14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

482 <strong>Geometry</strong> of Numbers<br />

where Hn is a regular hexagon in E 2 of area A(Hn) = A(H)/n <strong>and</strong> centre at the<br />

origin o.<br />

The following analytic proof is due to the author [437]. It uses the moment lemma<br />

of Fejes Tóth [329], p. 198.<br />

Proof. It is sufficient to prove the theorem for functions f with positive continuous<br />

derivative on (0, +∞). LetS⊆ E2 , #S = n. Then<br />

�<br />

�<br />

�<br />

(2) min{<br />

f (�x − s�)}dx = f (�x − si�)dx,<br />

s∈S<br />

H<br />

i<br />

Di<br />

where the sets Di, i = 1,...,n, are the Dirichlet–Voronoĭ cells in H corresponding<br />

to S. Di is a convex polygon of area ai with vi vertices, say. The moment lemma of<br />

Fejes Tóth says that<br />

�<br />

�<br />

(3) f (�x − si�)dx ≥ f (�x�)dx = M(ai,vi),<br />

Di<br />

Ri<br />

say, where Ri is a regular vi-gon with area ai <strong>and</strong> centre o. Letg be defined by<br />

g(r 2 ) = f (r) for r ≥ 0. Then g(0) = 0 <strong>and</strong> g has positive continuous derivative<br />

on (0, +∞). LetG be such that G(0) = 0 <strong>and</strong> G ′ = g. Finally, let h(a,v) =<br />

a/(v tan(π/v)) for a > 0,v ≥ 3. Clearly, the following hold:<br />

If R is a regular polygon with centre o, area a, <strong>and</strong> v vertices,<br />

then h 1 2 is its inradius, <strong>and</strong><br />

�<br />

(4) M(a,v)=<br />

R<br />

�<br />

f (�x�)dx = 2v<br />

0<br />

π v<br />

h 1/2<br />

cos ψ<br />

�<br />

0<br />

g(r 2 �<br />

)rdrdψ = v<br />

0<br />

π v<br />

�<br />

G<br />

h<br />

cos 2 ψ<br />

�<br />

dψ.<br />

Define M(a,v)for a > 0,v ≥ 3 by the latter integral.<br />

After these preparations the main step of the proof of the theorem is to show that<br />

the moment<br />

(5) M(a,v)is convex for a > 0,v ≥ 3.<br />

Let<br />

I =<br />

π<br />

�v<br />

0<br />

�<br />

g<br />

h<br />

cos 2 ψ<br />

�<br />

dψ<br />

cos2 , J =<br />

ψ<br />

π<br />

�v<br />

0<br />

g ′� h<br />

cos2 ψ<br />

�<br />

dψ<br />

cos4 �<br />

, K = g<br />

ψ<br />

Elementary calculus yields for the second order partial derivatives of M,<br />

Maa = vh 2 a J (> 0), Mav = (ha + vhav)I + vhahv J − πha<br />

Mvv = (2hv + vhvv)I + vh 2 2πa<br />

v J +<br />

v cos2 π<br />

v<br />

�<br />

π<br />

�<br />

− hav K.<br />

v3 v cos 2 π v<br />

h<br />

cos 2 π v<br />

K,<br />

�<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!