14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

490 <strong>Geometry</strong> of Numbers<br />

For the proof of (20) let λ>1. Since J is Jordan measurable, the following statement<br />

holds:<br />

(22) There are cubes C1,...,Ck such that:<br />

J ⊆ C1 ∪···∪Ck, Ci ∩ J �= ∅for i = 1,...,k,<br />

λV (J)<br />

V (Ci) all are equal <strong>and</strong> ≤ ,<br />

k<br />

�<br />

V (Ci) α+d<br />

d ≤ (λ − 1) �<br />

V (Ci) α+d<br />

d .<br />

Ci �⊆J<br />

Using this, we prove that<br />

(23) I (J,α,n) < ∼ λ 3+ α d δV (J) α+d<br />

d<br />

1<br />

n α d<br />

as n →∞.<br />

At first, the case where n = kl, l = 1, 2,...,will be considered. For i = 1,...,k<br />

<strong>and</strong> l = 1, 2,..., choose minimizing configurations Sil for I (C ∩ J,α,l) with<br />

#Sil = l. LetSn = �<br />

Sil. Then #Sn ≤ n = kl. The definition of I together with<br />

(22), (21), (11) <strong>and</strong> (22) shows that<br />

i<br />

I (J,α,n = kl) n α �<br />

d ≤ min{�x<br />

− s�<br />

s∈Sn<br />

J<br />

α } dx n α d<br />

≤ �<br />

�<br />

min{�x<br />

− s�<br />

s∈Sil<br />

i<br />

Ci ∩J<br />

α } dx n α d<br />

� �<br />

≤ I (Ci,α,l) + �<br />

�<br />

I (Ci ∩ J,α,l) n α d<br />

� �<br />

≤ I (Ci,α,l) + �<br />

Ci ⊆J<br />

� �<br />

∼ δ<br />

Ci ⊆J<br />

Ci ⊆J<br />

i<br />

i<br />

Ci �⊆J<br />

Ci �⊆J<br />

V (Ci) α+d<br />

d + �<br />

Ci �⊆J<br />

�<br />

I (Ci,α,l) n α d<br />

V (Ci) α+d �<br />

d k α d<br />

� �<br />

≤ δ V (Ci) α+d<br />

d + (λ − 1) �<br />

V (Ci) α+d �<br />

d k α d<br />

≤ λδ �<br />

i<br />

V (Ci) α+d<br />

d k α d = λδk<br />

= λ 2+ α d δV (J) α+d<br />

d as l →∞.<br />

i<br />

� λV (J)<br />

k<br />

� α+d<br />

d k α d<br />

Thus (23) holds for n of the form n = kl, l = 1, 2,... with λ 2+α/d instead of<br />

λ 3+α/d . A similar argument as the one that led to (10), then yields (23).<br />

Since λ>1 was arbitrary, (23) implies (20). The desired asymptotic formula for<br />

I (J,α,n) finally follows from (12) <strong>and</strong> (20). ⊓⊔

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!