14.02.2013 Views

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

Gruber P. Convex and Discrete Geometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

106 <strong>Convex</strong> Bodies<br />

Proof. Applying Steiner’s formula to (C + λB d ) + µB d = C + (λ + µ)B d shows<br />

that<br />

d�<br />

i=0<br />

� d<br />

i<br />

=<br />

=<br />

=<br />

�<br />

Wi(C + λB d )µ i =<br />

d�<br />

i=0<br />

d�<br />

i=0<br />

+<br />

d�<br />

i=0<br />

� �<br />

d<br />

�<br />

Wi(C) λ<br />

i<br />

i +<br />

d�<br />

i=0<br />

� �<br />

d<br />

Wi(C)(λ + µ)<br />

i<br />

i<br />

� �<br />

i<br />

λ<br />

1<br />

i−1 µ +···+<br />

�� �� � �<br />

d i<br />

d<br />

Wi(C) +<br />

i i<br />

i + 1<br />

� �� �<br />

d d<br />

Wd(C)λ<br />

d i<br />

d−i�<br />

µ i<br />

� d−i<br />

�<br />

k=0<br />

� d<br />

i + k<br />

�� i + k<br />

Equating the coefficients of µ i , we obtain that<br />

Wi(C + λB d ) =<br />

d−i<br />

�<br />

k=0<br />

( d i+k<br />

i+k )(<br />

( d<br />

i )<br />

Cauchy’s Surface Area Formula<br />

i )<br />

i<br />

�� i + 1<br />

i<br />

� �<br />

i<br />

µ<br />

i<br />

i�<br />

�<br />

Wi+1(C)λ +···<br />

�<br />

Wi+k(C)λ k�<br />

µ i for λ, µ ≥ 0.<br />

Wi+k(C)λ k �d−i<br />

� �<br />

d − i<br />

=<br />

Wi+k(C)λ<br />

k<br />

k<br />

k=0<br />

for λ ≥ 0.⊓⊔<br />

Given C ∈ C <strong>and</strong> u ∈ S d−1 ,letC|u ⊥ denote the orthogonal projection of C into the<br />

(d − 1)-dimensional subspace u ⊥ ={x : u · x = 0} orthogonal to u. Letσ be the<br />

ordinary surface area measure in E d . Then the surface area formula of Cauchy [198]<br />

is as follows:<br />

Theorem 6.15. Let C ∈ C. Then<br />

(1) S(C) = 1<br />

�<br />

v(C|u ⊥ ) dσ(u).<br />

κd−1<br />

Sd−1 Proof. First, let C = P be a proper convex polytope. If F is a facet of P, letuFbe its exterior unit normal vector. Since P is a proper convex polytope,<br />

S(P) = �<br />

v(F),<br />

F facet of P<br />

as pointed out above. Noting that v(F) |u F · u| =v(F|u ⊥ ) for u ∈ S d−1 , integration<br />

over S d−1 shows that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!