19.01.2014 Views

Untitled - Materials Science Institute of Madrid - Consejo Superior de ...

Untitled - Materials Science Institute of Madrid - Consejo Superior de ...

Untitled - Materials Science Institute of Madrid - Consejo Superior de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

11. Moléculas orgánicas y biológicas<br />

sobre superficies<br />

El estudio <strong>de</strong> la interacción <strong>de</strong> distintas moléculas orgánicas<br />

y biomoléculas con las superficies <strong>de</strong> materiales<br />

es un tema <strong>de</strong> gran importancia en nanociencia y nanotecnología,<br />

por ejemplo en el diseño y fabricación <strong>de</strong><br />

sensores y biosensores. Nosotros preten<strong>de</strong>mos mo<strong>de</strong>lizar<br />

y compren<strong>de</strong>r estos procesos mediante el estudio<br />

<strong>de</strong> la adsorción controlada <strong>de</strong> moléculas sobre superficies.<br />

Así buscamos una <strong>de</strong>scripción estructural que nos<br />

permita <strong>de</strong>terminar la geometría y el sitio <strong>de</strong> adsorción<br />

<strong>de</strong> la molécula, y relacionar este con la modificación <strong>de</strong><br />

las propieda<strong>de</strong>s electrónicas <strong>de</strong>l material. Hasta ahora<br />

estudiábamos la adsorción molecular <strong>de</strong>ntro <strong>de</strong> equipos<br />

<strong>de</strong> vacío, recientemente hemos comenzado a estudiar<br />

la adsorción <strong>de</strong> moléculas <strong>de</strong>ntro <strong>de</strong> una solución.<br />

En concreto hemos estudiado tanto la adsorción <strong>de</strong><br />

capas <strong>de</strong> azufre como <strong>de</strong> alkanotioles sobre oro <strong>de</strong>s<strong>de</strong><br />

un ambiente líquido. Por otra parte estudiamos la<br />

inmobilización <strong>de</strong> ca<strong>de</strong>nas <strong>de</strong> DNA, con secuencia<br />

conocida, sobre Au, que presenten capacidad para<br />

reconocer DNA complementario. Las técnicas empleadas<br />

para su caracterización son <strong>de</strong> dos tipos, por una<br />

parte electroquímica mediante el voltamograma y por<br />

otra parte técnicas <strong>de</strong> análisis <strong>de</strong> superficies, como<br />

espectroscopía <strong>de</strong> fotoemisión (XPS) y microscopía<br />

túnel (STM), así como difracción <strong>de</strong> rayos X rasante o<br />

absorción <strong>de</strong> rayos X realizada in-situ, <strong>de</strong>ntro <strong>de</strong> una<br />

celda electroquímica en el sincrotrón ESRF.<br />

11. Organic and bio molecules on surfaces<br />

The study <strong>of</strong> the interaction <strong>of</strong> different organic molecules<br />

and bio-molecules with surfaces is <strong>of</strong> a great<br />

importance in nanoscience and for the <strong>de</strong>signing <strong>of</strong><br />

sensors and biosensors. Our objective is to mo<strong>de</strong>l the<br />

molecular adsorption, <strong>de</strong>sorption and reaction processes<br />

on well <strong>de</strong>fined surfaces. Our studies are forwar<strong>de</strong>d<br />

to find out the molecular structure and the electronic<br />

changes induced in the material for the presence <strong>of</strong> a<br />

molecular adsorbed layer. We have studied until now<br />

the adsorption process in vacuum environment.<br />

Recently, we have started to study the adsorption process<br />

from a solution. In particular we have studied S<br />

and alkenothiol layers on gold surfaces from a liquid<br />

environment. Furthermore, we have immobilized and<br />

characterized DNA on gold surfaces in such a way that<br />

they maintain its capability for recognizing complementary<br />

DNA. We have used for its characterization<br />

both electrochemical and surface science related techniques,<br />

as cyclic voltammetry, X-Ray photoelectron<br />

spectroscopy (XPS), scanning tunneling microscopy<br />

(STM) and surface X-Ray diffraction and absorption performed<br />

in-situ, (liquid environment) at the synchrotron<br />

facility ESRF<br />

1. C. Vericat, M. E. Vela, J. Gago and R. C. Salvarezza. Electrochimica Acta 49, 3643-3649 (2004)<br />

2. E. Casero, J.A. Martín- Gago, F. Pariente and E. Lorenzo. European BioPhysics Journal. 33, 726-731 (2004).<br />

3. C. Briones, E. Mateo-Marti, C.Gómez-Navarro, V. Parro, E. Román and J.A. Martín-Gago. Phys. Rev. Lett, 93, 208103-4 (2004)<br />

Proyectos: mat2002-395<br />

12. Nano-composites y bio-nanocomposites<br />

Se han preparado nanocomposites polímero-arcilla por<br />

el procedimiento <strong>de</strong> “polimerización intercalativa” <strong>de</strong><br />

pirrol en silicatos laminares conteniendo Fe(III) en su<br />

estructura cristalina o como catión <strong>de</strong> cambio.<br />

Mediante impedancia electroquímica, se observó que la<br />

formación <strong>de</strong> polipirrol conductor viene <strong>de</strong>terminada<br />

por la localización estructural <strong>de</strong>l hierro. Biopolímeros<br />

catiónicos (quitosano) y aniónicos (alginato, pectina,<br />

carragenanos) incorporados a sólidos laminares (HDLs,<br />

montmorillonita, hectorita) y fibrosos (sepiolita) permiten<br />

obtener bio-nanocomposites. Variando la naturaleza<br />

y proporción <strong>de</strong> biopolímero se pue<strong>de</strong> pre<strong>de</strong>terminar<br />

el tipo <strong>de</strong> carga eléctrica superficial <strong>de</strong>l material<br />

híbrido formado. Los bionanocomposites<br />

quitosano/silicato tienen propieda<strong>de</strong>s <strong>de</strong> intercambio<br />

aniónico actuando como fases activas <strong>de</strong> sensores electroquímicos.<br />

Inversamente, i-carragenano/HDL son bionanocomposites<br />

intercambiadores <strong>de</strong> cationes, mostrando<br />

actividad en el reconocimiento selectivo <strong>de</strong><br />

iones Ca 2+ . La sepiolita genera bio-nanocomposites <strong>de</strong><br />

morfología micr<strong>of</strong>ibrosa, capaces <strong>de</strong> estabilizar colorantes<br />

iónicos para su empleo en fase soportada <strong>de</strong><br />

interés para <strong>de</strong>sarrollar dispositivos ópticos.<br />

12. Nano-composites and bio-nanocomposites<br />

Polymer-clay nanocomposites were prepared by intercalative<br />

polymerization <strong>of</strong> pyrrole in layered silicates<br />

containing structural Fe(III) and/or iron <strong>de</strong>liberately<br />

incorporated as exchangeable cation. Electrochemical<br />

Impedance Spectroscopy shows that the formation <strong>of</strong><br />

conductive polypyrrole is <strong>de</strong>termined by the Fe location<br />

in the silicate structure. Cationic (chitosan) and anionic<br />

(alginate, pectine, carragenan) natural biopolymers<br />

were incorporated in layered (montmorillonite, hectorite,<br />

LDHs) and fibrous (sepiolite) inorganic solids resulting<br />

bio-nanocomposites. Surface electrical charge can<br />

be pre<strong>de</strong>termined by varying the nature and ratio <strong>of</strong> the<br />

incorporated biopolymer. Chitosan/silicates bionanocomposites<br />

show anion-exchanging properties being<br />

used as active phase <strong>of</strong> electrochemical sensors.<br />

Contrarily the i-carragenane/LDH bionanocomposites<br />

show cation-exchange properties acting as active phase<br />

<strong>of</strong> electro<strong>de</strong>s for selective recognition <strong>of</strong> Ca 2+ ions. Bionanocomposites<br />

based on sepiolite show a micr<strong>of</strong>ibrous<br />

texture showing interesting properties in the stabilization<br />

<strong>of</strong> ionic dyes for potential applications in the<br />

<strong>de</strong>velopment <strong>of</strong> optics <strong>de</strong>vices.<br />

1. Ruiz-Hitzky, E.; Aranda, P.; Serratosa, J.M., “Chapter 3. Organic/Polymeric Interactions with Clays” en Handbook <strong>of</strong> Layered <strong>Materials</strong>,<br />

Auerbach, S.M.; Carrado, K.A.; Dutta, P.K., Eds., pag. 91-154, Marcel Dekker, Nueva York 2004.<br />

2. Letaief, S.; Aranda, P.; Ruiz-Hitzky, E., Appl. Clay Sci. 28, 183-198 (2005)<br />

3. Dar<strong>de</strong>r, M.; Colilla, M.; Ruiz-Hitzky, E., Appl. Clay Sci. 28, 199-208 (2005)<br />

Proyectos: MAT2000-0096-P4-02, BTE2003-05757-C02-02, MAT2003-06003-C02-01, PTR1995-0677-OP, 07N/0070/2002<br />

122

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!