14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

344 <strong>Convex</strong> Polytopes<br />

For x ∈ Bd ∩ H − we have xd ≥ 0 <strong>and</strong> x2 1 +···+x2 d−1 ≤ 1 − x2 d , or<br />

Clearly,<br />

d 2 − 1<br />

d 2<br />

d 2<br />

x 2 1 +···+ d2 − 1<br />

d2 x 2 d−1 ≤ d2 − 1<br />

d2 (d + 1) 2 �<br />

xd − 1<br />

d + 1<br />

Addition then gives<br />

d 2 − 1<br />

d 2<br />

� 2<br />

= (d + 1)2<br />

d2 x 2 d<br />

− d2 − 1<br />

d2 x 2 d .<br />

− 2(d + 1)<br />

d 2<br />

x 2 1 +···+d2 − 1<br />

d2 x 2 + 1)2<br />

d−1 +(d<br />

d2 �<br />

xd − 1<br />

�2 ≤ 1+<br />

d + 1<br />

xd + 1<br />

.<br />

d2 2d + 2<br />

d2 (x 2 d−xd) ≤ 1<br />

on noting that 0 ≤ xd ≤ 1 implies that x 2 d − xd ≤ 0. Thus x ∈ F, concluding the<br />

proof that B d ∩ H − ⊆ F. Finally,<br />

V (F)<br />

V (B d ) =<br />

�<br />

d2 d2 �<br />

− 1<br />

d−1<br />

2 d<br />

1<br />

≤ e d<br />

d + 1 2 d−1<br />

−1 2 −<br />

e 1<br />

1<br />

−<br />

d+1 = e 2(d+1) ,<br />

where we have used the fact that 1 + x ≤ ex for x = 1<br />

d2 −1<br />

,<br />

−1 d+1 . ⊓⊔<br />

How to Find a Feasible Solution by the Ellipsoid Algorithm?<br />

We consider the feasible set P ={x : Ax ≤ b} of a linear optimization problem.<br />

Assuming that there are ϱ, δ > 0 such that P ⊆ ϱB d <strong>and</strong> V (P) ≥ δ, we describe<br />

how to find a feasible solution, i.e. a point of P.<br />

Let E0 be the ellipsoid ϱB d with centre c0 = o. Then P ⊆ E0.Ifc0 ∈ P, then c0<br />

is the required feasible solution. If c0 �∈ P, then c0 is not contained in at least one of<br />

the defining halfspaces of P,sayc0�∈ {x : ai0 x ≤ βi0 }. Clearly, P ⊆ E0∩ H −<br />

0 where<br />

H −<br />

0 is the halfspace {x : ai0 x ≤ ai0c0} which contains c0 on its boundary hyperplane.<br />

By Lemma 20.1, there is an ellipsoid E1 with centre c1 such that P ⊆ E0∩ H −<br />

<strong>and</strong><br />

V (E1)<br />

1<br />

≤ e− 2(d+1) .<br />

V (E0)<br />

0<br />

⊆ E1<br />

If c1 ∈ P, then c1 is the required feasible solution, otherwise repeat this step with<br />

E1, c1 instead of E0, c0.<br />

In this way we either get a feasible solution cn ∈ P in finitely many steps, or<br />

there is a sequence of ellipsoids E0, E1, ···⊇ P with<br />

V (En) =<br />

V (En) V (E1)<br />

···<br />

V (En−1) V (E0) V (E0)<br />

n<br />

−<br />

≤ e 2(d+1) V (Eo) for n = 1, 2,...<br />

Thus V (En)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!