14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Next, we prove that<br />

(18) lim inf<br />

n→∞ I (J,α,n) n α d > δ V (J)α+d d<br />

∼<br />

λ1+ α .<br />

d<br />

Clearly, the following hold:<br />

33 Optimum Quantization 489<br />

(19) There are a subsequence of 1, 2,...,<strong>and</strong> constants σi > 0, i = 1,...,k,<br />

such that:<br />

I (J,α,n) n α d → lim inf<br />

n→∞ I (J,α,n) n α d ,<br />

n(Ci) ∼ σi �<br />

n for i = 1,...,k,<br />

σi ≤ 1<br />

as n →∞in this subsequence.<br />

i<br />

Here we have applied (15) <strong>and</strong> (17). Finally, taking into account the fact that the<br />

cubes Ci, i = 1,...,k, are pairwise disjoint by (16), the definitions of Sn(Ci), I ,<br />

(11), (15), (19), Jensen’s inequality (Theorem 1.9) applied to the convex function<br />

t → t −α/d , t > 0, <strong>and</strong> (16) together show the following:<br />

I (J,α,n) n α �<br />

d = min{�x<br />

− s�<br />

s∈Sn<br />

J<br />

α } dx n α d<br />

≥ �<br />

�<br />

min<br />

s∈Sn(Ci ) {�x − s�α } dx n α d ≥ �<br />

i<br />

Ci<br />

∼ δ �<br />

i<br />

j<br />

V (Ci) α+d<br />

d<br />

i<br />

n α d<br />

n(Ci) α d<br />

j<br />

∼ δ �<br />

= δ �<br />

V (C j) � V (Ci)<br />

�<br />

σi<br />

�<br />

V (C j) V (Ci)<br />

≥ δ � � � V (Ci)<br />

V (C j) �<br />

V (C j)<br />

j<br />

� � � α+d<br />

d<br />

= δ V (C j)<br />

� �<br />

j<br />

i<br />

j<br />

i<br />

σi<br />

i<br />

i<br />

I � Ci,α,n(Ci ) � n α d<br />

V (Ci) α+d<br />

d σ − α d<br />

i<br />

� − α d<br />

� α<br />

σi<br />

− d<br />

V (Ci)<br />

� − α d ≥ δ V (J) α+d<br />

d<br />

λ α+d<br />

d<br />

as n →∞in the subsequence from Proposition (19). The proof of (18) is complete.<br />

Since λ>1 was arbitrary, (18) immediately yields (12).<br />

In the last step of the proof it will be shown that<br />

(20) I (J,α,n) < ∼ δV (J) α+d<br />

d<br />

1<br />

n α d<br />

as n →∞.<br />

Before proving (20), note that the definition of I yields the following inequality:<br />

(21) Let C be a cube. Then I (C ∩ J,α,l) ≤ I (C,α,l).<br />

,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!