem.<br />

Lett. 1976, 73-76.<br />

16. This effect is evident using C 6 D 5 N as solvent, as described for<br />

<strong>the</strong> epimers 2 and 3 in reference 7d.


New Eremophilanoids from <strong>the</strong> Roots <strong>of</strong> Psacalium radulifolium. Hypoglycemic, antihyperglycemic and anti-oxidant evaluations 166<br />

17. (a) Navarrete, A. Evaluación Farmacológica de Plantas Medicinales.<br />

En: Plantas Medicinales de México. Introducción a su Estudio.<br />

Editor: E. Estrada. Universidad Autónoma de Chapingo.<br />

México. 1996. pp. 255-268. (b) Sharma, S. R.; Dwivedi, S. K.;<br />

Swarup, D. J. Ethnopharmacol. 1997, 58, 39-44. (c) Fernando,<br />

M. R.; Wickramasinghe, S. M. D. N.; Thabrew, M. I.; Karunanyaka,<br />

E. H. J. Ethnopharmacol. 1989, 27, 7-14. (c) Trajanoski,<br />

Z.; Brunner, G. A.; Gferer, R. J.; Wach, P.; Pieber, T. R. Diabetes<br />

Care 1996, 19, 1412-1415.<br />

18. Becker, M.; Newman, S.; Ismail-Beigi, F. Mol. Cell. Endocrinology<br />

1996, 121, 165-170.<br />

19. (a) Hennani, T.; Parihar, M. S. Ind. J. Phys. Pharm. 1998, 42,<br />

440.452. (b) Anderson, S. M. Drug Develop. Res. 1999, 46, 67-<br />

79. (c) Sies, H. Oxidative Stress. Introductory Remarks. In: Sies,<br />

H., Ed. Academic Press. Orlando, Florida. 1985. pp. 1-8.<br />

20. Lotina-Hennsen, B.; Roque Reséndiz, J. L.; Jiménez, M.;<br />

Aguilar, M. Z. Naturforsch. 1991, 46c, 777-780.<br />

21. Meckes, M.; Garduño-Ramírez, M. L.; Marquina, S.; Álvarez, L.<br />

Rev. Soc. Quím. Méx. 2001, 45, 195-199.<br />

22. Bohlmann, F.; Zdero, Ch.; Grenz, M. Chem. Ber. 1977, 110, 474-<br />

486.<br />

23. (a) Joseph-Nathan, P.; Negrete M. C.; González, M. P.<br />

Phytochemistry 1970, 9, 1623-1628. (b) Bohlmann, F.; Zdero,<br />

Ch. Chem. Ber. 1970, 111, 3140-3145.<br />

24. Bwititi, P.; Musabayane, C. T.; Nhachi, C. F. B. J. Ethnopharmacol.<br />

2000, 69, 247-252.<br />

25. Nicki, I.; Nicks, J. L.; Ashcr<strong>of</strong>t, S. J. H. Biochem. J. 1990, 268,<br />

713-718.<br />

26. Cotelle, V.; Vernier, J. L.; Catteau, J. P.; Pommery, J.; Wallet, J.<br />

C.; Gaydou, E. M. Free Radical Biol. Med. 1996, 20, 35-43.<br />

27. (a) Waffo, T. P.; Fauconneau, B.; Deffieux, G.; Huguet, F.;<br />

Vercauteren, J.; Merillon, J. M. J. Nat. Prod. 1998, 61, 655-657.<br />

(b) Rekka, E. A.; Kourounakis, A. P. Res. Comm. Mol. Pathol.<br />

Pharmacol. 1996, 92, 361-366.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 167-172<br />

Investigación<br />

Isolation and <strong>Chemical</strong> Transformations <strong>of</strong> Some<br />

Anti-inflammatory Triterpenes from Salvia mexicana L. var. minor Benth.<br />

Rosalba Argumedo Delira, Hortensia Parra-Delgado, Ma. Teresa Ramírez Apan,<br />

Antonio Nieto Camacho y Mariano Martínez-Vázquez*<br />

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,<br />

Coyoacán 04510, México, D. F. Tel: +(52) 56224403; E-mail: marvaz@servidor.unam.mx<br />

Recibido el 6 de mayo del 2003; aceptado el 24 de junio del 2003<br />

Dedicated to Dr. Alfonso Romo de Vivar<br />

Abstract. The acetone and methanol extracts <strong>of</strong> aerial parts <strong>of</strong> Salvia<br />

mexicana L. var. minor showed anti-inflammatory and antioxidant<br />

properties in <strong>the</strong> TPA y DPPH models respectively. The chromatography<br />

<strong>of</strong> <strong>the</strong>se extracts led <strong>the</strong> isolation <strong>of</strong> β-sitosterol, betulinol,<br />

betulinic acid, ursolic acid and arbutin. The presence <strong>of</strong> <strong>the</strong>se triterpenes<br />

is in agreement with previos phytochemical studies <strong>of</strong> Salvia,<br />

however this is <strong>the</strong> first time that arbutin is isolated from a species <strong>of</strong><br />

this genus. On <strong>the</strong> o<strong>the</strong>r hand, since none or <strong>the</strong> isolated compound<br />

showed antioxidant properties in <strong>the</strong> DPPH model, it can be inferred<br />

that minor compounds not isolated or synergism effects could<br />

account for <strong>the</strong> antioxidant properties <strong>of</strong> <strong>the</strong> extracts. It is known that<br />

some pentacyclic triterpene derivatives with an α,β-unsaturated carbonyl<br />

in <strong>the</strong> ring A showed a better nitric oxide synthase inhibition<br />

activity that <strong>the</strong> natural triterpenes. It was decided to syn<strong>the</strong><strong>size</strong> <strong>the</strong><br />

methyl ester <strong>of</strong> 2-formyl-3-oxo-urs-28-oic and 2-formil-3-oxo-urs-1-<br />

en-28-oic acids from ursolic acid and evaluate <strong>the</strong>m using <strong>the</strong> DPPH<br />

and TPA models. The results showed that both compounds have antiinflammatory<br />

activity, but only <strong>the</strong> 2-formyl-3-oxo-ursol-28-oic acid<br />

methyl ester was active in DPPH assay, which is in agreement with<br />

<strong>the</strong> proposed mechanism <strong>of</strong> this test. This is <strong>the</strong> first chemical study<br />

<strong>of</strong> Salvia mexicana L. var. minor (Benth).<br />

Keywords: Triterpenos, Salvia mexicana var. minor, antiinflamatory<br />

activity, chemical transformations.<br />

Resumen. Los extractos acetónico y metanólico de las partes aéreas<br />

de Salvia mexicana L. var. minor, mostraron poseer propiedades antiinflamatorias<br />

y antioxidantes en los modelos de TPA y DPPH,<br />

respectivamente. La cromatografía de estos extractos permitió el aislamiento<br />

de β-sitosterol, betulinol, ácido betulínico, ácido ursólico y<br />

arbutina. La presencia de estos triterpenos está de acuerdo con estudios<br />

previos de Salvia, sin embargo, es la primera vez que se aísla<br />

arbutina de una especie de éste género. Posiblemente las propiedades<br />

antiinflamatorias de los extractos se deban a la presencia del β-sitosterol<br />

y ácido ursólico, compuestos con probadas actividades antiinflamatorias.<br />

Por otro lado, es probable que las propiedades antioxidantes<br />

de estos extractos, se deban a la presencia de compuestos<br />

minoritarios o a efectos sinérgicos, ya que ninguno de los compuestos<br />

aislados fue activo en el modelo de DPPH. Datos recientes en la literatura<br />

señalan que algunos derivados de triterpenos pentacíclicos con<br />

una cetona α,β-insaturada en el anillo A, presentan una mayor inhibición<br />

de la enzima óxido nítrico sintetasa que los triterpenos naturales,<br />

por lo que se decidió obtener los ésteres metílicos de los ácidos 2-<br />

formil-3-oxo-urs-28-oico y 2-formil-3-oxo-urs-1-en-28-oico a partir<br />

del ácido ursólico, y evaluarlos en los modelos de DPPH y TPA. Los<br />

resultados muestran que ambos tienen propiedades antiinflamatorias,<br />

pero solo el éster metílico del ácido 2-formil-3-oxo-ursol-28-oico fue<br />

activo en el modelo de DPPH, resultado que está de acuerdo con el<br />

mecanismo asociado a esta prueba. Este es el primer estudio químico<br />

de la especie Salvia mexicana L. var. minor (Benth).<br />

Palabras clave: Triterpenos, Salvia mexicana var. minor, actividad<br />

anti-inflamatoria, transformaciones químicas.<br />

Introduction<br />

Salvia is an important genus consisting <strong>of</strong> ca 900 species in<br />

<strong>the</strong> family Lamiaceae (formerly Labiatae). Some species <strong>of</strong><br />

Salvia have been cultivated worldwide to be used in folk medicine<br />

and for culinary purposes [1]. The dried leaves <strong>of</strong> S.<br />

<strong>of</strong>ficinalis (sage) L., for example, is well known for <strong>the</strong>ir<br />

antioxidative properties used in <strong>the</strong> food processing industry<br />

but applicable also to <strong>the</strong> area <strong>of</strong> human health [2]. Studies on<br />

<strong>the</strong> chemical constituents <strong>of</strong> Salvia have been mainly confined<br />

to <strong>the</strong> diterpenoids and <strong>the</strong> tanshinones [3,4], and several<br />

reviews <strong>of</strong> <strong>the</strong>se components have already been published [5,<br />

6]. In addition, <strong>the</strong>re are several reports on <strong>the</strong> biological<br />

activities <strong>of</strong> some species <strong>of</strong> this genus [7-9].<br />

Most <strong>of</strong> <strong>the</strong> 500 species <strong>of</strong> Salvia found in Mexico,<br />

Central and South America belong to <strong>the</strong> Subgenus Jungia<br />

(formerly Calosphace) [10]. The species Salvia mexicana has<br />

been divide in two varieties: S. mexicana var. major Benth.<br />

and S. mexicana L. var. minor Benth. Acetone extract <strong>of</strong> <strong>the</strong><br />

aerial parts from <strong>the</strong> former afforded narigenine and a cis-languidulane<br />

diterpenoid named salvimexicanolide [10]. In addition,<br />

from <strong>the</strong> chlor<strong>of</strong>orm extract <strong>of</strong> <strong>the</strong> aerial parts <strong>of</strong> this<br />

species β-sitosterol, betulinic acid and a triterpenic lactone<br />

called salviolide were isolated [11]. As a part <strong>of</strong> our ongoing<br />

systematic studies looking for bioactive compounds from<br />

<strong>Mexican</strong> species [12], we report in this paper <strong>the</strong> chemical<br />

study, <strong>the</strong> free radical scavenging and <strong>the</strong> anti-inflammatory<br />

activities <strong>of</strong> some extracts and isolates from S. mexicana L.


168 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Rosalba Argumedo Delira et al.<br />

R<br />

HO<br />

1<br />

HO<br />

2 R = CH 2OH<br />

5 R = COOH<br />

OH<br />

COOR<br />

H<br />

OH<br />

H<br />

O<br />

HO<br />

HO<br />

3 R = H<br />

6 R = Me<br />

HO<br />

H<br />

H<br />

OH<br />

H<br />

O<br />

4<br />

O<br />

COOMe<br />

COOMe<br />

R<br />

H<br />

O<br />

O<br />

9<br />

7 R = H<br />

8 R =<br />

OH<br />

Scheme 1<br />

H<br />

var. minor. To our knowledge this is <strong>the</strong> first report on <strong>the</strong><br />

chemical constituents as well as <strong>the</strong> free radical scavenging<br />

and anti-inflammatory activities <strong>of</strong> this species.<br />

Results and Discussion<br />

Flowers and leaves <strong>of</strong> this species were studied separately.<br />

The hexane, acetone and methanol extracts <strong>of</strong> each limb were<br />

obtained.<br />

The method <strong>of</strong> DPPH free radical can be used to evaluate<br />

<strong>the</strong> antioxidant activity <strong>of</strong> specific compounds or extracts in a<br />

short time. It is based on <strong>the</strong> transformation <strong>of</strong> <strong>the</strong> stable free<br />

radical 1,1-diphenyl-2-picryl hydrazyl (DPPH) to α,αdiphenyl-β-picryl<br />

hydrazine by means <strong>of</strong> putative antioxidant<br />

compounds [13].<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> TPA-induced edema test is a<br />

screening method to evaluate <strong>the</strong> ability <strong>of</strong> test compounds or<br />

extracts to prevent an inflammatory reaction in response to <strong>the</strong><br />

edemogen.<br />

The values <strong>of</strong> <strong>the</strong> anti-oxidative evaluation, by DPPH<br />

method <strong>of</strong> some extracts <strong>of</strong> S. mexicana var. minor are shown<br />

in Table 1. Those <strong>of</strong> <strong>the</strong> anti-inflammatory evaluation assessed<br />

by TPA-induced edema in mice are shown in Table 2.<br />

According to <strong>the</strong>se results, <strong>the</strong> acetone and methanol<br />

extracts from flowers, as well as <strong>the</strong> methanol from leaves<br />

were active in <strong>the</strong> DPPH assay. A different pattern is observed<br />

in <strong>the</strong> TPA assay where only <strong>the</strong> hexane and acetone extracts<br />

from <strong>the</strong> flowers were active.<br />

In order to isolate <strong>the</strong> possibly involved components, all<br />

<strong>the</strong> active extracts were chromatographed. Then, from <strong>the</strong><br />

flower hexane extract, β-sitosterol (1; 157 mg; 0.034 %) and<br />

betulinol (2; 10 mg; 0.<strong>002</strong> %) were isolated, while ursolic acid<br />

(3; 3.612 g; 0.8 %) and arbutin (4; 563 mg; 0.12 %) were isolated<br />

from <strong>the</strong> flower acetone extract. Arbutin (4) was <strong>the</strong> only<br />

compound isolated from <strong>the</strong> flower and leave methanol<br />

extracts, 3.180 g (0.69 %) and 5.103 g (0.96 %) respectively.<br />

The presence <strong>of</strong> 1, 2 and 3 in S. mexicana var. minor are in<br />

agreement with previous phytochemical reports <strong>of</strong> this genus.<br />

To our knowledge this is <strong>the</strong> first time that arbutin is isolated<br />

from species <strong>of</strong> Salvia genus.<br />

All <strong>the</strong> isolated compounds were inactive in DPPH assay,<br />

thus indicating that activity <strong>of</strong> <strong>the</strong> extracts is due to <strong>the</strong> minor<br />

constituents not isolated or to a synergic effect. These results<br />

are in agreement with <strong>the</strong> assumed mechanism <strong>of</strong> this reaction,<br />

which postulate that <strong>the</strong> free radical scavenging activity<br />

<strong>of</strong> a compound in DPPH assay is attributed to <strong>the</strong>ir hydrogen<br />

donating ability [14].<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> anti-inflammatory activities <strong>of</strong> <strong>the</strong><br />

β-sitosterol (1) and ursolic acid (3) are well documented [15,<br />

16] <strong>the</strong>n <strong>the</strong> presence <strong>of</strong> 1 and 3 in this species could account<br />

for its anti-inflammatory activity (Table 2).<br />

It is known that phorbol esters, such as TPA, induce skin<br />

inflammation and a hyperproliferative response with an infiltration<br />

<strong>of</strong> neutr<strong>of</strong>ils [17]. It is also known that TPA stimulates<br />

PLA 2 , and that consequently a release <strong>of</strong> arachidonic acid and<br />

prostaglandins occurs [18]. Although <strong>the</strong> mechanism by<br />

which TPA causes inflammation is not completely clear, it<br />

seems to be related in part to <strong>the</strong> release <strong>of</strong> eicosanoid mediators.<br />

Then inhibitors <strong>of</strong> cyclooxygenase and lipoxygenase, as<br />

ursolic acid, have proven activity in <strong>the</strong> TPA model [19, 20].<br />

The high output <strong>of</strong> nitric oxide (NO) produced by inducible<br />

nitric oxide synthase (iNOS), which is expressed in activated<br />

macrophages, plays an important role in host defense. However,<br />

excessive production <strong>of</strong> NO can also destroy functional<br />

normal tissues during acute and chronic inflammation. From a<br />

structure-activity study between 80 ursolic and oleanolic<br />

derivatives, <strong>the</strong> 2-cyano-3,12-dioxooleana-1,9-dien-28-oic, is


Isolation and <strong>Chemical</strong> Transformations <strong>of</strong> Some Anti-inflammatory Triterpenes from Salvia mexicana... 169<br />

Table 1. Free radical scavenging activities <strong>of</strong> some extracts <strong>of</strong> S.<br />

mexicana L. var. minor.<br />

Extracts Concentration Reduction <strong>of</strong> DPPH<br />

(ppm) (%)<br />

Acetone (flowers) 10 12.64*<br />

100 84.47*<br />

1000 95.35*<br />

Methanol (flowers) 10 17.74*<br />

100 92.86*<br />

1000 91.55*<br />

Methanol (leaves) 10 13.55*<br />

100 90.76*<br />

1000 92.52*<br />

Nordihydroguaiaretic 7.17 94.69*<br />

acid (positive control)<br />

The results were analyzed by ANOVA. Statistical comparison were made<br />

between control group and <strong>the</strong> experimental groups using a Dunnet’s test. *p<br />

< 0.05.<br />

<strong>the</strong> product with <strong>the</strong> highest inhibitory activity against production<br />

<strong>of</strong> nitric oxide (NO) induced by interferon γ (IFN-γ) in<br />

mouse macrophages. In general, it was found that oleanolic<br />

and ursolic derivatives with a 1-en-3-one functionality in ring<br />

A have significant inhibitory activity against production <strong>of</strong><br />

NO. Also it is known that ursolic acid up regulate iNOS and<br />

TNF-α expression through NF-κB transactivation in <strong>the</strong> resting<br />

macrophages [21]. Taking this information into account, it<br />

was decided to evaluate <strong>the</strong> free radical scavenging as well as<br />

<strong>the</strong> anti-inflammatory properties <strong>of</strong> both 8 and 9. Compounds<br />

8 and 9 were syn<strong>the</strong><strong>size</strong>d from 3, according to <strong>the</strong> route illustrated<br />

in Scheme 1.<br />

The results showed that only 8 was active as free radical<br />

scavenger (Table 3). However, both 8 and 9 showed almost<br />

<strong>the</strong> same activity as anti-inflammatory agents as ursolic acid<br />

(Table 4). These findings clearly indicate that <strong>the</strong> free radical<br />

scavenger activity <strong>of</strong> 8 is due to its hydrogen donating ability.<br />

On <strong>the</strong> o<strong>the</strong>r hand, in contrast to <strong>the</strong>ir inhibitory activity<br />

against <strong>the</strong> production <strong>of</strong> nitric oxide, <strong>the</strong> presence <strong>of</strong> unsaturated<br />

moieties in 8 and 9 are not relevant in terms <strong>of</strong> <strong>the</strong>ir antiinflammatory<br />

activity, since both <strong>of</strong> <strong>the</strong>m showed almost <strong>the</strong><br />

same activity as ursolic acid.<br />

Materials and Methods<br />

General. The melting points (uncorrected) were determined<br />

on a Fisher-Johns apparatus. IR spectra were recorded as KBr<br />

pellets or liquid film on a Nicolet spectrophotometer model<br />

Magna 750. Mass spectra were recorded at 70 eV on a Jeol<br />

JMS-AX505HA mass spectrometer. NMR spectra were measured<br />

using Varian-Gemini 200 and Varian VXR-300 ( 1 H,<br />

200 or 300 MHz, 13 C, 75 MHz) spectrometers in CDCl 3 or<br />

DMSO-d 6 with TMS as internal standard.<br />

Plant material. Aerial parts <strong>of</strong> S. mexicana L. var. Minor<br />

Benth. were obtained from an orchard localized in Xahuen<br />

street in San Miguel Tlaixpan (Texcoco, Edo. de Mexico,<br />

Mexico) in 2<strong>002</strong>. A voucher specimen was deposited in <strong>the</strong><br />

Herbario Nacional (MEXU-1054424).<br />

Flowers (456 g) and leaves (531 g) were separately treated.<br />

Then, plant material was exhaustively extracted with n-<br />

hexane, acetone and MeOH, successively. From <strong>the</strong> flowers,<br />

24.62 g (5.39 %, dry weight) <strong>of</strong> <strong>the</strong> hexane extract, 24.47 g<br />

(5.36 %, dry weight) <strong>of</strong> acetone extract and 73.26 g (16.06 %,<br />

dry weight) <strong>of</strong> methanol extract were obtained, while from <strong>the</strong><br />

leaves, 13.19 g (2.48 %, dry weight), 29.33 g (5.52 %, dry<br />

weight) and 179.55 g (33.77 %, dry weight) were obtained<br />

respectively.<br />

All <strong>the</strong> extracts were cromatographed using an open column<br />

packed with Si-gel (G- Altech, 0.2-0.5 mm, ASTM) in a<br />

1:30 proportion to <strong>the</strong> extract and eluted with solvent mixtures<br />

<strong>of</strong> increasing polarity starting with hexane and ending with<br />

methanol.<br />

Chromatography <strong>of</strong> hexane extract <strong>of</strong> flowers. From <strong>the</strong><br />

hexane extract <strong>of</strong> <strong>the</strong> flowers a total <strong>of</strong> 65 fractions <strong>of</strong> 200 mL<br />

each, were collected. Fractions showing similar TLC data<br />

were combined, affording eight pools (F1-F8): F3 (fractions<br />

24-26, eluted with hexane-EtOAc, 9:1), F4 (fractions 27-35,<br />

eluted with hexane-EtOAc, 8:2). β-sitosterol (1, 157 mg) was<br />

isolated from F3 and betulinol (2; 10 mg) from F4.<br />

Chromatography <strong>of</strong> acetone extract <strong>of</strong> flowers. From <strong>the</strong><br />

acetone extract <strong>of</strong> <strong>the</strong> flowers a total <strong>of</strong> 265 fractions <strong>of</strong> 200<br />

mL each were collected. Fractions showing similar TLC data<br />

were combined, affording six pools (F1-F6): F3 (fractions 36-<br />

161, eluted with hexane-EtOAc, 7:3), F4 (fractions 162-237,<br />

eluted with hexane-EtOAc, 1:1). Ursolic acid (3; 3.682 g) was<br />

isolated from F3 and arbutin (4; 563 mg) from F4.<br />

Chromatography <strong>of</strong> MeOH extract <strong>of</strong> flowers. From <strong>the</strong><br />

MeOH extract <strong>of</strong> <strong>the</strong> flowers a total <strong>of</strong> 111 fractions <strong>of</strong> 200<br />

mL each were collected. Fractions showing similar TLC data<br />

were combined, affording nine pools (F1-F9): F5 (fractions<br />

50-77, eluted with EtOAc), F6 (fractions 78-89, eluted with<br />

EtOAc-MeOH, 9:1), F7 (fractions 90-93, eluted with EtOAc-<br />

MeOH, 7:3), F8 (fractions 94-102, eluted with EtOAc-MeOH,<br />

1:1) and F9 (fractions 103-111, eluted with MeOH). Arbutin<br />

(4; 3.180 g) was isolated from F5-F8 pools.<br />

Chromatography <strong>of</strong> hexane extract <strong>of</strong> leaves. When <strong>the</strong><br />

extract was concentrated, a yellowish solid precipitate (235<br />

mg), which was filtered and chromatographed. A total <strong>of</strong> 16<br />

fractions <strong>of</strong> 50 mL each were collected. Fractions showing<br />

similar TLC data were combined, affording three pools (F1-<br />

F3): F1 (fractions 1-4, eluted with hexane), F2 (fractions 5-8,<br />

eluted with hexane-EtOAc, 9:1) and F3 (fractions 9-16, eluted<br />

with hexane-EtOAc, 8:2). Betulinic acid (5; 84 mg; 36%) was<br />

isolated from F3. The remanent extract (13.19 g) afforded a<br />

total <strong>of</strong> 22 fractions <strong>of</strong> 200 ml each. Fractions showing similar<br />

TLC data were combined, affording six pools (F1-F6): F3<br />

(fractions 7-12, eluted with hexane-EtOAc, 7:3), F4 (fractions


170 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Rosalba Argumedo Delira et al.<br />

Table 2. Anti-inflammatory activities <strong>of</strong> some extracts <strong>of</strong> S. mexicana<br />

L. var. minor.<br />

Extracts Edema Inhibition (%)<br />

(mg, average SE)<br />

Control (methanol) 15.47 ± 0.32 —<br />

Hexane (flowers) 4.77 ± 0.50 69.17*<br />

Acetone (flowers) 5.60 ± 0.91 63.79*<br />

Methanol (flowers) 13.70 ± 0.31 11.42<br />

Methanol (leaves) 13.10 ± 1.07 15.0<br />

Indomethacin<br />

(positive control) 1.07 ± 0.03 91.35*<br />

All <strong>the</strong> extracts were tested at 1 mg / ear doses. The results were analyzed by<br />

ANOVA. Statistical comparison were made between control group and <strong>the</strong><br />

experimental groups using a t student test. *p < 0.01<br />

13-14, eluted with hexane-EtOAc, 1:1), F5 (fractions 15-19,<br />

eluted with hexane-EtOAc, 3:7) and F6 (fractions 20-22, eluted<br />

with EtOAc). β-sitosterol (1; 686 mg) was isolated from<br />

F3-F6 pools.<br />

Chromatography <strong>of</strong> acetone extract <strong>of</strong> leaves. From <strong>the</strong><br />

acetone extract <strong>of</strong> <strong>the</strong> leaves a total <strong>of</strong> 33 fractions <strong>of</strong> 200 mL<br />

each, were collected. Fractions showing similar TLC data<br />

were combined, affording nine pools (F1-F9): F3 (fractions 8-<br />

10, eluted with hexane-EtOAc, 7:3), F4 (fractions 11-15, eluted<br />

with hexane-EtOAc, 1:1), F5 (fractions 16-18, eluted with<br />

hexane-EtOAc, 3:7), F6 (fractions 19-21, eluted with EtOAc),<br />

F7 (fractions 22-25, eluted with EtOAc-MeOH, 7:3), F8 (fractions<br />

26-29, eluted with EtOAc-MeOH, 1:1) and F9 (fractions<br />

30-33, eluted with MeOH). Ursolic acid (3; 4.210 g; 14.35%)<br />

was isolated from F3-F5 pools and arbutin (4; 2.103 g;<br />

7.168%) was isolated from F5-F8 pools.<br />

Chromatography <strong>of</strong> MeOH extract <strong>of</strong> leaves. The MeOH<br />

extract was partitioned between n-butanol and CH 2 Cl 2 . It<br />

afforded <strong>the</strong> n-butanol extract (46.16 g), which was chromatographed<br />

yielding a total <strong>of</strong> 22 fractions <strong>of</strong> 200 mL each.<br />

Fractions showing similar TLC data were combined, affording<br />

nine pools (F1-F9): F6 (fractions 9-13, eluted with EtOAc-<br />

MeOH, 9:1), F7 (fractions 14-15, eluted with EtOAc-MeOH,<br />

7:3), F8 (fractions 16-18, eluted with EtOAc-MeOH, 1:1) and<br />

F9 (fractions 19-22, eluted with MeOH). Arbutin (4; 5.103 g,<br />

4.3 %) was isolated from F6-F9 pools.<br />

Ursolic acid methyl ester (6). A solution <strong>of</strong> ursolic acid (1 g,<br />

2.19 mmol) in a mixture <strong>of</strong> e<strong>the</strong>r / MeOH (50 mL) was cooled<br />

down to 0 °C in an ice-bath. E<strong>the</strong>real diazomethane was added<br />

until permanent yellow color was obtained. After 24 h <strong>the</strong> solvent<br />

was removed by distillation under low pressure to give<br />

ursol-28-oic acid methyl ester (6; 758 mg; 1.61 mmol; 73.5 %<br />

yield).<br />

3-oxo-urs-28-oic acid methyl ester (7). To a solution <strong>of</strong> 6<br />

(750 mg, 1.6 mmol) in acetone (10 ml) was added an excess<br />

<strong>of</strong> Jones's reagent at 0 °C while stirring. The reaction course<br />

was followed by TLC. After 55 min, <strong>the</strong> excess <strong>of</strong> Jones's<br />

was destroyed by addition <strong>of</strong> MeOH, and <strong>the</strong>n <strong>the</strong> reaction<br />

mixture was diluted with H 2 O (30 mL). Extraction with<br />

CH 2 Cl 2 (4 × 10 mL), drying (Na 2 SO 4 ), filtration and evaporation<br />

<strong>of</strong> <strong>the</strong> solvent gave a residue, which by crystallization<br />

from hexane-EtOAc afforded 7 (321 mg; 0.7 mmol; 43.7 %<br />

yield). Mp 182-184°C, IR (KBr) ν max : 2935, 2867, 1726,<br />

1695, 1459, 1380 and 1142 cm –1 . EIMS 70eV m/z: 468 (M + ,<br />

C 31 H 48 O 3 ), 453, 419, 407, 262, 249, 203 and 189. 1 H NMR<br />

200 MHz CDCl 3 δ: 5.27 (1H, m, H-12), 3.61 (3H, s, OMe),<br />

2.60 (1H, d, H-18), 2.25 (2H, m, H-2), 1.08 (3H, s), 1.04 (6H,<br />

s), 1.06 (3H, d, J=8 Hz), 0.95 (3H, s), 0.85 (3H, d, J=7Hz),<br />

0.79 (3H, s).<br />

2- Formyl-3-oxo-urs-28-oic acid methyl ester (8). To a solution<br />

<strong>of</strong> 0.7 mmol <strong>of</strong> 7 in 7 mL <strong>of</strong> dry pyridine, held under<br />

nitrogen, was added 1.5 mL (18.7 mmol) <strong>of</strong> ethyl formate<br />

(distilled from phosphorus pentoxide) followed by 1 mL <strong>of</strong> a<br />

solution <strong>of</strong> 294 mg (13.3 mmol) <strong>of</strong> sodium in 6 mL <strong>of</strong><br />

absolute methyl alcohol. The resulting solution was <strong>the</strong>n kept<br />

at room temperature under nitrogen overnight. The reaction<br />

was evidenced by <strong>the</strong> appearance <strong>of</strong> a deep color and / or <strong>the</strong><br />

formation <strong>of</strong> an insoluble precipitate. The mixture was poured<br />

into a cold solution <strong>of</strong> 16 mL <strong>of</strong> glacial acetic acid in 150 mL<br />

<strong>of</strong> water, and <strong>the</strong> resulting precipitate was extracted with<br />

CH 2 Cl 2 . The organic layer was washed with water and <strong>the</strong>n<br />

extracted with 3 × 100 mL <strong>of</strong> 2 % potassium hydroxide solution.<br />

The combined basic extract were washed with e<strong>the</strong>r and<br />

acidified with 10 mL <strong>of</strong> glacial acetic acid. Extraction <strong>of</strong> <strong>the</strong><br />

aqueous layer with CH 2 Cl 2 in <strong>the</strong> usual manner, afforded 2-<br />

formyl-3-oxo-urs-28-oic methyl ester (8; 226 mg; 0.46 mmol;<br />

70 % yield).<br />

Reddish viscous liq. IR (CHCl 3 ) ν max : 2925, 2869, 1725,<br />

1636, 1587, 1455, 1360 and 1147 cm –1 . EIMS 70eV m/z: 496<br />

(M + , C 32 H 48 O 4 ), 481, 478, 437, 421, 262, 249, 233, 203 and<br />

189. 1 H NMR 200 MHz CDCl 3 δ: 14.91 (1H, s, OH chelated),<br />

8.57 (1H, s, H-23), 5.29 (1H, m, H-12), 3.61 (3H, s, OMe),<br />

2.32 (1H, d, H-18), 1.25, 1.19, 1.11, 1.09, 0.8 (3H, s, each),<br />

0.93 (3H, d, J=8 Hz), 0.86 (3H, d, J=7Hz).<br />

Table 3. Free radical scavenging activities <strong>of</strong> 8 and 9.<br />

Compound Concentration Reduction<br />

(ppm) <strong>of</strong> DPPH (%)<br />

2- Formyl-3-oxo- 10 12.69*<br />

urs-28-oic acid 100 40.87*<br />

methyl ester (8) 1000 79.43*<br />

2- Formyl-3-oxo- 10 N. A.<br />

urs-1-en-28-oic 100 N. A.<br />

acid methyl ester (9) 1000 N. A.<br />

The results were analyzed by ANOVA. Statistical comparison were made<br />

between control group and <strong>the</strong> experimental groups using a Dunnet’s test. *p<br />

< 0.05, N. A. = Not active.


Isolation and <strong>Chemical</strong> Transformations <strong>of</strong> Some Anti-inflammatory Triterpenes from Salvia mexicana... 171<br />

Table 4. Anti-inflammatory activities <strong>of</strong> 8 and 9.<br />

Compound Edema Inhibition (%)<br />

(mg, average SE)<br />

Control (EtOAc) 11.80 ± 0.045 -<br />

2- Formyl-3-oxo- 3.03 ± 0.86 74.29*<br />

urs-28-oic acid<br />

methyl ester (8)<br />

2- Formyl-3-oxo- 3.03 ± 0.86 74.29*<br />

urs-1-en-28-oic<br />

acid methyl ester (9)<br />

All <strong>the</strong> compounds were tested at 1 mg / ear doses. The results were analyzed<br />

by ANOVA. Statistical comparison were made between control group and <strong>the</strong><br />

experimental groups using a t student test. *p ≤ 0.01. The reported % <strong>of</strong> inhibition<br />

<strong>of</strong> ursolic acid is 74.4 % at 1 mg/ear doses [16].<br />

2- Formyl-3-oxo-urs-1-en-28-oic acid methyl ester (9).<br />

PhSeCl (120 mg) was dissolved in 12 mL <strong>of</strong> CH 2 Cl 2 and<br />

cooled to 0 °C and 0.06 g (40 µl) <strong>of</strong> pyridine was added. After<br />

15 min, 0.2 g <strong>of</strong> 8 in 3 mL <strong>of</strong> CH 2 Cl 2 was added and <strong>the</strong> mixture<br />

was stirred for 15 min more. The CH 2 Cl 2 solution was<br />

extracted with two 5 mL portions <strong>of</strong> 10 % HCl and cooled<br />

back to 0 °C, at which time 0.1 mL <strong>of</strong> 30 % H 2 O 2 was added.<br />

An additional 0.1 mL <strong>of</strong> 30 % H 2 O 2 was added after 10 min<br />

and again after 20 min. After an additional 10 min, 0.5 mL <strong>of</strong><br />

H 2 O was added and <strong>the</strong> CH 2 Cl 2 layer was separated and<br />

washed with 5 mL <strong>of</strong> saturated NaHCO 3 . After being dried<br />

over Na 2 SO 4 , <strong>the</strong> solution was filtered and <strong>the</strong> solvent evaporated<br />

under vacuum to yield 9 (53 mg; 0.11 mmol; 24 %<br />

yield). Reddish viscous liq. IR (CHCl 3 ) ν (cm –1 ): 2921, 2858,<br />

2721, 1719, 1672, 1604, 1455, 1379, 1224 and 1110. EIMS<br />

70eV m/z: 494 (M + , C 32 H 46 O 4 ), 479, 476, 435, 419, 314, 262,<br />

249, 233, 203, 189, 158, 133 and 117. 1 H NMR (200 MHz,<br />

CDCl 3 ): 10.01 (1H, s, COH), 7.80 (1H, s, H-1), 5.38 (1H, m,<br />

H-12), 3.62 (3H, s, OMe), 2.28 (1H, d, H-18), 1.25, 1.18,<br />

1.09, 0.96, 0.87 (3H, s, each), 1.17 (3H, d, J = 7 Hz), 0.87<br />

(3H, d, J = 8Hz).<br />

Free radical scavenging Activity. DPPH assay was performed<br />

essentially according to <strong>the</strong> modified method <strong>of</strong><br />

Cottele. Reaction mixture containing different concentrations<br />

<strong>of</strong> test samples in DMSO and 100 mM DPPH ethanol solution<br />

in 96-well microliter plates, were incubated at 37 °C for 30<br />

min, and subsequently <strong>the</strong> absorbencies were measured at 515<br />

nm in a microplate reader Elx 808. Measurements were performed<br />

in triplicate in at least three independent experiments.<br />

The % inhibition <strong>of</strong> each compound was determined by comparison<br />

with a DPPH ethanol blank solution [22]. The results<br />

were analyzed by ANOVA. Statistical comparisons were<br />

made between control group and <strong>the</strong> experimental groups<br />

using Dunnet’s test.<br />

Animals. Male CD-1 mice, weighing 20-25 g each were used.<br />

Instituto de Fisiología Celular, Universidad Nacional Autónoma<br />

de México provided <strong>the</strong> experimental animals. All animals<br />

were held under standard laboratory conditions in <strong>the</strong> animal<br />

house (temperature 27 ± 1 °C). They were fed laboratory diet<br />

and water ad libitum. All experiments were carried out using<br />

4-8 animals per group.<br />

TPA-induced edema model. Effects <strong>of</strong> <strong>the</strong> test substances on<br />

TPA-induced ear edema in mice were studied as described by<br />

De Young [17] with slight modifications. The substances (1<br />

mg / ear) were applied topically. A solution <strong>of</strong> TPA (2.5 µg)<br />

in EtOH (10 µL) was applied topically to both faces (5 µL<br />

each face) <strong>of</strong> <strong>the</strong> right ear <strong>of</strong> <strong>the</strong> mice, 10 min after <strong>the</strong> test<br />

substances were applied (10 µL each face). The left ear<br />

received ethanol (10 µL) first, and 20 µL <strong>of</strong> <strong>the</strong> respective solvent<br />

subsequently.<br />

Four hours later <strong>the</strong> mice were killed by cervical dislocation.<br />

A 7-mm diameter plug was removed from each ear. The<br />

swelling was assessed as <strong>the</strong> difference in weight between<br />

right and left ear plugs [19]. Inhibition <strong>of</strong> edema (EI, %) was<br />

calculated by <strong>the</strong> equation:<br />

EI (%) = 100 – [B × 100 / A], with A = edema induced by<br />

TPA alone, and B = edema induced by TPA plus sample.<br />

Data were expressed as <strong>the</strong> mean SEM <strong>of</strong> 4-8 mice. All<br />

<strong>the</strong> extracts and compounds were tested at 1 mg / ear doses.<br />

The results were analyzed by ANOVA. Statistical comparisons<br />

were made between control group and <strong>the</strong> experimental<br />

groups using a t student test. *p < 0.01.<br />

References<br />

1. Lu, Y.; Yeap-Foo, L. Phytochemistry 2<strong>002</strong>, 59,117-140.<br />

2. Baricevic, D.; Sosa, S.; Della Logia, R.; Tubazo, A.;<br />

Simonovska, B.; Krasna, A.; Zumpancic, A. J. Ethnopharmacol.<br />

2001, 75, 125-132.<br />

3. Chang, H. M.; Cheng, K. P.; Choang, T. F.; Chow, H. F.; Chui,<br />

K. Y.; Hon, P. M.; Lau Tan, F. W.; Yang, Y.; Zhong, Z. P.; Lee,<br />

C. M.; Sham, H. L.; Chan, C. F.; Cui, Y. X. J. Org. Chem. 1990,<br />

55, 3537-3543.<br />

4. Zhang, K. Q.; Bao, Y.; Wu, P.; Rosen, R. T.; HO, C. T. J. Agric.<br />

Food Chem. 1990, 38, 1194-1197.<br />

5. Tang, W.; Eisenbrand, G. Chinese Drugs <strong>of</strong> Plan Origin. Chemistry,<br />

Pharmacology, and use in Traditional and Modern Medicine.<br />

Springer-Verlag, Berlin, Heidelberg, 1992, pp. 891-902.<br />

6. Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J. Recent Advances<br />

in Phytochemistry, 1995, 29, 311-332.<br />

7. Takahashi, K.; Ouyang, X.; Komatsu, K.; Nakamura, N.; Hattori,<br />

M.; Baba, A.; Azuma, J. Biochem. Pharmacol., 2<strong>002</strong>, 64, 745-<br />

750.<br />

8. Cao, C-M.; Xia, Q.; Zhang, X.; Xu, W-H.; Jiang, H-D.; Chen, J-<br />

Z. Life Sciences, 2003, 72, 2451-2463.<br />

9. Ebringerova, A.; Kardosova, A.; Hromádkova, Z.; Híbalova, V.<br />

Fitoterapia, 2003, 74, 52-61.<br />

10. Esquivel, B.; Ramírez-Dávalos, N.; Espinosa-Pérez, G.<br />

Heterocycles, 1999, 51, 1647-1651.<br />

11. Collera, O.; Gomora, E.; García Jiménez, F. Rev. Latinoamer.<br />

Quím. 1980, 11, 60-62.<br />

12. Estrada-Reyes, R.; Álvarez, C.; López-Rubalcava, C.; Rocha, L.;<br />

Heinze, G.; Moreno, J.; Martínez-Vázquez, M. Z. Naturforsch.<br />

2<strong>002</strong>, 57c, 29-32.<br />

13. Tamil Selvi, A.; Joseph, G. S.; Jayaprakasha, G. K. Food<br />

Microbiology 2003, 20, 455-460.<br />

14. Shimada, K. K.; Fujikawa, K. Y.; Nakumara, T. J. Agric. Food<br />

Chem. 1992, 40, 945-948.


Isolation and <strong>Chemical</strong> Transformations <strong>of</strong> Some Anti-inflammatory Triterpenes from Salvia mexicana... 172<br />

15. Martínez-Vázquez, M.; Ramírez A., T. O.; Lazcano, M. E.; Bye,<br />

R. Rev. Soc. Quím. Mex. 1999, 43, 103-105.<br />

16. Recio, M. C.; Giner, R.; Terencio, M. C.; Sanz, M. J.; Ríos, J. L.<br />

Planta Med. 1991, 57, A56-57.<br />

17. De Young, L. M.; Kheifets, J. B.; Ballaron, S. L.; Young, J. M.<br />

Agents Actions. 1989, 26, 335-341.<br />

18. Fuerstenberg, G.; Richter, H.; Fusening, N. E.; Marks, F. Cancer<br />

Lett. 1981, 11, 191-204.<br />

19. Carlson, R. P.; O´Neil-Davis, L.; Chang, J.; Lewis, A. J. Agents<br />

Actions. 1985, 17, 197-204.<br />

20. Najid, A.; Simon, A.; Cook, J.; Chable-Rabinovitch, H.; Delage,<br />

C.; Chulia, A. J.; Rigaud, M. FEBS. 1992, 213-217.<br />

21. You, H. J.; Chul, Y. C.; Ji, Y. K.; Park, S. J. Hahm, K.; Jeong, H.<br />

G. FEBS Lett. 2001, 509, 156-160.<br />

22. Cottele, N.; Bernier, J. L.; Catteau, J. P.; Pommery, P.; Wallet, J.<br />

C.; Gaydou, E. M. Free Radical Biology & Medicine. 1996, 20,<br />

35-43.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 173-177<br />

Investigación<br />

Two New Oleanolic Acid Saponins from <strong>the</strong> Roots <strong>of</strong> Viguiera hypargyrea<br />

Laura Alvarez, 1* Alejandro Zamilpa, 2 Silvia Marquina, 1 and Manasés González 1<br />

1 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa,<br />

62210, Cuernavaca, Morelos, México. Tel/Fax: (+52) (01 77) 7329 7997; E-mail: lalvarez@intermor.net.mx<br />

2 Centro de Investigación Biomédica del Sur, Instituto <strong>Mexican</strong>o del Seguro Social, Argentina No. 1, Centro,<br />

62790 Xochitepec, Morelos, México<br />

Recibido el 20 de mayo del 2003; aceptado el 24 de junio del 2003<br />

Dedicated to Pr<strong>of</strong>essor Alfonso Romo de Vivar<br />

Abstract. Two new triterpene saponins whose aglycons are based on<br />

<strong>the</strong> oleanane skeleton (1-2), were isolated from <strong>the</strong> roots <strong>of</strong> Viguiera<br />

hypargyrea, toge<strong>the</strong>r with two known triterpene saponins (3 and 4) as<br />

well as <strong>the</strong> triterpenes friedelin, friedelan 3β-ol and oleanolic acid.<br />

The structures <strong>of</strong> <strong>the</strong> new compounds were established mainly by 2D<br />

NMR techniques <strong>of</strong> <strong>the</strong>ir peracetylated derivatives as 3-O-[α-Lrhamnopyranosyl<br />

(1 → 3)-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosyl-oleanolic<br />

acid-28-O-β-D-glucopyranoside and 3-O-[α-Lrhamnopyranosyl<br />

(1 → 3)-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosyl<br />

oleanolic acid respectively.<br />

Keywords: Viguiera hypargyrea, Asteraceae, roots, oleanolic acid<br />

saponins, bisdesmosides.<br />

Resumen. De las raíces de Viguiera hypargyrea se aislaron dos nuevas<br />

saponinas triterpénicas (1-2), cuyas agliconas corresponden al esqueleto<br />

del oleanano, junto con dos saponinas triterpénicas conocidas (3 y<br />

4), así como los triterpenos friedelina, friedelan-3β-ol y ácido oleanólico.<br />

Las estructuras de los compuestos novedosos fueron establecidas<br />

principalmente por medio de técnicas de RMN 2D de sus derivados<br />

peracetilados como 3-O-[α-L-rhamnopiranosil (1 → 3)-β-D-xilopiranosil<br />

(1 → 4)]-β-D-glucopiranosil-ácido oleanólico-28-O-β-D-glucopiranósido<br />

y ácido 3-O-[α-L-ramnopiranosil (1 → 3)-β-D-xilopiranosil<br />

(1 → 4)]-β-D-glucopiranosil oleanólico respectivamente.<br />

Palabras clave: Viguiera hypargyrea, Asteraceae, raíces, saponinas<br />

del ácido olanólico, bisdesmósidos.<br />

Introduction<br />

Viguiera hypargyrea Blake (Asteraceae) is a perennial herb<br />

distributed on Nor<strong>the</strong>rn Mexico [1]. The roots <strong>of</strong> this plant are<br />

used for gastrointestinal disorders in <strong>Mexican</strong> traditional medicine<br />

and it is commonly known as “plateada” [2]. Diterpenic<br />

acids and sesquiterpene lactones have been reported from <strong>the</strong><br />

leaves [3]. We have recently reported that <strong>the</strong> n-hexane and<br />

ethyl acetate-soluble portions and <strong>the</strong>ir principal diterpenic<br />

acid components ent-beyer-15-en-19-oic and ent-kaur-16-en-<br />

19-oic acids showed antispasmodic and antimicrobial effects<br />

[4]. Although <strong>the</strong> methanol-soluble portion did not exhibit<br />

apparent antispasmodic and antimicrobial activity at a sample<br />

concentration <strong>of</strong> 25 µg/mL and 10 mg/mL respectively, we<br />

had interest in <strong>the</strong> chemical constituents <strong>of</strong> this fraction, and<br />

here we report <strong>the</strong> results.<br />

Results and discussion<br />

Chromatographic separations <strong>of</strong> <strong>the</strong> methanol soluble fraction<br />

have resulted in <strong>the</strong> isolation <strong>of</strong> <strong>the</strong> known triterpenes friedelin,<br />

friedelan-3-β-ol and oleanolic acid, which were identified<br />

by direct comparison with au<strong>the</strong>ntic samples. Two new triterpene<br />

saponins based on <strong>the</strong> oleanane skeleton (1,2), which<br />

were characterized as <strong>the</strong>ir peracetate derivatives (1a,2a) were<br />

also isolated, toge<strong>the</strong>r with <strong>the</strong> known saponins β-D-glucopyranosyl<br />

olean-12-en-28-oate (3) and 3-O-[methyl-β-D-glucuronopyranosiduronoate]-28-O-β-D-glucopyranosyl<br />

oleanolate<br />

(4), which were identified by comparison <strong>of</strong> <strong>the</strong>ir spectroscopic<br />

data with those previously described [5, 6].<br />

In this paper, we report <strong>the</strong> structural determination <strong>of</strong> <strong>the</strong><br />

new saponins on <strong>the</strong> basis <strong>of</strong> spectroscopic analysis and acidcatalyzed<br />

hydrolysis.<br />

Compound 1a was obtained as an oil after acetylation <strong>of</strong><br />

<strong>the</strong> natural product 1. In <strong>the</strong> positive-ion FABMS <strong>of</strong> 1a, quasimolecular<br />

ion peaks were observed at m/z 1600 [M + K + H] + ,<br />

1584 [M + Na + H] + , and 1561 [M + H] + , and HRFABMS<br />

analysis revealed <strong>the</strong> molecular formula to be C 77 H 108 O 33 .<br />

O<strong>the</strong>r significant peaks visible at m / z 1254 [M + K –<br />

C 14 H 19 O 10 ] + , 1068 [M – C 12 H 17 O 7 – C 11 H 15 O 7 ] + , and 777 [M<br />

– C 33 H 45 O 21 ] + , indicated <strong>the</strong> successive loss <strong>of</strong> one hexosyl,<br />

one deoxyhexosyl, one pentosyl and one hexosyl moieties.<br />

Ano<strong>the</strong>r fragment ion at m/z 437 corresponded to <strong>the</strong> pseudomolecular<br />

ion <strong>of</strong> <strong>the</strong> aglycon. On acid hydrolysis, 1a liberated<br />

oleanolic acid as <strong>the</strong> genin, and glucose, rhamnose and xylose,<br />

which were identified by comparison with au<strong>the</strong>ntic samples<br />

by co-TLC, IR and NMR. On alkaline hydrolysis, only glucose<br />

was detected by co-TLC with an au<strong>the</strong>ntic sample, indicating<br />

that <strong>the</strong> glucose was bound to <strong>the</strong> genin by a glycosidic<br />

ester linkage at C-28 [7]. The 1 H and 13 C NMR spectra <strong>of</strong> 1a,<br />

which are presented in Table 1, showed that most <strong>of</strong> <strong>the</strong> signals<br />

<strong>of</strong> <strong>the</strong> aglycon were in good agreement with literature<br />

data for oleanolic acid [8]. Glycosylation shifts were observed


174 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Laura Alvarez et al.<br />

Table 1. 13 C (125 MHz) and 1 H (500 MHz) NMR Spectral Data for <strong>the</strong> Aglycon Part <strong>of</strong> Compounds 1a, 2a and 2b (CDCl 3 , δ in ppm).<br />

1a 2a 2b<br />

δ C δ H δ C δ H δ C δ H<br />

1 38.50 0.82, 1.59 38.46 0.89, 1.56 38.6 0.85, 1.60<br />

2 27.69 1.07, 1.67 27.65 1.07, 1.67 27.1 1.07, 1.66<br />

3 90.41 2.97 dd(11.7, 5) 90.44 2.95 dd(13.5, 4.5) 90.41 2.97 dd (13.0, 5)<br />

4 38.81 38.84 38.80<br />

5 55.56 0.64 55.59 0.67 54.9 0.67<br />

6 18.15 1.32, 1.46 18.13 1.31, 1.46 18.13 1.31, 1.46<br />

7 31.74 1.26, 1.61 32.37 1.59, 1.74 dd(13.5, 4.5) 32.5 1.55,<br />

8 39.33 39.30 39.30<br />

9 47.58 1.46 47.65 1.49 dd(11, 6.5) 47.60 1.47 dd (11, 6.5)<br />

10 36.68 36.75 36.74<br />

11 23.41 1.86 23.38 1.86 23.30 1.83<br />

12 122.92 5.31 t(3) 122.64 5.26 t(3.5) 122.59 5.25 t(3.5)<br />

13 142.85 143.60 143.61<br />

14 41.02 40.96 41.00<br />

15 25.62 1.1, 1.72 25.69 1.64, 1.74 25.65 1.60, 1.73<br />

16 22.82 1.28, 1.54 2.97 1.60, 1.90 22.95 1.60, 1.92<br />

17 46.81 46.49 46.52<br />

18 41.68 2.81 dd(14, 4) 1.60 2.80 dd(14, 4) 41.65 2.80 dd (13.5, 5)<br />

19 45.79 1.14, 1.62 45.95 1.13, 1.60 45.93 1.14, 1.62<br />

20 30.58 30.63 30.60<br />

21 33.74 1.20, 1.32 33.80 1.20, 1.33 33.79 1.21, 1.32<br />

22 32.96 1.27, 1.36 32.63 1.27, 1.36 32.59 1.27, 1.36<br />

23 27.69 0.90 27.72 0.86 27.70 0.88<br />

24 16.27 0.70 16.25 0.69 16.25 0.69<br />

25 15.22 0.86 15.19 0.87 15.20 0.88<br />

26 16.92 0.72 17.01 0.73 17.10 0.73<br />

27 25.62 1.10 25.85 1.11 25.80 1.11<br />

28 175.59 183.05 179.80<br />

29 32.96 0.89 33.02 0.89 32.90 0.89<br />

30 23.41 0.88 23.54 0.91 23.50 0.90<br />

OMe 51.82 3.61<br />

at C-3 and C-28 <strong>of</strong> <strong>the</strong> aglycon, indicating that <strong>the</strong> saccharide<br />

units were attached at <strong>the</strong>se positions (i.e., signals at δ 90.44<br />

and 175.56 represented a downfield shift by 10.6 ppm and an<br />

upfield shift by 3.6 ppm, respectively, when compared with<br />

<strong>the</strong> analogous data for oleanolic acid). Compound 1a was<br />

shown to contain four sugar residues in a HMQC NMR experiment,<br />

which revealed <strong>the</strong> correlations between anomeric carbons<br />

in <strong>the</strong> δ 105-90 range and anomeric proton signals resonating<br />

between δ 4.0 and 6.1. Thus, <strong>the</strong> anomeric 13 C signals<br />

at δ 103.0, 100.89, 95.98 and 91.58 gave cross-peaks<br />

with anomeric protons at δ 4.35 d (J = 8.0 Hz), 4.44 d (J = 8.0<br />

Hz), 5.07 d (J = 1.5 Hz), and 5.58 d (J = 8.0 Hz) respectively.<br />

The sugar moieties <strong>of</strong> 1a were assigned mainly from <strong>the</strong> 1 H-<br />

1H COSY, HMQC, and HMBC NMR spectra. Evaluation <strong>of</strong><br />

spin-spin couplings and chemical shifts allowed <strong>the</strong> identification<br />

<strong>of</strong> one β-xylopyranose unit with <strong>the</strong> anomeric proton at<br />

δ 4.44, one α-rhamnopyranose unit with <strong>the</strong> anomeric proton<br />

at δ 5.07, and two β-glucopyranose units with <strong>the</strong> anomeric<br />

protons resonating at δ 5.58 and δ 4.35 respectively, with <strong>the</strong><br />

former linked to <strong>the</strong> carboxylic group <strong>of</strong> <strong>the</strong> aglycon through<br />

an ester linkage, and <strong>the</strong> latter being linked to C-3 <strong>of</strong> <strong>the</strong> aglycon<br />

[9,10]. The common D-configuration for xylose and glucose<br />

and <strong>the</strong> L-configuration for rhamnose were assumed to<br />

be those <strong>of</strong> <strong>the</strong> most commonly encountered analogues in <strong>the</strong><br />

plant kingdom [11]. The sequence <strong>of</strong> <strong>the</strong> sugar moieties in 1a<br />

was determined from <strong>the</strong> HMBC and NOESY NMR spectra.<br />

In <strong>the</strong> HMBC spectrum, long-range 13 C- 1 H correlations were<br />

observed between <strong>the</strong> signals at δ C 175.56 and δ H 5.58, δ C<br />

72.65 and δ H 5.07, δ C 74.87 and δ H 4.44, and δ C 90.44 and δ H<br />

4.35. Accordingly, <strong>the</strong> glucopyranose unit with <strong>the</strong> anomeric<br />

proton at δ 4.35 was linked to C-3 <strong>of</strong> <strong>the</strong> aglycon, and <strong>the</strong><br />

rhamnose and xylose units were linked to C-3 and C-4 positions<br />

<strong>of</strong> this glucose unit. The o<strong>the</strong>r glucose unit (δ 5.58) was<br />

linked to C-28 <strong>of</strong> <strong>the</strong> aglycon. On <strong>the</strong> basis <strong>of</strong> all evidence, <strong>the</strong><br />

natural product (1) was identified as 3-O-[α-L-rhamnopyranosyl<br />

(1 → 3)-β-D-xylopyranosyl (1 → 4)]-β-D-glucopyranosyl-oleanolic<br />

acid-28-O-β-D-glucopyranoside.<br />

Compound 2a displayed a 1 H NMR spectrum very similar<br />

to that <strong>of</strong> compound 1a, with a triplet at δ H 5.20 (J = 3.0 Hz)<br />

and seven methyl singlets in <strong>the</strong> high-field region. A significant<br />

difference was <strong>the</strong> absence <strong>of</strong> <strong>the</strong> anomeric doublet at δ H<br />

5.58. The 13 C NMR spectrum contained six carbon less (47


Two New Oleanolic Acid Saponins from <strong>the</strong> Roots <strong>of</strong> Viguiera hypargyrea 175<br />

Table 2. 13 C (125 MHz) and 1 H (500 MHz) NMR Spectral Data for <strong>the</strong> Sugar Moieties <strong>of</strong> Compounds 1a, 2a and 2b (CDCl 3 , δ in ppm; J in<br />

Hz).<br />

1a 2a 2b<br />

δ C δ H δ C δ H δ C δ H<br />

C-3-glucose<br />

1 103.0 4.35 d(8) 103.05 4.36 d(8) 103.05 4.36 d(8)<br />

2 73.91 5.03 dd(9.5, 8) 73.92 5.02 dd(9.5, 8) 73.90 5.02 dd(9.5, 8)<br />

3 72.65 3.87 t(9.5) 72.65 3.87 t(9.5) 72.65 3.87 t(9.5)<br />

4 74.82 3.79 t(9.5) 74.87 3.79 t(9.5) 74.85 3.78 t(9.5)<br />

5 72.87 3.47 ddd(9.5, 5, 2) 72.86 3.47 ddd(9.5, 5, 2) 72.86 3.47 ddd(9.5, 5, 2)<br />

6 61.70 4.01 dd(12, 5) 61.73 4.01 dd(12. 5) 61.72 4.01 dd(12,5)<br />

4.60 dd(12, 2) 4.60 dd(12, 2) 4.60 dd(12,2)<br />

xylose<br />

1 100.89 4.44 d(8) 100.91 4.44 d(8) 100.90 4.44 d(8)<br />

2 71.33 4.96 dd(9.5, 8) 71.36 4.96 dd (9.5, 8) 71.35 4.96 dd(9.5, 8)<br />

3 73.0 5.14 t(9.5) 73.05 5.14 t(9.5) 73.02 5.14 t(9.5)<br />

4 68.03 5.09 ddd(10.5, 9.5, 5) 68.30 5.07 ddd(10.5, 9.5, 5) 68.30 5.07 ddd(10.5, 9.5,<br />

5)<br />

5 62.82 3.28 t(10.5) 62.83 3.28 t(10.5) 62.84 3.28 t (10.5)<br />

4.35 dd(10.5, 5) 4.36 dd(10.5, 5) 4.36 dd (10.5, 5)<br />

rhamnose<br />

1 95.98 5.07 d(1.5) 96.02 5.07 d(1.5) 96.05 5.06 d(1.5)<br />

2 70.95 5.01 dd(3.5, 1.5) 70.93 5.01 dd(3.5, 1.5) 70.95 5.01 dd(3.5, 1.5)<br />

3 67.85 5.68 dd(10.5, 3.5) 67.87 5.68 dd(10.5, 3.5) 67.87 5.68 dd (10.5, 3.5)<br />

4 71.49 5.13 t(9.5) 71.53 5.13 t (9.5) 71.52 5.13 t(9.5)<br />

5 66.26 4.53 dd(9.5, 6.5) 66.27 4.53 dd(9.5, 6.5) 66.25 4.53 dd (9.5, 6.5)<br />

6 17.13 1.25 d(6.5) 17.13 1.25 d(6.5) 17.13 1.25 d(6.5)<br />

C-28-glucose<br />

1 91.58 5.58 d(8)<br />

2 68.28 5.10 dd(9.5,8)<br />

3 72.87 5.24 t(9.5)<br />

4 69.96 5.17 t(9.5)<br />

5 72.46 3.79 ddd(9.5, 5, 2)<br />

6 61.54 4.04 dd(12, 5)<br />

4.27 dd(12, 2)<br />

singlets) than 1a, and <strong>the</strong> chemical shifts values <strong>of</strong> <strong>the</strong> carbons<br />

were within <strong>the</strong> range <strong>of</strong> 1 ppm <strong>of</strong> those found for compound<br />

1a, with <strong>the</strong> exception <strong>of</strong> C-28, which appeared at δ C 183.05<br />

(cf. δ C 175.56 for 1a, Tables 1 and 2). These observations<br />

indicated <strong>the</strong> absence <strong>of</strong> <strong>the</strong> glucopyranose unit at <strong>the</strong> carboxyl<br />

group. As additional pro<strong>of</strong>, compound 1 was hydrolyzed<br />

with KOH giving compound 2 and glucose. Moreover,<br />

methylation <strong>of</strong> 2a with diazomethane afforded <strong>the</strong> methyl<br />

ester derivative (2b). The position <strong>of</strong> <strong>the</strong> methyl ester in 2b<br />

was determined from <strong>the</strong> HMBC correlation between <strong>the</strong><br />

methyl ester proton δ H 3.61 (s, -OCH 3 ) and C-28 (δ C 179.80).<br />

All those data allowed compound 2 to be assigned <strong>the</strong><br />

structure 3-O-[α-L-rhamnopyranosyl (1 → 3)-β-D-xylopyranosyl<br />

(1 → 4)]-β-D-glucopyranosyl oleanolic acid.<br />

Although <strong>the</strong> methanol extract from <strong>the</strong> roots <strong>of</strong> Viguiera<br />

hypargyrea did not show any antispasmodic and antimicrobial<br />

activities [4], <strong>the</strong> presence <strong>of</strong> mono and bisdesmoside<br />

saponins in this extract is noteworthy, since various triterpene<br />

saponins structurally related to those isolated in this work,<br />

have shown important biological activities such as inhibitory<br />

effects on ethanol absorption [12], as well as hypoglycemic<br />

activity [13].<br />

Experimental<br />

General Experimental Procedures. Optical rotations were<br />

measured on a Perkin-Elmer 241 digital polarimeter at 25 °C.<br />

IR spectra were recorded on a Bruker Vector 22 FTIR. All<br />

NMR spectra were recorded on a Varian Unity Plus-500 at<br />

500 MHz for 1 H NMR, 1 H- 1 H COSY, HMQC, HMBC and<br />

1H- 1 H TOCSY and 125 MHz for 13 C NMR and 13 C DEPT in<br />

CDCl 3 . <strong>Chemical</strong> shifts are reported in ppm relative to TMS.<br />

FABMS and HRFABMS were performed using a Hewlett<br />

Packard 5985-B and a JEOL-AX 505 HA mass spectrometer,<br />

respectively.


176 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Laura Alvarez et al.<br />

R 2 O<br />

R 2 O<br />

R 2 O<br />

3 R = H<br />

4 R =<br />

R 2 O<br />

MeOOC<br />

HO<br />

HO<br />

H COOR 1<br />

OR 2<br />

O<br />

O<br />

O<br />

OR<br />

O<br />

O<br />

2<br />

OR 2<br />

O<br />

OR 2<br />

R 1 R 2<br />

1 Glcp H<br />

1a Glcp Ac<br />

2 H H<br />

2a H Ac<br />

2b Me Ac<br />

O<br />

OH<br />

O<br />

RO<br />

Plant Material. The roots <strong>of</strong> V. hypargyrea were collected<br />

near to Durango City, on September 15 th <strong>of</strong> 1997 and identified<br />

by Dr. Robert Bye (Instituto de Biología de la UNAM). A<br />

Botanical sample was prepared and deposited for reference at<br />

<strong>the</strong> National Herbarium <strong>of</strong> Mexico (MEXU) with <strong>the</strong> code<br />

number MEXU961417.<br />

Extraction and Isolation. 200 g <strong>of</strong> <strong>the</strong> methanol extract<br />

obtained previously [4] were fractionated by percolation using<br />

a gradient <strong>of</strong> CH 2 Cl 2 -MeOH yielding six fractions: Fr. I (9:1,<br />

16.0 g); Fr. II (85:15, 2.4 g); Fr. III (4:1, 4.0 g); Fr. IV (7:3,<br />

7.3 g); Fr. V (1:1, 18.2 g) and Fr. VI (3:7, 22.4 g). Fr. I was<br />

purified by column chromatography using mixtures <strong>of</strong> n-hexane-EtOAc;<br />

fractions eluted with 95:5 (n-hexane-EtOAc)<br />

afforded 325 mg <strong>of</strong> friedelin (0.010 %, mp 242-245 °C); from<br />

fractions eluted with n-hexane-EtOAc 9:1 crystallized 83 mg<br />

<strong>of</strong> friedelan-3-β-ol (0.<strong>002</strong>7 %, mp 249-253 °C), fractions eluted<br />

with n-hexane-EtOAc (85:15) yielded 54 mg <strong>of</strong> <strong>the</strong> mixture<br />

<strong>of</strong> β-sitosterol and stigmasterol. Fr. II was applied to a silica<br />

gel column using a gradient system <strong>of</strong> CH 2 Cl 2 -MeOH to yield<br />

1.7 g <strong>of</strong> oleanolic acid (0.056 %, mp 196-198 °C).<br />

Chromatographic analyses <strong>of</strong> Fr. III showed that this was<br />

mainly composed by <strong>the</strong> saponins glucopyranosyl oleanolate<br />

(3), found previously in <strong>the</strong> ethyl acetate extract [4], and 3-O-<br />

(methyl-β-D-glucuronopyranosiduronoate)-28-O-β-D-glucopyranosyl<br />

oleanolate (4, mp 217-218 °C) isolated previously<br />

from V. decurrens [5]. Fr. IV was applied to a silica gel column<br />

using EtOAc-MeOH-AcOH-H 2 O (11:2:2:1) as isocratic<br />

elution mixture. Fractions 8-12 afforded 50 mg <strong>of</strong> 4; fractions<br />

17-26 yielded 12 mg <strong>of</strong> 1 (mp 129-132 °C) and 9 mg <strong>of</strong> 2 (mp<br />

276-278 °C), and fractions 31-43 afforded 820 mg <strong>of</strong> glucose.<br />

18<br />

HO<br />

H<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

Fr. V was mainly composed by sucrose, identified by direct<br />

comparison with au<strong>the</strong>ntic sample. Fr. VI was ground with<br />

acetone to yield a mixture <strong>of</strong> saponins which was acetylated<br />

with Ac 2 O-Py and <strong>the</strong> residue was chromatographed on silica<br />

gel column using mixtures <strong>of</strong> CH 2 Cl 2 -Acetone: Fractions eluted<br />

with 9: 1 (CH 2 Cl 2 -acetone) yielded 843 mg <strong>of</strong> 1a (0.028 %<br />

<strong>of</strong> dry plant). Fractions eluted with CH 2 Cl 2 -acetone (8:2)<br />

afforded sucrose acetylated and 632 mg <strong>of</strong> 2a (0.021 % <strong>of</strong> dry<br />

plant).<br />

Friedelin, friedelan-3-β-ol and oleanolic acid, were identified<br />

by direct comparison (IR, TLC) with au<strong>the</strong>ntic samples,<br />

while compounds 1a, 2a and 3-4 were characterized by means<br />

<strong>of</strong> physicochemical evidence.<br />

Compound 1a. Oil, [α] D<br />

25 – 4.4° (c 0.05, MeOH); IR<br />

(CHCl 3 ) ν max 2922, 1757, 1452, 1376, 1050 cm –1 ; 1 H NMR<br />

(CDCl 3 , 500 MHz) see Tables 1 and 2; 13 C NMR (CDCl 3 , 125<br />

MHz) see Tables 1 and 2; FABMS m/z 1600 [M + K + H] +<br />

and 1584 [M + Na + H] + , 1254 [M + K – Glc] + , 1068 [M –<br />

rham – xyl] + , 785 [M – glc – rham – xyl] + , 437 [C 30 H 46 O 2 ] + ;<br />

HRFABMS m/z 1561.6983 (calcd for C 77 H 108 O 33 , 1561.<br />

6995).<br />

Compound 2a. Colorless powder, mp 101-102 °C, α D<br />

25 + 6°<br />

(c 0.05, CHCl 3 ); IR (CHCl 3 ) ν max 3500-3400, 2922, 1757,<br />

1452, 1376, 1050 cm –1 ; 1 H NMR (CDCl 3 , 500 MHz) see<br />

Tables 1 and 2 13 C NMR (CDCl 3 , 125 MHz) see Tables 1 and<br />

2; FABMS m/z 1271 [M + K] + , 1255 [M + Na] + , 1233 [M] + ,<br />

958 [M – xyl] + , 954 [M – rham] + , 669 [M – rham – xyl] + , 467<br />

[M – rham – xyl – glc] + ; HRFABMS m/z 1233.4209 (calcd<br />

for C 63 H 92 O 24 , 1233.4212).<br />

Compound 2b. Compound 2a (20 mg) was treated with diazomethane<br />

in diethyl e<strong>the</strong>r to yield 20 mg <strong>of</strong> 2b: Oil, [α] D<br />

25 +<br />

2.5° (c 0.2, CHCl 3 ), IR (CHCl 3 ) ν max 2958, 1728, 1462, 1377,<br />

1072 cm –1 ; 1 H NMR (CDCl 3 , 500 MHz) see Tables 1 and 2;<br />

13C NMR (CDCl 3 , 125 MHz) see Tables 1 and 2.<br />

Acid hydrolysis <strong>of</strong> compounds 1 and 2. Saponins 1 (5 mg),<br />

and 2 (5 mg) in 0.5 M HCl (dioxane-H 2 O, 1:1; 5 ml) were<br />

refluxed on a water bath at 100 °C for 2 h. After cooling, <strong>the</strong><br />

nonpolar reaction product was separated by precipitation with<br />

ice (3 g) and filtration. The aqueous layer was neutralized<br />

with NH 4 OH and reduced to dryness by lyophilization. The<br />

sugars were analyzed by silica gel TLC [EtOAc-MeOH-H 2 O-<br />

AcOH (11:2:2:2)] by comparison with standard sugars.<br />

Alkaline hydrolysis <strong>of</strong> compound 1. The saponin (12 mg) in<br />

KOH 10 % (4 mL) was heated at 100 °C for 75 min. After<br />

acidification with HCl (pH 5), <strong>the</strong> monodesmoside was<br />

extracted with n-BuOH. Comparison with compound 2<br />

demonstrated that both compounds were identical. The aqueous<br />

solution contained glucose was identified by TLC comparison<br />

with an au<strong>the</strong>ntic sample.


Two New Oleanolic Acid Saponins from <strong>the</strong> Roots <strong>of</strong> Viguiera hypargyrea 177<br />

Acknowledgment<br />

We thank Rocío Patiño, María Isabel Chávez, Francisco<br />

Javier Pérez, and Luis Velasco (Instituto de Química, UNAM)<br />

for assistance. This work was supported in part by CONA-<br />

CYT (Project 3419P-N and grant 96363).<br />

References<br />

1. Blake, S. F. Contribution Gray Herbarium Harvard University<br />

1918, 54, 11-16.<br />

2. Martínez, M. Catálogo de Plantas Medicinales de México. Ed.<br />

Botas, 1969, 45.<br />

3. Alvarez, L.; Mata, R.; Delgado, G.; Romo de Vivar, A.<br />

Phytochemistry 1985, 24, 2973-2976.<br />

4. Zamilpa, A.; Tortoriello, J.; Navarro, V.; Delgado, G.; Alvarez,<br />

L. Planta Med. 2<strong>002</strong>, 68, 281-283.<br />

5. Sakai, S.; Katsumata, M.; Satoh, Y.; Nagasao, M.; Miyakoshi,<br />

M.; Ida, Y. Phytochemistry 1994, 35, 1319-1321.<br />

6. Marquina, S.; Maldonado, N.; Garduño-Ramírez, M. L.; Aranda,<br />

E.; Villarreal, M. L.; Navarro, V.; Bye, R.; Delgado, G.; Alvarez,<br />

L. Phytochemistry 2001, 56, 93-97.<br />

7. Shibata, S.; Kitagawa, I.; Fujimoto, H. Tetrahedron Lett. 1965,<br />

3783-3788.<br />

8. Kubota, T.; Hinoh, H. Tetrahedron Lett. 1968, 303-306.<br />

9. Agrawal, P. K.; Jain, D. C.; Gupta, R. K.; Thakur, R. S.<br />

Phytochemistry 1985, 24, 2479-2496.<br />

10. Shashi, B.; Sudip, K.; Poddar, G. Phytochemistry 1988, 27, 3057-<br />

3067.<br />

11. Ahmad, V. O.; Basha, A. Spectroscopic Data <strong>of</strong> Saponins. The<br />

triterpenoid glycosides Vol. I-III. CRC Press, Boca Raton, 2000.<br />

12. Yoshikawa, M.; Murakami, T.; Harada, E.; Murakami, N.;<br />

Yamahara, J.; Matsuda, H. Chem. Pharm. Bull. 1996, 44, 1915-<br />

1918.<br />

13.Yoshihawa, M.; Murakami, T.; Harada, E.; Murakami, N.;<br />

Yamahara, J.; Matsuda, H. Chem. Pharm. Bull. 1996, 44, 1923-<br />

1925.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 178-185<br />

Investigación<br />

Análisis isobolográfico de la interacción entre α-sanshool, sesamina,<br />

asarinina, fagaramida y piperina sobre la actividad larvicida<br />

en Culex quinquefasciatus Say<br />

Andrés Navarrete, 1,* Alejandro Flores, 2 Carmen Sixtos 3 y Benito Reyes 3<br />

1 Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria,<br />

Coyoacán 04510, México D.F.; Fax: +5622-5329; E-mail: anavarrt@servidor.unam.mx<br />

2 Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. Avenida Guelatao 66,<br />

Colonia Ejercito de Oriente, Iztapalapa 09230, México D.F., México.<br />

3 Laboratorio de productos Naturales. Área de Química, Universidad Autónoma Chapingo. Texcoco 56230,<br />

Estado de México, México<br />

Recibido el 29 de abril del 2003; aceptado el 25 de junio del 2003<br />

Dedicado al Dr. Alfonso Romo de Vivar<br />

Resumen. Se realizó el análisis isobolográfico de la interacción larvicida<br />

entre α-sanshool con sesamina, asarinina, fagaramida y piperina<br />

en Culex quinquefasciatus. El α-sanshool fue el compuesto más activo<br />

(CL 50 = 3.97 ± 0.61 ppm) seguido de fagaramida (CL 50 = 7.92 ±<br />

1.22 ppm), piperina (CL 50 = 10.02 ± 2.44 ppm), asarinina (CL 50 =<br />

69.95 ± 15.00 ppm) y sesamina (CL 50 = 277.4 ± 35.75 ppm). La<br />

sesamina y la asarinina presentaron una interacción sinérgica con el<br />

α-sanshool, en tanto que con fagaramida y con piperina se observó<br />

un efecto aditivo.<br />

Palabras clave: Análisis isobolográfico, actividad larvicida, α-sanshool,<br />

sesamina, asarinina, fagaramida piperina, Culex quinquefasciatus.<br />

Abstract. An isobolographic analysis <strong>of</strong> larvicidal interactions between<br />

α-sanshool with sesamin, asarinin, fagaramide and piperine on<br />

Culex quinquefasciatus was performed. α-Sanshool was <strong>the</strong> most<br />

active compound (LC 50 =3.97 ± 0.61 ppm) followed by fagaramide<br />

(LC 50 = 7.92 ± 1.22 ppm), piperine (LC 50 = 10.02 ± 2.44 ppm),<br />

asarinin (LC 50 = 69.95 ± 15.00 ppm) and sesamin (LC 50 = 277.4 ±<br />

35.75 ppm). Synergistic interaction between a-sanshool and sesamin<br />

or asarinin was observed, whereas with fagaramide or piperine produced<br />

an additive effect.<br />

Keywords: Isobolographic analysis, larvicidal activity, α-sanshool,<br />

sesamin, asarinin, fagaramide, piperine, Culex quinquefasciatus.<br />

Introducción<br />

Los mosquitos son transmisores de varias enfermedades entre<br />

los que se encuentran la malaria, la filariasis, la encefalitis y el<br />

dengue [1]. Los insecticidas sintéticos son los recursos más<br />

importantes en la actualidad para el control de los mosquitos,<br />

sin embargo, su uso indiscriminado ha tenido un efecto negativo<br />

sobre el medio ambiente y muchas especies de mosquitos<br />

han creado resistencia a ellos [2]. Estos factores han dado<br />

lugar a investigaciones dirigidas a encontrar agentes de control<br />

de los mosquitos que sean biodegradables, específicos y<br />

en armonía con la ecología. Los productos derivados de las<br />

plantas cumplen con algunas de estas características, y han<br />

sido utilizados tradicionalmente por comunidades humanas en<br />

muchas partes del mundo en contra de las especies de insectos<br />

vectores y plagas por sus propiedades larvicidas, reguladoras<br />

del crecimiento, repelentes y por sus efectos sobre la ovoposición<br />

en insectos [2]. La investigación en los productos naturales<br />

para el control de los insectos vectores de enfermedades<br />

sigue siendo una actividad prioritaria y aún no agotada. Una<br />

estrategia en esta área es la búsqueda de nuevas estructuras<br />

bioactivas, otra puede ser la utilización de los compuestos<br />

bioactivos en combinaciones estratégicas que mejoren sus<br />

efectos individuales y que puedan dar lugar a productos de<br />

más pronto uso.<br />

El α-sanshool 1 (Fig. 1) es una isobutilamida con actividad<br />

larvicida aislada de la corteza de Zanthoxylum liebmannianum<br />

[3]. El α-sanshool pertenece a un grupo de compuestos<br />

de origen natural con propiedades insecticidas importantes,<br />

cuyas fuentes principalmente de obtención son las plantas de<br />

las familias Piperaceae, Aristolochiaceae y Rutaceae [4-9].<br />

Las isobutilamidas causan la caída rápida y la muerte de<br />

insectos voladores [5], sin embargo, la mayoría de ellas son<br />

poco estables al medio ambiente y son oxidadas rápidamente<br />

por los insectos. Se sabe que las isobutilamidas afectan a los<br />

canales de sodio [9] y que bloquean a los canales de calcio<br />

[10], pero en realidad, se conoce muy poco de su mecanismo<br />

de acción insecticida y menos aún se conoce la forma en la<br />

cual causan una variedad de actividades en diversos organismos,<br />

incluyéndose a los mamíferos en donde provocan anestesia<br />

local y convulsiones [11-15].<br />

En la formulación de insecticidas comerciales es común<br />

la adición de otras sustancias para mejorar su efecto. Entre<br />

estas sustancias se encuentran aquellas que inhiben a las enzimas<br />

responsables de la oxidación microsomal como la sesamina<br />

2 (Fig. 1) [16] o la combinación con otros compuestos que


Análisis isobolográfico de la interacción entre α-sanshool, sesamina, asarinina,... 179<br />

O<br />

O<br />

3"<br />

O<br />

3"<br />

O<br />

2"<br />

4"<br />

2"<br />

4"<br />

12<br />

11<br />

H<br />

O<br />

7<br />

8 6<br />

1 5<br />

1"<br />

H<br />

6"<br />

5"<br />

H<br />

O<br />

7<br />

8 6<br />

1 5<br />

1"<br />

H<br />

6"<br />

5"<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

O<br />

1<br />

N<br />

H<br />

1'<br />

2'<br />

4'<br />

3'<br />

5'<br />

O<br />

4'<br />

6'<br />

1'<br />

3'<br />

O<br />

2'<br />

2<br />

4<br />

3<br />

O<br />

5'<br />

O<br />

4'<br />

6'<br />

1'<br />

3'<br />

O<br />

2'<br />

2<br />

4<br />

O 3<br />

1 2 3<br />

O<br />

O<br />

O<br />

3"<br />

2"<br />

1"<br />

2<br />

3 1<br />

1' N<br />

2' 3'<br />

O<br />

3"<br />

2"<br />

1"<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1'<br />

N<br />

2'<br />

3'<br />

O<br />

4"<br />

5"<br />

6"<br />

H<br />

4 5<br />

Fig. 1. Estructura de los compuestos evaluados. α-Sansool 1, sesamina 2, asarinina 3, fagaramida 4 y piperina 5.<br />

4'<br />

O<br />

4"<br />

5"<br />

6"<br />

6'<br />

5'<br />

4'<br />

tienen actividad insecticida, como la asarinina 3, que se sabe<br />

incrementa la actividad de las piretrinas [17]. En los últimos<br />

años el estudio de la interacción entre dos sustancias activas<br />

se ha realizado utilizando el análisis isobolográfico [18], una<br />

estrategia utilizada en farmacología que ha dado lugar a la<br />

combinación óptima de fármacos de uso clínico [19]. Este<br />

método <strong>of</strong>rece una evaluación rigurosa de la interacción entre<br />

dos sustancias activas, ya que permite definir una simple adición<br />

de los efectos individuales (efecto aditivo), una atenuación<br />

(efecto subaditivo) o un sinergismo (efecto superaditivo)<br />

entre ellas [20]. Mediante la construcción de un isobolograma<br />

(Fig. 2), que es una gráfica en coordenadas rectangulares<br />

de pares de dosis o concentraciones (z 1 , z 2 ) de las sustancias<br />

respectivas que producen un nivel determinado de efecto<br />

(por ejemplo 50 % del efecto) cuando se aplican en forma<br />

conjunta. En esta gráfica los interceptos (Z 1 *,0) y (0, Z 2 *) corresponden<br />

a la concentración del compuesto menos activo<br />

(Z 1 *) y del compuesto más activo (Z 2 *) que producen individualmente<br />

el mismo nivel de efecto (muerte del 50 % de las<br />

larvas). La línea que une a estos dos puntos define a la línea<br />

de aditividad y todos los puntos sobre esta línea, que tienen<br />

las coordenadas (z 1 , z 2 ), teóricamente representan los pares de<br />

dosis aditivas (Z teo) de los constituyentes administrados en<br />

forma conjunta que provocan el mismo nivel de efecto que los<br />

compuestos individuales. En la Fig. 2 los puntos A y B corresponden<br />

a las concentraciones teóricas aditivas (Z teo) para dos<br />

proporciones fijas de las dos sustancias activas. Si al realizar<br />

el experimento, las concentraciones para provocar el mismo<br />

efecto (Z exp) son menores que las teóricas aditivas (Z teo)<br />

indicará que existe un efecto superaditivo o sinergista entre<br />

ambas sustancias (puntos P y R en la Fig. 2) pero por el contrario,<br />

si las concentraciones experimentales (Z exp) son mayores<br />

a las concentraciones teóricas aditivas (Z teo) indicará<br />

que existe un efecto subaditivo entre ambas sustancias (puntos<br />

Q y S en la Fig. 2). En el análisis isobolográfico de la interacción<br />

de dos sustancias activas se demuestra estadísticamente<br />

si existe diferencia significativa entre las concentraciones<br />

teóricas aditivas (Z teo) y las concentraciones experimentales<br />

(Z exp) que provocan el mismo nivel de efecto en una proporción<br />

determinada de dichas sustancias, si no se encuentran<br />

diferencias estadísticamente significativas entre Z teo y Z exp<br />

indicará una interacción aditiva entre estas dos sustancias, es<br />

decir que el efecto resultante será la suma de los efectos individuales<br />

de las dos sustancias activas [20]. Por el contrario, si<br />

no hay diferencia entre Z teo y Z exp, esto indicará que el mecanismo<br />

de acción por el cual actúan las dos sustancias es<br />

similar [20]. En el presente trabajo se realizó el estudio de la<br />

interacción del α-sanshool con diferentes proporciones de<br />

sesamina, asarinina, fagaramida 4 o piperina 5 (Fig. 1) a<br />

través del análisis isobolográfico, con el propósito de conocer<br />

de una manera objetiva las combinaciones que permitan mejorar<br />

el efecto larvicida del α-sanshool. Un segundo objetivo de<br />

este trabajo fue definir, mediante este análisis, qué tipo de<br />

interacción se presenta entre estos compuestos bioactivos de<br />

origen natural, a fin de proporcionar información dirigida<br />

hacia encontrar las combinaciones que permitan el desarrollo<br />

de productos larvicidas eficaces en el control de vectores<br />

transmisores de enfermedades importantes para el hombre y<br />

los animales. Para alcanzar esta meta se determinó el efecto<br />

Cuadro 1. Valores de la CL50 ± EEM del efecto larvicida de los<br />

compuestos individuales sobre larvas de mosquito común en su cuarto<br />

instar.<br />

Compuesto CL 50 ± EEM (ppm) 1 Potencia relativa 2<br />

α-Sanshool 3.97 ± 0.61 1.0<br />

Sesamina 277.4 ± 35.75 69.8<br />

Asarinina 69.95 ± 15.00 17.6<br />

Fagaramida 7.92 ± 1.22 1.99<br />

Piperina 10.02 ± 2.44 2.51<br />

1 EEM = error estándar de la media para 4 niveles de concentración<br />

con n = 30 en cada nivel y un valor de r > 0.9 del análisis probit.<br />

2 Respecto al valor de α-sanshool: CL 50 del compuesto/CL 50 de α-<br />

sanshool, e indica el número de veces que debe incrementarse la<br />

concentración del compuesto para que se presente el mismo nivel<br />

del efecto larvicida que el α-sanshool.


180 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Andrés Navarrete et al.<br />

Cuadro 2. Concentraciones equiefectivas teóricas (Z teo) y experimentales (Z exp) ± EEM de las combinaciones que provocan el 50 % de la<br />

muerte de las larvas de C. quinquefasciatus a .<br />

Combinación Proporción Zteo ± EEM Zexp ± EEM Fracción totalb<br />

α-Sanshool: sesamina 1: 24.45 14.722 ± 1.52 2.19 ± 0.31* 0.31<br />

1: 6.48 40.44 ± 4.80 3.512 ± 0.127** 0.14<br />

1: 0.32 210.96 ± 27.06 10.074 ± 0.012** 0.05<br />

1: 0.11 250.40 ± 32.16 100.15 ± 0.018 **0.39<br />

α-Sanshool: asarinina 1: 15.7 7.95 ± 1.07 1.84 ± 0.13** 0.22<br />

1: 6.4 12.95 ± 2.1 4.03 ± 0.29* 0.30<br />

1: 0.13 62.45 ± 13.3 10.08 ± 0.03** 0.16<br />

α-Sanshool: fagaramida 1: 2.5 5.11 ± 0.56 4.51 ± 0.47 0.88<br />

1: 0.9 6.07 ± 0.71 4.34 ± 0.56 0.72<br />

α-Sanshool: piperina 1: 7.3 4.7 ± 0.61 3.89 ± 0.58 0.82<br />

1: 1.6 6.3 ± 1.00 4.93 ± 0.6 0.78<br />

aLas concentraciones son el total en la combinación expresadas en ppm. b De acuerdo a la ecuación 1 descrita en la parte experimental, los valores<br />

cercanos a 1 indican aditividad y los valores < 1 indican superaditividad o sinergismo [36]. Diferencia significativa con un valor de *p <<br />

0.05 o **p < 0.01 respecto al valor teórico correspondiente [19, 36].<br />

letal de diferentes concentraciones de los compuestos puros y<br />

en diferentes combinaciones sobre larvas de Culex quinquefasciatus<br />

en su cuarto instar [21].<br />

Resultados y discusión<br />

EL α-sanshool, la sesamina, la asarinina, la fagaramida y la<br />

piperina en forma individual presentaron efecto larvicida sobre<br />

Culex quiquefasciatus dependiente de la concentración (p <<br />

0.05). En el Cuadro 1 se presentan los valores de la concentración<br />

letal 50 (CL 50 ) de cada una de estas sustancias determinadas<br />

por el método probit [22]. El α-sanshool presentó el<br />

efecto larvicida más potente, seguido en orden descendente por<br />

fagaramida, piperina, asarinina y sesamina (Cuadro 1).<br />

Las proporciones y los valores teóricos y experimentales<br />

de la concentración equiefectiva de las diferentes combinaciones<br />

evaluadas se proporcionan en el Cuadro 2. El isobolograma<br />

de la combinación α-sanshool-sesamina en las cuatro diferentes<br />

proporciones evaluadas indica que existe una interacción<br />

superaditiva entre estas dos sustancias (Fig. 3). La combinación<br />

con 10 ppm de sesamina presentó el efecto sinergista mayor, ya<br />

que incrementó la actividad del α-sahsnool que pasó de una<br />

CL 50 = 3.97 ppm (Cuadro 1) a sólo 0.07 ppm en la combinación<br />

(Fig. 3). La administración simultánea de α-sanshool + asarinina<br />

también indican una interacción superaditiva en las tres combinaciones<br />

evaluadas y también la combinación con 10 ppm de<br />

asarinina presentó el efecto sinergista mayor (Fig. 4). En contraste,<br />

los isobologramas resultantes de la administración<br />

simultánea de α-sanshool + fagaramida (Fig. 5) y α-sanshool +<br />

piperina (Fig. 6) presentaron una interacción aditiva, a pesar de<br />

que los puntos de las concentraciones experimentales que<br />

provocan la muerte del 50 % de las larvas de C. quinquefasciatus<br />

se encontraron en la zona de superaditividad, las diferencias<br />

no fueron lo suficientemente grandes para que existieran diferencias<br />

estadísticamente significativas con respecto a las concentraciones<br />

teóricas para provocar el mismo efecto como resultado<br />

de la adición de los efectos individuales (Cuadro 2).<br />

La interacción superaditiva o sinergista de la sesamina<br />

con el α-sanshool apoyan la propuesta de que las isobutilamidas<br />

actúan de manera similar a las piretrinas; en efecto, se<br />

sabe que la sesamina aumenta la actividad insecticida de las<br />

piretrinas al inhibir el sistema enzimático oxidante de función<br />

mixta [23], en particular el proceso de oxidación dependiente<br />

de la is<strong>of</strong>orma CYP3A [24]. Las propiedades sinérgicas de la<br />

asarinina para incrementar la actividad de las piretrinas fue<br />

descrito desde 1942 por Haller y sus colaboradores [18]; sin<br />

embargo, no se ha descrito cual es su mecanismo de acción<br />

por el que se produce el sinergismo. En el análisis isobolográfico<br />

(Fig. 4) se observó un comportamiento similar con la<br />

Sustancia 2<br />

S t i 2<br />

Z 2<br />

*<br />

P<br />

A<br />

Q<br />

R<br />

B<br />

0<br />

Z<br />

Sustancia 1<br />

1<br />

*<br />

Fig. 2. Isobolograma en donde se muestra la línea de aditividad (línea<br />

continua) para las sustancias 1 y 2, determinada por las concentraciones<br />

equiefectivas individuales Z 1 * y Z 2 *. Las líneas radiales discontinuas<br />

representan las combinaciones de dos proporciones fijas de<br />

las dos sustancias. La línea radial 0S representa las combinaciones de<br />

las sustancias 1 y 2 que guardan una proporción fija 0.5 Z 1 * : 0.5 Z 2 *.<br />

La línea radial 0Q representa las combinaciones de las sustancias 1 y<br />

2 que guardan otra proporción de Z 1 * y Z 2 *. Los puntos A y B representan<br />

las cantidades teóricas aditivas (Z teo), los puntos P y R representan<br />

las cantidades experimentales (Z exp) con un efecto superaditivo<br />

y los puntos Q y S representan las cantidades experimentales (Z<br />

exp) con un efecto subaditivo.<br />

S


Análisis isobolográfico de la interacción entre α-sanshool, sesamina, asarinina,... 181<br />

S h l( )<br />

α-Sanshool (ppm)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 50 100 150 200 250 300 350<br />

Sesamina (ppm)<br />

Fig. 3. Isobolograma de la interacción entre α-sanshool y sesamina<br />

en las cuatro proporciones de concentraciones evaluadas. Los círculos<br />

vacíos sobre la línea oblicua entre los ejes x y y representan los<br />

valores teóricos de aditividad, en tanto que los círculos llenos sobre<br />

las líneas radiales discontinuas representan los valores experimentales<br />

encontrados. Las barras horizontales y verticales indican el error<br />

estándar de la media. Los puntos experimentales cayeron muy por<br />

debajo de la línea de aditividad, indicando un sinergismo significativo<br />

(p < 0.05) en las cuatro proporciones de concentración evaluadas.<br />

sesamina, lo que podría indicar que la asarinina, que es un<br />

estereoisómero de la sesamina, actúe también inhibiendo el<br />

sistema oxidante de los insectos [23]. Cabe señalar que la<br />

sesamina y la asarinina presentaron el efecto larvicida más<br />

bajo cuando se evaluaron en forma individual (Cuadro 1).<br />

La CL 50 (7.92 ± 1.22 ppm) de la fagaramida encontrada<br />

en este trabajo, es cercana a la encontrada por Kubo y sus<br />

colaboradores, quienes reportan un valor de la CL 50 de 15<br />

ppm en Culex pipiens [13]. De acuerdo a la información que<br />

proporciona el análisis isobolográfico, el efecto aditivo observado<br />

en la interacción entre α-sanshool y fagaramida (Fig. 5),<br />

indica que estos dos compuestos actúan por un mecanismo de<br />

acción similar [25]. Este efecto aditivo puede deberse a que<br />

ambos compuestos pertenecen a la familia de las isobutilamidas,<br />

aunque una es alifática y la otra es aromática de cadena<br />

corta. La interacción α-sanshool-piperina también resultó en<br />

una interacción aditiva (Fig. 6). El análisis isobolográfico permite<br />

postular que el efecto larvicida de la piperina se realiza<br />

por un mecanismo de acción similar al de las isobutilamidas.<br />

La baja actividad antioxidante descrita para la piperina [26]<br />

debido más bien a su efecto inhibidor selectivo por las is<strong>of</strong>ormas<br />

CYP1A1 y CYP2B1 [27-29] ponen de manifiesto que el<br />

α-sanshool no se oxida por estas enzimas o que dichas is<strong>of</strong>ormas<br />

del citocromo P450 no existen en las larvas de C. quinquefasciatus.<br />

Existe contradicción respecto a un trabajo en el<br />

cual, de una manera indirecta, demuestran que la piperina<br />

inhibe a la is<strong>of</strong>orma CYP3A4 en células hepáticas de seres<br />

humanos [30], de ser así se esperaría que la piperina presentara<br />

un efecto sinergísta similar al de la sesamina, sin embargo,<br />

lo que se onservó fue un efecto aditivo. Se requiere de<br />

mayor trabajo experimental para definir la importancia de las<br />

diferentes is<strong>of</strong>ormas del citocromo P450 en la inhibición de<br />

las enzimas oxidantes de las isobutilamidas.<br />

En conclusión, el análisis isobolográfico de la interacción<br />

del α-sanshool con sesamina y con asarinina, permitió definir<br />

una interacción sinérgica entre las mezclas binarias de α-sanshool<br />

con estos dos lignanos, atribuida pobablemente al efecto<br />

inhibidor del sistema oxidante en las larvas de Culex quinquefasciatus;<br />

en tanto que la interacción con fagaramida y con<br />

piperina presentó un efecto aditivo, que indica que estos dos<br />

insecticidas actúan por un mecanismo de acción similar al del<br />

α-sanshool. El incremento importante en la actividad larvicida<br />

del α-sanshool por sesamina y por asarinina puede considerarse<br />

para el desarrollo de un larvicida con estos productos<br />

naturales, ya que supera la actividad larvicida de otros productos<br />

naturales individuales y la formación de mezclas binarias<br />

que presenten sinergismo puede ser una buena estrategia a<br />

considerar para obtener agentes útiles en el control de los<br />

mosquitos vectores de enfermedades importantes y que<br />

puedan constituirse en productos comercialmente rentables.<br />

Por otro lado, la aplicación del análisis isobolográfico en el<br />

campo de los biocidas puede representar una estrategia útil<br />

para optimizar la actividad de susutancias bioactivas.<br />

Parte experimental<br />

Material vegetal. Las hojas y la corteza del tronco de Z. liebmannianum<br />

fueron colectadas en de 1995 en San Andrés<br />

Cacaloapan del municipio de Tehuacán, Puebla. Una muestra<br />

de referencia se encuentra depositada en el Herbario de<br />

Plantas Útiles Efraim Hernández X de la Universidad Autónoma<br />

Chapingo con el registro XOLO19822126.<br />

Procedimientos Generales. Los puntos de fusión se determinaron<br />

en un aparato Electro<strong>the</strong>rmal Digital IA9100 y no están<br />

corregidos. Los espectros de IR se registraron e un espectrómetro<br />

Perkin Elmer modelo 599. Los espectros de RMN- 1 H<br />

(300 MHz) y de RMN- 13 C (75MHz) se obtuvieron en un<br />

S h l( )<br />

α-Sanshool (ppm)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100<br />

Asarinina (ppm)<br />

Fig. 4. Isobolograma de la interacción entre α-sanshool y asarinina<br />

en las tres proporciones de concentraciones evaluadas. Los puntos<br />

experimentales (círculos llenos) cayeron por debajo de la línea de<br />

aditividad, indicando un sinergismo significativo (p < 0.05) en las<br />

tres proporciones de concentración evaluadas.


182 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Andrés Navarrete et al.<br />

5<br />

5<br />

4<br />

4<br />

α-Sanshool (ppm)<br />

S h l( )<br />

3<br />

2<br />

1<br />

0<br />

-Sanshool α (ppm)<br />

α-Sanshool (ppm)<br />

3<br />

2<br />

1<br />

0<br />

0 2 4 6 8 10<br />

Fagaramida (ppm)<br />

Fig. 5. Isobolograma de la interacción entre α-sanshool y fagaramida<br />

en las dos proporciones de concentraciones evaluadas. Los valores<br />

experimentales (círculos llenos) no fueron estadísticamente diferentes<br />

de los valores teóricos (círculos vacíos) representados sobre la línea<br />

de aditividad, lo que indica un efecto aditivo entre estas dos sustancias.<br />

0 2 4 6 8 10 12 14<br />

Piperina (ppm)<br />

Fig. 6. Isobolograma de la interacción entre α-sanshool y piperina en<br />

las dos proporciones de concentraciones evaluadas. Los valores<br />

experimentales (círculos llenos) no fueron estadísticamente diferentes<br />

de los valores teóricos (círculos vacíos) representados sobre la línea<br />

de aditividad, lo que indica un efecto aditivo entre estas dos sustancias.<br />

espectrómetro Varian VXR-3005 en CDCl 3 , utilizándose TMS<br />

como estándar interno. Los espectros de masas se obtuvieron<br />

en un espectrómetro Hewlett-Packard modelo 5890 a 70 eV.<br />

La rotación óptica se midió en un polarímetro Perkin-Elmer<br />

241 utilizándose clor<strong>of</strong>ormo como disolvente.<br />

Extracción e identificación de los compuestos. La corteza<br />

seca y molida (2 kg) se extrajo por maceración por períodos<br />

de tres días en forma sucesiva con hexano (8 LX3) y con<br />

cloruro de metileno (8LX3). Después de eliminar el disolvente<br />

a presión reducida se obtuvieron 58 g de extracto de hexano y<br />

141 g de extracto de cloruro de metileno. Una fracción del<br />

extracto de cloruro de metileno (31 g) fue separado por cromatografía<br />

en columna preparativa (5 d.i. × 80 cm), utilizándose<br />

300 g de gel de sílice (Merck 70-230 mallas). La elución<br />

de la columna se realizó con cloruro de metileno y mezclas de<br />

cloruro de metileno y acetato de etilo (9:1; 8:2 y 1:1). Se<br />

colectaron un total de 80 fracciones de 100 mL cada una. Se<br />

reunieron las fracciones 29-46 de la elusión con cloruro de<br />

metileno/acetato de etilo (9:1). El total de este conjunto de<br />

fracciones (4 g) se separaron en una segunda columna de gel<br />

de sílice (Merck 70-230 mallas, 40 g, 2.5 d.i. × 80 cm) utilizándose<br />

como mezcla de elusión cloruro de metileno / acetato<br />

de etilo (9:2, 20 mL por fracción) de las fracciones 14-65 se<br />

obtuvo el α-sanshool 1 en forma de aceite de color amarillo(0.635<br />

g, 0.144 % de rendimiento, considerando la cantidad<br />

que se obtendría del total del extracto), el cual fue identificado<br />

por comparación de sus espectros de IR, masas, RMN- 1 H (300<br />

MHz, CDCl 3 ) y RMN- 13 C (125 MHz, CDCl 3 ) con los datos<br />

espectroscópicos descritos previamente para esta amida [4,<br />

31]: IR ν max (CHCl 3 ) cm –1 : 3448, 2872, 1674, 1638, 1518,<br />

994, 970; EMIE: m/z (int.rel): 247 (M + , C 16 H 25 NO, 29), 204<br />

([M-C 3 H 7 ] + , 5), 167(20), 147(10), 141(97), 107(100), 98(12),<br />

91(46), 79(70); RMN- 1 H (CDCl 3 , 300 MHz), δ: 0.86 (s, 3H,<br />

H-3’) 0.88 (s, 3H, H-4’), 1.75 (d, 3H, J=6Hz, H-12), 1.80 (m,<br />

1H, H-2’), 2.25 (m, 4H, H-4, H-5), 3.10 (dd, 2H, 6.4,12.9 Hz,<br />

H-1’), 6.20 (sa, H-N), 6.36-5.37 (m, H-6-H-11), 6.82 (m, H-2,<br />

H-3); RMN- 13 C (CDCl 3 , 125 MHz) δ: 165.98 (C-1),<br />

124.22(C-2), 143.38 (C-3), 32.05 (C-4), 26.54 (C-5), 129.62<br />

(C-6), 129.59 (C-7), 125.27 (C-8), 133.46 (C-9), 131.79 (C-<br />

10), 130.10 (C-11), 18.29 (C-12), 46.88 (C-1’), 28.59 (C-2’),<br />

20.13 (C-3’, C-4’).<br />

Para obtener la sesamina 2 y la asarinina 3, 2.9 kg de hojas<br />

secas y molidas de Z. liebmannianum se extrajeron por maceración<br />

con hexano (7L × 3) por periódos de tres días.<br />

Después de eliminar el disolvente se obtuvieron 62 g de<br />

extracto. El total del este extracto se separó por cromatografía<br />

en columna de gel de sílice (Merck 70-230 mallas, 970 g, 10<br />

d.i. × 120 cm) iniciándose la elusión con hexano y después<br />

con mezclas de hexano y acetato de etilo (9:1, 8:2, 1:1) y<br />

acetato de etilo. Se colectaron un total de 270 fracciones de<br />

250 mL cada una. De las fracciones 15-67, eluidas con hexano/acetato<br />

de etilo (9:1), se obtuvo un sólido cristalino, que<br />

después de recristalizarlo de éter isopropílico se obtuvieron<br />

350 mg (0.012 %) de asarinina (p.f 117-118 ºC). De las fracciones<br />

93-103, eluidas también con hexano/acetato de etilo<br />

(9:1), cristalizaron 1.3 g (0.044 %) de sesamina (p.f. 121-122<br />

ºC). La identificación de estos compuestos se realizó por comparación<br />

de sus espectros de IR, masas y RMN con las<br />

descritas previamente [4]. d(+)-Sesamina 2: [α] d<br />

20 = +68 (c<br />

0.1, CHCl 3 ); IR ν max (CHCl 3 ) cm –1 :3022, 2881, 1488, 1245,<br />

1041, 935, 810; EMIE: m/z (int.rel): 354 (M + , C 20 H 18 O 6 , 92),<br />

203 (32), 150 (45), 149 (100), 135 (45), 121 (20), 103 (12), 65<br />

(8); RMN- 1 H (300 MHz, CDCl 3 ) δ: 3.04 (m, 2H, H-1, H-5),<br />

3.85 (dd, 2H, J= 4, 9 Hz, H-4e, H-8e), 4.22 (dd, 2H, J=8, 9Hz,<br />

H-4a, H-8a), 4.70 (d, 2H, J=5 Hz, H-2, H-6), 5.90 (s, 4H, O-<br />

CH2-O), 6.76 (m, 6H, H-2', H-5', H-6'). (+) Asarinina 3:<br />

[α] d<br />

20 = +120 (c0.1, CHCl 3 ); IR ν max (CHCl 3 ) cm –1 :3010,


Análisis isobolográfico de la interacción entre α-sanshool, sesamina, asarinina,... 183<br />

2985, 1500, 1475, 1435, 1250, 1030, 925, 790, 630; EMIE:<br />

m/z (int.rel): 354 (M + , C 20 H 18 O 6 , 25), 203,(15), 179 (10), 150<br />

(26), 149 (100), 135 (49), 121(15); RMN- 1 H (300 MHz,<br />

CDCl 3 ) δ: 3.3 (m, 2H, H-1, H-8e), 4.81 (d, J = 6.43 Hz, 1H,<br />

H-2), 3.85 (m, 2H, H-4a, H-8a), 4.08 (d, J = 6.9 Hz, 1H, H-<br />

4e), 2.85 (m, 1H, H-5), 4.38 (d, J = 7.1 Hz, 1H, H-6), 6.88 (m,<br />

3H, H-2', H-5', H-6'), 5.93 (s, 2H, O-CH 2 -O), 595 (s, 2H, O-<br />

CH 2 -O); ); RMN- 13 C (CDCl 3 , 75 MHz) δ: 54.6 (d,C-1), 82.0<br />

(d, C-2), 70.9 (t, C-4), 50.10 (d, C-5), 87.6 (d, C-6), 69.6 (t, C-<br />

8), 132.2 (s, C-1'), 135.1 (s, C-1''), 106.3 (d, C-2'), 106.5 (d,<br />

C-2"), 146.5 (s, C-3'), 147.1 (s, C-3"), 147.6 (s, C-4'), 147.9<br />

(s, C-4"), 108.1 (d, C-5', C-5"), 118.6 (d, C-6'), 119.5 (d, C-<br />

6"), 100.9 (t, O-CH 2 -O), 101.0 (t, O-CH 2 -O).<br />

La piperina 5 se obtuvo de la pimienta negra comercial,<br />

siguiendo la metodología descrita por Epstein y colaboradores<br />

[32]. Brevemente, 60 g de pimienta negra se calentaron<br />

a reflujo durante 20 minutos con 120 mL de cloruro de<br />

metileno. La mezcla se dejó enfriar a temperatura ambiente<br />

(22 ± 2 ºC), se filtró al vacío y el residuo se lavó varias veces<br />

con cloruro de metileno. Después de eliminar el disolvente a<br />

presión reducida se obtuvo un aceite obscuro al cual se le adicionó<br />

éter etílico para inducir la precipitación de la piperina.<br />

El filtrado dejó un residuo amarillo en el papel filtro, el cual<br />

se lavó varias veces con éter etílico frío y posteriormente se<br />

recristalizó de acetona, obteniéndose finalmente 1.36 g de<br />

piperina pura. P.f. 130-131 ºC, IR ν max (KBr) cm –1 : 1633,<br />

1611, 1583, 1491, 1447, 1252, 1133, 1031, 996, 927; EMIE:<br />

m/z (int.rel): 285 (M + , C 17 H 19 O 3 N, 86), 201 (100), 173 (26),<br />

115 (45), 84 (10); RMN- 1 H (300 MHz, CDCl 3 ) δ: 1.62 (m,<br />

6H, H-3', H-4', H-5'), 3.58 (m, 4H, H-2', H-6'), 5.98 (s, 2H, O-<br />

CH 2 -O), 6.43 (d, 1H, J = 15Hz, H-2), 6.74 (m, 2H, H-5", H-<br />

6"), 6.89 (m, 1H, H-5), 6.98 (s, 1H, H-2"), 7.41 (m, 2H, H-3,<br />

H-4). RMN- 13 C (CDCl 3 , 75 MHz) δ: 165.36 (C-1), 119.99 (C-<br />

2), 142.43 (C-3), 125.30 (C-4), 138.15 (C-5), 46.26 (C-2'),<br />

26.09 (C-3'), 24.60 (C-4'), 26.09 (C-5'), 46.26 (C-6'), 130.95<br />

(C-1"), 105.60 (C-2"), 148.12 (C-3"), 148.05 (C-4"), 108.41<br />

(C-5"), 122.43 (C-6"), 101.21 (O-CH 2 -O).<br />

La fagaramida 4 se obtuvo por síntesis siguiendo la técnica<br />

descrita por Elliot y colaboradores [33]. Brevemente, Se<br />

calentaron a reflujo por 5 h 5.7 mmol de ácido 3-(1,3-benzodioxol-5-il)-2E-propenóico<br />

(Aldrich) con 27.3 mmol de cloruro<br />

de tionilo en 20 mL de benceno anhidro. Al término de este<br />

tiempo se destiló el exceso de cloruro de tionilo. Al cloruro de<br />

ácido así obtenido se le agregaron 13 mmol de isobutilamina<br />

disuelta en 50 mL de éter etílico anhidro. La mezcla de reacción<br />

se dejó con agitación por 20 h a temperatura ambiente.<br />

Después de eliminar el éter etílico, la mezcla de reacción se<br />

disolvió en acetato de etilo a la cual se le realizaron extracciones<br />

sucesivas con ácido clorhídrico al 10% (p/v), bicarbonato<br />

de sodio y agua destilada hasta obtener un pH neutro en la<br />

fase acuosa. La fase orgánica se secó con sulfato de sodio<br />

anhidro y se eliminó a presión reducida; de esta forma se obtuvo<br />

la fagaramida, la cual después de recristalizarla de etanol<br />

presentó un pf de 115-116 ºC. Sus datos espectroscópicos de<br />

RMN coincidieron con los descritos previamente [34]: RMN-<br />

1H (300 MHz, CDCl 3 ) δ: 0.95 (s, 1H, H-3'), 0.97 (s, 1H, H-4'),<br />

1.84 (m, 1H, H-2'), 3.22 (dd, J= 6.4, 12.9, 2H, H-1'), 5.66 (sa,<br />

1H, NH), 5.98 (s, 2H, O-CH 2 -O), 6.26 (m, 1H, H-2), 6.77 (m,<br />

1H, H-5"), 6.80 (m, 1H, H-6"), 7.3 (s, 1H, H-2"), 7.56 (d, J=<br />

15Hz, 1H, H-3); RMN- 13 C(CDCl 3 , 75 MHz) δ: 166.05 (C-1),<br />

118.95 (C-2), 140.60 (C-3), 47.11 (C-1'), 28.68 (C-2'), 20.16<br />

(C-3'), 20.16 (C-4'), 129.38 (C-1"), 106.37 (C-2"), 148.24 (C-<br />

3"), 148.99 (C-4"), 108.52 (C-5"), 123.71 (C-6"), 101.40 (O-<br />

CH 2 -O).<br />

Determinación de la actividad larvicida. Los huevecillos de<br />

Culex quinquefasciatus se colectaron en estanques de agua del<br />

"Campo Experimental El Ranchito" de la Universidad<br />

Autónoma Chapingo. Los huevecillos se mantuvieron en<br />

recipientes con agua y alimento vegetal, la cual se cambió<br />

cada 72 h hasta que emergieron los insectos. Los insectos<br />

adultos se mantuvieron en una jaula entomológica en condiciones<br />

óptimas para que continuaran su ciclo biológico. Como<br />

fuente de sangre para la hembras se utilizaron pollos de aproximadamente<br />

15 días de edad, los cuales se introdujeron a la<br />

jaula sólo por las noches. Se colocaron recipientes con agua<br />

dentro de la jaula entomológica para que las hembras ovopositaran.<br />

Diariamente se colectaron los huevecillos y se mantuvieron<br />

en recipientes con agua y alimento vegetal. Este procedimiento<br />

se siguió hasta la tercera generación, para evitar<br />

efectos residuales de la posible exposición a insecticidas. Los<br />

huevecillos de la tercera generación se dejaron desarrollar<br />

hasta el cuarto instar para realizar los experimentos.<br />

Se colocaron 10 larvas de C. quinquefasciatus del cuarto<br />

instar en 5 mL de agua, se adicionaron 100 µL de las soluciones<br />

de los compuestos de prueba y se aforaron a 10 mL con<br />

agua, 24 h después se determinó el número de larvas muertas.<br />

En experimentos preliminares se determinó la ventana de<br />

actividad biológica de cada uno de los compuestos, ensayándose<br />

concentraciones de 1 a 1000 ppm, en espacios logarítmicos.<br />

Cada una de las concentraciones de los compuestos de<br />

prueba disueltos en acetona se evaluaron por triplicado. Se<br />

ajustó el rango de concentraciones de manera tal que al menos<br />

existieran 4 niveles de concentración para determinar la<br />

Concentración letal 50 (CL 50 ) por el método probit [22].<br />

Paralelamente se evaluaron lotes controles tratados con 100<br />

µL de acetona [21].<br />

Para el estudio de la interacción, los compuestos se adicionaron<br />

en las proporciones definidas en el Cuadro 2 en el<br />

mismo volumen de acetona utilizado en la evaluación de los<br />

compuestos individuales.<br />

Análisis de la interacción. Para caracterizar la interacción<br />

entre α-sanshool con sesamina, asarinina, fagaramida y piperina<br />

se utilizó un análisis isobolográfico [20]. De acuerdo a este<br />

método sólo se consideraron para el análisis las concentraciones<br />

equiefectivas (CL 50 ) de cada compuesto y sus combinaciones<br />

obtenidas de las curvas concentración-respuesta. Las<br />

concentraciones teóricas aditivas (Z teo) se calcularon de las<br />

concentraciones equiefectivas (CL 50 ) de los compuestos individuales<br />

de acuerdo al método descrito por Tallarida [35]. La<br />

comparación de las concentraciones teóricas (Zteo) y experi-


184 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Andrés Navarrete et al.<br />

mentales (Z exp) permite definir la naturaleza de la interacción<br />

(subaditividad o superaditividad) o concluir que no hay<br />

interacción (aditividad).<br />

Los isobologramas se construyeron de acuerdo al procedimiento<br />

descrito por Tallarida y colaboradores [19]. Brevemente,<br />

las concentraciones equiefectivas (CL 50 ) de cada compuesto<br />

se graficó sobre los ejes x y y. En x se graficó el compuesto<br />

menos activo y en y el más activo (α-sanshool). Los<br />

interceptos con coordenadas (Z 1 *,0) y (0, Z 2 *) corresponden a<br />

la CL 50 del compuesto menos activo y a la CL 50 del compuesto<br />

más activo, respectivamente. La línea que se forma por la<br />

unión de los dos interceptos corresponde a la línea de aditividad.<br />

Todos los puntos sobre esta línea con coordenadas (z 1 ,<br />

z 2 ), representa el par de concentraciones teóricas aditivas (Z<br />

teo) para los compuestos administrados juntos que dan el mismo<br />

nivel de efecto que los compuestos administrados individualmente<br />

[19]. Las coordenadas de los puntos experimentales<br />

de la combinación (Z exp), que caen por debajo de la línea de<br />

aditividad indicarán una superaditividad o sinergismo y si<br />

caen por arriba de la línea de aditividad indicarán una subaditividad<br />

o que uno de ellos está disminuyendo el efecto del otro<br />

[21].<br />

Para describir la magnitud de la interacción se calculó el<br />

valor de la fracción total (Cuadro 2) de la concentración<br />

equiefectiva del compuesto A, del compuesto B y su combinación,<br />

de acuerdo a la Ecuación 1 [36]:<br />

Fracción total = (Concentración del compuesto A<br />

en al combinación/Concentración del compuesto A solo)<br />

+ (Concentración del compuesto B (1)<br />

en la combinación/Concentración del compuesto B solo)<br />

El valor de esta fracción total indica la divergencia entre la<br />

concentración equiefectiva experimental (Z exp) de la combinación<br />

y la concentración teórica aditiva (Z teo). Valores cercanos<br />

a 1 indican aditividad; valores menores de 1 implican una<br />

interacción sinérgica; y un valor mayor de 1 indica una interacción<br />

subaditiva o de atenuación del efecto [36]. La fracción<br />

total se calculó con los valores de las concentraciones de los<br />

compuestos solos o en la combinación que provocan la muerte<br />

del 50 % de las larvas de C. quinquefasciatus (Cuadro 2).<br />

Análisis estadístico. Los valores de la CL 50 ± EEM de los compuestos<br />

individuales o en las combinaciones en las diferentes<br />

proporciones se calculó por el método probit [22]. Para determinar<br />

que el efecto es dependiente de la concentración, se realizó<br />

el análisis de varianza de la regresión lineal entre probits y logaritmo<br />

de la dosis [20]. Para distinguir una interacción sinérgica<br />

de un efecto aditivo entre los valores experimentales de las concentraciones<br />

que provocan el 50 % de la muerte de las larvas en<br />

las diferentes combinaciones (Z exp) y las concentraciones aditivas<br />

teóricas (Z teo), se utilizó la prueba t de Student, siguiendo<br />

el procedimiento para el análisis isobolográfico [19, 36].<br />

Agradecimientos<br />

Se agradece a Q. Marisela Gutíerrez, Q. Georgina Duarte,<br />

QFB Margarita Guzmán, QFB Rosa Isela Del Villar Morales<br />

y QFB Oscar S. Yañes, USAI Facultad de Química UNAM,<br />

por el registro de los espectros de IR, Masas y RMN. El presente<br />

trabajo fue financiado parcialmente por la Dirección<br />

General de Asuntos del Personal Académico de la UNAM a<br />

través del Proyecto IN 203902.<br />

Referencias<br />

1. Service, M.W. in Pest and Vectors Management in Tropics.<br />

Youdeowei, A.; Service, M.W. 1983, 265-280.<br />

2. Sukuman, K.; Petrich, M.J.; Boobar, L.R. J. Am. Mosq. Control<br />

Assoc. 1991, 7, 210-237.<br />

3. Reyes, B.; Navarrete, A.; Sixtos, C.; Aguirre, E.; Jiménez, S.;<br />

Estrada, E. Rev. Mex. Cienc. Farm. 1991, 21, 30-34.<br />

4. Haral, G. Planta Med. 1984, 80, 366-375.<br />

5. Blade, R.J. in Recent Advances in Chemistry <strong>of</strong> Insect Control II.<br />

The Royal Society <strong>of</strong> Chemistry. USA 1990, 151-169.<br />

6. Crombie, L. J. Chem. Soc. 1955, 995-999.<br />

7. Jacobson, M. in Naturally Occurring Insecticides. Jacobson, M. y<br />

Crosby, D.G. Marcel Decker Inc., New York 1971, 139-176.<br />

8. Miyacado, M.; Nakayama, I.; Yoshioka, H.; Nakatani, N. Agric.<br />

Biol. Chem. 1979, 43, 1609-1611.<br />

9. Nakatani, N.; Inatani, R. Agric. Biol. Chem. 1981, 45, 1473-1476.<br />

10. Benner, J.P. Pest. Sci. 1993, 39, 95-102.<br />

11. Elliot, M.; Farnham, A.W.; James, N.F.; Johnson, D.M.; Pulman,<br />

D.A. Pestic. Sci. 1987, 18, 191-201.<br />

12. Kubo, I.; Matsumoto, T.; Klocke, J.A.; Kimikawa, T. Experientia<br />

1984, 40, 340-341.<br />

13. Oriowo, M.A. Planta Med. 1982, 44, 54-56.<br />

14. Yasuda, I.; Takeya, K.; Itokawa, H. Chem. Pharm. Bull. 1981,<br />

63, 395-398.<br />

15. Navarrete, A.; Hong, E. Planta Med. 1996, 62, 250-251.<br />

16. Klocke, J.A. in Economic and Medicinal Plant Research, Vol 3,<br />

Wagner, H., Hikino, H., Farnworth, N.R., Eds. Academic Press,<br />

London, 1989, 103-114.<br />

17. Haller, H.L.; Laforae, F.B.; Sullivan, W.N. J. Am. Chem Soc.<br />

1942, 64, 187-188.<br />

18. Tallarida, R.; Kimmel, H.L.; Holtzman, S.G. Phycopharmacol.<br />

1997, 133, 378-382.<br />

19. Vinik, H.R.; Bradley, E.L.; Kissin, I. Anesth. Analg. 1999, 88,<br />

667-670.<br />

20. Tallarida, R. Drug synergism and dose-effect data analysis.<br />

Chapman & Hall / CRC, Florida, 2000.<br />

21. Vahita, R.; Venkatachalam, M.R.; Murugan, K.; Jebanesan, A.<br />

Biores. Tech. 2<strong>002</strong>, 82, 203-204.<br />

22. Infante, S.; Calderón, L.C.; Manual de análisis probit. Colegio de<br />

Posgraduados. Centro de Estadística y Cálculo. Chapingo Estado<br />

de México. México 1989.<br />

23. Wilkinson, C.F., in Pesticides formulation, Vankenburg, W., Ed.,<br />

Marcel Dekker, New York, 1976, 1-64.<br />

24. Parker, R.S.; Sontag, T.J.; Swanson, J.E. Biochem. Biophys. Res.<br />

Com. 2000, 277, 531-534.<br />

25. Vinik, H.R.; Bradley, E.L.; Kissin, I. Anesth. Analg. 1999, 88,<br />

667-670.<br />

26. Naidu, K.A.; Thippeswamy, N.B. Mol. Cel. Biochem. 2<strong>002</strong>, 229,<br />

19-23.<br />

27. Liu, H.; Bigler, S.A. Kidney Int. 2<strong>002</strong>, 62, 868-876.<br />

28. Reen, R.K.; Wiebel, F.J.; Singh, J. J. Ethnopharmacol. 1997, 58,<br />

165-173.


185 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Andrés Navarrete et al.<br />

29. Reen, R.K.; Roesch, S.F.; Keifer, F.; Wiebel, F.J.; Singh, J.<br />

Biochem. Biophys. Res. Com. 1996, 218, 562-569.<br />

30. Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta,<br />

S.K.; Fromm, M.F. J. Pharmacol. Exp. Ther. 2<strong>002</strong>, 302, 645-650.<br />

31. Yasuda, Yakeya, K.; Itokawa, H. Phytochem. 1982, 21, 1295-<br />

1298.<br />

32. Epstein, W.; Nettz, F.D.; Seidel, L. J. J. Chem Educ. 1993, 7,<br />

598-599.<br />

33. Elliot, M.; Farnham, A.W.; James, N.F.; Johnson, D.M.; Pulman,<br />

D.A. Pestic. Sci. 1987, 18, 211-221.<br />

34. Adesina, S.K. J. Nat. Prod. 1986, 49, 715.<br />

35. Tallarida, R. J. Pain 1992, 49, 93-97.<br />

36. Tallarida, R.J.; Stone, D.J.; Raffa, R.B. Life Sci. 1997, 61,<br />

PL417-425.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 186-189<br />

Investigación<br />

Cytotoxic Evaluation <strong>of</strong> a Series <strong>of</strong> Bisalkanoic Anilides<br />

and Bisbenzoyl Diamines<br />

Luis Chacón-García, M. Elena Rodríguez, and Roberto Martínez*<br />

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510,<br />

México, D.F. E-mail: robmar@servidor.unam.mx<br />

Dedicated to Pr<strong>of</strong>esor Alfonso Romo de Vivar<br />

Recibido el 10 de marzo del 2003; aceptado el 26 de junio del 2003<br />

Abstract. A series <strong>of</strong> bisalkanoic anilides and bisbenzoyl diamines<br />

were syn<strong>the</strong><strong>size</strong>d with <strong>the</strong> aim <strong>of</strong> elucidating <strong>the</strong> relationship between<br />

molecular structure and cytotoxic activity. Twenty-one derivatives<br />

were syn<strong>the</strong><strong>size</strong>d and tested on three tumoral cell lines. No apparent<br />

relationship was observed between electronic effects and cytotoxic<br />

activity, but it was found that compounds in which <strong>the</strong> 4'-phenyl substituent<br />

is fluoride or bromide gave <strong>the</strong> best inhibition <strong>of</strong> tumoral cell<br />

growth.<br />

Keywords: Diamides, alkanediamides, cytotoxic activity.<br />

Resumen. El objetivo del presente trabajo fue encontrar la relación<br />

entre la estructura molecular y la actividad citotóxica de una serie de<br />

anilidas de diácidos y diamidas bisbenzoiladas, para lo cual se sintetizaron<br />

veintiuno de los compuestos mencionados. Los resultados de la<br />

evaluación citotóxica de estos derivados, en tres líneas celulares, no<br />

indicaron ninguna relación con respecto a efectos electrónicos de los<br />

substituyentes, si bien los derivados 4-brom<strong>of</strong>enil y 4-fluor<strong>of</strong>enil son<br />

los más activos.<br />

Palabras clave: Diamidas, alcano diamidas, actividad citotóxica.<br />

Introduction<br />

DNA recognizing molecules such as DNA-intercalators and<br />

groove binders have been <strong>the</strong> subject <strong>of</strong> increasing interest due<br />

to <strong>the</strong> ongoing search for more active antitumoral compounds.<br />

DNA-groove binders have been widely studied as anticancer<br />

compounds. In addition, <strong>the</strong>y have been studied as anti-HIV<br />

agents and have been incorporated as a linker in DNA bisintercalators<br />

[1-4]. The most typical DNA-groove binders are<br />

<strong>the</strong> antibiotics Distamycine A (1) and Netropsin (2), which are<br />

characterized by polyamide and polyaromatic functional<br />

groups along <strong>the</strong> DNA recognizing chain [5]. The aromatic<br />

portion <strong>of</strong> <strong>the</strong>se compounds is <strong>the</strong> pyrrolo system; however,<br />

recent studies have investigated compounds incorporating<br />

thiazolyl (3) or phenyl (4) (Fig. 1) instead <strong>of</strong> pyrrolyl, and<br />

groove binders that contain <strong>the</strong> benzimidazolyl moiety have<br />

been described in earlier reports [6-8]. Recently, we reported a<br />

series <strong>of</strong> N,N’-(diaminophenyl)alkanediamides 5 which differ<br />

in <strong>the</strong> length <strong>of</strong> <strong>the</strong> aliphatic portion. These compounds were<br />

shown to inhibit <strong>the</strong> growth <strong>of</strong> tumoral cell lines, indicating<br />

that this topographical factor has an important influence on<br />

DNA recognition [9]. However, <strong>the</strong> cytotoxic activity <strong>of</strong> <strong>the</strong><br />

N,N’-(diaminophenyl)alkanediamides was low. The present<br />

investigation was undertaken to study <strong>the</strong> influence <strong>of</strong> aryl<br />

substituents in <strong>the</strong>se compounds and to find compounds <strong>of</strong> this<br />

type with improved cytotoxic activity. To achieve this, we<br />

syn<strong>the</strong><strong>size</strong>d a series <strong>of</strong> bisalkanoic anilides and bisbenzoyl<br />

diammines (6-27) and <strong>the</strong>ir activities as cytotoxic agents were<br />

evaluated.<br />

Results and discussion<br />

The N,N’-diarylalkanediamides (6-20) (Fig. 2) were syn<strong>the</strong><strong>size</strong>d<br />

by condensation <strong>of</strong> <strong>the</strong> respective 4-substitued aniline (2<br />

equiv.) with succinyl, glutaryl or adipoyl chloride (1 equiv.) in<br />

acetone while being stirred and cooled in an iced bath. The<br />

products were precipitated, filtered, and washed with acetone.<br />

Yields varied from 65 to 96 %.<br />

Compounds 21-23 and 25-27 were obtained as described<br />

for 6-20 but from condensation <strong>of</strong> <strong>the</strong> respective benzoyl chloride<br />

and ethylenediamine, 1,2-propanediamine, or piperazine<br />

as shown in Figure 2. The compounds were obtained in yields<br />

<strong>of</strong> 75 to 95 %. Compound 24 was obtained by reduction <strong>of</strong> <strong>the</strong><br />

nitro derivative 23, using Pd/C and hydrazine in ethanol at<br />

reflux for 1 h. Recrystallization from methanol afforded <strong>the</strong><br />

amine derivative. The yields and spectroscopic data <strong>of</strong> compounds<br />

6-27 are summarized in Table 1.<br />

The percentage <strong>of</strong> inhibition <strong>of</strong> <strong>the</strong> growth <strong>of</strong> <strong>the</strong> three<br />

tumoral cell lines after treatment with each compound at a<br />

concentration <strong>of</strong> 31 µM is given in Table 1. The groups bonded<br />

at <strong>the</strong> 4’ position were selected on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir electron<br />

withdrawing or donating properties, and <strong>the</strong>ir hydrogen<br />

bonding capabilities.<br />

The first series <strong>of</strong> compounds comprises N,N’-diarylalkanediamides<br />

with different numbers <strong>of</strong> methylenes in <strong>the</strong><br />

aliphatic chain. The first compounds syn<strong>the</strong><strong>size</strong>d and probed<br />

were 6 to 10 (n = 2). These compounds displayed little activity<br />

in <strong>the</strong> three cell lines. The compound which inhibits cell<br />

growth to <strong>the</strong> greatest extent (57 % in K562) is 6 (R = F), followed<br />

by 7 (R = Br) in <strong>the</strong> same cell line.


Cytotoxic Evaluation <strong>of</strong> a Series <strong>of</strong> Bisalkanoic Anilides and Bisbenzoyl Diamines 187<br />

Table 1. Physical properties, spectroscopic data and inhibition <strong>of</strong> <strong>the</strong> growth <strong>of</strong> compounds 6-27 at concentration 31 µM.<br />

Comp. R n M.W. Yield (%) m.p. Ref. (a) K562 PC-3 U251<br />

No. (b) (c) (d)<br />

6 F 2 304 65 243-245 [10] 57 25 0<br />

7 Br 2 426 69 281-282 [10,11, 12] 40 6 0<br />

8 OMe 2 328 80 255-256 [10] 22 13 10<br />

9 OH 2 300 92 273-274 [13] 0 13 0<br />

10 H 2 268 83 231-232 [10, 12] 0 16 0<br />

11 Br 3 318 70 254-256 [10] 55 0 4<br />

12 F 4 332 65 230-233 — 96 10 39<br />

13 Cl 4 365 75 255-256 [10] 13 0 0<br />

14 Br 4 454 75 287-288 [12] 5 0 3<br />

15 I 4 548 77 — 0 0 0<br />

16 OMe 4 356 89 233-235 [10, 14] 74 18 17<br />

17 OH 4 328 96 [13, 15] 80 34 4<br />

18 H 4 296 95 244-245 [10, 12] 24 18 0<br />

19 HNCOCH 3 4 410 80 > 350 — 0 0 0<br />

20 CN 4 346 85 272-233 [14] 9 13 42<br />

21 Br — 440 75 268-270 — 83 72 100<br />

22 Br — 426 80 281-283 — 0 0 5<br />

23 NO 2 — 358 80 253-254 — 0 8 0<br />

24 NH 2 — 298 85 284-285 — 0 3 0<br />

25 NO 2 — 372 75 235-237 — 0 26 0<br />

26 Br — 452 89 270-273 — 0 0 6<br />

27 NO 2 — 384 95 318-320 [16] 0 4 0<br />

(a) References <strong>of</strong> <strong>the</strong> syn<strong>the</strong>sis for previously reported compounds. (b) Leukemia (c) Prostate (d) CNS.<br />

O<br />

H<br />

H 2 N<br />

H<br />

N<br />

Me<br />

N<br />

N<br />

H<br />

H<br />

N<br />

O<br />

H<br />

N<br />

O<br />

N<br />

Me<br />

NH 2<br />

1<br />

N<br />

Me<br />

2<br />

H<br />

R N<br />

N<br />

O S<br />

3<br />

HN<br />

O<br />

HN<br />

O<br />

R'<br />

O<br />

n<br />

H NH<br />

N<br />

2<br />

N<br />

Me<br />

O<br />

N<br />

Me<br />

O<br />

H 2 N<br />

H 2 N<br />

H NH<br />

N<br />

2<br />

H 2 N<br />

H 2 N<br />

H 2 N<br />

H<br />

N<br />

O<br />

O<br />

HN<br />

HN<br />

O<br />

4<br />

H<br />

( )n N<br />

O<br />

5<br />

HN<br />

O<br />

HN<br />

( )n<br />

HN<br />

O<br />

Fig. 1. Examples <strong>of</strong> compounds containing polyamide and polyaromatic<br />

functional groups along <strong>the</strong> DNA recognizing chain.<br />

HN<br />

O<br />

O<br />

NH 2<br />

NH 2<br />

R<br />

COCl<br />

R<br />

23<br />

COCl<br />

R<br />

ClCO(CH 2 )nCOCl<br />

H 2 N<br />

R'<br />

H<br />

N<br />

N<br />

H<br />

NH 2<br />

R<br />

R<br />

R<br />

H<br />

N<br />

O<br />

O<br />

O<br />

N<br />

H<br />

N<br />

( )n<br />

6-20<br />

R'<br />

H<br />

N<br />

O<br />

H<br />

N<br />

N<br />

O<br />

O<br />

21,25 R'=Me<br />

22,23 R'=H<br />

O<br />

Pd / C<br />

H<br />

N<br />

N<br />

NH 2 NH 2 H<br />

O<br />

H 2 N<br />

24<br />

26-27<br />

Fig. 2. Syn<strong>the</strong>sis <strong>of</strong> compounds 6-27. (R values are reported on Table<br />

1.)<br />

R<br />

R<br />

R<br />

NH 2<br />

To study <strong>the</strong> influence <strong>of</strong> <strong>the</strong> length <strong>of</strong> <strong>the</strong> aliphatic chain<br />

on cytotoxic activity, we prepared compounds with a four<br />

methylene chain (12, 14, 16-18). It should be pointed out that<br />

compounds 13 (R = Cl) and 15 (R = I) were included due to<br />

<strong>the</strong> apparent tendency <strong>of</strong> halogens to present activity. In addition,<br />

compounds 19 (R = NHCOCH 3 ) and 20 (R = CN) were<br />

included in <strong>the</strong> study to investigate <strong>the</strong> effects <strong>of</strong> <strong>the</strong><br />

NHCOCH 3 and CN functional groups. In contrast to <strong>the</strong><br />

almost complete lack <strong>of</strong> activity shown by <strong>the</strong> first series (n =<br />

2), compound 12 (R = F) induced almost 100 % inhibition <strong>of</strong><br />

growth in K562 cell line and <strong>the</strong> functional groups OMe (16)<br />

and OH (17) were found to enhance cytotoxicity. The rest <strong>of</strong><br />

<strong>the</strong> compounds showed no activity.


188 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Luis Chacón-García et al.<br />

Compounds 21-25 were examined to analyze <strong>the</strong> importance<br />

<strong>of</strong> <strong>the</strong> relative position <strong>of</strong> <strong>the</strong> amide group and <strong>the</strong> presence<br />

<strong>of</strong> branching in <strong>the</strong> aliphatic chain. Surprisingly, compound<br />

21 was <strong>the</strong> most active in <strong>the</strong> bromide series, displaying<br />

relatively good inhibition in <strong>the</strong> three cell lines. Given <strong>the</strong><br />

activity <strong>of</strong> 21, it is surprising that 22 was inactive. To complete<br />

<strong>the</strong> series <strong>of</strong> bromide compounds, 11 (n = 3, R = Br) was<br />

obtained; it showed greater activity than 7 (R = Br, n = 2) but<br />

less than 14 (R = Br, n = 4) in K562 cell line.<br />

The inhibition resulted by 21, lead to <strong>the</strong> resentment that<br />

conformation could be implicated in <strong>the</strong> cytotoxic activity. To<br />

test this idea, compounds 26 and 27 were syn<strong>the</strong><strong>size</strong>d; however,<br />

both <strong>of</strong> <strong>the</strong>se compounds were inactive. Although <strong>the</strong>se<br />

molecules are structurally similar to 21-25, <strong>the</strong> formers (26<br />

and 27) are not very capable <strong>of</strong> interacting by hydrogen bonding.<br />

This is a very important factor affecting cytotoxicity in<br />

DNA groove binders due to <strong>the</strong> stability <strong>of</strong> <strong>the</strong> DNA-ligand<br />

complex.<br />

Conclusions<br />

The data presented here are inconclusive regarding <strong>the</strong> relationship<br />

between electronic factors or hydrogen bonding capability<br />

and inhibition <strong>of</strong> <strong>the</strong> growth in tumor cell lines. The present<br />

results also show no clear link between <strong>the</strong> presence <strong>of</strong><br />

halogens or <strong>the</strong> length <strong>of</strong> <strong>the</strong> aliphatic chain and <strong>the</strong> cytotoxicity<br />

<strong>of</strong> a compound. However, this study did reveal <strong>the</strong> interesting<br />

finding that <strong>the</strong> compounds which presented cytotoxic<br />

activities were primarily those containing fluoride or bromide.<br />

Experimental<br />

Chemistry<br />

General procedure for <strong>the</strong> preparation <strong>of</strong> 6-20. Diacyl chloride<br />

(0.72 mmol) was added to a solution <strong>of</strong> 4-R-aniline (1.44<br />

mmol) in 15 mL <strong>of</strong> acetone at 5 °C. After 2 h stirring, <strong>the</strong><br />

mixture was filtered and washed with acetone to afford 6-20.<br />

12: 1 H NMR (δ, J(Hz)): 1.60 (s, 4H), 2.30 (s, 4H), 7.10 (m,<br />

4H), 7.57 (m, 4H), 9.94 (s, 2H); IR ν (cm –1 ) 1652, 3305. 15:<br />

1H NMR (δ, J(Hz)): 1.59 (s, 4H), 2.31 (s, 4H), 7.41 (d, J =<br />

8.8, 4H), 7.60 (d, J 8.7, 4H), 9.97 (s, 2H); IR ν (cm –1 ) 1657,<br />

3292. 19: 1 H NMR (δ, J(Hz)) 1.59 (m, 4H), 1.99 (s, 6H), 2.28<br />

(s, 4H), 7.46 (s, 8H), 9.80 (s, 2H), 9.83 (s, 2H); IR ν (cm –1 )<br />

1659, 3298.<br />

General procedure for <strong>the</strong> preparation <strong>of</strong> 21-23 and 25-27. 4-<br />

bromobenzoyl chloride (1 mmol) was added to a solution <strong>of</strong><br />

diamine (0.7 mmol) in 15 mL <strong>of</strong> acetone at 5 °C. After 2 h<br />

stirring, water was added and <strong>the</strong> precipitated filtered and<br />

washed with water and acetone to afford 21-23 or 25.<br />

21: 1 H NMR (δ, J(Hz)) 1.15 (d, J 6.64, 3H), 3.35 (t, J 9, 2H),<br />

4.23 (m, 1H), 7.64 (d, J 8.6, 4H), 7.76 (d, J 8.5, 2H), 8.34 (d, J<br />

8.2, 1H) 8.63 (t, J 5.6, 1H); IR ν (cm –1 ) 1637, 3301.<br />

22: 1 H NMR (δ, J(Hz)): 1.33 (s, 4H), 7.65 (d, J 8.85, 4H),<br />

7.77 (d, J 8.5, 4H), 8.67 (s, 2H); IR ν (cm –1 ) 1633, 3287. 23:<br />

1H NMR (δ, J(Hz) 3.47 (d, J=2.7, 4H), 8.07 (d, J = 8.8, 4H),<br />

8.30 (d, J 8.9, 4H), 9.00 (s, 2H); IR ν (cm –1 ) 1640-3319. 25:<br />

1H NMR (δ, J(Hz)): 1.2 (d, J 6.7, 3H), 3.45 (t, J 6.3, 2H), 4.3<br />

(m, 1H), 8.03 (d, J 8.96, 2H), 8.05 (d, J 9, 2H), 8.63 (d, J 8.14,<br />

1H), 8.92 (t, J 5.6, 1H); IR ν (cm –1 ) 1661, 3318. 26: 1 H NMR<br />

(δ, J (Hz)) 3.54 (m, 8H), 7.37 (d, J 8.4, 4H), 7.64 (d, J 8, 4H);<br />

IR ν (cm –1 ). 1635.<br />

Preparation <strong>of</strong> 24.<br />

Ethanol (10 ml), Pd/C 5% (0.046 g), Hidrazine (0.818 ml,<br />

25.9 mmol), water (0.93 ml) and 23 (756 mg, 2.59 mmol)<br />

were mixed in a bottom flask. The mixture was refluxed for<br />

2h. The resulting solid was dissolved in methanol with heat<br />

and filtered at vacuum. Methanol was eliminated up precipitation<br />

<strong>of</strong> a solid that was filtered and crystallized from<br />

methanol to afford 24. 1 H NMR (δ, J(Hz)): 3.33 (d, J 7.2, 4H),<br />

5.58 (d, J 3.18, 4H), 6.51 (d, J 8.5, 4H), 7.54 (d, J 8.5, 4H),<br />

8.12 (s, 2H); IR ν (cm –1 ) 1600, 3333, 3437.<br />

Cytotoxic Activity<br />

Tumoral cell lines were supplied by <strong>the</strong> National Cancer<br />

Institute. The cytotoxicity assays were carried out at 5000 to<br />

7500 cells / mL as reported by Skehan et al. and Monks et al<br />

using <strong>the</strong> sulforhodamine B (SRB) protein assay to estimate<br />

cell growth [17, 18]. Compounds were dissolved in DMSO<br />

which has not effect on <strong>the</strong> inhibition has shown by <strong>the</strong> control.<br />

The percentage <strong>of</strong> inhibition <strong>of</strong> <strong>the</strong> growth described for<br />

all compounds were obtained from three different experiments.<br />

The percentage growth was evaluated spectrophotometrically<br />

in a Bio kinetics reader spectrophotometer. Daunomicyne<br />

and 5-fluorouracyl were used as references. These<br />

compounds under <strong>the</strong> described conditions gave 100 % <strong>of</strong><br />

inhibition. Each experiment was made two times by gave triplicate.<br />

Acknowledgment. We thank CONACyT (32633-E) and<br />

DGAPA-UNAM (IN-211601) for financial support. We also<br />

thank M.T. Ramírez Apan for obtaining <strong>the</strong> biological data, R.<br />

Patiño, H. Rios, A. Peña, L. Velasco and J. Pérez for technical<br />

assistance. Contribution No. 1765 from Instituto de Química,<br />

UNAM.<br />

References<br />

1. Tim<strong>of</strong>eeva, O. A.; Ryabinin, V. A.; Sinyakov, A. N.; Zakharova,<br />

O. D.; Yamkovoy, V. I.; Tarrago-Litvak, L.; Litvak, S.;<br />

Nevinsky, G. A. Mol. Biol. (Moscow) 1997, 31, 359-365.<br />

2. Eliadis, A.; Phillips, D. R.; Reiss, J. A.; Skorobogaty, A. J.<br />

Chem. Soc. Chem. Commun 1988, 1049-1052.<br />

3. Martínez, R.; Cogordan, J. A.; Mancera, C.; Díaz, M. L. Fármaco<br />

2000, 55, 631-636.<br />

4. Chacón-García, L.; Martínez, R. Eur. J. Med. Chem. 2<strong>002</strong>, 37,<br />

261-266.<br />

5. For a review <strong>of</strong> Lexitropsin see: Lown, J. W. Drug Dev. Res.<br />

1996, 34, 145-183.


Cytotoxic Evaluation <strong>of</strong> a Series <strong>of</strong> Bisalkanoic Anilides and Bisbenzoyl Diamines 189<br />

6. Ryabinin, V. A.; Sinyakov, A. N.; Soultrait, V. R.; Caumont, A.;<br />

Parissi, V.; Zakharova, O.D.; Vasyutina, E. L.; Yurchenko, E.;<br />

Bayandin, R.; Litvak, S.; Tarrago-Litvak, L.; Nevinsky G.A.<br />

Eur. J. Med. Chem. 2000, 35, 989-1000.<br />

7. Warner, P. M.; Qi, J.; Meng, B.; Li, G.; Xie, L.; El-Shafey, A.;<br />

Jones G. B. Bioorg. Med. Chem. 2<strong>002</strong>, 12, 1-4.<br />

8. Wemer, D. E.; Dervan, P. B. Curr. Op. Struct. Biol. 1997, 7, 355-<br />

361.<br />

9. Chacón-García, L.; Martínez, R. Eur. J. Med. Chem. 2001, 36,<br />

731-736.<br />

10. Kubicova, L.; Waisser, K.; Kunes, J.; Kralova, K.; Odlerova, Z.;<br />

Slosarek, M.; Janota, J.; Svovoda, Z. Molecules 2000, 5, 714-726.<br />

11. Sanna, A.; Repetto, G. Gazz. Chim. Ital. 1927, 57, 777-780.<br />

12. Richmond, B. C. J. Chem. Soc. 1927, 2923-2929.<br />

13. Takahashi, H.; Nobuhara, A.; Kimura, H.; Yakugaku Kenkyu<br />

1965, 36, 149-162; Chem. Abstr., 65 (1966), 2875f.<br />

14. Brisson , J.; Gagné, J.; Brisse, F. Can. J. Chem. 1989, 67, 840-<br />

849.<br />

15. Michio, N.; Atsushi, T. JAPAN 1970, 70, 37,009; Chem. Abstr.,<br />

74 (1970) 64086t.<br />

16. Stebemann, C.; Schnitze, J. J. Am. Chem. Soc. 1943, 2126-2128.<br />

17. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.;<br />

Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R.<br />

J. Nat. Cancer Inst. 1990, 82, 1107-1112.<br />

18. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.;<br />

Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.;<br />

Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Nat.<br />

Cancer Inst. 1991, 83, 757-765.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 190-201<br />

Investigación<br />

El análisis conformacional a la luz de la teoría topológica de átomos<br />

en moléculas. Contribución de la energía atómica a la energía molecular<br />

Fernando Cortés Guzmán, a* Jesús Hernández-Trujillo, b* Gabriel Cuevas a*<br />

a Instituto de Química. Universidad Nacional Autónoma de México. Circuito Exterior Apdo. Postal 70213.<br />

Ciudad Universitaria. C.P.04510 Coyoacán, D.F. México.<br />

b Departamento de Fisicoquímica. Facultad de Química. Universidad Nacional Autónoma de México.<br />

Circuito Interior. Ciudad Universitaria. C.P.04510 Coyoacán, D.F. México.<br />

Recibido el 4 de mayo del 2003; aceptado el 8 de julio del 2003<br />

Dedicado al Pr<strong>of</strong>. Dr. Alfonso Romo de Vivar en homenaje a su trabajo científico<br />

Resumen. La teoría de átomos en moléculas permite definir un<br />

átomo en una molécula y provee las herramientas para el cálculo de<br />

sus propiedades, entre ellas la energía atómica. Esta energía es utilizada<br />

en este trabajo para estudiar el comportamiento tanto de los<br />

átomos como de algunos grupos funcionales en las barreras rotacionales<br />

del etano y de etanos-1,2-disustituidos, en la preferencia<br />

conformacional de ciclohexanos y de 1,3-diheterociclohexanos<br />

monosustituidos. Este análisis permitió encontrar que los átomos de<br />

carbono en los sistemas de etano son los responsables de las barreras<br />

rotacionales y que la preferencia conformacional de los ciclos sustituidos<br />

es producto de un balance energético entre el anillo y el sustituyente.<br />

Este trabajo muestra una nueva manera de abordar el análisis<br />

conformacional, a partir de la contribución de la energía atómica a la<br />

energía molecular.<br />

Palabras clave: átomos en moléculas, barreras rotacionales, etano,<br />

preferencias conformacionales, energía atómica, energía molecular.<br />

Abstract. The Topological Theory <strong>of</strong> Atoms in Molecules allows <strong>the</strong><br />

description <strong>of</strong> an atom in a molecule and provides <strong>the</strong> tools to calculate<br />

<strong>the</strong>ir properties, including atomic energy. Atomic energy is used<br />

in this study to analyze <strong>the</strong> behavior <strong>of</strong> atoms and functional groups<br />

in <strong>the</strong> rotational barriers <strong>of</strong> ethane, and 1,2-disubstituted ethanes and<br />

in <strong>the</strong> conformational preference <strong>of</strong> cyclohexanes and monosubstituted<br />

1,3-diheterocyclohexanes. The results show that <strong>the</strong> carbon atoms<br />

<strong>of</strong> <strong>the</strong> ethane systems are responsible for <strong>the</strong> rotational barriers and<br />

that <strong>the</strong> conformational preference <strong>of</strong> <strong>the</strong> substituted cycles is a product<br />

<strong>of</strong> an energetic balance between <strong>the</strong> ring and <strong>the</strong> substituent.<br />

This study presents a new method to approach conformational analysis<br />

using <strong>the</strong> contribution <strong>of</strong> individual atomic energies to <strong>the</strong> molecular<br />

energy.<br />

Keywords: Atoms in molecules, rotational barriers, ethane conformational<br />

preferences, atomic energy, molecular energy.<br />

Introducción<br />

La teoría de átomos en moléculas [1] define un átomo en una<br />

molécula como una región del espacio delimitada por una<br />

superficie S(r) que exhibe la propiedad de cero flujo, del gradiente<br />

de ρ lo que significa que S(r) no es cruzada por ningún<br />

vector del gradiente de la densidad electrónica ρ(r). Esta<br />

condición se expresa en la ecuación 1, donde n(r) representa<br />

al vector unitario perpendicular a la superficie en el punto r.<br />

∇ρ (r) • n(r) = 0 para todo punto r en al superficie S(r)<br />

La superficie S(r) se obtiene como solución de la ecuación<br />

diferencial 1. Como consecuencia, el espacio tridimensional<br />

se divide en regiones disjuntas que se identifican como<br />

los átomos de la química, separados por superficies interatómicas<br />

S(r). Por lo que la teoría de átomos en moléculas define:<br />

1) la contribución atómica a todas las propiedades moleculares<br />

y su aditividad y 2) la transferibilidad de átomos y grupos<br />

funcionales de una molécula a otra.<br />

La definición rigurosa del átomo en una molécula que la<br />

teoría topológica de átomos en moléculas provee, permite estimar<br />

propiedades atómicas fundamentales como la energía.<br />

Mediante la aplicación del programa proaimv [2], se calcula la<br />

contribución de cada átomo a la energía molecular. Debido a<br />

que la conformación molecular se refleja en la energía de la<br />

molécula, es posible, a través del estudio de la contribución<br />

atómica a la energía total, determinar el efecto que tiene cada<br />

átomo en el arreglo molecular estudiado y por lo tanto la función<br />

que este desempeña.<br />

El objetivo de este trabajo es analizar la contribución<br />

energética de los átomos en las moléculas a la preferencia conformacional<br />

de los derivados del etano, ciclohexanos monosustituidos<br />

y 1,3-diheterociclohexanos-2-sustituidos.<br />

El etano (1, esquema 1) es la molécula orgánica más sencilla<br />

que presenta barreras rotacionales, cuyo valor experimental<br />

aceptado es de 2.93 kcal/mol [3]. Esta barrera ha sido<br />

explicada de diversas formas: por la presencia de repulsiones<br />

estéricas entre átomos o entre enlaces en el confórmero eclipsado,<br />

por la presencia de hiperconjugación en el confórmero<br />

alternado o por balances entre las componentes de la energia<br />

potencial molecular [4]. Cuando se sustituye un hidrógeno de<br />

cada carbono por otro grupo como metilo, cloro o flúor, se<br />

presentan dos barreras rotacionales, la primera donde los dos<br />

sustituyentes eclipsados se encuentran frente a frente y la<br />

segunda donde cada grupo esta eclipsado con un átomo de


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 191<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H H<br />

X<br />

H H<br />

X 3<br />

X 6<br />

H 3<br />

8 H 6<br />

4 6 X 4<br />

X<br />

X 3<br />

3<br />

H 5 H 7<br />

C 1<br />

H 5 H 7<br />

H 5 H H<br />

H 8<br />

H 5 H 7<br />

6 7<br />

X X<br />

H 4<br />

4<br />

8<br />

H 8<br />

Esquema 1<br />

hidrógeno. En estos casos, la barreras se han explicado invocando<br />

repulsiones de van der Waals [5]. En los casos en los<br />

que el grupo es metilo o cloro, el confórmero más estable es el<br />

anti mientras que en caso del flúor, el confórmero más estable<br />

es el gauche, este comportamiento se conoce como efecto<br />

gauche y se ha explicado por la presencia de dos interacciones<br />

hiperconjugativas σ C-H →σ* H-F en este confórmero [6].<br />

También es conocido que la mayoría de los sustituyentes<br />

en el ciclohexano prefieren adoptar la posición ecuatorial y no<br />

la axial. Esta preferencia conformacional ha sido atribuida a<br />

que en el confórmero axial existe repulsión entre los hidrógenos<br />

de las posiciones 3 y 5 y el sustituyente de la posición<br />

1[7]. Por otro lado el efecto anomérico es la preferencia que<br />

muestran los sustituyentes electronegativos por asumir la posición<br />

axial cuando sustituye en la posición a respecto a un heteroátomo<br />

que forma parte del anillo heterocíclico y no la<br />

ecuatorial como sucede en el ciclohexano [8]. Hasta ahora, el<br />

origen de este efecto conformacional se considera esencialmente<br />

diferente al que opera en el ciclohexano.<br />

Todas las moléculas que se estudian aquí se presentan en<br />

el Esquema 1 y fueron optimizadas por completo a nivel<br />

HF/6-311++G (2d, 2p) con el programa Gaussian 94 [9]. Las<br />

funciones de onda obtenidas fueron usadas para determinar la<br />

energía atómica empleando el programa PROAIMV. En todos<br />

los casos se comparó la suma de las energías atómicas con la<br />

energía molecular y se obtuvo en general una diferencia<br />

menor a 1 kcal/mol, lo que permite comprobar la aditividad de<br />

H<br />

H<br />

Etano<br />

H<br />

H<br />

Etanos 1,2-disustituidos<br />

1: X = H, 2: X = CH 3 ; 3: X = Cl; 4: X = F<br />

5: R 1 = R 2 = H, X = Y = CH 2<br />

9-ec: R 1 = H, R 2 = Cl, X = Y = CH 2<br />

6: R 1 = R 2 = H, X = Y = O<br />

10-ax: R 1 = Cl R 2 = H, X = Y = O<br />

7: R 1 = R 2 = H, X = Y = S<br />

10-ec: R 1 = H, R 2 = Cl, X = Y = O<br />

8: R 1 = R 2 = H, X = O, Y = S<br />

11-ax: R 1 = Cl, R 2 = H, X = Y = S<br />

9-ax: R 1 = Cl, R 2 = H, X = Y = CH 2<br />

11-ec: R 1 = H, R 2 = Cl, X = Y = S<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

las propiedades atómicas, pero además, valida el análisis que a<br />

continuación se presenta. La inclusión de la correlación electrónica<br />

será objeto de análisis en trabajos posteriores.<br />

Resultados<br />

A. Etano (1)<br />

Las posibles explicaciones que se han dado al aumento de<br />

energía del confórmero eclipsado o a la disminución de la<br />

misma para el confórmero alternado se han relacionado con la<br />

estabilización o desestabilización de átomos dentro de la<br />

molécula. En el caso de las explicaciones de origen estérico se<br />

espera que los átomos de hidrógeno involucrados se desestabilicen,<br />

mientras que en el caso de la participación de interacciones<br />

hiperconjugativas se espera la estabilización de los<br />

mismos átomos.<br />

Hasta el momento no existe una metodología experimental<br />

que permita medir la energía de los átomos dentro de una<br />

molécula. Por fortuna, empleando métodos computacionales,<br />

la teoría de átomos en moléculas provee herramientas para<br />

conocer la respuesta de los átomos a los cambios conformacionales.<br />

Para esto, se estudio al etano manteniendo fijo el<br />

ángulo diedro H-C-C-H y dejando libres el resto de las variables.<br />

La optimización parcial se realizo cada cinco grados a<br />

nivel HF/6-311++G (2d, 2p).<br />

El perfil de energía durante la rotación se muestra en la<br />

Fig. 1a, donde se observa una barrera de 3.05 kcal/mol, un<br />

valor muy cercano al experimental (2.9 kcal/mol). Como se<br />

observa, el confórmero eclipsado es de mayor energía que el<br />

alternado. Para cada punto en la curva se genera una función<br />

de onda, a partir de la cual se obtiene la energía de cada átomo<br />

en cada rotámero. En la Fig. 1b se presentan los perfiles de las<br />

energías del átomo de carbono y de hidrógeno durante la<br />

rotación y en la Tabla 1 se presentan los valores numéricos. El<br />

carbono en el confórmero eclipsado presenta una energía de<br />

–37.66808 hartrees mientras que el confórmero alternado es<br />

de –37.67199, lo que genera una diferencia de 2.45 kcal/mol<br />

por cada carbono. Esto es, el confórmero eclipsado se desestabiliza<br />

por 4.9 kcal/mol a causa de los átomos de carbono. Por<br />

otro lado, el átomo de hidrógeno en el confórmero eclipsado<br />

tiene –0.65271 hartrees de energía mientras que el confórmero<br />

alternado se determinan –0.65223 hartrees, lo que genera una<br />

diferencia de –0.3 kcal/mol. Por lo tanto, el confórmero eclipsado<br />

se estabiliza por –1.8 kcal/mol a causa de los seis átomos<br />

de hidrógeno. A diferencia de lo que generalmente se<br />

encuentra en los libros de texto sobre química orgánica, aquí<br />

Tabla 1. Energía del etano (1) (hartrees) y diferencias energéticas<br />

(kcal/mol) calculadas a nivel HF/6-311++G (2d, 2p).<br />

átomo E (0°) E (60°) DE<br />

C –37.66808 –37.67199 2.45<br />

H –0.65271 –0.65223 –0.3


192 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Fernando Cortés Guzmán et al.<br />

Energía molecular<br />

kcal/mol<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

a)<br />

0 5 10 15 20 25 30 35 40 45 50 55 60<br />

Angulo ( o )<br />

Fig. 1. a) Barrera rotacional del etano. b) Energía atómica de los átomos de carbono e hidrógeno en el etano durante la rotación.<br />

Energía atómica<br />

kcal/mol<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

b)<br />

0 5 10 15 20 25 30 35 40 45 50 55 60<br />

Angulo ( o )<br />

C<br />

H<br />

a)<br />

Butano<br />

b)<br />

Energía molecular<br />

(kcal/mol)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

Angulo ( o )<br />

120<br />

1,2-dicloroetano<br />

1,2-difluoroetano<br />

140<br />

160<br />

180<br />

Energía atómica<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

0<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

Angulo ( o )<br />

Butano<br />

1,2-dicloroetano<br />

1,2-difluroetano<br />

140<br />

160<br />

180<br />

Energía atómica<br />

(grupo)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

10<br />

30<br />

50<br />

70<br />

c)<br />

90<br />

110<br />

Angulo ( o )<br />

130<br />

150<br />

170<br />

CH3<br />

Cl<br />

F<br />

Fig. 2. a) Energía molecular relativa de etanos 1,2-disustituidos. b) Energía relativa (kcal/mol) del átomo de carbono en etanos 1,2-disustituidos.<br />

c) Energía relativa (kcal/mol) de X en etanos 1,2-disustituidos. d) Energía relativa (kcal/mol) de los átomos del 1,2-difluoroetano.<br />

Energía atómica<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0<br />

20<br />

40<br />

60<br />

d)<br />

80<br />

100<br />

Angulo ( o )<br />

120<br />

140<br />

160<br />

C<br />

F<br />

H5<br />

H7<br />

180<br />

se puede observar que el carbono se desestabiliza cuando la<br />

rotación se realiza del confórmero alternado al eclipsado<br />

mientras que el hidrógeno se estabiliza ligeramente en el<br />

mismo movimiento. Si se presentara una repulsión entre los<br />

átomos de hidrógeno o entre los enlaces C-H se observaría la<br />

desestabilización de este átomo. En cambio, el perfil de la<br />

energía del átomo de carbono reproduce el perfil del cambio<br />

en la energía molecular del etano durante la rotación. La principal<br />

contribución a la barrera rotacional se debe a los átomos<br />

de carbono, 4.9 kcal/mol, estos son los átomos causantes de la<br />

barrera rotacional del etano [1].<br />

B. Etanos disustituidos<br />

En el caso de los etanos disustituidos se siguió la misma<br />

metodología computacional que para el etano. Se realizaron<br />

optimizaciones parciales cada 10 grados manteniendo fijo el<br />

ángulo diedro X-C-C-X, donde X puede ser un átomo de<br />

cloro, flúor o un grupo metilo, y optimizando el resto de las<br />

variables. En la Fig. 2a se muestra el perfil de energía molecular<br />

durante la rotación de cero a 180 grados del butano, 1,2-<br />

dicloroetano y 1,2-difluoroetano. En la Tabla 2 se muestran<br />

los valores numéricos.<br />

En esta figura se observa que en los tres sistemas la diferencia<br />

entre el confórmero gauche y el anti es de 1.19<br />

kcal/mol para butano, 1.77 para el 1,2-dicloroetano y de -0.34<br />

para el 1,2-difluoroetano mientras que los valores experimentales<br />

son de 0.89 kcal/mol, 1.1 kcal/mol y -0.5 kcal/mol para<br />

estos sistemas respectivamente. Con lo anterior se comprueba<br />

que los cálculos realizados reproducen el comportamiento<br />

experimental de los tres sistemas.<br />

La misma concordancia se observa con los valores de las<br />

barreras. Aunque hay que tener en cuenta que el principal<br />

objetivo de la química computacional no es solo reproducir<br />

los hechos experimentales sino proveer la información que la<br />

experimentación no puede proporcionar.<br />

En la figura 2b se muestra el perfil de energía del átomo<br />

de carbono en los tres sistemas. Los perfiles coinciden con el<br />

comportamiento molecular durante la rotación. Para el caso<br />

donde los sustituyentes son metilo y cloro se observa que el<br />

átomo de carbono es más estable en el confórmero anti mien-


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 193<br />

Tabla 2. Energía del átomo de carbono de los etanos disustituidos 2 a 4 (Hartress) y diferencias energéticas (kcal/mol) calculadas a nivel HF/6-<br />

311++G (2d, 2p).<br />

X E (0°) E (gauche°) E (120°) E (180°)<br />

(2) CH 3 –37.68222 –37.69633 –37.69454 –37.70134<br />

11.9955 3.1413 4.2652 0.0<br />

(3) Cl –37.61019 –37.62993 –37.62555 –37.63410<br />

15.0031 2.6167 5.3633 0.0<br />

(4) F –37.34202 –37.37979 –37.37631 –37.37776<br />

22.4285 –1.2732 0.9130 0.0<br />

tras que en el caso del flúor el átomo de carbono lo es a los 90<br />

grados. En la figura 2c se muestra la respuesta del sustituyente<br />

a la rotación. En todos los casos, los sustituyentes contribuyen<br />

a la estabilización de la molécula. En el caso del cloro el cambio<br />

es del orden de 2 kcal/mol mientras que con el metilo es<br />

de 5 kcal/mol y con el flúor 7 kcal/mol. El hecho de que el<br />

confórmero en 70 grados sea el más estable para la molécula<br />

del 1,2-difluoroetano, se debe a un balance energético entre el<br />

átomo de carbono y el átomo de hidrógeno 7 (Figura 2d, ver<br />

Esquema 1 para la numeración), que no es antiperiplanar al<br />

átomo de flúor vecinal. En la figura 2d se observa que cuando<br />

el ángulo es 70 grados el efecto desestabilizador del hidrógeno<br />

7 es menor. Del análisis anterior se puede concluir que el<br />

comportamiento de los etanos disustituidos es producto del<br />

cambio energético del átomo de carbono durante de la<br />

rotación y no se debe a la repulsión entre los sustituyentes. El<br />

efecto gauche es ocasionado por el balance entre la energía del<br />

carbono y del hidrógeno que no mantiene una relación de<br />

antiperiplanaridad con el flúor vecinal.<br />

C. Ciclohexano<br />

En el ciclohexano (5), las contribuciones a la energía total<br />

son: –37.71790 hartrees del átomo de carbono, –0.66530 para<br />

el átomo de hidrógeno que asume la posición axial y –0.66302<br />

para el átomo de hidrógeno que asume la posición ecuatorial.<br />

El átomo de la posición axial se estabiliza por 1.43 kcal/mol.<br />

En el esquema 2 se muestran las numeraciones correspondientes<br />

a este y al resto de los sistemas heterocíclicos analizados<br />

adelante.<br />

La energía del grupo metileno es de –39.04622 hartrees,<br />

por lo que después de la suma de la contribución de cada uno<br />

de los metilenos, la energía total es de –234.27732 Hartrees.<br />

La diferencia con la energía total determinada por el cálculo<br />

es de 0.05 kcal/mol, diferencia ocasionada por el error en la<br />

integración numérica y que genera un valor razonable para los<br />

fines de análisis que persigue este trabajo.<br />

Se conoce que al átomo de deuterio prefiere asumir la<br />

posición ecuatorial y no la axial por 6.3 cal/mol [10] lo que<br />

prueba la mayor estabilidad del átomo de hidrógeno axial que<br />

recibe carga por transferencia electrónica del anillo (0.006 e).<br />

Otras consecuencias de esto, son el hecho de que el átomo de<br />

hidrógeno axial sufre corrimiento a campo alto en el espectro<br />

de resonancia magnética nuclear respecto al ecuatorial y que<br />

la constante de acoplamiento a un enlace 1 J C-Hax sea menor<br />

que la correspondiente constante ecuatorial. La diferencia en<br />

energías de punto cero hace que sea mayor la energía de activación<br />

necesaria para romper el enlace σ C-D que la C-H, la<br />

interacción σ C-H → σ* C-H puede ser más accesible en el caso<br />

de átomo de hidrógeno que para el de deuterio.<br />

D. 1,3-dioxano y sistemas relacionados<br />

La introducción de los átomos de oxígeno en el 1,3-dioxano<br />

(6, Esquema 1) produce un incremento sustancial de las<br />

energías de los átomos de carbono que se unen a átomos de<br />

oxígeno. La energía del átomo de carbono del metileno de la<br />

posición anomérica, que sufre una doble sustitución, se<br />

encuentra a 489.7 kcal/mol por arriba de la energía del carbono<br />

del ciclohexano. El carbono del metileno que se encuentra<br />

sustituido por un solo átomo de oxígeno (C 4,6 ) es 221.90<br />

kcal/mol superior respecto al del metileno del ciclohexano y<br />

finalmente, el carbono del metileno de la posición 5 se situó<br />

por debajo del metileno de referencia por 20.43 kcal/mol. De<br />

hecho el C 5 es el único átomo de carbono que proporciona una<br />

energía estabilizante al sistema.<br />

Por su parte, los átomos de hidrógeno muestran un comportamiento<br />

muy interesante. El átomo de hidrógeno H 2 ax es<br />

más estable que el ecuatorial (∆E = 11.15 kcal/mol), siendo a<br />

su vez más estable que el átomo de hidrógeno axial del ciclohexano<br />

por apenas 0.71 kcal/mol. El átomo H 2 ec es menos<br />

estable que el átomo de hidrógeno ecuatorial del ciclohexano<br />

por 9.01 kcal/mol A este tipo de metileno se le denominará<br />

normal por la semejanza que tiene en el orden de estabilidad<br />

(Hax más estable que Hec) con el metileno del ciclohexano.<br />

Para los metilenos C 4,6 el átomo de hidrógeno axial se ubica a<br />

2.4 kcal/mol por arriba del hidrógeno del ciclohexano. Este<br />

metileno es normal también por el orden de estabilidad de sus<br />

átomos de hidrógeno respecto al ciclohexano. Respecto al<br />

ciclohexano H 4,6 ec se ubica a 6.44 kcal/mol. H 4,6 ax pierde<br />

estabilidad respecto a H 2 ax por 1.91 kcal/mol y H 4,6 ec es más<br />

estable que H 2 ec por 2.57 kcal/mol.<br />

El metileno de C 5 es especialmente interesante pues el<br />

átomo de hidrógeno axial es el menos estable de los dos<br />

hidrógenos de este carbono (∆E = 1.44 kcal/mol), por lo que<br />

es el primer caso inverso con respecto al ciclohexano. En este<br />

caso el hidrógeno axial sufre una fuerte pérdida de estabilidad,<br />

y respecto a Hax del ciclohexano se ubica a 9.83 kcal/mol. El<br />

hidrógeno H5ec es más estable que H 5ax por 2.05 kcal/mol,<br />

pero menos estable que el hidrógeno Hec del ciclohexano por<br />

6.97 kcal/mol.


194 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Fernando Cortés Guzmán et al.<br />

Tabla 3. Energía de las moléculas 5 a 11 (Hartress) y diferencias energéticas (kcal/mol) calculadas a nivel HF/6-311++G (2d,2p).<br />

5 6 7 8<br />

X –37.71790 –75.60167 –397.59313 –75.56022<br />

C2 –36.95073 –37.75316 –37.33889<br />

Y –75.60168 –397.59312 –397.65709<br />

C4 –37.37647 –37.73416 –37.73722<br />

C5 –37.77724 –37.70975 –37.73878<br />

C6 –37.37647 –37.73420 –37.36389<br />

R 1 –0.66530 –0.66643 –0.63371 –0.64982<br />

R 2 –0.66302 –0.64866 –0.62279 –0.63655<br />

H4ax –0.66338 –64744 –0.64800<br />

H4ec –0.65276 –0.64024 –0.64039<br />

H5ax –0.64963 –0.64669 –0.64769<br />

H5ec –0.65192 –0.65554 –0.65353<br />

H6ax –0.66338 –0.64744 –0.66354<br />

H6ec –0.65276 –0.64025 –0.65290<br />

Contribucion de C –226.30740 –149.48091 –150.93127 –150.17878<br />

Contribucion de H –7.96992 –5.24892 –5.13410 –5.19242<br />

suma C+H –235.60564 –154.72983 –156.06537 –155.37120<br />

suma H axial –3.99180 –2.64282 –2.57528 –2.60905<br />

suma H ecuatorial 3.97812 –2.60610 –2.55882 –2.58337<br />

Energía Total calc. –234.27740 –305.93341 –951.25166 –628.58852<br />

suma anillo –234.27732 –305.93318 –951.25162 –628.58851<br />

Anillo sin susti.<br />

∆E calculo–suma (kcal/mol) 0.05 0.14 0.03 0.01<br />

9-ax 9-ec 10-ax 10-ec 11-ax 11-ec<br />

X –37.72787 –37.73089 –75.64077 –75.61807 –397.57724 –397.57803<br />

C2 –37.65739 –37.66397 –36.71803 –36.77767 –37.67141 –37.66836<br />

Y –37.72784 –37.73089 –75.64078 –75.61807 –397.57724 –397.57803<br />

C4 –37.71722 –37.71530 –37.39930 –37.38562 –37.74016 –37.73709<br />

C5 –37.71394 –37.71563 –37.76828 –37.76946 –37.70926 –37.71146<br />

C6 –37.71722 –37.71528 –37.39930 –37.38564 –37.74014 –37.73705<br />

H1ax –0.65812 –0.65422<br />

Hec –0.65102 –0.65256<br />

R 1 –459.72273 –0.65044 –459.78623 –0.64854 –459.69173 –0.62451<br />

R 2 –0.64946 –459.71381 –0.62796 –459.75496 –0.61338 –459.67302<br />

H3ax –0.65813 –0.65422<br />

H3ec –0.65100 –0.65256<br />

H4ax –0.65630 –0.66291 –0.64757 –0.65943 –0.63862 –0.64571<br />

H4ec –0.66009 –0.65714 –0.64878 –0.64572 –<br />

0.63756 –0.63641<br />

H5ax –0.66589 –0.66246 –0.64886 –0.64570 –0.64702 –0.64480<br />

H5ec –0.65966 –0.65946 –0.64612 –0.64761 –0.65264 –0.65262<br />

H6ax –0.65630 –0.66295 –0.64878 –0.65943 –0.63861 –0.64571<br />

H6ec –0.66009 –0.65712 –0.64757 –0.64572 –0.63756 –0.63641<br />

Contribución de C 226.26148 –226.27196 –149.28491 –149.31836 –150.86097 –150.85396<br />

Contribución de H –7.22606 –7.22602 –4.51564 –4.55215 –4.46539 –4.48617<br />

suma C+H –233.49812 –233.49798 –153.80055 –153.87051 –155.32636 –155.34013<br />

suma H axial –3.29474 –3.94716 –1.94521 –2.61310 –1.92425 –2.56073<br />

suma H ecuatorial –3.93132 –3.27886 –2.57043 –1.93905 –2.54114 –1.92544<br />

Energía Total calc. –693.21060 –693.21211 –764.86943 –764.86159 –1410.17273 –1410.16941<br />

suma anillo –233.48754 –233.49798 –305.08210 –305.10665<br />

–950.48084 –950.49619<br />

Anillo sin susti. –693.21027 –693.21179 –764.86833 –764.86161 –1410.17257 –1410.16921<br />

∆E calculo – suma 0.21 0.19 0.67 0.01 0.10 0.13<br />

∆E conformacional 0.95 0.0 0.0 4.92 0.0 2.09


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 195<br />

Tabla 4. Energía de los tres confórmeros del dimetoximetano y del ditiometilmetano (Hartrees) y diferencias energéticas (kcal/mol) calculadas a<br />

nivel HF/6-311++G (2d, 2p).<br />

H 8<br />

H 9<br />

H 1 1<br />

H 1 0<br />

H 9<br />

H 1 3<br />

H 6<br />

H 7<br />

X<br />

Y<br />

H 1 0<br />

H 1 3<br />

H 9<br />

H 8<br />

H 1 0<br />

X<br />

Y<br />

H 11<br />

H 1 2<br />

H 6 H 1 2<br />

Y<br />

X<br />

H 7<br />

H 8<br />

H 6<br />

H 7<br />

H 1 1<br />

H 1 2<br />

H 1 3<br />

6 ' ; X = O<br />

7 ' ; X = S<br />

6’-gg 6’-ga 6’-aa 7’-gg 7’-ga 7’-aa<br />

C1 –37.34031 –37.34316 –37.32673 –37.71170 –37.70986 –37.70586<br />

X –75.60142 –75.61180 –75.61553 –397.58213 –397.56662 –397.56666<br />

C3 –36.94529 –36.92899 –36.91324 –37.74114 –37.74700 –37.74700<br />

Y –75.60141 –75.60582 –75.61558 –397.58219 –397.57915 –397.56666<br />

C5 –37.34032 –37.32604 –37.32673 –37.71171 –37.70655 –37.70582<br />

H6 –0.64619 –0.65525 –0.65426 –0.62889 –0.63679 –0.63635<br />

H7 –0.64894 –0.64552 –0.64230 –0.62722 –0.62839 –0.62712<br />

H8 –0.65406 –0.64590 –0.65425 –0.63646 –0.62853 –0.63576<br />

H9 –0.65965 –0.65988 –0.66987 –0.62828 –0.63024 –0.63756<br />

H10 –0.65966 –0.66903 –0.66987 –0.62827 –0.63493 –0.63755<br />

H11 –0.64894 –0.65467 –0.65426 –0.62723 –0.63700 –0.63575<br />

H12 –0.64620 –0.64323 –0.64230 –0.62889 –0.62744 –0.62713<br />

H13 –0.65404 –0.65367 –0.65425 –0.63646 –0.63627 –0.63636<br />

Energía Total –268.04655 –268.04313 –268.03886 –913.37098 –913.36904 –913.36592<br />

Energía Total calc. –268.04643 –268.04296 –268.03917 –913.37057 –913.36877 –913.36558<br />

∆E calculo – suma 0.08 0.10 0.19 0.26 0.17 0.21<br />

∆E conformacional 0.0 2.17 4.56 0.0 1.21 3.18<br />

De esta manera, la estabilidad de Hax disminuye en la<br />

serie C 2 > C 4,6 > C 5 mientras que Hec varia en la serie C 4,6 ><br />

C 5 > C 2 .<br />

El término efecto Perlin normal se asigna a los grupos<br />

metileno en donde la constante de acoplamiento sigue el orden<br />

1J C-Hax < 1 J C-Hec , mientras que el término efecto Perlin inverso<br />

se usa para definir el orden relativo inverso: 1 J C-Hax > 1 J C-Hec<br />

[11].<br />

En el 1,3-dioxano, el efecto Perlin es normal para los<br />

metilenos C 2 y C 4,6 , mientras que es inverso para el metileno<br />

C 5 , hecho que es concordante con el orden de estabilidad relativa<br />

determinado para los diferentes átomos de hidrógeno del<br />

dioxano. El origen de esta estabilidad está en que los<br />

metilenos en C 2 y C 4,6 del dioxano, sufren la participación de<br />

la interacción estereoelectrónica n O →σ* C-Hax , mientras que<br />

el efecto Perlin inverso en el metileno C 5 se debe a la participación<br />

de la interacción homoanomérica n O → *σ* C-Hec como<br />

ha descrito Anderson et al. [12].<br />

Es importante destacar el hecho que el efecto de la sustitución<br />

del grupo metileno por oxígeno, independientemente<br />

de su origen, disminuye paulatinamente con la distancia y que<br />

la transferencia electrónica asociada con la interacción hiperconjugativa<br />

produce la estabilización del átomo que la recibe.<br />

Se sabe que el 1,3-dioxano (6) es más estable que el 1,4-<br />

dioxano debido a la participación de dos interacciones estereoelectrónicas<br />

de tipo n O →σ* C-O pues ambos átomos de<br />

oxígeno mantienen un par de electrones no compartido antiperiplanar<br />

a un enlace C-O. [13] En un sistema anular como en<br />

el 1,3-dioxano, es imposible tener el arreglo conformacional<br />

en el que los enlaces C-O se mantengan en conformación anti<br />

por lo que no es posible evaluar el efecto que tiene el cambio<br />

relativo en la orientación de los pares electrónicos no compartidos.<br />

Para evaluar el efecto que tiene la interacción estereoelectrónica<br />

n O →σ* C-H , se estudiaron las contribuciones a la<br />

energía molecular de los diferentes átomos de los tres confórmeros<br />

del dimetoximetano. En la Tabla 4 se incluyen las<br />

energías de los confórmeros 6'-g,g, 6'-g,a y 6'-a,a, mismas<br />

que guardan una razonable similitud con las previamente<br />

descritas [14]. El confórmero g,g es el más estable de los tres.<br />

Se acepta que dos interacciones estereoelectrónicas de tipo n O<br />

*σ* C-O participan en su estabilización y es el confórmero que<br />

se considera análogo al 1,3-dioxano, aunque los grupos metilo<br />

no mantienen la misma relación que guardan los metilenos de<br />

las posiciones 4 y 6 en este último. En el confórmero a,g, solo<br />

puede existir una interacción estereoelectrónica de tipo n O *<br />

→ σ* C-O , razón por la que este confórmero se encuentra 2.15<br />

kcal/mol por arriba del anterior. Finalmente, el menos estable<br />

de todos (a 4.82 kcal/mol respecto al más estable) es el confórmero<br />

a,a, en donde no existe posibilidad alguna de interacción<br />

n O →σ* C-O .<br />

En el confórmero g,g el carbono C 3 (anomérico) es el<br />

menos estable de los tres átomos de carbono que forman la<br />

molécula (∆E = 247.88 kcal/mol), evidenciando el efecto de la


196 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Fernando Cortés Guzmán et al.<br />

4<br />

5 6<br />

3<br />

X<br />

2<br />

1<br />

Hec<br />

Hec<br />

1 Hec<br />

X 6 5<br />

Y Hec Hec<br />

2 3<br />

Hax<br />

4<br />

Esquema 2. Numeración de los derivados del ciclohexano y heterociclohexanos.<br />

sustitución por átomos electronegativos. Este átomo de carbono<br />

tiene una estabilidad similar a la del carbono anomérico<br />

del 1,3-dioxano (∆E = 3.41 kcal/mol), y por lo tanto ambos<br />

presentan desestabilización con respecto al carbono del ciclohexano<br />

(∆E = 484.82 kcal/mol). Los carbonos 1 y 5 muestran<br />

también valores similares al de los metilenos C 4,6 del 1,3-<br />

dioxano, aun cuando la comparación debe hacerse con cuidado,<br />

pues un átomo de hidrógeno sustituye al átomo de carbono<br />

anular y su contribución es ligeramente desestabilizante con<br />

respecto a estos (∆E = 22.69 kcal/mol), y desestabilizante<br />

también con respecto al metileno de referencia en el ciclohexano.<br />

Por su parte, los átomos de oxígeno muestran una estabilidad<br />

similar a la que presentan los oxígenos en el 1,3-dioxano.<br />

Estos confórmeros prueban que los efectos de estabilización<br />

de los átomos de oxígeno y de desestabilización de<br />

los átomos de carbono, principalmente el anomérico, no son<br />

sólo producto de la conectividad, sino de la conformación. El<br />

átomo de carbono del metileno anomérico pierde estabilidad,<br />

al incrementar su energía en 20.11 kcal/mol, pero los átomos<br />

de oxígeno se estabilizan por 232.30 kcal/mol. Los carbonos<br />

de los grupos metilo pierden estabilidad también (∆E = 8.52<br />

kcal/mol). Por lo tanto, se puede concluir que el efecto<br />

anomérico ocasiona una notable estabilización de los heteroátomos<br />

a costa de la desestabilización del átomo central del<br />

segmento anomérico, en este caso del átomo de carbono y de<br />

los átomos de hidrógeno unidos a él.<br />

Con respecto a los átomos de hidrógeno del metileno<br />

anomérico en el confórmero g,g, cada uno es antiperiplanar a<br />

un enlace O-CH 3 y a un par electrónico no compartido, a<br />

diferencia del metileno anomérico del 1,3-dioxano en el que<br />

un átomo de hidrógeno es antiperiplanar a dos pares electrónicos<br />

no compartidos y el otro hidrógeno es antiperiplanar a dos<br />

enlaces C-H, pues los grupos metilo se mantienen lo más distantes<br />

posible en el sistema abierto. Desde el punto de vista<br />

energético, este par de átomos no está diferenciado. En el confórmero<br />

a,a, cada uno de los átomos de hidrógeno del<br />

metileno en cuestión es antiperiplanar a dos pares electrónicos<br />

no compartidos y susceptible de estabilizarse a través de dos<br />

interacciones nO →σ* C-H , por lo que el cálculo predice apropiadamente,<br />

además de una energía similar para ambos átomos<br />

de hidrógeno, una mayor estabilidad (∆E = 6.41 kcal<br />

respecto a los hidrógenos anoméricos del confórmero g,g). En<br />

el confórmero a,g, uno de los átomos de hidrógeno del<br />

metileno anomérico es susceptible de estabilizarse a través de<br />

dos interacciones n O →σ* C-H , mientras que el otro sólo puede<br />

estabilizarse a través de una interacción de este tipo. Estos<br />

Hax<br />

Hax<br />

Hax<br />

átomos de hidrógeno son diferenciados por el cálculo, siendo<br />

aquel que cuenta con dos interacciones n O →σ* C-H , más<br />

estable respecto al que solo tiene una (∆E = 5.73 kcal/mol).<br />

Los átomos de hidrógeno de los tres confórmeros pueden<br />

clasificarse en tres tipos:<br />

— Aquellos que son antiperiplanares a pares electrónicos<br />

localizados (que no toman parte en interacciones<br />

estereoelectrónicas de tipo n O →σ* C-O ); por lo tanto<br />

son antiperiplanares a buenos donadores y se estabilizan.<br />

— Aquellos que mantienen una relación de antiperiplanaridad<br />

con enlaces C-O con baja capacidad donadora<br />

y por lo tanto no ganan estabilidad.<br />

— Aquellos átomos de hidrógeno que son antiperiplanares<br />

a heteroátomos que se encuentran participando<br />

en interacciones de tipo nO →σ* C-O .<br />

En el confórmero g,a los átomos de hidrógeno con los<br />

números 6,7 y 8 (ver estructuras de la tabla 4 para la<br />

numeración) pertenecen al grupo metoxi donador (nO) mientras<br />

que los hidrógenos 11,12 y 13 pertenecen al grupo metoxi<br />

aceptor (σ* C-O ). Los átomos de hidrógeno H 6 y H 11 son<br />

antiperiplanares a pares electrónicos no compartidos que no<br />

participan en interacciones estereoelectrónicas y se ven estabilizados,<br />

al igual que H 13 . El hidrógeno H 7 es antiperiplanar al<br />

par electrónico no compartido que participa en la interacción<br />

n O →σ* O-C , por lo que no se ve estabilizado en igual magnitud<br />

que su análogos anteriores. Finalmente los hidrógenos H 8<br />

y H 12 al ser antiperiplanares a enlaces C-O se encuentran<br />

desestabilizados.<br />

En el confórmero g,g, los dos grupos metilo son equivalentes<br />

por simetría, sin embargo, existen los tres tipos de átomos<br />

de hidrógeno descritos anteriormente. Los átomos de<br />

hidrógeno H 8 y H 13 se estabilizan fuertemente debido a que<br />

son antiperiplanares a un par de electrones localizado. Los<br />

átomos de hidrógeno H 6 y H 12 pierden estabilidad debido a<br />

que se ubican en forma antiperiplanar a enlaces C-O, y finalmente<br />

los átomos de hidrógeno H 7 y H 11 se estabilizan poco,<br />

debido a que son antiperiplanares a enlaces que participan en<br />

la interacción n O →σ* O-C .<br />

En el tercer confórmero, los átomos de hidrógeno 8, 13, 6<br />

y 11 se encuentran dispuestos en forma antiperiplanar a pares<br />

electrónicos no compartidos, por lo que se estabilizan respecto<br />

a los hidrógenos H 7 y H 12 , los que al mantenerse en forma<br />

antiperiplanar a enlaces C-O, se encuentran por arriba en términos<br />

de energía.<br />

E. 1,3-ditiano y sistemas relacionados<br />

En el 1,3-ditiano (7, esquema 1) se observa la estabilización<br />

del carbono anomérico con respecto al carbono del ciclohexano<br />

(∆E = 22.13 kcal/mol), lo que contrasta con el 1,3-dioxano<br />

analizado previamente. Los átomos de carbono C 4,6 , que también<br />

ganan estabilidad, se ubican 10 kcal/mol por debajo del<br />

carbono de referencia pero, a diferencia del ciclohexano, el


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 197<br />

carbono 5 es el menos estable de todos los átomos de carbono<br />

(∆E = 5.11 kcal/mol). La diferencia entre la energía de los átomos<br />

de hidrógeno del metileno C 2 es de 6.85 kcal/mol, la de<br />

los metilenos C 4,6 es de 4.52 kcal/mol y la de C 5 es de 5.55<br />

kcal/mol. La energía relativa de los átomos de hidrógeno<br />

unidos a C 2 y C 4,6 indica que el átomo de hidrógeno axial es<br />

más estable que el correspondiente ecuatorial, mientras que<br />

para C 5 se invierte el orden de estabilidad.<br />

Es bien sabido que todos los metilenos en el 1,3-ditiano<br />

presentan un efecto Perlin de tipo inverso [15]. Sin embargo,<br />

el orden relativo de estabilidad de los átomos de hidrógeno de<br />

los diferentes metilenos es análogo al del dioxano (6), que<br />

muestra, como ya se dijo, efectos normales. Esto hace pensar<br />

que el efecto que da origen al efecto Perlin no solo ocasiona<br />

la estabilización del átomo de hidrógeno axial, sino que, cuando<br />

el carbono asociado al metileno gana estabilidad como en<br />

el 1,3-ditiano, en lugar de perderla como en el 1,3-dioxano, se<br />

observará un efecto Perlin inverso, pero de forma contraria, si<br />

el átomo de carbono se desestabiliza, entonces se observará un<br />

efecto Perlin normal. En el caso en que la estabilidad de los<br />

átomos de hidrógeno se invierte y el carbono se mantenga<br />

estabilizado, entonces se observará un efecto Perlin inverso<br />

(metileno 5 del 1,3-dioxano).<br />

Nuevamente, el problema del efecto anomérico en el segmento<br />

S-C-S no puede ser abordado con sólo estudiar al 1,3-<br />

ditiano, ya que es necesario tener un modelo en el que la interacción<br />

n S * → σ* C-S se pueda modificar. Para ello, se abordó<br />

el estudio de los tres confórmeros del ditiometilmetano (7’,<br />

Tabla 4). Como se puede apreciar en la Tabla 4, y en analogía<br />

al dimetoximetano, el confórmero g,g es más estable que el<br />

g,a por apenas 1.21 kcal/mol y 3.18 kcal/mol más estable que<br />

el a,a, poniendo de manifiesto la menor capacidad donadora<br />

del átomo de azufre [16].<br />

Como se puede apreciar en el confórmero g,g, análogo al<br />

1,3-ditiano (7), el carbono anomérico se estabilizar con respecto<br />

al carbono del ciclohexano (∆E = 14.58 kcal/mol), pero<br />

es menos estable que en el caso del metileno del 1,3-ditiano<br />

(∆E = 7.54 kcal/mol). Nuevamente, el efecto de la sustitución<br />

es estabilizante para el carbono anomérico del análogo de 7 y<br />

no como en el caso del análogo de 6 para el que es desestabilizante.<br />

Los átomos de azufre pierden estabilidad con respecto<br />

a los átomos correspondientes en el 1,3-ditiano (∆E = 6.90<br />

kcal/mol), comportamiento compartido por los átomos de carbono<br />

de los grupos metilo, aunque este comportamiento debe<br />

considerarse con cuidado dada la sustitución de un átomo de<br />

hidrógeno por un átomo de carbono. Al parecer, la pérdida de<br />

la estabilidad en el átomo de azufre ocasiona la estabilización<br />

de los átomos vecinos.<br />

En el confórmero aa, no existe la posibilidad de que se<br />

produzcan interacciones estereoelectrónicas siendo el orbital<br />

aceptor el σ* C-S . En este sistema, los átomos de azufre pierden<br />

estabilidad respecto al confórmero g,g (∆E = 9.71 kcal/mol),<br />

pero el carbono anomérico se estabiliza. Los átomos de carbono<br />

de los grupos metilo también sufren estabilización.<br />

En el confórmero g,a, un segmento mantiene la interacción<br />

estereoelectrónica n S →σ* C-S pero el otro no. La energía<br />

de los átomos involucrados da evidencia de esto. El átomo de<br />

azufre donador se estabiliza respecto al confórmro a,a, pero es<br />

menos estable que el mismo átomo en el confórmero g,g.<br />

Sorprendentemente, el átomo de azufre que sólo es aceptor en<br />

el segmento, es isoenergético con respecto al confórmero a,a,<br />

al igual que el carbono anomérico, pero el átomo de azufre<br />

que es donador se estabiliza por 7.84 kcal/mol, aproximándose<br />

energéticamente al carbono que es donador.<br />

El comportamiento de los átomos de hidrógeno de esta<br />

molécula es idéntico al de los átomos de hidrógeno del dimetoximetano,<br />

tomando sólo en consideración la menor capacidad<br />

donadora del átomo de azufre, y la estabilidad inversa de<br />

los átomos de carbono de los metilos.<br />

En el caso del dimetoximetano la estabilidad ganada por<br />

los átomos de oxígeno está ligada a la desestabilización que<br />

sufre de carbono anomérico, y ambos factores se incrementan<br />

en ausencia de la interacción estereoelectrónica n O →σ* C-O .<br />

En el caso del sistema con azufre, el comportamiento es<br />

contrario. El carbono anomérico se estabiliza en la medida en<br />

que se desestabiliza el heteroátomo involucrado en el segmento.<br />

Es claro que el mecanismo de estabilización no puede ser<br />

el mismo, aunque tienen en común su dependencia con la<br />

estereoquímica, ya que el comportamiento de la sustitución en<br />

el segmento es diferente. Eso puede deberse a que el átomo de<br />

carbono y el de azufre tienen una electronegatividad similar a<br />

diferencia de la relación entre átomo de oxígeno-carbono.<br />

F. 1,3-oxatiano<br />

Surge ahora la pregunta con respecto al comportamiento que<br />

experimentaría una molécula en donde los heteroátomos O y S<br />

se enfrentasen en un mismo segmento anomérico, pues si<br />

operan los mismos mecanismos de estabilización que en las<br />

moléculas ya analizadas, se esperaría la desestabilización del<br />

átomo de oxígeno con estabilización del carbono anomérico<br />

por participación de n O → σ* C-O , y la desestabilización del<br />

carbono anomérico con estabilización del átomo de azufre por<br />

participación del mecanismo n S →σ* C-S .<br />

Posiblemente este hecho contradictorio sea la explicación<br />

del porqué la síntesis de 1,3-oxatianos es complicada y los<br />

rendimientos son bajos cuando se le prepara por condensación<br />

de un hidroxitiol y un compuesto carbonílico o al hecho de<br />

que el 2-metoxi-1,3-ditiano no se pueda preparar por condensación<br />

entre ort<strong>of</strong>ormiato de metilo y el 3-hidroxipropanotiol,<br />

además de que es responsable de que los dos átomos de<br />

hidrógeno del metileno anomérico del 1,3-oxatiano sean sincrónicos<br />

en el espectro de 1H RMN [17].<br />

El compuesto 8 combina al átomo de oxígeno y el de<br />

azufre en un mismo segmento. El átomo de oxígeno pierde la<br />

estabilidad que gana en el dioxano 6 (∆E = 26.01 kcal/mol),<br />

mientras que el átomo de azufre gana estabilidad (∆E = 40.14<br />

kcal/mol). La estabilidad del carbono anomérico es intermedia<br />

con respecto a la de los carbonos anoméricos de 6 y 7, la cual<br />

es menor a la del ciclohexano (∆E = 237.84 kcal/mol). Este<br />

comportamiento sería el esperado a partir de la observación<br />

hecha con anterioridad, y pone en evidencia la participación<br />

de ambos mecanismos en la estabilización de 8.


198 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Fernando Cortés Guzmán et al.<br />

Por su parte, el metileno C4 (α respecto al átomo de<br />

azufre) es más estable que el carbono metilénico del ciclohexano,<br />

y de energía muy similar a la del C 5 (∆E = 12.12 y<br />

13.10 kcal/mol respectivamente). Finalmente, el metileno C 6<br />

(α al átomo de oxígeno) muestra una mayor desestabilización<br />

respecto al carbono de referencia (∆E = 222.14 kcal/mol).<br />

Desde el punto de vista experimental, se ha descrito un efecto<br />

Perlin compensado para C 2 y C 4 , inverso para C 5 y normal<br />

para C 6 , lo que aunado a lo descrito con anterioridad permite<br />

establecer relación entre el efecto Perlin y la estabilidad del<br />

átomo de carbono que constituye el metileno.<br />

Así, el metileno C 6 muestra Hax más estable que Hec (∆E<br />

= 6.68 kcal/mol) y al átomo de carbono que lo soporta más<br />

estable respecto al del metileno del ciclohexano. Por otra<br />

parte, el metileno C 4 muestra Hax 4.78 kcal/mol menos<br />

energía que Hec, pero el carbono es más estable que el átomo<br />

de carbono de referencia. Un hecho similar sucede en C5, en<br />

donde el carbono metilénico se encuentra más estabilizado<br />

con respecto a la referencia, pero Hax es menos estable que<br />

Hec (∆E = 3.66 kcal/mol), lo que produce un efecto compensado.<br />

Finalmente, el carbono anomérico de la posición 2 en la<br />

molécula 8 es menos estable que el carbono metilénico del<br />

ciclohexano y Hax es más estable que Hec (∆E = 8.32<br />

kcal/mol). En estas condiciones, una mayor desestabilización<br />

del C 2 ocasionaría un efecto Perlin normal, pero esta no es<br />

suficiente y se produce un efecto Perlin compensado.<br />

G. Sistemas sustituidos<br />

La energía total del confórmero axial del clorociclohexano<br />

axial (9-ax) al nivel de teoría empleado en este trabajo es de<br />

–693.21060 hartrees, mientras que la del confórmero ecuatorial<br />

(9-ec) es de –693.21210 hartrees, lo que lleva a una diferencia<br />

de 0.95 kcal/mol a favor del confórmero ecuatorial, de<br />

acuerdo con la observación experimental. (Signo negativo en<br />

la tabla 3). (∆E = 0.80 kcal/mol [18].<br />

La introducción del átomo de cloro ocasiona la desestabilización<br />

del átomo de carbono que lo soporta (C 2 ) siendo más<br />

afectado por la sustitución del confórmero axial que el ecuatorial,<br />

con una diferencia energética de 4.13 kcal/mol. Los carbonos<br />

C 3 y C 5 ganan estabilidad en el confórmero ecuatorial<br />

(∆E = 1.91, 1.06 kcal/mol), mientras que los carbonos C 4,6 son<br />

más estables en el axial por 1.2 kcal/mol. Nuevamente, el<br />

efecto del sustituyente disminuye al aumentar la distancia.<br />

Por su parte, el átomo de cloro es considerablemente más<br />

estable en el confórmero axial que en el ecuatorial por 5.6<br />

kcal/mol, hecho que contrasta con la idea general de que en el<br />

ciclohexano la preferencia es por la posición ecuatorial. Los<br />

hidrógenos de las posiciones 1,3,5 son más estables en ambos<br />

confórmeros que sus correspondientes hidrógenos ecuatoriales.<br />

Para el confórmero 9-ax: ∆E C1,3 = 4.47, ∆E C5 = 3.90; para 9-ec:<br />

∆E C1,3 = 1.04, ∆E C5 = 1.88 kcal/mol (la numeración no sigue la<br />

regla establecida, ver el Esquema 1). Sólo en el confórmero 9-<br />

ax para el metileno C 4,6 el orden de estabilidad se invierte, siendo<br />

más estable el hidrógeno ecuatorial con ∆E = 2.38 kcal/mol.<br />

∆E para C 4,6 en el confórmero 5-ec es de 3.60 kcal/mol.<br />

Un argumento para justificar la preferencia del sustituyente<br />

por la posición ecuatorial en el ciclohexano, es el de la<br />

repulsión estérica que puede sufrir con los átomos de hidrógeno<br />

syn-diaxiales de las posiciones 4,6. El análisis de la deslocalización<br />

electrónica permite establecer que los átomos<br />

involucrados no presentan una superficie interatómica, por lo<br />

que no hay una interacción enlazante entre ellos [19]. Posiblemente<br />

un efecto electrónico de naturaleza hiperconjugativa<br />

podría ser el origen de ésto. El hecho es que el átomo de<br />

hidrógeno de la posición axial del metileno C 3 en el confórmero<br />

9-ax se ubica 5.4 kcal/mol con respecto al hidrógeno<br />

en C5-eq. La saturación de la participación del enlace C2-Hax<br />

en la interacción σ C-H →σ* C-Cl y no con σ* C3-Hax puede ser el<br />

origen de esto.<br />

Con respecto al ciclohexano, los átomos de carbono C 2 ,<br />

C 4,6 y C 5 se desestabilizan en el confórmero 9-ax por 37.97,<br />

0.43 y 2.48 kcal/mol respectivamente, mientras que C 1,3 se<br />

estabiliza por 6.24 kcal/mol. En el confórmero ecuatorial<br />

todos los átomos de carbono se desestabilizan con las diferencias:<br />

33.84 para C 2 , 1.63 para C 4,6 y 1.42 para C 5 y 8.15 para<br />

C 1,3 kcal/mol respectivamente.<br />

De manera contraria a lo que experimenta el átomo de<br />

cloro, el átomo de hidrógeno de la posición C 2 es más estable<br />

en el confórmero ecuatorial que en el axial con ∆E = 0.61<br />

kcal/mol.<br />

Los átomos de hidrógeno de las posiciones 2ax, 3ec, 4ax<br />

y 4ec son más estables en el confórmero axial por 2.45, 1.85,<br />

2.15 y 0.13 kcal/mol respectivamente, mientras que el de la<br />

posición 2-ec es más estable en el confórmero ecuatorial por<br />

0.98 kcal/mol.<br />

En el ciclohexano, los seis átomos de carbono contribuyen<br />

a la estabilidad del sistema con –226.30740 Hartress,<br />

energía que está 28.82 kcal/mol por debajo de la contribución<br />

de los seis átomos de carbono del isómero 9-ax y 22.24<br />

kcal/mol con respecto a 9-ec. El anillo completo en el derivado<br />

9-ax contribuye con –233.49798 Hartrees (∆E = 6.55<br />

kcal/mol), lo que permite establecer que la preferencia conformacional<br />

observada proviene del balance entre la estabilización<br />

lograda por el átomo de cloro, que prefiere asumir la<br />

posición axial, y el anillo de ciclohexano, que es más estable<br />

cuando sufre la sustitución ecuatorial. En este caso, la contribución<br />

del anillo domina y la preferencia observada es la<br />

ecuatorial.<br />

El cálculo a nivel HF/6-311++G(2d,2p) establece que el<br />

confórmero 10-ax es más estable que su análogo 10-ec por<br />

prácticamente 5 kcal/mol. Como se ha visto en este análisis, la<br />

introducción de uno o dos átomos electronegativos ocasiona<br />

un aumento en la energía del átomo de carbono que los soporta.<br />

La introducción del átomo de cloro en la posición anomérica<br />

del dioxano ocasiona una pérdida adicional de estabilidad<br />

del átomo. Con respecto al 1,3-dioxano (6) el átomo C 2 del<br />

confórmero axial (10-ax) se desestabiliza por 146.02<br />

kcal/mol, mientras que el mismo átomo en el confórmero 10-<br />

ec se desestabiliza por 108.60 kcal/mol, poniendo de manifiesto<br />

que la desestabilización es aditiva con respecto a la<br />

incorporación de átomos electronegativos, y que el efecto


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 199<br />

desestabilizante es mayor para el confórmero con el átomo de<br />

cloro axial que para el ecuatorial (∆E = 37.41 kcal/mol).<br />

Por su parte, la diferencia energética entre los átomos de<br />

cloro es de 19.62 kcal/mol, contribuyendo más a la estabilidad<br />

molecular el átomo de cloro axial que el ecuatorial. El átomo<br />

de hidrógeno de la posición anomérica es más estable cuando<br />

adopta la conformación axial que la ecuatorial (∆E = 12.91<br />

kcal/mol).<br />

El átomo de cloro en el 1,3-dioxano axial es 39.85<br />

kcal/mol más estable que el átomo de cloro axial en el ciclohexano,<br />

mientras que para el átomo de cloro ecuatorial la diferencia<br />

es también a favor del dioxano por 25.82 kcal/mol. Los<br />

átomos de oxígeno juegan un papel fundamental en este caso.<br />

La diferencia energética entre los átomos de oxígeno de 10-ax y<br />

10-ec es de 14.24 kcal/mol en favor del confórmero axial.<br />

De esta forma, los tres átomos electronegativos que sustituyen<br />

en la posición anomérica aportan mayor estabilidad al<br />

confórmero axial que al ecuatorial, a pesar de ocasionar una<br />

fuerte desestabilización en el carbono anomérico.<br />

Con respecto al 1,3-dioxano, cada átomo de oxígeno del<br />

confórmero 10-ax se estabiliza por 24.54 kcal/mol con la<br />

introducción de un átomo de cloro, mientras que en 10-ec la<br />

estabilización es tan solo de 10.29 kcal/mol.<br />

El efecto estabilizante de la sustitución por un átomo<br />

electronegativo también afecta a los átomos de carbono C 4,6 y<br />

lo hace con más intensidad en el confórmero 10-ax (∆E =<br />

14.33 kcal/mol) que en el 6-eq (∆E = 5.74 kcal/mol), pero esta<br />

sustitución produce desestabilización con respecto al ciclohexano.<br />

Esta sustitución es desestabilizante para el carbono<br />

del metileno C 5 con respecto a 10, por 2.56 kcal/mol para 10-<br />

ax y 4.88 kcal/mol para 10-ec.<br />

Los átomos de hidrógeno de las posiciones 4,6-ax son<br />

más estables que los correspondientes ecuatoriales en el confórmero<br />

10-ec, (∆E = 8.60 kcal/mol) pero el orden se invierte<br />

en el confórmero 10-ax, en forma similar a como sucede en 9-<br />

ax. (∆E = 0.76 kcal/mol). H4ax en el confórmero 10-ec es<br />

7.44 kcal/mol más estable que en 10-ax, lo que implica que<br />

está operando un mecanismo similar al que opera en el clorociclohexano.<br />

En el metileno C 5 del confórmero 10-ax, Hax es más<br />

estable que Hec, siguiendo el comportamiento normal de un<br />

metileno en ciclohexano, pero el orden de estabilidad se<br />

invierte en 10-ec (∆E = 1.72 y 1.20 kcal/mol respectivamente)<br />

en donde la interacción homoanomérica no compite con la<br />

interacción n O →σ* C-Cl .<br />

La contribución a la estabilidad total de los átomos de<br />

carbono e hidrógeno del anillo del 1,3-dioxano en el confórmero<br />

axial es de –153.80055 Hartrees, mientras que la del<br />

confórmero ecuatorial es de –153.87051 (∆E = 43.90 kcal<br />

/mol). Cuando se incorporan los átomos de oxígeno, se produce<br />

la estabilización del confórmero ecuatorial, pero la diferencia<br />

disminuye sustancialmente: 6-ax: –305.08210; 6-ec:<br />

–305.10665; ∆E = 15.41 kcal/mol. El átomo de cloro, más<br />

estabilizante en el confórmero axial que en el ecuatorial como<br />

se indicó (∆E = 19.62 kcal/mol), invierte la preferencia conformacional<br />

observada.<br />

Los cálculos predicen mayor estabilidad del confórmero<br />

11-ax con respecto al 11-ec, por 2.09 kcal/mol. Este valor es<br />

consistente con el esperado pues se predice menor al del 2<br />

cloro-1,3-dioxano [20].<br />

La introducción del átomo de cloro en la posición anomérica<br />

del 1,3-ditiano ocasiona severos cambios con respecto a<br />

los sucedidos en el análogo con oxígeno. Por ejemplo, los átomos<br />

de azufre son más estables en el confórmero ecuatorial,<br />

pero el metino anomérico es más estable en el axial. Mientras<br />

que en los sistemas relacionados con el dioxano los heteroátomos<br />

de 10-ax y de 10-ec se estabilizan con respecto a 6, en<br />

11-ax y 11-ec son menos estables con respecto al 1,3-ditiano<br />

(7). Además, el átomo de cloro, que se estabiliza en el dioxano<br />

con respecto al ciclohexano, se desestabiliza en el ditiano.<br />

Sin embargo, nuevamente el átomo de cloro es más<br />

estable en el confórmero axial de que en el ecuatorial (∆E =<br />

11.74 kca/mol). Esta diferencia es de 19.76 en 10, mientras<br />

que a diferencia de 10, el átomo de azufre en 11 es apenas más<br />

estable en el confórmero ecuatorial que en el axial (∆E = 0.5<br />

kcal/mol). La diferencia energética entre los carbonos<br />

anoméricos es de 1.95 kcal/mol a favor del confórmero axial a<br />

diferencia del comportamiento del mismo metileno en 10.<br />

La diferencia energética de la contribución de todos los<br />

átomos de carbono exceptuando los de cloro (contribución del<br />

anillo), es de 9.63 kcal/mol a favor del confórmero ecuatorial,<br />

pero la estabilidad ganada por el átomo de cloro decide la tendencia<br />

conformacional. Este hecho también sucede en el dioxano,<br />

pero no en el ciclohexano, en donde la estabilidad ganada<br />

por el átomo de cloro no es suficiente para contrarrestar la<br />

estabilidad del anillo a ser sustituido en la posición ecuatorial.<br />

El átomo de cloro tiene la tendencia natural a ocupar la<br />

posición axial debido a que se estabiliza, independientemente<br />

del tipo de anillo, ocasionando desestabilización del carbono<br />

que sustituye. Este hecho obliga a redefinir el término Efecto<br />

Anomérico, ya que, al menos para el caso del cloro, la tendencia<br />

de este átomo en el ciclohexano también es por la posición<br />

axial. Es importante destacar que este análisis le da un origen<br />

común al efecto anomérico y a la preferencia conformacional<br />

del ciclohexano.<br />

El anillo es más estable cuando se le sustituye en posición<br />

ecuatorial, pero no el heteroátomo, ya que su estabilización se<br />

produce a expensas de la desestabilización anular. El efecto<br />

anomérico se observa cuando la estabilización del sustituyente<br />

tiene la capacidad de contrarrestar la desestabilización del heterociclo.<br />

En este sentido, el efecto anomérico es estabilizante,<br />

pues cuando opera el anillo no pierde sustancialmente la estabilidad<br />

al ocasionar la estabilización del heteroátomo.<br />

En los sistemas que incorporan átomos de oxígeno, todos<br />

los heteroátomos sustituyentes en la posición anomérica se<br />

estabilizan, mientras que el carbono anomérico sufre una<br />

fuerte desestabilización (la energía del C 2 en el confórmero 6-<br />

ax es la más elevada de todas la determinadas en este estudio).En<br />

el derivado del 1,3-ditiano se produce la estabilización<br />

del carbono anomérico, ocasionando la desestabilización de<br />

los sustituyentes heteroatómicos vecinos (después del C 2 del<br />

1,3-ditiano, el C2 de 11-ax es el carbono anomérico más


200 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Fernando Cortés Guzmán et al.<br />

estable del sistema), pero esta desestabilización afecta más a<br />

11-ec que a 11-ax.<br />

Conclusiones<br />

La teoría topológica de átomos en moléculas permite descomponer<br />

la energía molecular total en sus componentes atómicas<br />

gracias a su definición de un átomo en una molécula, de manera<br />

tal que es posible explicar en forma satisfactoria observaciones<br />

experimentales como la preferencia conformacional y<br />

el efecto Perlin.<br />

La barrera rotacional en el etano se produce por un cambio<br />

en la energía del átomo de carbono. Esta energía es mayor<br />

en el confórmero eclipsado que en el alternado, mientras que<br />

el hidrógeno presenta el comportamiento inverso, es más<br />

estable en el confórmero eclipsado que en el alternado. Esto<br />

contrasta con la idea de que la barrera se deba a repulsiones de<br />

los átomos de hidrógeno.<br />

Cuando se estudia a los etanos 1,2-disustituidos se<br />

encuentra que el causante de la barrera es también el átomo<br />

de carbono, ya que su energía presenta el mismo comportamiento<br />

que el perfil de energía de la molécula, mientras que<br />

los sustituyentes siempre tienen una contribución estabilizante.<br />

Este también es el origen del efecto gauche en el 1,2-<br />

difluoroetano.<br />

El efecto anomérico en segmentos que presentan átomos<br />

de oxígeno, se caracteriza por la desestabilización del átomo<br />

de oxígeno con estabilización del carbono anomérico por participación<br />

de la interacción estereoelectrónica n O →σ* C-O ,<br />

mientras que por una interacción de naturaleza opuesta, pero<br />

también de tipo estereoelectrónica, se espera desestabilización<br />

del carbono anomérico con estabilización del átomo de azufre.<br />

Ambos mecanismos muestran una notable dependencia de la<br />

estreoquímica molecular.<br />

Los átomos electronegativos tienen la tendencia a estabilizarse<br />

más cuando ocupan la posición axial y no la ecuatorial,<br />

no siendo necesaria la presencia de átomos electronegativos<br />

en la red anular para conseguir este efecto. Por esta razón, se<br />

debe revisar la definición del efecto anomérico, pues el átomo<br />

de cloro muestra preferencia por la posición axial (sustituyente<br />

electronegativo) independientemente si el anillo es<br />

heterocíclico o carbocíclico. La estabilización del sustituyente<br />

se produce a costa de la estabilidad del anillo, que, si presenta<br />

un mecanismo de estabilización interna, no perderá demasiada<br />

estabilidad (efecto anomérico) y entonces se observará el confórmero<br />

axial, mientras que cuando no existe este mecanismo,<br />

la desestabilización del anillo dominará a la estabilización del<br />

sustituyente y se observará la preferencia por la posición ecuatorial.<br />

Referencias<br />

1. Bader, R. F. W. Atoms in Molecules - A Quantum Theory; Oxford<br />

University Press 1990.<br />

2. Biegler-Koing, F. W.; Bader, R. F. W.; Tang, T. H. J. Comput.<br />

Chem. 1982, 3, 317-328<br />

3. Hirota, E.; Saito, S.; Endo, Y. J. Chem. Phys. 1979, 71, 1183-<br />

1187.<br />

4. Pitzer, R. M. Acc. Chem. Res. 1983, 16, 207-210. Goodman, L.;<br />

Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993.<br />

Isaacs, N. S. Physical Organic Chemistry; Longman Scientific<br />

1987. Murcko, M. A.; Castejon, H.; Wiberg, K. B. J. Am Chem.<br />

Soc. 1988, 110, 8029-8038. Reed, E. A.; Weinhold, F. Israel J.<br />

Chem. 1991, 31, 277-285. Bader, R. F. W.; Cheeseman, J. R.;<br />

Laidig, K. E.; Wiberg, K. B.; Breneman, C. J. Am. Chem. Soc.<br />

1990, 112, 6530-6536.<br />

5. Lowe, J. P. Prog. Phys. Org. Chem. 1968, 6, 1-80. Compton, D.<br />

A. C.; Montero, S.; Murphy, W. F. J. Phys. Chem. 1980, 84,<br />

3587-3591. Stidham, H. D.; During, J. R. Spectrochim. Acta<br />

1986, 42A, 105-111. Eliel, E. L.; Allinger, N. L.; Angyal, S. J.;<br />

Morrison, G. Conformational Analysis; Wiley: New York 1967.<br />

Mizushima, S. Structure <strong>of</strong> molecules and internal rotation;<br />

Academic 1954. Murcko, M. A.; Castejon, H.; Wiberg, K. B. J.<br />

Chem. Phys. 1996, 100, 16162-16168.<br />

6. Wolfe, S. Acc. Chem. Res. 1972, 5, 102. Juaristi, E.; Cuevas, G.<br />

The anomeric effect, CRC Press. 1994.<br />

7. Bushweller, C. H. In conformational behavoir <strong>of</strong> six member<br />

rings, Juaristi, E. Ed. VCH, 1995. Wiberg, K. B.; Hammer, J. D.;<br />

Castejon, H.; Bailey, W. F.; DeLeon, E. L.; Jarret, R. M. J. Org.<br />

Chem. 1999, 64, 2085-2095. Wiberg, K. B.; Castejon, H.; Bailey,<br />

W. F.; Ochterski, J. J. Org. Chem. 2000, 65, 1181-1187. Wiberg,<br />

K. B. J. Org. Chem. 1999, 64, 6387-6393.<br />

8. Kirby, A.J. The Anomeric Effect and Related Stereoelectronic<br />

Effects at Oxygen. Springer Verlag: Berlin, 1983. Szarek, W.A.;<br />

Horton, D., Eds. Anomeric Effect: Origin and Consequences;<br />

ACS Symposium Series No. 87; American <strong>Chemical</strong> Society:<br />

Washington, D.C. 1979. Juaristi, E.; Cuevas, G. The Anomeric<br />

Effect. CRC Press: Boca Raton, FL. 1994. Juaristi, E., Cuevas, G.<br />

Tetrahedron, 1992, 48, 5019-5087. Deslongchamps, P.<br />

Stereoelectronic Effects in Organic Chemistry, Pergamon: New<br />

York, 1983. Thatcher, G.R.R., (Ed), The Anomeric Effect and<br />

Associated Stereoelectronic Effects, ACS Symposium Series 539;<br />

American <strong>Chemical</strong> Society: Washington, 1993.<br />

9. Gaussian 98 (Revision A.x), M. J. Frisch, G. W. Trucks, H. B.<br />

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.<br />

Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C.<br />

Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,<br />

M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.<br />

Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.<br />

Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma,<br />

D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,<br />

J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu,<br />

A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.<br />

Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.<br />

Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B.<br />

G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-<br />

Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc.,<br />

Pittsburgh PA, 1998.<br />

10. Anet, FAL.; Kopelevich, M. J. Am. Chem. Soc. 1986, 108, 1355-<br />

1356. Anet, F.A.L., O’Leary, D.J. Tetrahedron Lett. 1989, 1059-<br />

1062.<br />

11. Perlin, A.S.; Casu, B. Tetrahedron Lett. 1969, 2921-2924,<br />

Cuevas, G.; Juaristi, E. Vela, A. J. Phys. Chem. A. 1999, 103,<br />

932-937. Juaristi, E.; Cuevas, G. Vela, A. J. Am. Chem. Soc.<br />

1994, 116, 5796-5804. Juaristi, E.; Cuevas, G.; Vela, A. J. Mol.<br />

Struct. (Theochem) 1997, 418, 231-241. Juaristi, E.; Cuevas, G.<br />

Tetrahedron Lett. 1992, 33, 1847-1850.


El análisis conformacional a la luz de la teoría topológica de átomos en moléculas... 201<br />

12. Anderson, J.E.; Bloodworth, A.J.; Cai, J.; Davies, A.G.; Tallant,<br />

N.A. J. Chem. Soc., Chem. Commun. 1992, 1689-1691. Anderson,<br />

J.E.; Bloodworth, A.J.; Cai, J.; Davies, A.G.; Schiesser, C.H.<br />

J. Chem. Soc., Perkin Trans. 2, 1993, 1927-1929.<br />

13. Dávalos, J.Z.; Flores, H.; Jiménez, P.; Notario, R.; Roux, M.V.;<br />

Juaristi, E.; Hosmane, R.S.; Liebman, J.F. J. Org. Chem. 1999,<br />

64, 9328-9336<br />

14. Westiuk, N.H.; Laidig, K.E.; Ma. J. Application <strong>of</strong> Quantum<br />

Theory <strong>of</strong> Atoms in Molecules to study <strong>of</strong> Anomeric Effect in<br />

Dimethoxymethane. En The Anomeric Effect and Associated<br />

Stereoelectronic Effects. Thatcher G.R.J. (Ed). ACS Symposium<br />

Series No. 539. Washington, D.C. 1992. p. 176.<br />

15. Cuevas, G.; Juaristi, E. J. Am. Chem. Soc. 2<strong>002</strong>, 124, 13088-<br />

13096.<br />

16. Salzner, U.; Schleyer, P.v.R. J. Am. Chem. Soc. 1993, 115,<br />

10231-10236. Salzner, U.; Schleyer, P.v.R. J. Org. Chem. 1994,<br />

59, 2138-2155.<br />

17. Juaristi E.; Cuevas G.; Flores-Vela A. Tetrahedron Lett. 1992,<br />

33, 6927-6930<br />

18. Eliel, E.L.; Wilen, S.H. Stereochemistry <strong>of</strong> Organic Compounds,<br />

Wiley: New York, 1994,<br />

19. Wiberg, K. B.; Castejon, H.; Bailey, W. F.; Ochterski, J. J. Org.<br />

Chem. 2000, 65, 1181-1187<br />

20. Se ha descrito que el efecto anomérico que involucra átomos de<br />

la tercera fila de la tabla periódica debe ser menor a los que generan<br />

los átomos de la segunda. Schleyer, P.v.R.; Gemís, J.E.;<br />

Spitznagel, G.W. J.Am. Chem. Soc. 1985, 107, 6393-6394.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 202-206<br />

Investigación<br />

Syn<strong>the</strong>sis and Properties <strong>of</strong> 2-diazo-1-[2-(thiophen-2-ylmethoxy)-<br />

phenyl]-ethanone. Intramolecular Cyclization Through a Carbenoid<br />

Intermediate<br />

Erick Cuevas Yañez, 1 Abraham Arceo de la Peña, 1 Joseph M. Muchowski 2 y Raymundo Cruz Almanza 1*<br />

1 Instituto de Química, UNAM. Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, México, D.F.<br />

Tel. (52) (55) 5622-4408; Fax: (52) (55) 5616-2217. E-mail: raymundo@servidor.unam.mx<br />

2 Roche Biosciences Department <strong>of</strong> Chemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304-1320, USA.<br />

Recibido el 24 de junio del 2003; aceptado el 10 de julio del 2003<br />

Dedicated to Dr. Alfonso Romo de Vivar Romo<br />

Resumen. Se describe la síntesis de la 2-diazo-1-[2-(2-ti<strong>of</strong>enilmetoxi)-fenil]-etanona<br />

(1) la cual involucra la reacción de sustitución<br />

nucle<strong>of</strong>ílica aromática del (2-ti<strong>of</strong>enil) metóxido de sodio con 2-flurorobenzaldehído,<br />

la oxidación en condiciones suaves del grupo aldehído<br />

al ácido carboxílico y posteriormente la transformación a α-diazocetona<br />

a través de un anhídrido carbónico-carboxílico como intermediario<br />

de reacción. El tratamiento del compuesto 1 con cantidades<br />

catalíticas de acetato de rodio (II) da la ti<strong>of</strong>enilmetil benz<strong>of</strong>uranona<br />

10 por medio de una transposición sigmatrópica [2,3] del iluro de<br />

oxonio 9 derivado del carbenoide de rodio que se postula como intermediario<br />

de reacción.<br />

Palabras clave: α-diazocetona, ciclización, carbenoide de rodio.<br />

Abstract. The syn<strong>the</strong>sis <strong>of</strong> 2-diazo-1-[2-(thiophen-2-ylmethoxy)-<br />

phenyl]-ethanone (1) is described. The procedure involves an aromatic<br />

nucleophilic substitution between <strong>the</strong> sodium 2-thiophenyl<br />

methoxide and 2-fluorobenzaldehyde, <strong>the</strong> subsequent mild-condition<br />

oxidation to <strong>the</strong> corresponding carboxylic acid, and final transformation<br />

through carbonic-carboxylic anhydride intermediate to <strong>the</strong> a-diazoketone.<br />

Treatment <strong>of</strong> compound 1 with catalytic amounts <strong>of</strong> rhodium<br />

(II) acetate gives <strong>the</strong> thienylmethyl benz<strong>of</strong>uranone 10 which<br />

comes from <strong>the</strong> [2,3] sigmatropic rearrangement <strong>of</strong> <strong>the</strong> oxonium ylide<br />

9 derived from <strong>the</strong> rhodium carbenoid that is postulated as reaction<br />

intermediate key.<br />

Key words: α-diazoketones, cyclization, rhodium carbenoid.<br />

Introduction<br />

The diazo group chemistry has taken a new interest as a consequence<br />

<strong>of</strong> <strong>the</strong> development <strong>of</strong> catalytic methods with transition<br />

metals that convert diazoketones in valuable tools in<br />

organic syn<strong>the</strong>sis with several applications in homologations,<br />

X-H bond insertions, ylide formations, and reactions with<br />

alkenes and aromatic compounds [1].<br />

Our interest has especially been focused in aryl and heteroaryl<br />

diazoketone syn<strong>the</strong>sis since <strong>the</strong>re are few examples<br />

that show <strong>the</strong> reactivity <strong>of</strong> this kind <strong>of</strong> compounds. Recently<br />

Doyle and coworkers [2] took advantage <strong>of</strong> <strong>the</strong> furan reactivity<br />

to prepare a macrocycle by <strong>the</strong> intramolecular insertion <strong>of</strong><br />

<strong>the</strong> rhodium carbenoid from a w-furanyl diazoketone. On <strong>the</strong><br />

o<strong>the</strong>r hand, Capretta and coworkers [3] reported that <strong>the</strong> treatment<br />

<strong>of</strong> diverse diazoalkanoyl thiophenes with catalytic rhodium<br />

(II) acetate gave <strong>the</strong> intramolecular cyclization compounds<br />

as major reaction products, and <strong>the</strong>y isolated 5 and 6<br />

mermbered-fused rings to thiophene.<br />

structure a thiophene ring and a diazo group, in such a way<br />

<strong>the</strong>y could react to each o<strong>the</strong>r to form 5 or 6 membered rings<br />

when a carbenoid from a rhodium or copper salt were generated.<br />

For this purpose we believed molecule 1 was appropriate<br />

for <strong>the</strong> study and we proceeded to prepare it.<br />

Initially, we reacted <strong>the</strong> sodium salt <strong>of</strong> 2-hydroxymethylthiophene<br />

2 with 2-fluorobenzaldehyde 3 to obtain <strong>the</strong> alkyl<br />

aryl e<strong>the</strong>r 4 in 73 % yield through a nucleophilic aromatic<br />

substitution. Previously, <strong>the</strong> substitution on 2-fluorobenzaldehyde<br />

was reported as a process that readily occurs [4]. The 2-<br />

hydroxymethylthiophene used in this part was prepared by<br />

Fig. 1.<br />

1<br />

O<br />

O<br />

N 2<br />

S<br />

Results and discussion<br />

Taking <strong>the</strong> preceding reactions and as a part <strong>of</strong> a project that<br />

involves a study <strong>of</strong> <strong>the</strong> ω-diazoalkanoylthiophene reactivity,<br />

we were interested in syn<strong>the</strong><strong>size</strong> a molecule which had in <strong>the</strong>ir<br />

S<br />

2<br />

Scheme 1<br />

OH<br />

3<br />

O<br />

F<br />

H<br />

NaH<br />

DMF<br />

4<br />

O<br />

O<br />

H<br />

S


Syn<strong>the</strong>sis and properties <strong>of</strong> 2-Diazo-1-[2-(thiphen-2-ylmethoxy)-phenyl]... 203<br />

Scheme 2<br />

5<br />

Scheme 3<br />

O<br />

O<br />

4<br />

O<br />

O<br />

OH<br />

H<br />

S<br />

S<br />

AgNO 3 , NaOH<br />

THF-H 2 O<br />

N-methylmorpholine<br />

ClCO 2 Et,e<strong>the</strong>r<br />

0°C, 15 min<br />

Table 1. Crystal data for compound 1.<br />

Crystal data<br />

6<br />

1<br />

5<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

OEt<br />

S<br />

S<br />

CH 2 N 2 /e<strong>the</strong>r<br />

Empirical formula<br />

C 13 H 10 N 2 O 2 S<br />

Formula weight 258.29<br />

Crystal color<br />

Colorless needle<br />

Crystal system<br />

Orthorrombic<br />

Space group<br />

Pbca<br />

a, Å 5.5049(2) α = 90°<br />

b, Å 17.914(2) β = 90°<br />

c, Å 24.750(1) γ = 90°<br />

Volume, Å 3 2440.8(3)<br />

Z 8<br />

Density (calcd.), g / cm 3 1.406<br />

Absorption coefficient, (mm –1 ) 2.327<br />

F(000) 1072<br />

Crystal Size (mm) 0.56 × 0.12 × 0.07<br />

Data collection<br />

Temperature, K 292(2)<br />

Radiation, l (Å) 1.54178<br />

θ min, max,° 1.50,56.50<br />

Index ranges<br />

–5 [h [5,-19 [k[19,-26[1[26<br />

Reflections Collected 3015<br />

Independent reflections 1508 (R int = 0.0830)<br />

Observed reflects[I > 2.0 σ (1)] R1 = 0.0723, wR2 = 0.2159<br />

Refinement<br />

Data-to-parameter ratio 1508 / 0 / 164<br />

R, wR2 R1 = 0.0723, wR2 = 0.2159<br />

G.O.F. 0.996<br />

Largest diff. peak,hole,e Å –3 0.264,-0.288<br />

N 2<br />

S<br />

sodium borohydride reduction <strong>of</strong> thiophene-2-carboxaldehyde,<br />

which is commercially available [5].<br />

The next step in <strong>the</strong> syn<strong>the</strong>tic route consisted on <strong>the</strong> aldehyde<br />

group oxidation in molecule 4 to <strong>the</strong> corresponding carboxylic<br />

acid. For this purpose, aldehyde 4 was treated with<br />

silver oxide, which was prepared in situ from <strong>the</strong> reaction <strong>of</strong><br />

silver nitrate and sodium hydroxide. The oxidation reaction<br />

was performed at room temperature during 48 h in THF. After<br />

work up, benzoic acid 5 was obtained in 38 % yield.<br />

Finally, <strong>the</strong> thiophen-2-ylmethoxy benzoic acid 5 became<br />

diazoketone 1 by <strong>the</strong> reaction with N-methylmorpholine and<br />

ethyl chlor<strong>of</strong>ormate in e<strong>the</strong>r at 0 °C during 15 min, and subsequent<br />

addition <strong>of</strong> an excess <strong>of</strong> e<strong>the</strong>real diazomethane (10:1) to<br />

<strong>the</strong> carbonic-carboxylic anhydride 6 which is postulated like<br />

<strong>the</strong> acylating agent. This technique has been successful in <strong>the</strong><br />

syn<strong>the</strong>sis <strong>of</strong> diverse pirrolyl diazoketones [6], and in this case<br />

gave quantitative yield.<br />

Compounds 1, 2, 4 and 5 were characterized by <strong>the</strong> conventional<br />

spectroscopic techniques, and especially <strong>the</strong> diazoketone<br />

1 was a crystalline solid which was studied by X-ray<br />

diffraction. The compound structure is represented in Fig. 2<br />

and some important crystallographic data are in Table 1.<br />

The X-ray study revealed some interesting data about <strong>the</strong><br />

compound structure. For example, we observed that <strong>the</strong> angle<br />

formed between <strong>the</strong> nitrogen atoms <strong>of</strong> <strong>the</strong> diazo group is<br />

177°, which indicates a strong tendency toward <strong>the</strong> lineal<br />

structure given by a resonant structure that favors two consecutive<br />

double bonds, one between C2 and N1 and <strong>the</strong> o<strong>the</strong>r<br />

between N1 and N2. Additionally, <strong>the</strong> bond distance between<br />

C1 and C2 is shorter than o<strong>the</strong>r distances with sp 2 atoms, such<br />

as <strong>the</strong> C1-C3 bond distance. This can be explained by <strong>the</strong> resonance<br />

effects that should exist between <strong>the</strong> carbonyl group<br />

and <strong>the</strong> diazo group. In Table 2 some relevant angle and bond<br />

distances from <strong>the</strong> X-Ray study are presented for molecule 1.<br />

In <strong>the</strong> Fig. 3 we also could appreciate <strong>the</strong> packing cell representation<br />

for compound 1 that shows a great separation<br />

among <strong>the</strong> ring substituents. This suggests a strong repulsion<br />

between <strong>the</strong> ortho substituents which is probably due to <strong>the</strong><br />

steric effect, and is reflected in <strong>the</strong> dihedral angle (C1-C3-C4-<br />

O2) with 8 ° instead <strong>of</strong> 0 °. Therefore, <strong>the</strong> substituents are not<br />

coplanar.<br />

It is important to mention that <strong>the</strong>re are not reported<br />

examples where a diazoketone has been studied and characterized<br />

by X-ray diffraction. Thus, <strong>the</strong> present work contributes<br />

with new data about <strong>the</strong> space distribution that presents this<br />

functional group.<br />

Once prepared, diazoketone 1 reacted with catalytic a-<br />

mounts <strong>of</strong> rhodium (II) acetate. At <strong>the</strong> moment, when we carried<br />

out <strong>the</strong> reaction, we considered two possible reaction<br />

routes: <strong>the</strong> first consisted on <strong>the</strong> C-H insertion on <strong>the</strong> benzylic<br />

position <strong>of</strong> <strong>the</strong> carbenoid species 7 that it is formed from <strong>the</strong><br />

diazoketone 1 and <strong>the</strong> catalyst, which would give thienylchromanone<br />

8 as <strong>the</strong> major product; while in <strong>the</strong> second route we<br />

intended <strong>the</strong> formation <strong>of</strong> an oxonium ylide (9) after a sigmatropic<br />

rearrangement [2, 3] would afford benz<strong>of</strong>uranone 10. In<br />

this respect, we were not able to predict <strong>the</strong> reaction course


204 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Erick Cuevas Yañez et al.<br />

Table 2. Selected bond distances (Å) and angles (°) for 1.<br />

Bond<br />

Distance (Å)<br />

S1-C13 1.689(8)<br />

O1-C1 1.221(9)<br />

O2-C9 1.440(8)<br />

N1-C2 1.316(9)<br />

C1-C3 1.483(9)<br />

C3-C4 1.409(9)<br />

C3-C8 1.407(10)<br />

C4-C5 1.370(9)<br />

S1-C10 1.707(9)<br />

O2-C4 1.366(9)<br />

N1-N2 1.117(8)<br />

C1-C2 1.433(12)<br />

C9-C10 1.487(10)<br />

C11-C12 1.419(11)<br />

Fig. 2. ORTEP representation for compound 1.<br />

because <strong>the</strong>re are not overwhelming evidences about <strong>the</strong> reaction<br />

mechanism. The McKervey group [7-9] found that varying<br />

<strong>the</strong> catalyst <strong>the</strong>y could modify <strong>the</strong> course <strong>of</strong> this kind <strong>of</strong><br />

reactions to obtain both chromanones and benz<strong>of</strong>uranones.<br />

However, <strong>the</strong> five-membered ring formation and subsequent<br />

Stevens rearrangement is more common in <strong>the</strong>se processes<br />

[10].<br />

Treatment <strong>of</strong> diazoketone 1 with rhodium (II) acetate in<br />

dichloromethane at room temperature under inert atmosphere<br />

gave a reaction product whose physical and spectroscopic<br />

constants did not correspond to those expected for chromanone<br />

8 as have been reported previously [11, 12]. In this way,<br />

spectroscopic data indicated that <strong>the</strong> compound obtained was<br />

thienylmetylbenz<strong>of</strong>uranone 10. Additionally, Gefflaut and<br />

Périe [13] informed a similar cyclization process when <strong>the</strong><br />

diazoketone derived from 2-benzyloxybenzoic acid reacted<br />

with catalytic rhodium (II) acetate. Therefore, in this case <strong>the</strong><br />

carbenoid 7 derived from <strong>the</strong> diazoketone 1 reacted in an<br />

intramolecular way with <strong>the</strong> phenoxy oxygen to generate a<br />

five-membered ring and also an oxonium ylide which is<br />

kinetically favored and is rearranged later to <strong>the</strong> benz<strong>of</strong>uranone<br />

10.<br />

In conclusion, this work presents <strong>the</strong> first syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong><br />

2-diazo-1-[2-(thiophen-2-ylmethoxy)-phenyl]-ethanone 1 and<br />

its intramolecular cyclization to <strong>the</strong> benz<strong>of</strong>uranone 10, which<br />

expands <strong>the</strong> possibilities to carry out reactivity studies with<br />

transition metals and to syn<strong>the</strong><strong>size</strong> some derivatives from this<br />

molecule.<br />

Experimental section<br />

Bond Angle (°)<br />

C13-S1-C10 92.0(5)<br />

N2-N1-C2 177.0(10)<br />

O1-C1-C3 121.6(8)<br />

N1-C2-C1 115.0(8)<br />

C8-C3-C1 116.4(6)<br />

O2-C4-C5 124.0(7)<br />

C5-C4-C3 120.6(7)<br />

C11-C10-C9 126.1(8)<br />

C9-C10-S1 122.3(6)<br />

C4-O2-C9 117.4(5)<br />

O1-C1-C2 121.0(6)<br />

C2-C1-C3 117.3(7)<br />

C8-C3-C4 117.9(6)<br />

C4-C3-C1 125.7(7)<br />

O2-C4-C3 115.4(6)<br />

O2-C9-C10 108.2<br />

C11-C10-S1 111.5(6)<br />

The starting materials were purchased from Aldrich <strong>Chemical</strong><br />

Co. and were used without fur<strong>the</strong>r purification. Solvents were<br />

distilled before use, e<strong>the</strong>r and tetrahydr<strong>of</strong>uran (THF) were<br />

dried over sodium using benzophenone as indicator. Diazomethane<br />

was prepared from N-methyl-N-nitroso-p-toluenesulfonamide<br />

(Diazald ®) using a minimum amount <strong>of</strong> water and<br />

ethanol as co-solvent, and dried over KOH pellets before use.<br />

Silica gel (230-400 mesh) and neutral alumina were purchased<br />

from Merck. Silica plates <strong>of</strong> 0.20 mm thickness were used for<br />

thin layer chromatography. Melting points were determined<br />

with a Fisher-Johns melting point apparatus and <strong>the</strong>y are<br />

uncorrected. 1 H and 13 C NMR spectra were recorded using a<br />

Varian Gemini 200, chemical shifts (d) are given in ppm relative<br />

to TMS as internal standard (0.00). For analytical purposes,<br />

mass spectra were recorded on a JEOL JMS-5X 10217 in<br />

<strong>the</strong> EI mode, 70 eV, 200 °C via direct inlet probe. Only molecular<br />

and parent ions (m/z) are reported. IR spectra were<br />

recorded on a Nicolet Magna 55-X FT instrument. For X-Ray<br />

diffraction studies, crystals <strong>of</strong> compound 1 were obtained by<br />

slow evaporation <strong>of</strong> a dilute ethanol solution, and reflections<br />

were acquired with a Nicolet P3 / F diffractometer. Three<br />

standard reflections every 97 reflections were used to monitor<br />

crystal stability. The structure was solved by direct methods,<br />

missing atoms were found by difference-Fourier syn<strong>the</strong>sis,<br />

and refined on F2 by a full-matrix least-squares procedure<br />

using an isotropic displacement parameters using SHELX-97.


Syn<strong>the</strong>sis and properties <strong>of</strong> 2-Diazo-1-[2-(thiphen-2-ylmethoxy)-phenyl]... 205<br />

washed with water (150 mL), dried over Na 2 SO 4 and <strong>the</strong> solvent<br />

was removed in vacuo. Purification by column chromatography<br />

(SiO 2 , hexane / AcOEt 9:1) yield a colorless oil (2.67<br />

g, 73 %). IR (CHCl 3 , cm –1 ). 3105, 1687. 1 H NMR (CDCl 3 ,<br />

200 MHz) δ 5.35 (s, 2H), 7.07 (m, 3H), 7.35 (dd, 2H), 7.55(m,<br />

1H), 7.85 (m, 1H), 10.5 (s, 1H). MS [EI+] m/z (%): 218 [M]+<br />

(10), 97 [M-C 7 H 5 O 2 ] + (100).<br />

2-(Thiophen-2-ylmethoxy)benzoic acid (5). Silver nitrate<br />

(8.4 g, 49.5 mmol) was added to a solution <strong>of</strong> sodium hydroxide<br />

(2.97 g, 74.2 mmol) in water (75 mL). The mixture was<br />

added to a solution <strong>of</strong> compound 4 (2.67 g, 12.3 mmol) in<br />

THF (14 mL) and <strong>the</strong> resulting mixture was stirred for 48 h at<br />

room temperature. The mixture was filtered and acidified to<br />

pH = 4, and <strong>the</strong> product was extracted with ethyl acetate (3 ×<br />

100 mL). The organic phase was dried over Na 2 SO 4 and <strong>the</strong><br />

solvent was removed in vacuo. The product was purified by<br />

crystallization (1.1 g, 38 %). m.p. 100 °C. IR (CHCl 3 , cm –1 ).<br />

3511, 1664. 1 H NMR (CDCl 3 , 200 MHz) δ 5.46 (s, 2H), 7.05<br />

(m, 3H), 7.29 (dd, 1H), 7.45 (m, 1H), 7.6 (m, 1H), 8.22 (dd,<br />

1H). MS [E I+] m/z (%): 234 [M]+ (7), 97 [M-C 7 H 5 O 3 ] +<br />

(100).<br />

Fig. 3. Representation <strong>of</strong> <strong>the</strong> packing cell <strong>of</strong> compound 1.<br />

2-Hydroxymethylthiophene (2). To a suspension <strong>of</strong> sodium<br />

borohydride (0.339 g, 8.92 mmol) in absolute ethanol (9 mL)<br />

a solution <strong>of</strong> 2-thiophenecarboxaldehyde (2 g, 17.85 mmol) in<br />

ethanol (25 mL) was added maintaining <strong>the</strong> temperature<br />

below 25 °C. The resulting mixture was <strong>the</strong>n heated at 50 °C<br />

during 1 h. The solvent was removed in vacuo, and water (50<br />

mL) was added, <strong>the</strong> solution acidified with diluted HCl (10 %)<br />

to pH = 5. The product was extracted with e<strong>the</strong>r (3 × 50 mL),<br />

<strong>the</strong> organic phase was dried over Na 2 SO 4 and <strong>the</strong> solvent was<br />

removed in vacuo to yield a colorless oil (1.93 g, 95 %),<br />

which was used without additional purification. IR (CHCl 3 ,<br />

cm –1 ). 3434, 2930, 1668. 1 H NMR (CDCl 3 , 200 MHz) δ 2.25<br />

(s, 1 H), 4.79 (s, 1H), 6.98 (m, 2H), 7.33 (m, 1H). MS [EI+]<br />

m/z (%): 114 [M] + (100), 113 [M - H] + (40).<br />

2-Diazo-1-[2-(thiophen-2-ylmethoxy)-phenyl]-ethanone<br />

(1). An ice-cold solution <strong>of</strong> <strong>the</strong> acid 5 (0.28 g, 1.2 mmol) in<br />

freshly distilled e<strong>the</strong>r (2 mL) was treated successively with<br />

ethyl chlor<strong>of</strong>ormate (0.14g, 1.3 mmol) and N-methylmorpholine<br />

(0.12 g, 1.2 mmol), <strong>the</strong> mixture was stirred under nitrogen<br />

atmosphere for 15 min at 0 °C, <strong>the</strong>n an e<strong>the</strong>r solution <strong>of</strong> diazomethane<br />

(12 mmol) from N-methyl-N-nitroso-4-toluenesulfonamide<br />

was added at 0 °C. A vigorous evolution <strong>of</strong> nitrogen<br />

occurred, and <strong>the</strong> mixture was allowed to warm to room temperature<br />

overnight. The solvent was removed in vacuo and <strong>the</strong><br />

product was purified by column chromatography (SiO 2 , hexane<br />

/ AcOEt 9:1) to yield a yellow crystalline product (100<br />

%).m. p 70 °C. IR (CHCl 3 , cm –1 ). 3139, 2104, 1762. 1 H NMR<br />

(CDCl 3 , 200 MHz) δ 5.27 (s, 1H), 5.46 (s, 2H), 7.05 (m, 3H),<br />

7.29 (dd, 1H), 7.45(m, 1H), 7.6 (m, 1H), 8.22 (dd, 1H). MS<br />

[EI+] m/z (%): 258 [M] + (5), 120 [C 7 H 4 O 2 ] + (100).<br />

2-(Thiophen-2-ylmethyl)benz<strong>of</strong>uran-3-one (10). A solution<br />

<strong>of</strong> <strong>the</strong> diazopropanone 1 (0.3096 g, 1.2 mmol) in dry CH 2 Cl 2<br />

2-(Thiophen-2-ylmethoxy)benzaldehyde (4). To a suspension<br />

<strong>of</strong> sodium hydride (0.97 g, 20.3 mmol) in DMF (17 mL)<br />

a solution <strong>of</strong> 2-hydroxymethylthiophene 2 (1.93 g, 16.9<br />

mmol) in DMF (17 mL) was added at 0 °C, <strong>the</strong> resulting mixture<br />

was stirred under a nitrogen atmosphere at room temperature<br />

for 15 min. The mixture was cooled at 0 °C and 2-fluorobenzaldehyde<br />

(2.2 g, 17.8 mmol) was added. The resulting<br />

mixture was stirred for additional 15 minutes at room temperature.<br />

The reaction was quenched by addition <strong>of</strong> water (100<br />

mL) and diluted HCl (10 %) to pH = 5. The aqueous phase<br />

was extracted with e<strong>the</strong>r (3 × 75 mL), <strong>the</strong> organic phase was<br />

O<br />

O<br />

N 2 Rh<br />

Rh 2 (OAc) 4<br />

H<br />

O<br />

S -N 2 O<br />

S<br />

1<br />

7<br />

Rh 2 (OAc) 4 -N 2<br />

O<br />

O<br />

Rh<br />

-Rh 2 (OAc) 4<br />

O<br />

S<br />

+O<br />

7<br />

9<br />

S<br />

Scheme 4<br />

-Rh 2 (OAc) 4<br />

O<br />

O<br />

8<br />

O<br />

O<br />

10<br />

S<br />

S


206 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) Erick Cuevas Yañez et al.<br />

(10 mL) was stirred with Rh 2 (OAc) 4 (2 mg) under nitrogen<br />

atmosphere at room temperature. After 2 h, <strong>the</strong> mixture was<br />

evaporated in vacuo and purified by column chromatography<br />

(SiO 2 , hexane / AcOEt 9:1) to yield a white solid (0.118 g, 43<br />

%). m.p. 45 °C. IR (CHCl 3 , cm –1 ). 2923, 1716, 1612. 1 H NMR<br />

(CDCl 3 , 200 MHz) δ 3.30 (dd, 1H), 3.62 (dd, 1H), 4.78 (dd,<br />

1H), 6.95-7.22 (m, 4H), 7.60-7.80 (m, 3H). MS [EI+] m/z<br />

(%): 230 [M] + (15), 121 [C 7 H 5 O 2 ] + (100), 97 [C 5 H 5 S] + (75).<br />

Acknowledgments<br />

Financial support from CONACyT (no. 27997E) is gratefully<br />

acknowledged. The authors would like to thank Rocío Patiño,<br />

Angeles Peña, Javier Pérez and Rubén A. Toscano for <strong>the</strong>ir<br />

technical support.<br />

References<br />

1. Doyle, M. P.; McKervey, M.A.; Ye, T.; Modern Syn<strong>the</strong>tic<br />

Methods using Diazocompounds: from Cyclopropanes to Ylides,<br />

John Wiley & Sons: New York, 1998.<br />

2. Doyle, M.P., Chapman, B.J.; Hu, W.; Peterson, C.S.; McKervey,<br />

M.A.; Garcia, C.F.; Org. Lett. 1999,1, 1327-1329.<br />

3. a)Frampton, C.S.; Pole, D.L.; Yong, K.; Capretta, A. Tetrahedron<br />

Lett. 1997, 38, 5081-5084. b) Yong, K.; Salim, M.; Capretta, A.<br />

J. Org. Chem. 1998, 63, 9828-9833.<br />

4. Yeager, G.W.; Schissel, D.N. Syn<strong>the</strong>sis 1995, 28-30.<br />

5. Gronowitz, S.; Liljefors, S. Chem. Scr., 1978-79, 13, 39-45.<br />

6. Jefford, C.W.; Kubota, T.; Zaslona, A. Helv. Chim. Acta 1986,<br />

69, 2048-2061.<br />

7. Pierson, N.; Fernández-García, C.; McKervey, M. A.;<br />

Tetrahedron Lett. 1997, 38, 4705-4708.<br />

8. Ye, T.; Fernandez-García, C.; McKervey, M. A.; J. Chem. Soc.<br />

Perkin Trans. 1, 1995, 1373-1379.<br />

9. Ye, T.; McKervey, M.A. J. Chem. Soc. Chem. Commun. 1992,<br />

823-824.<br />

10. Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P.A. Chem. Soc.<br />

Rev. 2001, 30, 50-61.<br />

11. De, M.; Majundar, D. P.; Kundu, N. G. J. Indian Chem. Soc.<br />

1999, 76, 665-674.<br />

12. Corvaisier, A. Bull. Soc. Chim. Fr. 1962, 528-535.<br />

13. Gefflaut, T.; Périe, J. Synth. Commun. 1994, 24, 29-33.


Revista de la Sociedad Química de México, Vol. 47, Núm. 2 (2003) 207-209<br />

Investigación<br />

Estudio fitoquímico de Salvia uruapana †<br />

René Manjarréz, Bernardo A. Frontana-Uribe y Jorge Cárdenas*<br />

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, Coyoacán 04510,<br />

México D.F. Tel. +52 (55) 5622-4413; Fax. +52 (55) 5616-2217; E-mail: rjcp@servidor.unam.mx<br />

Recibido el 20 de junio del 2003; aceptado el 14 de julio del 2003<br />

En homenaje a los 50 años de vida académica del Dr. Alfonso Romo de Vivar<br />

Resumen. De las partes aéreas de Salvia uruapana se aislaron dos<br />

diterpenos, salviafaricina y tonalensina ambos previamente descritos<br />

en Salvia tonalensis, así como 7-O-luteolina diglucósido peracetilado.<br />

La mezcla de los ácidos oleanólico y ursólico se aisló de las fracciones<br />

de baja polaridad.<br />

Palabras clave: Salvia uruapana; Labiatae; Diterpenos; neo-clerodano;<br />

5-10-seco-neo-clerodano; flavona; triterpenos.<br />

Abstract: From <strong>the</strong> aerial parts <strong>of</strong> Salvia uruapana were isolated two<br />

diterpenic compounds previously isolated from Salvia tonalensis:<br />

salvifaricin and tonalensin, as well as <strong>the</strong> peracetylated 7-O-luteolin<br />

diglucoside. The mixture <strong>of</strong> oleanolic and ursolic acids was also isolated<br />

from <strong>the</strong> low polarity fractions.<br />

Keywords: Salvia uruapana; Labiatae; Diterpenos; neo-clerodane;<br />

5-10-seco-neo-clerodane; flavone; triterpenoids.<br />

Introducción<br />

El género Salvia, miembro de la familia Labiatae, consta de<br />

aproximadamente 900 especies en el mundo. En México existen<br />

más de 300 salvias que se encuentran predominantemente<br />

en bosques de pinos-abeto y encino por encima de los 1000 m<br />

de altura, lo que hace de México uno de los países con mayor<br />

diversidad botánica en este género [1].<br />

De los estudios fitoquímicos de especies americanas del<br />

género Salvia se han obtenido diterpenos con esqueleto de tipo<br />

clerodano, abietano y pimarano, además de los esqueletos<br />

modificados como riac<strong>of</strong>ano y tilifolano, que se propone<br />

provienen de precursores clerodánicos. Se han obtenido otros<br />

compuestos como flavonoides, ácidos triterpénicos y β-sitosterol<br />

por mencionar algunos otros. Esta gran riqueza y diversidad<br />

fitoquímica, aunada a la abundancia de especies de este<br />

género en nuestro país, ha alentado la búsqueda de compuestos<br />

con propiedades biológicas interesantes en plantas de<br />

este género. Algunas especies vegetales pertenecientes a este<br />

género se han utilizado con fines medicinales por sus propiedades<br />

antitumorales, bactericidas, bacteriostáticas, carminativas,<br />

entre otras [2].<br />

Continuando con estudios fitoquímicos realizados en<br />

plantas del género Salvia endémicas de México [3, 4], en este<br />

trabajo se presentan los resultados del estudio de Salvia uruapana<br />

(Fern.) Labiatae. Esta planta crece en la zona central de<br />

México, encontrándose abundantemente en los estados de Michoacán,<br />

Jalisco y Colima. Es una hierba con flor azul intenso,<br />

de talla moderada (40-60 cm) que crece en zonas altas (> 1300<br />

msnm) y húmedas.<br />

†Contribución No 1768 del Instituto de Química, UNAM.<br />

Discusión de resultados<br />

El producto blanco cristalino mostró en el espectro de IR las<br />

señales características de un furano monosubstituido (1505 y<br />

875 cm –1 ) y de una γ-lactona α,β-insaturada (1755, 1670<br />

cm –1 ). Con la espectroscopia de RMN y experimentos<br />

bidimensionales RMN 1 H-RMN 13 C, se logró la determinación<br />

de la estructura 1 para este compuesto. Este ha sido<br />

reportado previamente de la partes aéreas de Salvia farinacea<br />

asignándole el nombre de salvifaricina [9]. Se observaron<br />

claramente las señales reportadas como típicas para este compuesto<br />

en el espectro de RMN 1 H, como son las generadas por<br />

la sustitución β del anillo de furano, el sistema de metilo<br />

secundario entre C-8 y C-17, el sistema A-B del metileno de la<br />

γ-lactona α,β-insaturada y el protón cetálico de C-20. En el<br />

primer reporte de 1 se describe parcialmente la espectroscopía<br />

de RMN y es en un reporte reciente [5] donde se confirman las<br />

O<br />

AcO<br />

AcO<br />

1<br />

4<br />

18<br />

20<br />

O<br />

9<br />

10 8<br />

O<br />

19<br />

O<br />

AcO<br />

OAc<br />

12<br />

16<br />

AcO<br />

O<br />

17<br />

O<br />

O<br />

15<br />

1 O<br />

2<br />

O<br />

AcO<br />

OAc<br />

3<br />

O<br />

O<br />

OAc<br />

Fig. 1. Compuestos aislados de Salvia uruapana.<br />

O<br />

O<br />

O<br />

O<br />

OAc<br />

O<br />

OAc


208 Rev. Soc. Quím. Méx. Vol. 47, Núm. 2 (2003) René Manjarréz et al.<br />

Fig. 2. Estructura obtenida por rayos X de la tonalensina (2).<br />

asignaciones y se completan los datos espectroscópicos faltantes,<br />

mismos que concuerdan correctamente con los obtenidos<br />

para el compuesto 1.<br />

De las aguas madres de donde se obtuvo el producto anterior,<br />

se logró aislar por cristalización otro producto que<br />

mostró tener un espectro de RMN 1 H y RMN 13 C complicado.<br />

Al variar la temperatura, este último mostró cambios importantes<br />

por lo que se sospechó la presencia de confórmeros.<br />

Mediante el estudio de cristalografía de Rayos-X de un<br />

monocristal (Fig. 2), se logró obtener la estructura 2 para el<br />

compuesto aislado. Este producto ha sido reportado previamente<br />

del estudio fitoquímico de Salvia tonalensis y se<br />

denominó tonalensina [10]. Los datos reportados en el estudio<br />

cristalográfico y los obtenidos en este estudio concuerdan, así<br />

como las señales reportadas para los espectros de RMN 1 H y<br />

RMN 13 C [6].<br />

La salvifaricina podría derivarse de la tonalensina vía la<br />

fusión de los anillos A y B mediante un reacción electrocíclica<br />

del compuesto 2 permitida térmicamente [7]. Con el fin de<br />

verificar esta hipótesis, la tonalensina se sometió a reflujo<br />

durante 48 h en diferentes disolventes monitoreando la reacción<br />

por ccf. En tolueno (p.eb. 110 °C) y 1,1,2,2-tetracloroetano<br />

(p.eb. 142 °C) no hubo reacción; en decalina (mezcla<br />

de isómeros p.eb. 183 °C) se observó descomposición del<br />

producto, pero ninguno de los productos observados en la<br />

placa correspondió a la salvifaricina. Esto demostró que el<br />

simple calentamiento del producto no induce la reacción y se<br />

requiere la presencia de otro tipo de catalizadores, tal vez del<br />

tipo enzimáticos, que se podrían encontrar en la planta.<br />

La acetilación de la fracción de 20 % metanol en acetato<br />

de etilo permitió obtener un compuesto peracetilado. Este<br />

compuesto mostró claramente en RMN 1 H el patrón de<br />

señales para dos sistemas aromáticos, uno de ellos tetra-substituido<br />

y el otro tri-substituido, además del protón singulete<br />

característico de las flavonas. Diez grupos hidroxilo fueron<br />

identificados mediante las correspondientes señales de los<br />

acetatos (δ 1.99-2.40). Las glucosas fueron identificadas<br />

mediante las dos señales en RMN 13 C de los carbonos CH 2<br />

base de oxígeno y los dos dobletes en RMN 1 H típicos del<br />

protón anomérico del sistema disacárido. Los sistemas observados<br />

son característicos de la luteolina 7-O-diglucósido,<br />

compuesto frecuentemente encontrado en los productos naturales<br />

[8]. El compuesto mostró un pico molecular en 1030<br />

uma que confirmó a la luteolina con un disacárido de dos glucosas.<br />

S. uruapana pertenece a la sección Angulatae del subgénero<br />

Calosphace y S. tonalensina y pertenecen a la sección<br />

Polystachyae del mismo subgénero [1]. El hecho de haber<br />

encontrado los mismos productos reportados en dos secciones<br />

diferentes podría indicar una relación botánica muy cercana de<br />

ambas plantas.<br />

Parte experimental<br />

La Salvia uruapana (Fern.) fue obtenida por Bernardo A.<br />

Frontana Uribe y Dagoberto Alavés en el camino de Teretán<br />

hacia Zirimícuaro, Edo. de Michoacán, México en noviembre<br />

de 1999. El especimen fue identificado por la Biol. Irene Díaz<br />

del Instituto de Biología UNAM y se depositaron dos ejemplares<br />

en el herbario del mismo Instituto con el registro<br />

MEXU 967718 y 967719.<br />

Los puntos de fusión no están corregidos y fueron determinados<br />

en un equipo Fisher-Johns. Los espectros de IR se<br />

obtuvieron con un espectr<strong>of</strong>otómetro Nicolet Magna 750. Las<br />

espectrometrías de masas de baja resolución se obtuvieron con<br />

la técnica de impacto electrónico a 70 eV en un equipo Jeol<br />

JMS-AX 505. Las espectrometrías de alto peso molecular se<br />

obtuvieron con la técnica FAB + con un equipo Jeol JMS-SX<br />

102A. Los experimentos de 1 H RMN (300 MHz) y 13 C RMN<br />

(75 MHz) se obtuvieron con un equipo Varian Unity 300 y<br />

con TMS como estándar interno empleando como disolvente<br />

deuteroclor<strong>of</strong>ormo. Las cromatografías de placa fina (CCF) se<br />

realizaron en hojas de aluminio precubiertas con sílica gel<br />

(Macherey-Nagel Alugram Sil G / UV 254 ). Las cromatografías<br />

Flash se realizaron empleando sílica gel (Merck 60 0.030-<br />

0.075 mm) y las cromatografías al vacío empleando sílica gel<br />

para cromatografía en placa fina (Merck 60).<br />

Extracción y aislamiento<br />

2.98 kg de planta seca se sometieron a maceración con acetona,<br />

se evaporó el disolvente obteniendo 21.5 g de residuo<br />

acetónico. Se cromatografió en columna al vacío empacada<br />

con sílice en una proporción de 1 a 10 con respecto al peso del<br />

residuo obtenido. La elución se efectuó iniciando con hexano,<br />

y mezclas hexano-acetato de etilo de polaridad creciente,<br />

acetato de etilo y finalmente con mezclas acetato de etilometanol<br />

de polaridad creciente hasta un 20 % de metanol. La<br />

mezcla de los ácidos triterpénicos ursólico y oleanólicos se<br />

separó de las fracciones con polaridad 20-40 % de AcOEt. De<br />

la fracción obtenida con 50 % de AcOEt en hexano y por<br />

recristalización por par de disolventes con CH 2 Cl 2 y éter (1:1),<br />

se purificó la salvifaricina (1). De las aguas madres de esta<br />

misma fracción y con recristalización por par de disolventes<br />

con CH 2 Cl 2 y éter (1:1) se aisló la tonalensina (2). De la frac-


Estudio fitoquímico de Salvia uruapana 209<br />

ción obtenida con 25 % de hexano en AcOEt, mas los restos<br />

de la fracción anterior, se obtuvo la mezcla de los ácidos<br />

ursólico y oleanólico con un p.f. 225-228 °C. Finalmente,<br />

mediante la acetilación con anhídrido acético y piridina de la<br />

fracción de 20 % metanol en acetato de etilo, se obtuvo el<br />

derivado peracetilado de la luteolina 7-O-diglucósido (3).<br />

Salvifaricina (1): p.f. 214-216 °C (lit. p.f. 214-215°C [9]), IR<br />

(CHCl 3 ) ν max cm –1 : 3050, 2964, 2943, 2904, 1755, 1670,<br />

1579, 1505, 1465, 1238, 1164,1052, 1008, 980, 875. EM m/z<br />

(abundancia relativa) M + 340 (100), 282 (22), 259 (26), 244<br />

(23), 217 (44), 189 (22), 163 (100), 135 (72), 95 (97), 81 (61),<br />

77 (25), 55 (26), 39 (16).<br />

Tonalensina (2): p.f. 192-194 °C (lit. p.f. 191-193 °C [10]),<br />

IR (CHCl 3 ) ν max cm –1 : 1750, 1635, 1502, 1465, 1350, 1313,<br />

1148, 1022, 946, 875. EM m/z (abundancia relativa) M + 340<br />

(73), 322 (13), 294 (42), 279 (22), 265 (24), 217 (59), 201<br />

(54), 185 (50), 171 (45), 141 (42), 128 (54), 115 (53), 94<br />

(100), 81 (78), 77 (53), 65 (33).<br />

Luteolina 7-O-[β-D-Glucopiranosyl-D-Glucopiranósido] (3):<br />

p.f. 121-124 °C; IR (CHCl 3 ) ν max cm –1 : 3100, 2940, 2877,<br />

1756, 1645, 1617, 1428, 1370, 1119, 1072, 1039. 1 H RMN<br />

CDCl 3 δ J (Hz): 6.58 (s, 1H, H-3), 6.71 (d, 1H, J = 2.6, H-6),<br />

7.0 (d, 1H, J = 2.6, H-8), 7.77 (d, 1H, J = 2.2, H-2’), 7.36 (d,<br />

1H, J = 8, H-5’), 7.71 (d, 1H, J = 8, 2.2, H-6’), 5.33-4.9 (m,<br />

6H), 4.73 (d, 1H, J = 2), 4.33-3.66 (m, 7H), 2.43-1.99 (10s,<br />

30H); 13 C RMN CDCl 3 δ 167.2 (C-2), 102.3 (C-3), 176.1 (C-<br />

4), 160.5 (C-5), 100.8 (C-6), 167.9 (C-7), 98.3 (C-8), 158.3 (C-<br />

9), 108.9 (C-10), 129.8 (C-1’), 121.5 (C-2’), 144.7 (C-3’),<br />

150.6 (C-4’), 124.2 (C-5’), 124.5 (C-6’), 20.37 q, 20.57 q,<br />

21.09 q, 29.17 q, 29.66 q, 61.5 t, 61.88 t, 68.01 d, 68.15 d,<br />

71.05 d, 71.9 d, 72.0 d, 72.7 d, 74.05 d, 109.6 d, 112.6 d, 160.3<br />

s, 169.3 s, 169.4 s, 169.6 s, 169.8 s, 170.3 s, 170.5 s. EM<br />

FAB+, m/z (abundancia relativa): [M + +1] 1031 (28), 989 (12),<br />

619 (2), 550 (2), 522 (2), 413 (5), 371 (31), 331 (42), 289 (12),<br />

169 (86) 154 (55), 136 (55), 127 (28), 109 (109), 84 (19), 77<br />

(18), 69 (19), 55 (23), 43 (100).<br />

Agradecimientos<br />

Los autores agradecen a las siguientes personas por su ayuda<br />

en la obtención de los datos espectroscópicos: Javier Pérez,<br />

Nieves Zavala, Alejandrina Acosta, Rocío Patiño y Alfredo<br />

Toscano; a Irene Díaz por la clasificación del especimen vegetal<br />

y a Carmen Márquez por su ayuda en la separación por<br />

cromatografía preparativa. Este trabajo fue parcialmente<br />

financiado con el proyecto CONACyT J34873-E.<br />

Referencias<br />

1. Epling, C. Repert. Spec. Nov. Regni Veg. 1939, 110, 1-383.<br />

2. Esquivel, B.; Calderón, J.S.; Sánchez, A.A., Ramamoorthy, T.P.;<br />

Flores, E.A., Domínguez, R.M.; Rev. Latinoamer. Quím. 1996,<br />

24, 44-64.<br />

3. Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J. En: Secondary<br />

metabolites from <strong>Mexican</strong> plants: Chemistry and Biological,<br />

Properties, Rodríguez-Hahn, L. Ed., Signpost, New Deli, India,<br />

1996, p. 19.<br />

4. Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J. En:<br />

Phytochemistry <strong>of</strong> Medicinal Plants, Arnason, J.T. Ed. Plenum<br />

Press, New York EUA, 1995, Cap. 12, p. 311.<br />

5. Rodríguez, B. Mag. Reson. Chem. 2001, 39, 150-154.<br />

6. Ortega, A.; Maldonado, E.; Díaz, E.; Reynolds W. F.<br />

Spectrochim. Acta A 1998, 54, 659-670.<br />

7. March, J. Advanced Organic Chemistry, 4a Ed. John Wiley and<br />

Sons, USA, 1992, p.1110<br />

8. Imperato,F.; Nazzaro, R. Phytochemistry 1996, 41, 337-338.<br />

9. Rodríguez, B.; Pascual, C.; Savona G. Phytochemistry 1984, 23,<br />

1193-194.<br />

10. Toscano, R. A.; Maldonado, E.; Ortega, A. J. Chem. Crystal.<br />

1996, 26, 239-242.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!