14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proof. (i)⇒(ii) It is sufficient to show the following:<br />

2 <strong>Convex</strong> Functions of Several Variables 33<br />

(1) Let x, y ∈ C, x �= y. Then (y − x) T H(x)(y − x) ≥ 0.<br />

Let g be the convex function defined by g(t) = f � (1 − t)x + ty � for t ∈ R such that<br />

(1 − t)x + ty = x + t(y − x) ∈ C. Since f <strong>and</strong> thus g is of class C 2 , the chain rule<br />

for functions of d variables yields the following:<br />

g ′ (t) exists <strong>and</strong> equals<br />

g ′′ (t) exists <strong>and</strong> equals<br />

d�<br />

i=1<br />

d�<br />

i,k=1<br />

fxi<br />

� x + t(y − x) � (yi − xi),<br />

fxi ,xk<br />

� x + t(y − x) � (yi − xi)(yk − xk).<br />

Since g is convex <strong>and</strong> of class C 2 , Corollary 1.1 implies that, in particular, g ′′ (0) ≥ 0<br />

<strong>and</strong> thus<br />

1<br />

2 (y − x)T H(x)(y − x) = 1<br />

2<br />

d�<br />

i,k=1<br />

fxi ,xk (x)(yi − xi)(yk − xk) = 1<br />

2 g′′ (0) ≥ 0,<br />

concluding the proof of (1).<br />

(ii)⇒(i) By Theorem 2.4, it is sufficient to show the following:<br />

(2) Let x ∈ C. Then f has an affine support at x.<br />

Since f is of class C 2 , Taylor’s theorem, for functions of d variables, implies that<br />

f (y) = f (x) + u · (y − x) + 1<br />

2<br />

d�<br />

i,k=1<br />

fxi ,xk<br />

� x + ϑ(y − x) � (yi − xi)(yk − xk)<br />

= f (x) + u · (y − x) + 1<br />

2 (y − x)T H � x + ϑ(y − x) � (y − x)<br />

≥ f (x) + u · (y − x) for y ∈ C,<br />

where u = grad f (x), 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!