22.04.2013 Views

DAFS - Universidad de Zaragoza

DAFS - Universidad de Zaragoza

DAFS - Universidad de Zaragoza

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Universidad</strong> <strong>de</strong> <strong>Zaragoza</strong><br />

Curso <strong>de</strong> Master en<br />

Física y Técnologías Físicas<br />

Física <strong>de</strong> Materiales y Gran<strong>de</strong>s Instalaciones<br />

Difracción anómala <strong>de</strong> rayos-X:<br />

Diffraction Anomalous Fine Structure<br />

(<strong>DAFS</strong>)<br />

Maria Grazia Proietti Cecconi


GUIÓN<br />

Introducción<br />

¿Qué es el <strong>DAFS</strong>?<br />

Análisis <strong>de</strong> datos <strong>DAFS</strong><br />

Ejemplos <strong>de</strong> aplicación:<br />

Heteroestructuras y Nanoestructuras<br />

auto-organizadas <strong>de</strong> semiconductores<br />

Estado electrónico <strong>de</strong>l Fe en Fe 3 O 4 :<br />

mo<strong>de</strong>los <strong>de</strong> or<strong>de</strong>n orbital y <strong>de</strong> carga


TÉCNICAS<br />

EXPERIMENTALES<br />

µ<br />

I diff<br />

d<br />

I 0<br />

Selectividad química<br />

(µ(E))<br />

11.5 12 12.5 13 13.5<br />

E(KeV)<br />

I<br />

GaAs GaAsP<br />

As K-As K edge<br />

Absorción <strong>de</strong> rayos X<br />

(XAFS)<br />

µ<br />

d<br />

GaAs<br />

K-As<br />

11.5 12 12.5 13 13.5<br />

E(KeV)<br />

Difracción anómala<br />

(<strong>DAFS</strong>)<br />

I<br />

0<br />

Selectividad química<br />

(f(E))<br />

θ<br />

+ Selectividad <strong>de</strong> sitio/espacial<br />

I diff<br />

Difracción <strong>de</strong> rayos X<br />

(XRD)<br />

Q<br />

k k’<br />

Selectividad <strong>de</strong> sitio/ espacia<br />

(I diff (Q))<br />

<strong>de</strong>tector<br />

(Q)


k<br />

χ(<br />

k)<br />

=<br />

µ − µ 0<br />

µ 0<br />

k <strong>de</strong>l fotoelectrón<br />

=<br />

m(E − E )<br />

h<br />

2 0<br />

Dispersión<br />

simple<br />

r j<br />

=<br />

∑<br />

r j<br />

j<br />

kr<br />

2<br />

j<br />

µ<br />

d<br />

3(<br />

ˆ ε ⋅ rˆ<br />

)<br />

EL EXAFS<br />

GaAs<br />

K-As<br />

11.5 12 12.5 13 13.5<br />

E(KeV)<br />

j<br />

j<br />

κ∗χ(κ)<br />

+ 2δ<br />

( k)<br />

+ φ ( k))<br />

e<br />

j<br />

5 10 15<br />

k(Å -1 )<br />

2 2<br />

j −2σ<br />

j k −2r<br />

j<br />

f<br />

( k,<br />

π ) sin( 2kr<br />

f ( k,<br />

π ) = f ( k,<br />

π ) e<br />

iφ<br />

amplitud compleja <strong>de</strong> retrodifusión<br />

<strong>de</strong>sfase <strong>de</strong>l átomo central<br />

1<br />

e<br />

/ λ(<br />

k )<br />

<strong>de</strong>sor<strong>de</strong>n térmico y estático<br />

(Debye-Waller)<br />

pérdidas inelásticas<br />

λ =libre camino<br />

medio <strong>de</strong>l fotoelectrón<br />

Ajustando esta expresión a la χ experimental se<br />

pue<strong>de</strong>n obtener informaciones estructurales<br />

acerca <strong>de</strong>l sistema estudiado, como distancias<br />

interatómicas, números <strong>de</strong> coordinación,<br />

factores <strong>de</strong> Debye-Waller estáticos y<br />

dinámicos, ángulos <strong>de</strong> enlace, composición.....


EL <strong>DAFS</strong><br />

El <strong>DAFS</strong> es la estructura fina que aparece por encima <strong>de</strong> la anomalía que se observa<br />

en la intensidad difractada al cruzar un umbral <strong>de</strong> absorción <strong>de</strong> rayos-X.<br />

Un espectro <strong>DAFS</strong> se mi<strong>de</strong> registrando la intensidad <strong>de</strong> un pico <strong>de</strong> difracción en<br />

función <strong>de</strong> la energía alre<strong>de</strong>dor <strong>de</strong>l umbral <strong>de</strong> absorción <strong>de</strong> Rayos-X <strong>de</strong> una <strong>de</strong> las<br />

especies atómicas <strong>de</strong>l sistema.<br />

I<br />

0<br />

θ<br />

GaAs 1-x P x /GaAs<br />

I<br />

diff<br />

<strong>de</strong>tector<br />

( ) ( ) ( ) 2<br />

r r r<br />

2<br />

Q,<br />

E exp iQ<br />

⋅r<br />

exp − M Q<br />

I diff<br />

2<br />

F = f j<br />

j<br />

j<br />

= ∑<br />

Selectividad espacial<br />

Factor <strong>de</strong> difusión atómica<br />

Selectividad química<br />

Factor <strong>de</strong> fase<br />

Selectividad <strong>de</strong> sitio<br />

(PRB, M.G. Proietti et al, 59, 1999.)


En el caso <strong>de</strong>l <strong>DAFS</strong>, como en el caso <strong>de</strong>l EXAFS y <strong>de</strong> la difracción <strong>de</strong> fotoelectrones<br />

(fotoemisión), la estructura fina se <strong>de</strong>be a un efecto <strong>de</strong> interferencia cuantomecánica<br />

entre la función <strong>de</strong> onda saliente <strong>de</strong>l fotoelectrón y la misma dispersada por<br />

los átomos vecinos<br />

hν<br />

H = H + H + H<br />

=<br />

=<br />

E<br />

R<br />

I<br />

ˆ e r r r<br />

= − p ⋅ A(<br />

r,<br />

t)<br />

I ∑j<br />

m<br />

H j<br />

2π<br />

f H l l H u<br />

I<br />

I<br />

W ∝ ( )<br />

2 ∑ f H u +<br />

δ ω ω<br />

I ∑<br />

− u f<br />

h f l ω −ω<br />

+<br />

+<br />

+<br />

+...<br />

+ +...<br />

u<br />

l<br />

2<br />

Término perturbativo al Ier<br />

or<strong>de</strong>n:<br />

Fotoelectrón real<br />

Absorción, fotoemisión<br />

(EXAFS, PhD)<br />

Término perturbativo al II or<strong>de</strong>n:<br />

Fotoelectrón virtual<br />

difracción<br />

(<strong>DAFS</strong>)


Resonant atomic scattering factor f<br />

f A(Q,E) = f 0 A(Q) + f’ A(E) + if’’ A(E)<br />

Thomson<br />

II<br />

II<br />

Abs.<br />

II<br />

As<br />

δf<br />

r 0f’’ A(ω, Q=0) = (ω/4πc) σ tot(ω)<br />

f’’ As(E) = f’’ 0As + χ’’ As<br />

f’ As(E) = f’ 0As + χ’ As<br />

In<br />

δf As(E) of As in InAs<br />

f’’ 0As<br />

χ’’ As oscillations<br />

As K-edge : 10867eV<br />

χ’ As oscillations<br />

Energy (eV)<br />

∆f’’ 0As


Las oscilaciones que se observan por encima <strong>de</strong>l umbral <strong>de</strong>pen<strong>de</strong>n <strong>de</strong> la<br />

parte oscilatoria <strong>de</strong>l factor <strong>de</strong> dispersión<br />

Se pue<strong>de</strong> obtener una información <strong>de</strong> tipo electrónico y estructural<br />

análoga a la que se obtiene <strong>de</strong>l XAFS<br />

r "<br />

f µ<br />

( Q = 0,<br />

E)<br />

∝ E ( E)<br />

"<br />

f ⇐ Kramers − Kronig ⇒<br />

f<br />

f<br />

'<br />

"<br />

2<br />

= P<br />

π<br />

2ω<br />

= P<br />

π<br />

∞ ' "<br />

ω f<br />

∫ '2<br />

0 ω −<br />

∞ '<br />

ω<br />

∫<br />

0<br />

'<br />

( ω )<br />

d<br />

'2<br />

ω<br />

'<br />

f '(<br />

ω )<br />

d<br />

'2<br />

'2<br />

ω −ω<br />

'<br />

ω<br />

Teorema óptico<br />

f<br />

'<br />

ω<br />

'<br />

Causalidad<br />

(InP) 3 (GaP) 2 /GaAs K-Ga (006)<br />

I (a.u.)<br />

<strong>DAFS</strong><br />

f"<br />

10.2 10.4 10.6 10.8<br />

E (Kev)<br />

f'


y<br />

0<br />

Structure factor:<br />

Multi-wavelenght Anomalous Diffraction (MAD)<br />

F A<br />

x<br />

N<br />

iQ. rj i<br />

FQE ( , ) f j ( QEe , ) Fe φ<br />

r r r r<br />

= ∑<br />

=<br />

j=<br />

1<br />

r<br />

I ( Q , E ) ∝ FF<br />

|F A | : Thomson scattering of all resonant atoms ; |F N | : scattering of<br />

0 ' ''<br />

all non resonant atoms ; f f +<br />

if ( E : resonant scattering<br />

F T = F A + F N<br />

[ ( ) ] )<br />

F A A A A<br />

*


Multi-wavelenght Anomalous Diffraction (MAD)<br />

2<br />

2<br />

⎡<br />

FA<br />

' ⎤ ⎡<br />

FA<br />

'<br />

⎤<br />

I0( E ) = ⎢ FT<br />

cos(<br />

ϕT<br />

− ϕA<br />

) + f ( ) + ( )<br />

0 A E ⎥ ⎢ FT<br />

sin ϕT<br />

− ϕA<br />

+ f ( E )<br />

0 A ⎥<br />

⎣<br />

fA<br />

⎦ ⎣<br />

fA<br />

⎦<br />

F A do not <strong>de</strong>pend on the energy ; |F T | , φ T - φ A (or |F N | , φ N - φ A )<br />

sligthly <strong>de</strong>pend on E ; f’ A and f’’ A strongly <strong>de</strong>pend on E near an<br />

absorption edge<br />

Then, by measuring I(E) at several energies near an absorption edge<br />

one can <strong>de</strong>termine |F T | , φ T - φ A (or |F N | , φ N - φ A )and|F A |


I<br />

F<br />

diff<br />

0<br />

F<br />

0<br />

Análisis <strong>de</strong> datos <strong>DAFS</strong><br />

Análisis iterativo Kramers-Krönig<br />

Análisis <strong>DAFS</strong> al primer or<strong>de</strong>n (PRB, 59, 5479-5492, 1999, Proietti, M.G. et al.)<br />

( ) ( ) [ ]<br />

( ) ( ) ( ) [ ]<br />

r 2<br />

= F Q,<br />

E<br />

r<br />

F Q,<br />

E<br />

iφ0<br />

= F0<br />

e<br />

"<br />

+ ∆f0<br />

αa<br />

' "<br />

χa<br />

+ χa<br />

r<br />

Q,<br />

E = FT<br />

r r<br />

iφa<br />

Q,<br />

E + αa<br />

Q e<br />

' "<br />

f0a<br />

+ f0a<br />

r 2<br />

( Q,<br />

E)<br />

= FT<br />

2 ⎡ ' 2<br />

2<br />

( ( − ) + ) + ( ( − ) + y"<br />

cos φ<br />

) ⎤<br />

⎢⎣<br />

T φa<br />

βf0a<br />

sen φT<br />

φa<br />

βf0a<br />

⎥⎦<br />

diff<br />

Ajuste <strong>de</strong> la parte lisa <strong>de</strong> I diff<br />

a<br />

β =<br />

F<br />

A<br />

f F<br />

0 A T<br />

0<br />

F A<br />

'<br />

"<br />

2<br />

[ cos(<br />

φ − φ ) χ + sen(<br />

φ − φ ) χ ] términos en<br />

I = F + 2F<br />

α ∆f<br />

+<br />

χ<br />

0<br />

2<br />

0<br />

"<br />

0<br />

0<br />

a<br />

a<br />

0<br />

a<br />

a<br />

x


I − I<br />

χ = ⎡cos φ − φ χ + sen φ − φ χ ⎤ = S<br />

( ) ( )<br />

' " ac ac0<br />

<strong>DAFS</strong> ⎣ 0 a a 0 a a⎦ D<br />

I ac0<br />

f F<br />

S i<br />

D =<br />

2<br />

0<br />

A<br />

FA 0<br />

''<br />

∆f0A<br />

'<br />

; % χ = χa +<br />

"<br />

χa<br />

∑ ∑<br />

χ = χ = A ( k) sen(2 kr + ψ ) χ = A ( k)cos(2 kr + ψ )<br />

" '<br />

EXAFS a j j j a j j j<br />

j j<br />

GaAsP/InP<br />

(006)<br />

χ<br />

<strong>DAFS</strong><br />

=<br />

I<br />

ac<br />

− I<br />

I<br />

ac0<br />

ac0<br />

S<br />

D<br />

=<br />

∑<br />

j<br />

A<br />

j<br />

( k)<br />

sen(<br />

2kr<br />

π<br />

+ ψ j + ∆ϕ<br />

− )<br />

2<br />

( β, ( φ − φ ) ) ∆φ(<br />

β,<br />

( φ −φ<br />

) )<br />

SD T a<br />

T a<br />

Las oscilaciones <strong>DAFS</strong> se pue<strong>de</strong>n analizar<br />

como un espectro EXAFS, tras corregir<br />

por un factor <strong>de</strong> fase y uno <strong>de</strong> amplitud<br />

que <strong>de</strong>pen<strong>de</strong>n <strong>de</strong> la cristalografía <strong>de</strong>l<br />

sistema. Se pue<strong>de</strong>n calcular si esta es<br />

conocida u obtener <strong>de</strong>l ajuste <strong>de</strong> la parte<br />

lisa <strong>de</strong>l espectro.<br />

j


Using the path formalism for <strong>de</strong>scribing the wave function of<br />

the virtual photoelectron :<br />

[ − i ( 2kR<br />

+ ϕ ( k ) ]<br />

∑ Γj<br />

iχ ′<br />

j = − Aγj<br />

( k ) exp<br />

γ = 1<br />

γj<br />

γj<br />

χ ′ +<br />

)<br />

j<br />

If all crystallographic sites are equivalent :<br />

II<br />

II<br />

γ<br />

Abs.<br />

II<br />

As<br />

In<br />

Formally equivalent to EXAFS<br />

Use EXAFS multishell fit co<strong>de</strong>s (Ifeffit)<br />

M.G. Proietti, H. Renevier et al., Phys. Rev. B 59, (1999), 5479


<strong>DAFS</strong> spectroscopy<br />

To measure anomalous diffraction (diffuse scattering) intensity<br />

- as a function of the x-ray beam energy (energy step of about 1eV)<br />

- at fixed scattering vector<br />

- over a 1000eV range with a high S/N ratio (at least 10 3 )<br />

monochromator<br />

Monochromatic SR<br />

experiment mirror<br />

mirror<br />

slits<br />

<strong>DAFS</strong> @ BM2-ESRF<br />

H. Renevier et al., J. Synch. Rad. 10, (2003), 435<br />

slits<br />

• 7-circle diffractometer<br />

• Diffraction : vertical/<br />

horizontal planes<br />

• Polarisation analysis


Spatial selectivity : GaAs xP 1-x/GaAs epilayer (x≈0.20)<br />

<strong>DAFS</strong> : to investigate the strain<br />

accomodation in the strained epilayer<br />

θ 1 ≠ θ 2<br />

θ 1<br />

RX<br />

I(E)<br />

GaAsP<br />

θ2 Tensile in plane strain<br />

GaAs<br />

[100]<br />

• Chemical selectivity<br />

ε = (aGaAsP-aGaAs)/aGaAs • Spatial selectivity,<br />

•The x-rays probe the entire thickness of the epilayer<br />

• The data analysis is easy (one site) as well as the experiment<br />

M.G. Proietti, H. Renevier et al., Phys. Rev. B 59, (1999), 5479.<br />

15/50


Spatial selectivity : GaAs xP 1-x/GaAs epilayer<br />

GaAsP/GaAs thin film, (006) weak reflection, FWHM=0.02°<br />

Quick <strong>DAFS</strong>, assisted with feedback : 2000eV, 7 minutes !!<br />

Diffracted Intensity<br />

Intensité normalisée<br />

Χ(k)<br />

0.2<br />

0.1<br />

0<br />

0.05<br />

χ(k)<br />

0<br />

-0.05<br />

<strong>DAFS</strong><br />

Ga Kedge<br />

10500 11000 11500 12000<br />

Energie (eV)<br />

200ms/pt<br />

Energy<br />

4 6 8 10 12 14 16<br />

k (Å -1 k(Å ) -1 )<br />

As Kedge<br />

10 ms/pt<br />

E<strong>DAFS</strong> oscillations<br />

Ga Kedge<br />

0.2<br />

-0.2<br />

0<br />

0.2<br />

-0.2<br />

0.2<br />

-0.2<br />

-0.2<br />

(006) reflection, Ga K-edge<br />

0.2<br />

0<br />

0<br />

0<br />

2 4 6 8 10 12<br />

k (Å -1 )<br />

k(Å-1 )<br />

FT<br />

ε = 0.4%<br />

[110]<br />

ε = 0.6%<br />

[110]<br />

ε = 0.7%<br />

[110]<br />

t=4000Å<br />

ε = 0.7%<br />

-<br />

[110]<br />

t=600Å<br />

0 1 2 3 4 5 6<br />

R (Å -1 )<br />

R(Å)<br />

16/50


TEM<br />

InAs/InP QWrs<br />

AFM<br />

200nm<br />

GaN/AlN QDs<br />

Introduction<br />

Physical properties of nanostructures <strong>de</strong>pend on :<br />

-The internal atomic structure<br />

(strain, composition, <strong>de</strong>fects, ...)<br />

-The morphology (shape, size, size distribution, …)<br />

• Knowledge of the local structure at atomic scale and<br />

morphology of nano-islands during growth is a key to<br />

control and un<strong>de</strong>rstand the growth mechanism<br />

(thermodynamic, growth kinetic)<br />

17/50


Inci<strong>de</strong>nt<br />

beam<br />

α i ~ α c<br />

Introduction : Grazing Inci<strong>de</strong>nce X-ray Scattering<br />

GID : Grazing<br />

Inci<strong>de</strong>nce Diffraction<br />

D<br />

h<br />

ω<br />

d<br />

2θ<br />

slits<br />

GID<br />

strain<br />

composition<br />

Detector<br />

0D or 1D<br />

2θ<br />

q y<br />

α f<br />

GISAXS : Grazing<br />

Inci<strong>de</strong>nce Small<br />

Angle Scattering<br />

ex situ study<br />

in situ study during<br />

the growth<br />

(photon in–photon out)<br />

q z<br />

q x<br />

GISAXS<br />

Shape<br />

(facets),<br />

size,<br />

correlation<br />

2D <strong>de</strong>tector<br />

Courtesy G. Renaud<br />

18/50


Local structure study of InAs/InP QWrs<br />

Quantum size effect : materials for opto-electronic<br />

(lasers 1.5µm)<br />

Stranski-Krastanow growth (strain release via a 2D-3D<br />

growth transition)<br />

Self-organized 2D growth driven by anisotropic strain at<br />

interface<br />

Physical properties<br />

•strain<br />

•composition<br />

•interface<br />

Growth mechanism control<br />

InAs/InP QWrs<br />

ε≅-3,3%<br />

2,2 ML éq.<br />

λ≅24nm<br />

1MLInAs = 3Å<br />

Fils : [1-10]<br />

[110]<br />

-<br />

[110]<br />

AFM<br />

19/50


X-ray absorption at the As K-edge (EXAFS)<br />

P : next nearest neighbors<br />

In As/P In : first nearest neighbors<br />

contribution<br />

II<br />

I<br />

II<br />

Abs.<br />

I<br />

I<br />

Abs.<br />

II<br />

I<br />

χ(k)<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

3 5 7 9 11 13 15<br />

k (Å -1 )<br />

k(Å-1 )<br />

résiduel<br />

20/50


As-O<br />

As K-edge EXAFS (BM8-ESRF)<br />

Intensité Normalisée<br />

| FT(k 2 χ(k)) |<br />

0.02<br />

0.01<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

0.026<br />

0.02<br />

0.014<br />

11860 11880 11900 11920 11940<br />

11800 12000 12200 12400 12600 12800<br />

Energie (eV)<br />

energy<br />

Radial distribution<br />

0<br />

0 1 2 3 4 5<br />

R(Å)<br />

R(Å)<br />

χ(k)<br />

0.08<br />

0.04<br />

0<br />

-0.04<br />

-0.08<br />

EXAFS<br />

-0.12<br />

2 4 6 8 10 12 14<br />

k(Å -1 ) k(Å-1 )<br />

absence of 2 cd shell !<br />

Various As sites,<br />

needs of spatial<br />

selectivity<br />

résiduel<br />

21/50


Grazing inci<strong>de</strong>nce diffraction<br />

[110]<br />

1 1<br />

o<br />

Λ = = ≈190<br />

A<br />

δQ Q tanδω<br />

-<br />

Intensity<br />

E = 11.867 keV, ID1, ESRF<br />

(4-40) InP substrat<br />

scan Q ⊥ (Å -1 )<br />

• Diffraction with the polarization ⊥ to the surface<br />

•scan Q ⊥ : short range correlations, shape<br />

• radial scan Qr ([1-10]) : perfect pseudomorphy<br />

22/50


Grazing inci<strong>de</strong>nce diffraction<br />

BM2-D2AM-ESRF<br />

In-plane scattering Spatial selectivity<br />

[110]<br />

Intensité (unité arb.)<br />

Intensity<br />

10 5<br />

10 4<br />

Correlation<br />

statellite -1<br />

QWrs<br />

substrat InP<br />

(440) InP (440)<br />

substrat<br />

InAs bulk<br />

1/d=0.93<br />

0.94 0.95 0.96 0.97 0.98<br />

q=2sin(θ)/λ (Å -1 )<br />

radial scan : Qr=1/d (Å -1 )<br />

•a InAs=0.60584nm (1/d 440=0.934 Å -1) ; a InP=0.58686nm (1/d 440=0.964 Å -1)<br />

• Diffraction in the vertical plane : polarization ⊥ to the surface<br />

• Radial scan : strain, correlation, shape and composition sensitive<br />

23/50


Grazing inci<strong>de</strong>nce anomalous diffraction : As K-edge (11867 eV)<br />

GI<strong>DAFS</strong> spectra of the correlation satellites (-1) (BM2-D2AM-ESRF)<br />

Intensity (a.u.)<br />

(440)<br />

Energy<br />

(420)<br />

In-plane reflections<br />

The GI<strong>DAFS</strong> oscillations :<br />

a) As local atomic environment<br />

b) QWrs strain accomodation<br />

c) QWrs composition<br />

- ∆φ=φ T-φ A, |F As |/(f 0As x|F T |) : give S D (E<strong>DAFS</strong> normalisation factor)<br />

and ∆ψ=φ 0-φ A (crystallographic phase shift)<br />

- One assume one equivalent crystallographic site (Zinc-Blen<strong>de</strong>)<br />

24/50


GI-<strong>DAFS</strong> (Grazing Inci<strong>de</strong>nce <strong>DAFS</strong>)<br />

k(Å -1 )<br />

R(Å)<br />

Nearest Neighbors As-In 2.60Å<br />

Next NN<br />

(out of plane)<br />

As-As 4.29Å<br />

60 +/-15%<br />

Nanostructures<br />

II<br />

II<br />

Abs.<br />

II<br />

As-P 4.17 +/- 0.02Å<br />

40 +/- 15%<br />

Interface InAs/InP<br />

(bulk InP : P-P 4.15Å)<br />

S. Grenier, M.G. Proietti, H. Renevier, et al., Europhysics Letters, 57, (2002), 499<br />

25/50


TEM<br />

Grazing Inci<strong>de</strong>nce MAD : application to buried InAs/InP QWrs<br />

α i<br />

l-scan √I<br />

-exp.<br />

-- cal.<br />

E=10367eV<br />

RX<br />

InAs QWrs<br />

|F A |= |F As | QWrs<br />

ooo : exp<br />

--- : cal..<br />

a>a InPaa InP<br />

InAs QWrs<br />

InP<br />

(442)<br />

• strain : 6% ([001])<br />

• height : 2.4 nm<br />

a


Diffraction Intensity (a.u.)<br />

GI<strong>DAFS</strong> oscillations analysis<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

As K-edge CP1276<br />

l=1.9<br />

h=k=3.98<br />

11,7 11,8 11,9 12<br />

Energy E(keV) (keV)<br />

E<strong>DAFS</strong> fit (Ifeffit co<strong>de</strong>)<br />

∆φ/β fit (DPU co<strong>de</strong>)<br />

Phase and amplitu<strong>de</strong> factors<br />

S D , (φ 0-φ A)<br />

I3701<br />

CP1276<br />

sim <strong>DAFS</strong> from XAFS<br />

27/50


E<strong>DAFS</strong> vs EXAFS EXAFS measurements at the<br />

ε ⊥<br />

As K-edge (ESRF- BM30)<br />

ε // & ε ⊥<br />

Multifit by Ifeffit co<strong>de</strong><br />

Differences between the<br />

two samples show up in E<strong>DAFS</strong><br />

but not in EXAFS<br />

I3701<br />

CP1276<br />

Probing different As environments<br />

E<strong>DAFS</strong> measurements at the<br />

As K-edge (ESRF- BM2)<br />

CP1276<br />

I3701<br />

ε ⊥<br />

28/50


Abs II<br />

EXAFS and E<strong>DAFS</strong> best fit results<br />

II<br />

Sample→<br />

paths (Å)↓<br />

(As abs-As II) //<br />

(As abs-As II) ⊥<br />

(As abs-P II) //<br />

(As abs-P II) ⊥<br />

(As abs-In III) //<br />

(As abs-In III) ⊥<br />

%P //<br />

%P ⊥<br />

Abs.<br />

II<br />

As,P<br />

In<br />

InAs<br />

Bulk<br />

4.284<br />

4.284<br />

-<br />

-<br />

5.023<br />

5.023<br />

-<br />

-<br />

InAs/InP<br />

(pseud.)<br />

4.15<br />

4.29<br />

-<br />

-<br />

4.87<br />

5.13<br />

-<br />

-<br />

Pure strained InAs<br />

II shell<br />

Strain<br />

or<br />

distances<br />

InAsP alloy ?<br />

P content<br />

CP1276<br />

(EXAFS ε ⊥ & ε //)<br />

4.16±0.06<br />

4.23±0.04<br />

4.19±0.07<br />

4.17±0.03<br />

4.88±0.03<br />

4.93±0.06<br />

0.3±0.1<br />

0.5±0.1<br />

CP1276<br />

(<strong>DAFS</strong> ε ⊥ )<br />

-<br />

4.30±0.04<br />

-<br />

4.20±0.06<br />

-<br />

-<br />

-<br />

0.4±0.2<br />

I3701<br />

(EXAFS ε ⊥ & ε //)<br />

4.15±0.06<br />

4.25±0.04<br />

4.15±0.07<br />

4.18±0.03<br />

4.87±0.03<br />

4.94±0.06<br />

0.4±0.1<br />

0.6±0.1<br />

I3701<br />

(<strong>DAFS</strong> ε ⊥ )<br />

-<br />

4.22±0.04<br />

-<br />

4.19±0.06<br />

-<br />

-<br />

-<br />

0.4±0.3<br />

29/50


EXAFS (ε // & ε ⊥)<br />

Similar results for the 2 samples<br />

Mixing of two different As<br />

environments<br />

Strained InAs & InAsP alloy<br />

?<br />

Intermixing As/P<br />

at the QWrs/capping<br />

interface<br />

P diffused QWrs<br />

Nice example of <strong>DAFS</strong> spatial<br />

selectivity and of strong<br />

EXAFS/<strong>DAFS</strong> complementarity<br />

GI<strong>DAFS</strong> probes the QWrs As atoms (the<br />

contribution of each atom <strong>de</strong>pends on Q)<br />

EXAFS probes all As atoms<br />

E<strong>DAFS</strong> (ε ⊥)<br />

Different results for the 2 samples<br />

Different As-As and As-P II shell dist.<br />

CP1276: InAs QWrs + As/P<br />

intermixing at interface<br />

& capping<br />

I3701: InAsP QWrs + As/P<br />

intermixing at interface<br />

& capping<br />

30/50


GI<strong>DAFS</strong> oscillations analysis<br />

CP1276<br />

k (Å -1 )<br />

I3701<br />

Different<br />

growth methods<br />

(IMM Madrid/ Ec.<br />

Centrale Lyon)<br />

GI<strong>DAFS</strong> lineshape<br />

give<br />

S D, φ 0 - φ A<br />

E<strong>DAFS</strong> fit<br />

(Ifeffit co<strong>de</strong>)<br />

31/50


Abs II<br />

II<br />

EXAFS and E<strong>DAFS</strong> best fit results<br />

Abs.<br />

Sample→<br />

paths (Å)↓<br />

(As abs -As II ) //<br />

(As abs -As II ) ⊥<br />

(As abs -P II ) //<br />

(As abs -P II ) ⊥<br />

(As abs -In III ) //<br />

(As abs -In III ) ⊥<br />

%P //<br />

% P ⊥<br />

II<br />

InAs<br />

Bulk<br />

4.284<br />

4.284<br />

-<br />

-<br />

5.023<br />

5.023<br />

-<br />

-<br />

As,P<br />

In<br />

InAs/InP<br />

(pseud.)<br />

4.15<br />

4.29<br />

-<br />

-<br />

4.87<br />

5.13<br />

-<br />

-<br />

II shell<br />

distances<br />

CP1276<br />

(EXAFS e ⊥ & e<br />

// )<br />

4.16±0.06<br />

4.23±0.04<br />

4.19±0.07<br />

4.17±0.03<br />

4.88±0.03<br />

4.93±0.06<br />

0.3±0.1<br />

0.5±0.1<br />

Strain<br />

P content<br />

CP1276<br />

(<strong>DAFS</strong> e ⊥<br />

)<br />

-<br />

4.30±0.04<br />

-<br />

4.20±0.06<br />

-<br />

-<br />

-<br />

0.4±0.2<br />

Pure strained InAs<br />

or<br />

InAsP alloy ?<br />

I3701<br />

(EXAFS e ⊥ & e // )<br />

4.15±0.06<br />

4.25±0.04<br />

4.15±0.07<br />

4.18±0.03<br />

4.87±0.03<br />

4.94±0.06<br />

0.4±0.1<br />

0.6±0.1<br />

I3701<br />

(<strong>DAFS</strong> e ⊥<br />

)<br />

-<br />

4.22±0.04<br />

-<br />

4.19±0.06<br />

-<br />

-<br />

-<br />

0.4±0.3<br />

32/50


EXAFS (ε // & ε ⊥)<br />

Similar results for the 2 samples<br />

Mixing of two different As<br />

environments<br />

Strained InAs & InAsP alloy<br />

?<br />

Intermixing As/P<br />

at the QWrs/capping<br />

interface<br />

P diffused QWrs<br />

Nice example of <strong>DAFS</strong> spatial<br />

selectivity and of strong<br />

EXAFS/<strong>DAFS</strong> complementarity<br />

GI<strong>DAFS</strong> probes the QWrs As atoms (the<br />

contribution of each atom <strong>de</strong>pends on Q)<br />

EXAFS probes all As atoms<br />

E<strong>DAFS</strong> (ε ⊥)<br />

Different results for the 2 samples<br />

Different As-As and As-P II shell dist.<br />

CP1276: InAs QWrs + As/P<br />

intermixing at interface<br />

& capping<br />

I3701: InAsP QWrs + As/P<br />

intermixing at interface<br />

& capping<br />

33/50


Applications : Nanostructures III-V : BQ GaN/AlN<br />

~ 30o TEM<br />

[0001]<br />

AlN<br />

GaN QDs<br />

BV BV<br />

h= 4 nm<br />

D b = 30 nm<br />

BC BC<br />

{ 11<br />

03}<br />

5 nm<br />

A.D. Andreev et E.P. O’Reilly, APL 79, (2001), 521<br />

P<br />

Nitri<strong>de</strong> : InN (1,9eV), GaN (3,5eV), AlN<br />

(6,2eV) + alloys : visible spectra + UV A<br />

and B : LEDs (B, V) , LDs at 0,4µm<br />

- QDs : dislocations free<br />

- 3D electronic onfinement :<br />

- higher PL intensity<br />

- PL intensity : T in<strong>de</strong>pendant<br />

- Wurtzite (hexagonal cell) : [0001] :<br />

polar axis) : spontaneous + piezo-electric<br />

polarizations : electric field<br />

- PL red shift<br />

- carriers separation<br />

Important parameters :<br />

<strong>de</strong>formation, size, composition<br />

34/50


Applications : Nanostructures III-V : BQ GaN/AlN<br />

GaN QDs (4ML)<br />

wetting layer (2ML)<br />

AlN buffer (40 ML)<br />

Saphir or SiC substrates<br />

AlN capping of a GaN/AlN QDs layer : strain,<br />

composition, mechanism ?<br />

AFM<br />

- Modified Stranski –<br />

Krastanow growth (MBE)<br />

- AlN, GaN mismatch :<br />

2,4 %<br />

Ga + N<br />

GaN thickness ><br />

critical thickness<br />

GaN QDs<br />

AlN<br />

RHEED<br />

35/50


|| Structure factor ||<br />

Applications : Nanostructures III-V : BQ GaN/AlN : GIMAD<br />

F Ga<br />

F T<br />

0ML<br />

2ML<br />

10ML<br />

2.9<br />

h<br />

3 2.9 h 3<br />

[10-10] dir. : radial scan<br />

√I<br />

GaN<br />

√I √I<br />

AlN (30-30)<br />

α i =0.15°


Applications : Nanostructures III-V : BQ GaN/AlN : GI<strong>DAFS</strong><br />

2 ML AlN<br />

Energy (eV)<br />

E<strong>DAFS</strong><br />

k(Å -1 ) = 0,512x√(E-E seuil )<br />

Out of plane strain, composition :<br />

[0001]<br />

E<br />

• I(E), fixed Q : max. of F Ga<br />

• K-edge (10367eV), BM2, ESRF<br />

• E : [0001], ⊥ to the growth plane<br />

k<br />

Wurtzite structure<br />

B d Ga-Ga(N) (a diff.,c)<br />

(hexagonal symmetry )<br />

N<br />

Ga<br />

37/50


1.4<br />

1.0<br />

ε zz<br />

0.6<br />

0.2<br />

Applications : Nanostructures III-V : BQ GaN/AlN<br />

Results : strain (in-plane and out-of-plane), absolute<br />

composition in diffraction selected iso-strain volumes<br />

GaN (biaxial strain)<br />

10 ML<br />

Biaxial <strong>de</strong>formation<br />

2 ML<br />

0M L<br />

5 ML<br />

GaN/AlN/Saphire QDs<br />

-2.5 -2.0 -1.5 -1.0<br />

ε xx = (a-a GaN,bulk)/a GaN,bulk<br />

J. Coraux et al. Phys. Rev. B 73, 2006<br />

ε zz<br />

1.5<br />

1.0<br />

11ML<br />

0.5<br />

0.0<br />

18ML<br />

8ML GaN/AlN/SiC QDs<br />

4ML<br />

2ML<br />

• d Ga-N NN : strain in<strong>de</strong>pendant<br />

• Al content ≅ 0, no Al/Ga<br />

intermixing insi<strong>de</strong> the QDs<br />

0ML<br />

-1.4 -1.2 -1.0 -0.8 -0.6<br />

εxx 38/50


BQ GaN/AlN 10ML : EXAFS vs <strong>DAFS</strong><br />

k χ ϕ ϕ<br />

χ ϕ ϕ<br />

χ = ′<br />

− ) ′′<br />

( ) cos( −<br />

Q 0 A)<br />

EXAFS + sin( 0<br />

r E<strong>DAFS</strong> from EXAFS<br />

kχ(k)<br />

sample<br />

a (Å)<br />

C (Å)<br />

x_Al<br />

c/a<br />

Bulk<br />

3,188<br />

5,186<br />

-<br />

1,626<br />

GaN<br />

biaxial<br />

3,11<br />

5,26<br />

-<br />

1,69<br />

k (nm -1 )<br />

exp. E<strong>DAFS</strong><br />

<strong>DAFS</strong><br />

3,14 (diff.)<br />

5,23±0,03<br />

0,0±0,1<br />

1,67<br />

EXAFS<br />

3,15<br />

5,19±0,03<br />

0,22±0,07<br />

1,64<br />

A<br />

EXAFS<br />

X ray absorption (EXAFS)<br />

-GaK-edge<br />

- E ⊥ and // to growth plane<br />

-BM30, ESRF<br />

EXAFS : probe all Ga atoms (WL,<br />

interfaces, ... )<br />

E<strong>DAFS</strong> : max of F Ga : probe<br />

mainly the QD’s core (iso-strain<br />

volume)<br />

39/50


h < max FGa<br />

h=2.96 : max FGa<br />

h > max FGa<br />

BQ GaN/AlN : E<strong>DAFS</strong> simulations<br />

Finite Element Simulation (coll. C. Priester)<br />

GaN/AlN/Saphire (D 15nm X H 3nm) QDs + 5 ML AlN capping<br />

ε xx<br />

A j = Ga j ; k = 0, l = 0<br />

ε zz<br />

40/50


BQ GaN/AlN : E<strong>DAFS</strong> simulations<br />

h=2.96 : max FGa ; k = 0, l = 0<br />

Ga-N<br />

Ga-Ga<br />

in progress ...<br />

41/50


CONCLUSIONS<br />

Combined MAD & <strong>DAFS</strong> approach to<br />

free-standing and capped nanostructures<br />

MAD<br />

• Mo<strong>de</strong>l-free chemical imaging<br />

in the reciprocal space<br />

• Average strain and size<br />

• Powerful tool for the<br />

simulation (FEM) of the<br />

true heterostructure<br />

•In situ structural evolution<br />

during growth (J.<br />

Coraux et al. APL 2006)<br />

<strong>DAFS</strong><br />

• local environment of chemical<br />

specie located in a diffraction<br />

selected iso-strain volume<br />

• local lattice accomodation to<br />

strain, local composition<br />

42/50


Or<strong>de</strong>n <strong>de</strong> carga y reflexiones<br />

prohibidas en la magnetita<br />

Los óxidos <strong>de</strong> valencia mixta <strong>de</strong> metales <strong>de</strong> transición tienen una<br />

fenomenología muy variada e interesante<br />

Superconductividad<br />

Magnetoresistencia,<br />

Transiciones <strong>de</strong> fase metal-aislante ....<br />

Ocupación parcial <strong>de</strong> los orbitales 3d<br />

Estados <strong>de</strong> oxidación diferente<br />

Or<strong>de</strong>n orbital Or<strong>de</strong>n <strong>de</strong> carga<br />

Los electrones d no eligen el orbital a<br />

ocupar al azar in<strong>de</strong>pendientemente <strong>de</strong><br />

los <strong>de</strong>más, sino respectando un or<strong>de</strong>n<br />

y dando lugar a un or<strong>de</strong>n periódico <strong>de</strong><br />

los orbitales d ocupados<br />

La carga electrónica que pue<strong>de</strong><br />

fluctuar entre sitios<br />

cristalográficamente equivalentes,<br />

por <strong>de</strong>bajo <strong>de</strong> T c se localiza, los iones<br />

con valencia diferente se or<strong>de</strong>nan<br />

periódicamente y la s disminuye<br />

or<strong>de</strong>nes <strong>de</strong> magnitud


Manganitas dopadas<br />

(RE1-xAxMnO3)<br />

Magnetita<br />

(Fe 3O 4)<br />

(Fe 3+ )T d(Fe 3+ )O h(Fe 2+ )O hO 4<br />

Espinela invertida<br />

8(Fe3+)Td (½ ½ ½)<br />

16(Fe3+)/ (Fe 2+) Oh (1/8 1/8 1/8)<br />

32 O2- (u u u ) u ≅ 0.255<br />

T>Tc → cúbico (F d-3m )<br />

a = 8.396Å<br />

TTc<br />

Fluctuación <strong>de</strong> la<br />

carga<br />

(conductor)<br />

T


Estado electrónico <strong>de</strong> los sitios octaédricos <strong>de</strong>l Fe<br />

<strong>DAFS</strong><br />

E ⇒ K- edge Fe<br />

Shift químico<br />

r<br />

f ( Q,<br />

E)<br />

= f0<br />

f " ∝ µ<br />

Reflexión observada<br />

por difracción <strong>de</strong><br />

neutrones a T


Medidas <strong>de</strong> <strong>DAFS</strong> al umbral K <strong>de</strong>l Fe<br />

Linea CRG-D2AM <strong>de</strong>l ESRF<br />

Goniómetro 7 círculos +monocromador<br />

Reflexiones prohibidas (002) y (006)<br />

Medidas en función <strong>de</strong> T(20 K y 300K)<br />

Medidas en función <strong>de</strong> φ (analizador <strong>de</strong> MgO(111))<br />

---- T=20K<br />

_____ T=300K<br />

Resonancia antes <strong>de</strong>l umbral (prepico)<br />

Resonancia en el umbral<br />

Región extendida<br />

El espectro no cambia para T>T c


Anisotropía <strong>de</strong>l factor <strong>de</strong> dispersión reflexiones ATS<br />

f<br />

La susceptibilidad eléctrica <strong>de</strong> un cristal para los Rayos X es<br />

generalmente pequeña, pero en proximidad <strong>de</strong> un umbral <strong>de</strong> absorción<br />

la anisotropía <strong>de</strong>l enlace químico o <strong>de</strong>l entorno local pue<strong>de</strong> generar<br />

una anisotropía consi<strong>de</strong>rable en la parte anómala <strong>de</strong>l factor <strong>de</strong><br />

dispersión<br />

f es un tensor<br />

=<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

f<br />

f<br />

f<br />

xx<br />

yx<br />

zx<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

Magnetita: reflexiones (0 0 4n+2)<br />

Transiciones dipolares eléctricas<br />

1s→4p<br />

f<br />

f<br />

f<br />

xy<br />

yy<br />

zy<br />

f<br />

f<br />

f<br />

xz<br />

yz<br />

zz<br />

Nuevas reglas <strong>de</strong> extinción para las<br />

reflexiones prohibidas en cristales<br />

con planos o ejes <strong>de</strong> <strong>de</strong>slizamiento<br />

(Dmitrienko, Acta Cryst. 1984)<br />

Fe tetraédrico (A)<br />

Simetría <strong>de</strong> grupo puntual<br />

Td (cúbica)<br />

Fe octaédrico (B)<br />

Simetría <strong>de</strong> grupo puntual<br />

D3d (trigonal)<br />

isótropo<br />

anisótropo


Distorsión trigonal<br />

(z’es el eje trigonal)<br />

tensor f diagonal<br />

fxx=fyy=f⊥<br />

fzz=f//<br />

16<br />

3<br />

( ) 2<br />

f −<br />

2<br />

I002 ∝ 16 fb<br />

= // f⊥<br />

f<br />

f<br />

1<br />

a<br />

F<br />

⎛ f<br />

⎜<br />

= ⎜ 0<br />

⎜<br />

⎝ 0<br />

2<br />

= f<br />

3<br />

=<br />

xx<br />

⊥<br />

4i<br />

f<br />

0<br />

yy<br />

1<br />

+ f<br />

3<br />

4 Fe octaédricos:<br />

(1) (1/8 1/8 1/8) z’(111)<br />

(2) (3/8 3/8 1/8) z’(-1-11)<br />

(3) (3/8 1/8 3/8) z’(1-11)<br />

(4) (1/8 1/8 1/8) z’(-111)<br />

//<br />

0 ⎞ ⎛ f⊥<br />

0<br />

⎟ ⎜<br />

0 ⎟=<br />

⎜ 0 f<br />

f ⎟ ⎜<br />

zz⎠<br />

⎝ 0<br />

1<br />

fb<br />

=<br />

3<br />

⊥<br />

[ + − − ]<br />

1 2 3 4<br />

f f f f<br />

0 ⎞ ⎛ f<br />

⎟ ⎜<br />

0 ⎟=<br />

⎜ f<br />

f ⎟ ⎜<br />

// ⎠ ⎝ f<br />

( f − f )<br />

002 b<br />

//<br />

⊥<br />

⎛ 0<br />

⎜<br />

= 16i⎜<br />

f<br />

⎜<br />

⎝ 0<br />

a<br />

b<br />

b<br />

f<br />

b<br />

0<br />

0<br />

f<br />

f<br />

f<br />

b<br />

a<br />

b<br />

f<br />

f<br />

f<br />

b<br />

b<br />

a<br />

0⎞<br />

⎟<br />

0⎟<br />

0⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />


Zona <strong>de</strong>l umbral (DANES) Mo<strong>de</strong>lo reflexión ATS<br />

2 16<br />

∝ 16 = // f⊥<br />

3<br />

I002 fb<br />

( ) 2<br />

f −<br />

Simulación “ab initio”:<br />

Calculos XANES <strong>de</strong> la sección<br />

eficaz <strong>de</strong> absorción s para un<br />

cluster FeO 6 con Fe(D)3d<br />

1s → 4p<br />

" ωmc<br />

µ = N σ f = 2<br />

4πNe "<br />

f ⇐ Kramers − Kronig ⇒<br />

'<br />

' 2 ω<br />

f P<br />

'2<br />

π ∫<br />

0 ω<br />

∞<br />

=<br />

f<br />

" (<br />

ω<br />

−ω<br />

'<br />

)<br />

'2<br />

d<br />

'<br />

ω<br />

µ<br />

f<br />

'<br />

7115 7120 7125 7130 7135<br />

E (KeV)<br />

f "<br />

µ ⊥≠µ //<br />

∆E≈2eV


Efectos <strong>de</strong> polarización en I diff<br />

I ∝<br />

diff<br />

' ˆ F εˆ<br />

σπ<br />

εσπ hkl<br />

( 1 0 0)<br />

εˆ<br />

( 0 senθ cosθ)<br />

εˆ<br />

=<br />

σ = π<br />

Rotación en φ <strong>de</strong>l cristal<br />

⎛cosφ − sinφ<br />

⎜<br />

−1<br />

= R(<br />

φ ) F00<br />

R(<br />

φ ) R(<br />

φ ) = ⎜ sinφ<br />

cosφ<br />

⎜<br />

⎝ 0 0<br />

'<br />

F00l l<br />

Polarización <strong>de</strong>l<br />

haz inci<strong>de</strong>nte σ<br />

φ = 0 ⇒ I<br />

σ −σ<br />

φ = 45º<br />

⇒ I<br />

I(<br />

002 ) ⇒ I<br />

I(<br />

006 ) ⇒ I<br />

σ −σ<br />

σ −π<br />

σ −π<br />

I<br />

I<br />

= 0<br />

σ−σ<br />

σ−π<br />

I<br />

= 16 f<br />

∝ 16 f<br />

∝ 16 f<br />

σ −π<br />

2<br />

b<br />

= 16 f<br />

I<br />

(max) = 4%<br />

Iσ<br />

(max) = 40%<br />

I<br />

b<br />

b<br />

b<br />

σ −π<br />

−σ<br />

2<br />

2<br />

2<br />

σ −σ<br />

2<br />

( sin 2φ)<br />

sin<br />

sin<br />

= 0<br />

2<br />

2<br />

θ<br />

(max)<br />

(max)<br />

θ<br />

2<br />

( ) 2<br />

cos 2φ<br />

0⎞<br />

⎟<br />

0⎟<br />

1⎟<br />


Prepico<br />

Cálculos “ab initio” <strong>de</strong> f para transiciones <strong>de</strong><br />

dipolo + cuadrupolo<br />

Fe D 3d + FeT d<br />

(FDMNES, Y. Joly, CNRS Grenoble)<br />

Término mixto dipolo – cuadrupolo<br />

asociado a los átomos tetraédricos<br />

Misma periodicidad <strong>de</strong>l<br />

término dipolar octaédrico<br />

La simulación “ab initio”<strong>de</strong>l cluster<br />

octaédrico en aproximación dipolar<br />

no reproduce la estructura antes<br />

<strong>de</strong>l umbral <strong>de</strong>l Fe y que<br />

correspon<strong>de</strong> al prepico <strong>de</strong>l espectro<br />

<strong>de</strong> absorción(XANES).<br />

¿Transiciones <strong>de</strong> cuadrupolo<br />

1s → 3d ?<br />

¿hibridización <strong>de</strong> orbitales<br />

3d Fe T d con los 2p <strong>de</strong>l O?<br />

I pp (006)/I p (006) ≠ I pp (002)/I p (002)<br />

Los términos <strong>de</strong> tipo<br />

cuadrupolar en la amplitud<br />

<strong>de</strong> difusión <strong>de</strong>pen<strong>de</strong>n <strong>de</strong> k<br />

(<strong>de</strong>)<br />

Or<strong>de</strong>namiento <strong>de</strong> los orbitales<br />

p-d vacíos<br />

<strong>de</strong> los átomos <strong>de</strong> Fe<br />

tetraédricos


Conclusiones<br />

Medidas a RT<br />

Fe2+ Fe3+ e<br />

τhopping >> τRayos-X ≈ 10-15 El <strong>DAFS</strong> nos proporciona por primera vez evi<strong>de</strong>ncia DIRECTA<br />

sobre el estado electrónico <strong>de</strong>l Fe.<br />

El <strong>DAFS</strong> <strong>de</strong> las reflexiones prohibidas se interpreta<br />

perfectamente en el esquema <strong>de</strong> la anisotropía <strong>de</strong>l f (ATS)<br />

Los sitios <strong>de</strong>l Fe octaédrico, consi<strong>de</strong>rados<br />

tradicionalmente fluctuantes entre dos estados <strong>de</strong><br />

valencia Fe2+ y Fe3+, son electronicamente<br />

IDENTICOS<br />

s<br />

No hay fluctuación <strong>de</strong> carga para T>Tc<br />

Medidas a baja T Misma <strong>de</strong>pen<strong>de</strong>ncia en E y en f para T


Grazing Inci<strong>de</strong>nce Diffraction Anomalous Fine Structure (GI<strong>DAFS</strong>)<br />

1) 2D FEM similations to fit<br />

the anomalous diffraction<br />

data, including <strong>DAFS</strong> line<br />

shape (β, ∆φ), can give the<br />

true structure : shape,<br />

size strain and composition<br />

ε xx<br />

ε zz<br />

Simulation of As 1-x P x composition<br />

in the wires lead to x ~ 0<br />

Chemical composition ?<br />

Diffraction Intensity Intensity (a.u.)<br />

Tedious task, not always successful !<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

2) Energy scan, fixed Q : max.<br />

of F A (h=k=3.98, l=1.9)<br />

Diffraction selected local structure :<br />

• lattice strain accomodation<br />

• composition<br />

11,7 11,8 11,9 12<br />

Energy (keV)<br />

E(keV)<br />

As K-edge BM2, ESRF

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!