Sinterizazio-atmosferaren eragina M graduko (ASP 30 ... - Euskara

Sinterizazio-atmosferaren eragina M graduko (ASP 30 ... - Euskara Sinterizazio-atmosferaren eragina M graduko (ASP 30 ... - Euskara

euskara.euskadi.net
from euskara.euskadi.net More from this publisher
26.08.2013 Views

Urrutibeaskoa et al . Metallographic changes on sintering M grade steels 309 3 oO o o. E o U C) 3 o U rw Ú V^ C) a L W ú 3 Ú w U o C) N L a o 0 E 7 O O O V Ú Ca) Ú • > > >z >z ro L a N 00 N) 00 V') N O~ h I M N N 00 00 71 ) V) OC M .-~ rn N 7 V r. r V 7 '• t- J C vi N M 7 V t M 0 O cC O O cC O Ce Ú O Ú Ú~ Ú~ • >z > > z' >z ñ. F H z ,) or. r- or M O l N'.O N N .- V V V O Cn N O M M N - - 71r- I'00N~ O V) V [N NV 00 .--''O M-N • ,~ NMOM'il M t- C? 7t O M o0 N 1 ti M M OM U1U UX .) N 71 N - h h N N NT 00 00M 1O N n M M N M ~, M 71 "7 ~, C) 00 O\ O .--+ t \O cn N O) 00 ro U Ú C.) W we~ F 4a • u) • O 00 >U o~ 0 N Ñ H N O o~ v C7 M C L .~ Uca á w . d M Ñ E O a - O a 0 ,0 -0 tn ~ ~ Ñ w • Nv .0 a • 1O O O • a) a .E ú - E • y y CC ? á CO C • L E O O • O U Dó N Ñ .~ Powder Metallurgy 1990 Vol . 33 No . 4 a É Ú C3 CS O E ú N 1 d a) y y L In O II C H C? C~, I:?I 1~1 19 ~C 10 V M M M M 09 71 7 d Cv G) L. Lr 0. ú O E ú ca

310 Urrutibeaskoa et al . Metallographic changes on sintering M grade steels Table 1 M 6C carbide compositions, at .-% Steel grade Mo V Cr Fe CO W W + Mo Fe + Co Sintered in vacuum M3/2 21 .7 6 .9 3 .9 49 .3 . . . 18 .2 39 . 9 49 . 3 Px30 19 .2 6 .4 5 .3 45 .9 5 .7 17 .4 36 .6 51 .6 M2 19 . 0 7 .3 4 .4 50 . 5 18 .8 37 . 8 54 .9 M2, STEM15 1 . 5 4 6 49 39 40 . 5 49 M2' 3 19 7 7 48 19 38 48 M2 23 20 7 6 49 18 38 49 M42 29 .4 4 .7 4 .9 48 .8 5 . 1 7 .1 36 .5 53 .7 M7' 7 19 3 5 70 3 22 70 Sintered in 90N,- 9H 2 M3/2 Px30 M2 1CH4 21 .7 20 .0 20 .2 3 .0 3 .3 2 .8 4 . 1 4 . 6 4 .5 52 .1 47 . 4 51 .4 5 .7 . . . 19 .1 19 . 0 21 .2 40 .8 39 .0 41 .4 52 .1 53 .1 51 . 4 M42 37 .0 1 .6 2 . 9 30 .9 4 .3 23 .4 60 .4 35 .2 element V, which is present in lower quantities in the specimens sintered in the industrial atmosphere) . This is not the case with the MC carbides which are transformed, changing from grey to small black carbonitrides with a higher concentration of V in the specimens sintered in the industrial atmosphere . In this steel, eutectic carbides can also be produced by sintering at temperatures higher than the optimum sintering temperature . Some examples of carbides present in eutectic form in Px30 oversintered both in vacuum and in the industrial atmosphere are shown in Fig . 4 . In the case of type I eutectic carbides, which are observed after sintering both in vacuum and in the industrial atmosphere at the optimum sintering temperature, a higher quantity of Fe and a lower concentration of W and V are found in the industrial atmosphere sintered specimens than in those that are vacuum sintered . Type MC eutectic carbide is observed after oversintering by only 10 K in vacuum . On the other hand, in the case of type M 6C eutectic carbides, which are also observed for both types of sintering - for oversintering by 15 K for vacuum and 30 K for the industrial atmosphere - the carbide chemical compositions are in both cases very similar . In this material a needle type eutectic carbide is observed after vacuum and industrial atmosphere oversintering by 15 and 40 K respectively . M2 steel Figure 5 shows typical SEM micrographs corresponding to specimens of M2+0 . 2%C sintered at the optimum sintering temperature in vacuum and in the industrial atmosphere . On comparing the microstructures corresponding to vacuum and industrial atmosphere sintering, the most noticeable difference is the transformation of the scarce grey MC carbides observed after sintering in vacuum to the black MX carbonitrides, richer in V than the MC, when sintered in the industrial atmosphere . On the other hand, the M 6C carbides are very similar in morphology, size, and chemical composition for specimens sintered both in the industrial atmosphere and in vacuum . Sintering above the optimum sintering temperature results in the presence of carbides with a eutectic morphology, such as those shown in Fig . 6 . Apart from the usual eutectic carbides, which are very similar to those found in Table 2 MC carbide compositions, at .-% Steel grade Mo V Cr Fe Co W W+Mo M2, spherical MC, 4 µm 15 68 4 3 . . . 10 25 M2, elongated MC 15 47 5 26 . . . 8 23 M42, elongated MC 21 43 7 26 2 2 23 Powder Metallurgy 1990 Vol . 33 No . 4 the steels described above, a eutectic carbide rich in Fe and Cr and smaller and finer than the M 6C is also observed in materials sintered in the industrial atmosphere at just above the optimum sintering temperature (Fig . 6b) . M42 steel Figure 7 shows typical micrographs of steel M42 sintered in vacuum and in the industrial atmosphere . The singular feature found in this steel is the presence of M 2C carbides (marked in Fig . 7a) with a rectangular elongated morphology in the specimens sintered in vacuum . Figure 7 also shows a carbide rich in Fe and Cr . MC carbide in vacuum sintered specimens does not appear in the form of isolated particles, but as grain boundary film . The small, black MX carbonitrides are observed in the specimens sintered in the industrial atmosphere and the chemical compositions of the M 6 C carbides are also found to be abnormally high in W . Oversintering also produces different kinds of eutectic carbides in this steel, as shown in Fig . 8 : type I eutectic carbides, in both vacuum and industrial atmosphere, type II eutectic carbides (found only in vacuum oversintered specimens), M6 C type eutectic carbides, and needle type eutectic carbides (which are also found in materials oversintered in the industrial atmosphere) . DISCUSSION Given the differences in chemical composition between the four steels analysed, it is convenient for comparison to transform the composition from weight to atomic percentages . With reference to the carbides, some precautions must be taken in the microanalysis of small particles due to the interference of the matrix . A recent study has shown that small particle size results in too high a quantity of Fe and Co in the particle analysis owing to matrix effects and that a minimum particle size of -4 gm is required to obtain a good analysis .' M6C primary carbides The presence of massive particles (> 4 µm) enabled the chemical composition of the M 6C carbides to be analysed Table 3 MC carbide compositions, at .-% Steel grade Mo V Cr Fe Co W W+Mo M3/2 14 .3 66 . 6 4 .5 5 .5 0 9 .1 23 Px30 14 .3 66 . 5 4 .1 3 .9 0 . 1 11 . 1 25 M2 14 .5 68 . 0 3 .9 3 .2 0 10 . 4 25 M42 20 .7 42 .6 7 .3 25 .7 1 . 7 2 . 1 23

Urrutibeaskoa et al . Metallographic changes on sintering M grade steels <strong>30</strong>9<br />

3<br />

oO<br />

o<br />

o.<br />

E<br />

o<br />

U<br />

C)<br />

3<br />

o<br />

U<br />

rw<br />

Ú<br />

V^ C)<br />

a L<br />

W ú<br />

3<br />

Ú<br />

w<br />

U<br />

o<br />

C)<br />

N<br />

L<br />

a<br />

o<br />

0<br />

E 7 O O O<br />

V Ú Ca) Ú<br />

• > > >z >z<br />

ro<br />

L<br />

a<br />

N 00 N) 00 V') N O~<br />

h I M N N 00 00<br />

71 ) V) OC M<br />

.-~ rn N 7 V<br />

r. r V 7 '•<br />

t- J C vi<br />

N M 7 V t M<br />

0<br />

O cC O O cC O Ce<br />

Ú O Ú Ú~ Ú~<br />

• >z > > z' >z<br />

ñ.<br />

F H z<br />

,) or. r- or<br />

M O l N'.O N<br />

N .- V<br />

V V O Cn N<br />

O M M N - -<br />

71r- I'00N~<br />

O V) V [N NV 00<br />

.--''O M-N<br />

• ,~ NMOM'il<br />

M t-<br />

C? 7t O M o0 N<br />

1 ti M M OM<br />

U1U UX<br />

.)<br />

N 71<br />

N -<br />

h h<br />

N N<br />

NT 00 00M 1O<br />

N n M M N M<br />

~,<br />

M 71 "7 ~, C)<br />

00 O\<br />

O .--+ t \O cn N O) 00<br />

ro<br />

U<br />

Ú C.)<br />

W<br />

we~<br />

F<br />

4a • u)<br />

• O<br />

00<br />

>U<br />

o~ 0<br />

N Ñ<br />

H N<br />

O<br />

o~ v C7<br />

M C<br />

L .~<br />

Uca<br />

á w<br />

. d<br />

M<br />

Ñ E<br />

O a<br />

- O<br />

a<br />

0<br />

,0 -0 tn<br />

~ ~ Ñ<br />

w<br />

• Nv<br />

.0 a<br />

•<br />

1O O O<br />

• a)<br />

a<br />

.E<br />

ú -<br />

E<br />

• y y CC<br />

?<br />

á CO C<br />

• L<br />

E O O<br />

• O U<br />

Dó<br />

N<br />

Ñ .~<br />

Powder Metallurgy 1990 Vol . 33 No . 4<br />

a<br />

É<br />

Ú<br />

C3<br />

CS<br />

O<br />

E<br />

ú<br />

N<br />

1<br />

d a)<br />

y<br />

y<br />

L In<br />

O II<br />

C H<br />

C? C~, I:?I 1~1 19<br />

~C 10<br />

V M M M M<br />

09 71<br />

7 d<br />

Cv G)<br />

L. Lr<br />

0.<br />

ú O<br />

E<br />

ú ca

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!