13.02.2013 Views

Evaluation of the tensile stress-strain properties in the thickness ...

Evaluation of the tensile stress-strain properties in the thickness ...

Evaluation of the tensile stress-strain properties in the thickness ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Evaluation</strong> <strong>of</strong> <strong>the</strong> <strong>tensile</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>in</strong> <strong>the</strong><br />

<strong>thickness</strong> direction <strong>of</strong> paper materials<br />

Orlando Girlanda* and Christer Fellers, STFI-Packforsk AB, Stockholm, Sweden<br />

KEYWORDS: Z-direction strength, Stress <strong>stra<strong>in</strong></strong> <strong>properties</strong>,<br />

Delam<strong>in</strong>ation, Stra<strong>in</strong> at failure, Elastic moduli<br />

SUMMARY: The <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction were characterized by means <strong>of</strong> a custom-built<br />

apparatus. A specific procedure was used for fasten<strong>in</strong>g <strong>the</strong><br />

paper to metal blocks by photo-mount<strong>in</strong>g tissue. The effects <strong>of</strong><br />

<strong>the</strong> penetration <strong>of</strong> <strong>the</strong> adhesive <strong>in</strong>to <strong>the</strong> paper were quantified.<br />

The performance <strong>of</strong> <strong>the</strong> apparatus was <strong>the</strong>n <strong>in</strong>vestigated. F<strong>in</strong>ally<br />

<strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> were characterized for handsheets<br />

made <strong>of</strong> bleached <strong>the</strong>rmo mechanical pulps and bleached chemical<br />

pulps with different ref<strong>in</strong><strong>in</strong>g levels.<br />

ADDRESS OF THE AUTHORS: Orlando Girlanda (orlando.<br />

girlanda@stfi.se) *Present address: orlando.girlanda@polymtl.ca<br />

Christer Fellers (c.fellers@ stfi.se): STFI-Packforsk AB, Box<br />

5604, SE-114 86 Stockholm, Sweden.<br />

Correspond<strong>in</strong>g author: Christer Fellers<br />

The mechanical <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong><br />

paper are important for <strong>the</strong> performance <strong>in</strong> a number <strong>of</strong><br />

convert<strong>in</strong>g operations such as creas<strong>in</strong>g, bend<strong>in</strong>g, pr<strong>in</strong>t<strong>in</strong>g,<br />

and plastic coat<strong>in</strong>g. The knowledge <strong>of</strong> strength, elastic<br />

modulus, <strong>stra<strong>in</strong></strong>-s<strong>of</strong>ten<strong>in</strong>g behavior <strong>in</strong> tension and<br />

compressibility <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction, also called<br />

Z-direction, are needed for a comprehensive description<br />

<strong>of</strong> <strong>the</strong> performance <strong>of</strong> <strong>the</strong> material <strong>in</strong> <strong>the</strong>se operations.<br />

In spite <strong>of</strong> its importance, few publications deal with<br />

<strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> entire <strong>tensile</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>in</strong><br />

<strong>the</strong> <strong>thickness</strong> direction (Stenberg et al. 2001; Van Liew<br />

1974). The reason for this is likely <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic difficulty<br />

<strong>of</strong> test<strong>in</strong>g a th<strong>in</strong>, uneven, porous, fibrous and compressible<br />

material such as paper with sufficient precision and<br />

test<strong>in</strong>g time efficiency.<br />

Some aspects <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> behavior <strong>in</strong> terms <strong>of</strong><br />

elastic modulus are treated <strong>in</strong> several publications listed<br />

<strong>in</strong> Table 1. The elastic modulus has been characterized<br />

ei<strong>the</strong>r by evaluat<strong>in</strong>g <strong>the</strong> slope <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve<br />

(Stenberg et al. 2001; Van Liew 1974) or by us<strong>in</strong>g an<br />

ultrasonic technique (Berger and Baum 1985; Fleischman<br />

et al. 1982; Mann et al. 1980; Waterhouse et al. 1987).<br />

Ano<strong>the</strong>r aspect is <strong>the</strong> strength <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction<br />

<strong>of</strong> paper, <strong>of</strong>ten characterized by <strong>the</strong> Z-directional <strong>tensile</strong><br />

test. The test piece is fastened by means <strong>of</strong> double adhesive<br />

tape onto two solid plane platens on which <strong>tensile</strong><br />

<strong>stress</strong> is <strong>the</strong>n applied. The maximum <strong>stress</strong> is recorded<br />

and def<strong>in</strong>ed as <strong>the</strong> Z-directional <strong>tensile</strong> strength. For this<br />

measurement standards such as Tappi (1989) and SCAN<br />

(1998) are available.<br />

When <strong>the</strong> deformation <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong><br />

paper is measured, it is advantageous to use a stiff adhesive.<br />

A prerequisite is also to consider <strong>the</strong> effects <strong>of</strong> <strong>the</strong><br />

adhesive penetration <strong>in</strong>to <strong>the</strong> porous network <strong>of</strong> paper and<br />

<strong>the</strong> stiffness <strong>of</strong> <strong>the</strong> adhesive itself (Stenberg et al. 2001;<br />

Van Liew 1974). In <strong>the</strong>ir experiments with wheel delam<strong>in</strong>ation<br />

tests, <strong>in</strong> which double adhesive tape is used, Naito et<br />

al. (1995) and Lundh and Fellers (2004) observe changes<br />

<strong>of</strong> <strong>the</strong> paper <strong>properties</strong> due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> tape at a<br />

grammage <strong>of</strong> approximately 50-60 g/m 2 . In <strong>the</strong>ir <strong>in</strong>terlam<strong>in</strong>ar<br />

shear measurements, <strong>in</strong> which photo mount<strong>in</strong>g tissue is<br />

used, Byrd et al. (1975) estimate <strong>the</strong> penetration <strong>of</strong> photo<br />

mount<strong>in</strong>g tissue <strong>in</strong>to a l<strong>in</strong>erboard <strong>in</strong> <strong>the</strong> order <strong>of</strong> 7 microns<br />

correspond<strong>in</strong>g to approximately 5 g/m 2 .<br />

The mechanical <strong>properties</strong> <strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction are ma<strong>in</strong>ly <strong>in</strong>fluenced by <strong>the</strong> number and<br />

strength <strong>of</strong> <strong>the</strong> fiber-to-fiber bonds, <strong>the</strong> stiffness <strong>of</strong> <strong>the</strong><br />

fibers and <strong>the</strong> fiber strength <strong>in</strong> <strong>the</strong> transverse direction. A<br />

comprehensive review <strong>of</strong> <strong>the</strong> results presented <strong>in</strong> literature<br />

on this subject can be found <strong>in</strong> Uesaka et al. (2002).<br />

S<strong>in</strong>ce <strong>the</strong> fiber-fiber bond <strong>properties</strong> are difficult to<br />

determ<strong>in</strong>e with precision, density is <strong>of</strong>ten used for rank<strong>in</strong>g<br />

<strong>the</strong> effects <strong>of</strong> pulp<strong>in</strong>g and papermak<strong>in</strong>g parameters<br />

on <strong>the</strong> mechanical performance paper along <strong>the</strong> <strong>thickness</strong><br />

direction (Andersson and Mohl<strong>in</strong> 1980; Fleischman et al.<br />

1982; Koubaa and Koran 1995; Waterhouse et al. 1987;<br />

Waterhouse 1991). For this reason, <strong>the</strong> comparison between<br />

different sheet <strong>properties</strong> was performed <strong>in</strong> <strong>the</strong> present<br />

<strong>in</strong>vestigation us<strong>in</strong>g handsheet density.<br />

The resistance <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong> a handsheet<br />

is also <strong>in</strong>fluenced by <strong>the</strong> entanglement <strong>of</strong> <strong>the</strong> fiber<br />

network. Paper can be regarded as a layered material<br />

because fibers lay manly parallel to <strong>the</strong> MD-CD plane.<br />

However measurements on paper test pieces show that<br />

<strong>the</strong>re are a number <strong>of</strong> fibers pass<strong>in</strong>g from one layer to <strong>the</strong><br />

o<strong>the</strong>r (Aaltio 1960; Hasuike et al. 1992). These fibers can<br />

Table 1. Paper material <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction measured by different authors.<br />

Material Elastic Method Failure Apperent Basis<br />

modulus <strong>stress</strong> density weight<br />

MPa MPa kg/m 3<br />

g/m 2<br />

Van Liew<br />

(1974)<br />

Western<br />

Hemlock<br />

bleached<br />

sulfite pulp<br />

140-560 Z-<strong>tensile</strong><br />

strength<br />

test<br />

0.55<br />

0.95<br />

840-950 240-523<br />

Mann et al.<br />

(1980)<br />

Milk carton<br />

stock<br />

39 Ultrasonic<br />

technique<br />

- 780 520<br />

Fleischmann<br />

et al.(1982)<br />

Western<br />

S<strong>of</strong>twood<br />

bleached<br />

kraft pulp<br />

30-300 Ultrasonic<br />

technique<br />

- 400-850 400<br />

Berger and L<strong>in</strong>erboard 29 Ultrasonic - 691 263-286<br />

Baum<br />

(1985)<br />

technique<br />

Waterhouse<br />

et al. (1987)<br />

Unbleached<br />

sou<strong>the</strong>rn<br />

p<strong>in</strong>e<br />

263-426 Ultrasonic<br />

technique<br />

- 790-1071 212-230<br />

Commercial<br />

l<strong>in</strong>erboard<br />

45.9 Ultrasonic<br />

technique<br />

- 723 207<br />

Waterhouse Unbleached 70-210 Ultrasonic - 487-796 312-290<br />

(1991) sou<strong>the</strong>rn<br />

p<strong>in</strong>e<br />

technique<br />

Stenberg et Chemical 3.86 Arcan - 864* 267<br />

al. (2001) bleached<br />

kraft pulp<br />

device<br />

*) Structural density<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 49


<strong>in</strong>fluence <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> paper when<br />

test<strong>in</strong>g th<strong>in</strong> paper sheets (Byrd et al. 1975). The irregular<br />

<strong>thickness</strong> <strong>of</strong> paper and irregular mass distribution also causes<br />

non-uniform <strong>stra<strong>in</strong></strong> distributions over <strong>the</strong> area <strong>of</strong> <strong>the</strong><br />

test pieces as po<strong>in</strong>ted out by Van den Akker (1952). These<br />

aspects became more relevant for th<strong>in</strong>ner test pieces.<br />

The aim <strong>of</strong> <strong>the</strong> present paper was to develop a test<strong>in</strong>g<br />

procedure for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

<strong>properties</strong> <strong>in</strong> <strong>the</strong> Z-direction <strong>of</strong> paper enabl<strong>in</strong>g <strong>the</strong> extraction<br />

<strong>of</strong> <strong>the</strong> Z-directional <strong>tensile</strong> strength, <strong>stra<strong>in</strong></strong> at break<br />

and elastic modulus for paper. The penetration <strong>of</strong> adhesive<br />

and its <strong>in</strong>fluence on <strong>the</strong> performance <strong>of</strong> paper <strong>in</strong> <strong>the</strong><br />

<strong>thickness</strong> direction were def<strong>in</strong>ed. A selected number <strong>of</strong><br />

papers were tested. The relations between <strong>the</strong> mechanical<br />

<strong>properties</strong> and <strong>the</strong> paper structure, <strong>in</strong> terms <strong>of</strong> structural<br />

density, were obta<strong>in</strong>ed.<br />

Material and Methods<br />

Materials<br />

One <strong>the</strong>rmo mechanical pulp (TMP) and one chemical<br />

pulp were tested. The pulps were ei<strong>the</strong>r unbeaten or<br />

beaten <strong>in</strong> an <strong>in</strong>dustrial ref<strong>in</strong>er to different CSF levels,<br />

Table 2. Handsheets were made accord<strong>in</strong>g to SCAN-C<br />

26:76 with <strong>the</strong> exception that <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> tested<br />

handsheets varied from 10 g/m 2 to 300 g/m 2 . Key <strong>in</strong>-plane<br />

mechanical <strong>properties</strong> for 180 g/m 2 sheets are given <strong>in</strong><br />

Table 2. Structural <strong>thickness</strong> and structural density were<br />

evaluated by SCAN-P88:01 and <strong>in</strong>-plane <strong>tensile</strong> <strong>properties</strong><br />

by ISO 1924-3.<br />

Table 2. Materials used <strong>in</strong> <strong>the</strong> present <strong>in</strong>vestigation and <strong>the</strong>ir <strong>in</strong>-plane <strong>properties</strong><br />

for 180 g/m 2 handsheets.<br />

Pulp CSF Structural In-plane In-plane Stra<strong>in</strong><br />

ml density <strong>tensile</strong> <strong>tensile</strong> at<br />

kg/m 3<br />

<strong>in</strong>dex stiffness break<br />

kNm/kg <strong>in</strong>dex<br />

MNm/kg<br />

%<br />

TMP 1<br />

Unbeaten s<strong>of</strong>twood<br />

TMP 2<br />

325 407 38 4.3 2.1<br />

Beaten s<strong>of</strong>twood<br />

Chem1<br />

Bleached chemical pulp,<br />

210 484 47 5.0 1.6<br />

mix <strong>of</strong> birch, eucalyptus and<br />

s<strong>of</strong>twood, lightly beaten<br />

Chem2<br />

Bleached chemical pulp,<br />

538 682 50 6.5 3.4<br />

mix <strong>of</strong> birch, eucalyptus and<br />

s<strong>of</strong>twood, highly beaten<br />

236 871 73 8.3 3.6<br />

Methods<br />

Preparation <strong>of</strong> <strong>the</strong> paper for test<strong>in</strong>g<br />

The handsheet was fastened to circular 10 cm 2 metal<br />

platens by means <strong>of</strong> a photo mount<strong>in</strong>g tissue (Be<strong>in</strong>fang<br />

ColorMount ® adhesive). The sum <strong>of</strong> platens, adhesive<br />

and paper is referred to as <strong>the</strong> test piece. The adhesive<br />

and <strong>the</strong> paper are henceforth referred to as <strong>the</strong> sandwich.<br />

The test piece was first subjected to 0.23 MPa pressure<br />

at 110°C <strong>in</strong> a hot air oven. After one hour cur<strong>in</strong>g time,<br />

50 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

<strong>the</strong> test piece was removed from <strong>the</strong> oven and conditioned<br />

under pressure at 23°C and 50% RH. The condition<strong>in</strong>g<br />

time was set to at least 12 hours which was found<br />

adequate to obta<strong>in</strong> <strong>the</strong> equilibrium <strong>of</strong> moisture content.<br />

Additionally bare handsheets underwent <strong>the</strong> same procedure<br />

<strong>in</strong> order def<strong>in</strong>e <strong>the</strong> change <strong>of</strong> <strong>the</strong> <strong>thickness</strong> due to<br />

<strong>the</strong> applied <strong>stress</strong>. The structural <strong>thickness</strong> <strong>of</strong> <strong>the</strong> handsheets<br />

after press<strong>in</strong>g, named thandsheet, and <strong>the</strong> grammage <strong>of</strong><br />

<strong>the</strong> handsheet, whandsheet, were used to determ<strong>in</strong>e <strong>the</strong> structural<br />

density <strong>of</strong> <strong>the</strong> pressed handsheets, which is written as<br />

whandsheet<br />

ρ = handsheet<br />

t<br />

[1]<br />

handsheet<br />

The sandwich consisted <strong>of</strong> three areas, which could be<br />

delimited by imag<strong>in</strong>ary horizontal planes, as shown <strong>in</strong><br />

Fig 1. After cur<strong>in</strong>g, <strong>the</strong> handsheet was penetrated by <strong>the</strong><br />

adhesive on both upper and lower surface. The mix area<br />

consisted both <strong>of</strong> <strong>the</strong> adhesive left outside <strong>of</strong> <strong>the</strong> paper<br />

and <strong>the</strong> part <strong>of</strong> <strong>the</strong> paper penetrated by <strong>the</strong> adhesive. The<br />

<strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>of</strong> <strong>the</strong> paper calculated <strong>in</strong> <strong>the</strong><br />

present <strong>in</strong>vestigation referred to <strong>the</strong> center part <strong>of</strong> <strong>the</strong><br />

handsheet, not penetrated by <strong>the</strong> adhesive.<br />

Fig 1. Schematic picture <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> test piece and adhesive penetration<br />

<strong>in</strong>to a handsheet with def<strong>in</strong>itions <strong>of</strong> three <strong>thickness</strong>es.<br />

Procedure for <strong>the</strong> measurement <strong>of</strong> adhesive penetration<br />

<strong>in</strong>to <strong>the</strong> handsheets, two-handsheets technique<br />

The evaluation <strong>of</strong> <strong>the</strong> mechanical <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction required an estimation <strong>of</strong> <strong>the</strong> penetration<br />

grammage, which was <strong>the</strong> quantity <strong>of</strong> <strong>the</strong> handsheet<br />

affected by <strong>the</strong> adhesive.<br />

The penetration grammage was assessed by test<strong>in</strong>g<br />

two-handsheets sandwiches for each pulp type. Two<br />

handsheets with equal grammage were piled, pressed<br />

toge<strong>the</strong>r and fastened each on one surface to <strong>the</strong> platens<br />

by perform<strong>in</strong>g <strong>the</strong> already described preparations<br />

procedures. The two-handsheets sandwich was subjected<br />

to a <strong>tensile</strong> <strong>stress</strong> by <strong>the</strong> same experimental set up used<br />

for <strong>the</strong> measurements <strong>of</strong> <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> <strong>the</strong><br />

paper. The grammage <strong>of</strong> <strong>the</strong> two handsheets was varied <strong>in</strong><br />

order to obta<strong>in</strong> different degrees <strong>of</strong> adhesive penetration.<br />

As long as <strong>the</strong> grammage <strong>of</strong> two handsheets was higher<br />

than <strong>the</strong> penetration grammage, no separation force was<br />

expected. As soon as <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> handsheets<br />

was lower than <strong>the</strong> penetration grammage, <strong>the</strong> opposite<br />

adhesive layers could make contact and consequently a<br />

separation force was measured. The separation force was<br />

likely to <strong>in</strong>crease as <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> handsheets was<br />

reduced. The penetration grammage, w penetration, was defi-


ned as <strong>the</strong> <strong>in</strong>tercept at zero force <strong>in</strong> a plot relat<strong>in</strong>g <strong>the</strong><br />

separation force to <strong>the</strong> s<strong>in</strong>gle handsheet grammage.<br />

Thickness def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> constituents<br />

The comb<strong>in</strong>ed effect <strong>of</strong> adhesive penetration and nonrecoverable<br />

compression did not allow <strong>the</strong> direct<br />

evaluation <strong>of</strong> <strong>the</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> mix, t mix, and <strong>of</strong> <strong>the</strong><br />

<strong>thickness</strong> <strong>of</strong> <strong>the</strong> paper, t paper. An <strong>in</strong>direct assessment <strong>of</strong><br />

<strong>the</strong>se quantities was <strong>the</strong>refore necessary. The only measurable<br />

quantity was <strong>the</strong> sandwich <strong>thickness</strong>, t sandwich. This<br />

measurement, required ad hoc prepared test pieces.<br />

Alum<strong>in</strong>um sheets were placed between <strong>the</strong> platens and<br />

<strong>the</strong> adhesive so that <strong>the</strong> sandwich could be easily removed<br />

from <strong>the</strong> platens. The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> sandwich<br />

could be determ<strong>in</strong>ed after remov<strong>in</strong>g <strong>the</strong> alum<strong>in</strong>um sheets<br />

from <strong>the</strong> sandwich. The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> paper (see Fig 1<br />

for its geometrical def<strong>in</strong>ition) was calculated for each<br />

tested grammage as <strong>the</strong> difference between <strong>the</strong> <strong>thickness</strong><br />

<strong>of</strong> <strong>the</strong> handsheet after press<strong>in</strong>g and <strong>thickness</strong> <strong>of</strong> paper<br />

penetrated by <strong>the</strong> adhesive, Eqs (2)-(4). In Eq (2) <strong>the</strong><br />

penetration grammage and <strong>the</strong> density <strong>of</strong> <strong>the</strong> pressed<br />

handsheets for each grammage are used.<br />

Eq (2) can also be written us<strong>in</strong>g Eq (1) as<br />

⎛ 2w<br />

t = t ⎜1−<br />

paper handsheet ⎜<br />

⎝ w<br />

penetration<br />

handsheet<br />

The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> mix could <strong>the</strong>n by calculated as<br />

t<br />

mix<br />

t − t<br />

=<br />

2<br />

sandwich paper<br />

Description <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus<br />

A schematic draw<strong>in</strong>g <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus is shown <strong>in</strong><br />

Fig 2. The rod was first screwed onto <strong>the</strong> test piece.<br />

Successively, <strong>the</strong> test piece and <strong>the</strong> rod were screwed<br />

onto <strong>the</strong> load cell. These actions were performed without<br />

subject<strong>in</strong>g <strong>the</strong> sandwich to undesired load<strong>in</strong>g. The rod<br />

was f<strong>in</strong>ally secured to <strong>the</strong> connector by <strong>the</strong> upper p<strong>in</strong>.<br />

Three sensors, fastened to <strong>the</strong> upper platen and displaced<br />

at 120 degrees from each o<strong>the</strong>r, measured <strong>the</strong><br />

displacement between <strong>the</strong> lower and <strong>the</strong> upper platen.<br />

The load<strong>in</strong>g was performed by means <strong>of</strong> a MTS servohydraulic<br />

test<strong>in</strong>g mach<strong>in</strong>e. The load was applied under<br />

displacement control <strong>in</strong> order to enable <strong>the</strong> measurement<br />

<strong>of</strong> <strong>the</strong> post-peak behavior <strong>of</strong> <strong>the</strong> material. The load was<br />

transferred to <strong>the</strong> rod via a universal jo<strong>in</strong>t system,<br />

consist<strong>in</strong>g <strong>of</strong> a connector, an upper and lower p<strong>in</strong>s<br />

cross<strong>in</strong>g each o<strong>the</strong>r. The po<strong>in</strong>t contact between <strong>the</strong> p<strong>in</strong>s<br />

avoided <strong>the</strong> bend<strong>in</strong>g moment caused by possible<br />

misalignments between <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test piece and<br />

<strong>the</strong> po<strong>in</strong>t where <strong>the</strong> force is applied.<br />

The value <strong>of</strong> <strong>the</strong> Z-directional <strong>tensile</strong> strength obta<strong>in</strong>ed<br />

with <strong>the</strong> test<strong>in</strong>g apparatus was compared to <strong>the</strong> value<br />

obta<strong>in</strong>ed by a commercial apparatus follow<strong>in</strong>g SCAN<br />

P80:98. The latter method used tape to fasten <strong>the</strong> test<br />

pieces to <strong>the</strong> metal platens.<br />

⎞<br />

⎟<br />

⎠<br />

[2]<br />

[3]<br />

[4]<br />

Fig 2. A schematic draw<strong>in</strong>g <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus.<br />

Elaboration <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> data<br />

The data collected dur<strong>in</strong>g <strong>the</strong> experiments were <strong>the</strong><br />

displacements between <strong>the</strong> two platens measured by <strong>the</strong><br />

sensors and <strong>the</strong> correspond<strong>in</strong>g applied force measured by<br />

<strong>the</strong> load cell. The displacement at <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test<br />

piece was calculated from <strong>the</strong> sensors measured displacements,<br />

as expla<strong>in</strong>ed <strong>in</strong> Appendix I. The displacement at<br />

<strong>the</strong> centre <strong>of</strong> <strong>the</strong> circular test piece, called δ sandwich, was<br />

taken as representative for <strong>the</strong> deformation <strong>of</strong> <strong>the</strong> whole<br />

sandwich. The elastic modulus <strong>of</strong> <strong>the</strong> sandwich was evaluated<br />

by a l<strong>in</strong>ear regression <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves.<br />

The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> sandwich t, <strong>the</strong> <strong>in</strong>stantaneous force<br />

F and <strong>the</strong> tested area A were used for <strong>the</strong> determ<strong>in</strong>ation<br />

<strong>of</strong> <strong>the</strong> elastic modulus accord<strong>in</strong>g to Eq (5).<br />

E<br />

sandwich<br />

= δ<br />

F<br />

sandwich<br />

A t<br />

sandwich<br />

The displacement <strong>of</strong> <strong>the</strong> mix, δ mix, was determ<strong>in</strong>ed by<br />

assum<strong>in</strong>g a l<strong>in</strong>ear elastic behavior <strong>of</strong> <strong>the</strong> mix us<strong>in</strong>g Eq 6<br />

where <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> mix was obta<strong>in</strong>ed from<br />

<strong>the</strong> slope <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>of</strong> handsheets which<br />

were completely penetrated by <strong>the</strong> adhesive.<br />

The displacement <strong>of</strong> <strong>the</strong> paper was calculated as <strong>the</strong><br />

difference between <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> sandwich and<br />

<strong>the</strong> displacement <strong>of</strong> <strong>the</strong> mix:<br />

Consequently <strong>the</strong> <strong>stra<strong>in</strong></strong> <strong>in</strong> paper was calculated as<br />

The value <strong>of</strong> <strong>the</strong> elastic modulus <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction<br />

<strong>of</strong> paper was determ<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g <strong>the</strong> elastic<br />

[5]<br />

F<br />

δmix mix<br />

E A t = [6]<br />

mix<br />

δ = δ −2 δ<br />

paper sandwich mix<br />

[7]<br />

ε<br />

paper<br />

⎛<br />

δ<br />

δ<br />

⎜<br />

paper ⎝<br />

= =<br />

t<br />

paper<br />

sandwich<br />

F<br />

E A t − 2<br />

t paper<br />

mix<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 51<br />

mix<br />

⎞<br />

⎟<br />

⎠<br />

[8]


modulus <strong>of</strong> <strong>the</strong> sandwich and <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong><br />

mix accord<strong>in</strong>g to Eq (9), by substitut<strong>in</strong>g Eqs (5) and (6)<br />

<strong>in</strong>to (7),<br />

E<br />

paper<br />

Results<br />

F<br />

A t = = paper<br />

δ<br />

⎛<br />

paper t<br />

⎜<br />

⎝ E<br />

The test<strong>in</strong>g procedure presented <strong>in</strong> this paper was developed<br />

for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>in</strong> <strong>the</strong><br />

Z-direction <strong>of</strong> paper from which <strong>the</strong> extraction <strong>of</strong> <strong>the</strong> Zdirectional<br />

<strong>tensile</strong> strength, <strong>stra<strong>in</strong></strong> at break and elastic<br />

modulus for paper was possible. A selected number <strong>of</strong><br />

handsheets were tested and <strong>the</strong> relations between <strong>the</strong><br />

mechanical <strong>properties</strong> and <strong>the</strong> paper structure, <strong>in</strong> terms <strong>of</strong><br />

structural density, were <strong>in</strong>vestigated. A summary <strong>of</strong> all<br />

<strong>the</strong> results is given <strong>in</strong> Appendix II.<br />

The analysis started by study<strong>in</strong>g <strong>the</strong> change <strong>in</strong> <strong>thickness</strong><br />

<strong>of</strong> <strong>the</strong> handsheets due to <strong>the</strong> press<strong>in</strong>g sequence<br />

(Table 3). The TMP handsheets showed a permanent<br />

deformation after <strong>the</strong> press<strong>in</strong>g, whereas no change was<br />

observed for <strong>the</strong> chemical handsheets.<br />

The penetration <strong>of</strong> <strong>the</strong> Photo Mount<strong>in</strong>g Tissue adhesive<br />

<strong>in</strong>to <strong>the</strong> handsheets was <strong>the</strong>n determ<strong>in</strong>ed by <strong>the</strong><br />

“two-handsheets” technique. Fig 3 shows <strong>the</strong> data for <strong>the</strong><br />

chemical pulp 1. The behavior was representative for all<br />

<strong>the</strong> <strong>in</strong>vestigated handsheets. The straight l<strong>in</strong>e is <strong>the</strong> l<strong>in</strong>ear<br />

fit to <strong>the</strong> data. The extrapolated value to zero-strength<br />

gave <strong>the</strong> penetration grammage <strong>in</strong>to one handsheet. The<br />

results <strong>in</strong> terms <strong>of</strong> penetration grammage for all <strong>the</strong><br />

<strong>in</strong>vestigated papers are summarized <strong>in</strong> Table 4.<br />

52 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

t<br />

sandwich<br />

paper<br />

sandwich<br />

2 t ⎞<br />

mix<br />

[9]<br />

−<br />

E<br />

⎟<br />

⎠<br />

Table 3. Density after press<strong>in</strong>g and change <strong>in</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> handsheets due to press<strong>in</strong>g.<br />

Measurements were performed at 23°C and 50% RH.<br />

mix<br />

TMP 1 TMP 2 Chem 1 Chem 2<br />

Grammage Density Change Density Change Density Change Density Change<br />

g/m 2<br />

kg/m 3<br />

% kg/m 3<br />

% kg/m 3<br />

kg/m 3<br />

80 444 17 514 10 666 - 862 -<br />

100 448 15 515 7 687 - 849 -<br />

120 472 13 533 9 686 - 856 -<br />

180 459 8 540 10 682 - 885 -<br />

240 465 8 539 8 678 - 879 -<br />

300 491 12 542 9 680 - 882 -<br />

Average 463 12 530 9 682 - 871 -<br />

Fig 3. Z-directional <strong>tensile</strong> strength versus grammage for one handsheet tested by<br />

<strong>the</strong> “two-handsheet” technique.<br />

Table 4. Penetration <strong>of</strong> <strong>the</strong> adhesive <strong>in</strong>to <strong>the</strong> handsheets. The penetration <strong>thickness</strong><br />

was evaluated by Eq (1).<br />

Pulp Penetration<br />

g/m 2<br />

The penetration grammage was approximately 20 g/m 2<br />

for all <strong>the</strong> <strong>in</strong>vestigated handsheets while <strong>the</strong> penetration<br />

<strong>thickness</strong> varied depend<strong>in</strong>g on <strong>the</strong> density <strong>of</strong> <strong>the</strong> handsheet,<br />

Fig 4.<br />

Based on <strong>the</strong> results <strong>in</strong> Table 4, <strong>the</strong> Z-strength tests for<br />

<strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> mix were<br />

performed on 40 g/m 2 handsheets, us<strong>in</strong>g Eq (5). The<br />

elastic modulus for <strong>the</strong> adhesive was also evaluated us<strong>in</strong>g<br />

<strong>the</strong> custom built apparatus. The results are given <strong>in</strong><br />

Table 5 and plotted as function <strong>of</strong> density <strong>in</strong> Fig 5.<br />

mm<br />

TMP1 19.7 0.054<br />

TMP2 19.5 0.042<br />

Chem1 19.5 0.029<br />

Chem2 20.7 0.022<br />

Fig 4. Penetration depth versus density for <strong>the</strong> handsheets tested by <strong>the</strong> “twohandsheets”<br />

technique.<br />

Table 5. Elastic modulus for <strong>the</strong> mix and <strong>the</strong> adhesive performed<br />

on 40 g/m 2 sheets.<br />

Material E, MPa<br />

TMP 1 33<br />

TMP 2 61<br />

Chem1 230<br />

Chem2 302<br />

Adhesive 1600<br />

Fig 5. Relation between elastic modulus for <strong>the</strong> mix and handsheet density.


Test<strong>in</strong>g speed<br />

Paper material and adhesives exhibit a visco-elastic<br />

behavior, i.e. <strong>the</strong>ir response <strong>in</strong> terms <strong>of</strong> strength will<br />

change depend<strong>in</strong>g on <strong>the</strong> test<strong>in</strong>g speed. Rate dependency<br />

was not addressed <strong>in</strong> this paper. However <strong>the</strong> purpose<br />

was to test <strong>the</strong> material <strong>in</strong> a time w<strong>in</strong>dow <strong>in</strong> which <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> rate had negligible <strong>in</strong>fluence on <strong>the</strong> material <strong>properties</strong>.<br />

The <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> <strong>stra<strong>in</strong></strong> rate was studied for<br />

120 g/m 2 paper sheets prepared with chemical pulp 2.<br />

Two different test<strong>in</strong>g speeds were used, 0.025 mm/s and<br />

0.0025 mm/s. The mean times to break were respectively<br />

6.7 and 66 seconds. No <strong>in</strong>fluence on <strong>the</strong> Z-directional<br />

<strong>tensile</strong> strength was found. The tests <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g part<br />

<strong>of</strong> <strong>the</strong> article were <strong>the</strong>refore performed at 0.0025 mm/s<br />

speed.<br />

Stress <strong>stra<strong>in</strong></strong> curves<br />

Fig 6 presents four typical <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves for 300<br />

g/m 2 , one for each type <strong>of</strong> pulp studied <strong>in</strong> <strong>the</strong> present<br />

<strong>in</strong>vestigation. The curves were calculated by Eq (8). The<br />

elastic moduli presented <strong>in</strong> this <strong>in</strong>vestigation were obta<strong>in</strong>ed<br />

by l<strong>in</strong>ear regression <strong>of</strong> <strong>the</strong> Z-directional <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

curves. The limit at which l<strong>in</strong>earity was good approximation<br />

varied depend<strong>in</strong>g on <strong>the</strong> pulps. For TMP <strong>the</strong> elastic<br />

moduli were calculated up to 50% <strong>of</strong> <strong>the</strong> strength. For<br />

chemical pulp <strong>the</strong> calculation limit was set to 80% <strong>of</strong> <strong>the</strong><br />

strength.<br />

Fig 6. True <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

Sheets prepared from chemical pulps were stiffer than <strong>the</strong><br />

ones made <strong>of</strong> mechanical pulps. TMP was characterized<br />

by a <strong>stra<strong>in</strong></strong> at break around 8%, whereas <strong>stra<strong>in</strong></strong> at break<br />

for chemical pulp ranged from 1.4% to 1.8%. The postpeak<br />

behavior changed drastically for different pulps. For<br />

chemical pulp 2 <strong>the</strong> post-peak behavior was unstable at<br />

any grammage. For chemical pulp 1, post peak <strong>in</strong>stability<br />

was also present for low grammage handsheets, but for<br />

higher grammage <strong>the</strong> failure was stable. For TMP<br />

handsheets <strong>the</strong> failure was always stable.<br />

Z-directional <strong>tensile</strong> strength<br />

In Figs 7 to 10 <strong>the</strong> Z-directional <strong>tensile</strong> strength is shown<br />

as a function <strong>of</strong> grammage. The strength values are<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different techniques, i.e. measurements<br />

performed by <strong>the</strong> custom built apparatus us<strong>in</strong>g<br />

adhesive, and data measured us<strong>in</strong>g double adhesive tape.<br />

Fig 7. Grammage versus Z-directional <strong>tensile</strong> strength plot for TMP1 obta<strong>in</strong>ed<br />

us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 8. Grammage versus Z-directional <strong>tensile</strong> strength plot for TMP2 obta<strong>in</strong>ed<br />

us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 9. Grammage versus Z-directional <strong>tensile</strong> strength plot for chemical pulp 1<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 10. Grammage versus Z-directional <strong>tensile</strong> strength plot for chemical pulp 2<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 53


Fig 11. Density versus Z-directional <strong>tensile</strong> strength <strong>in</strong> a semi-logarithmic plot. Fig 12. Elastic modulus versus grammage for <strong>the</strong> TMP handsheets.<br />

The Z-directional <strong>tensile</strong> strength <strong>of</strong> TMP handsheets<br />

could be regarded as constant down to a grammage <strong>of</strong><br />

approximately 60 g/m 2 . For lower grammages <strong>the</strong> Zdirectional<br />

<strong>tensile</strong> strength <strong>in</strong>creased drastically. For <strong>the</strong><br />

chemical pulps <strong>the</strong> strength gradually <strong>in</strong>creased with<br />

decreas<strong>in</strong>g grammage. A steep <strong>in</strong>crease was also observed<br />

after <strong>the</strong> 60 g/m 2 limit.<br />

The strength measured with double adhesive tape was<br />

<strong>in</strong>dependent <strong>of</strong> grammage, with <strong>the</strong> exception <strong>of</strong> low<br />

grammages, where tape penetration <strong>in</strong>fluenced <strong>the</strong><br />

measurements. When strong chemical pulp was tested,<br />

<strong>the</strong> failure did not occur <strong>in</strong> <strong>the</strong> paper but <strong>in</strong> <strong>the</strong> <strong>in</strong>terface<br />

between tape and paper. On <strong>the</strong> o<strong>the</strong>r hand, when test<strong>in</strong>g<br />

TMP, <strong>the</strong> failure occurred always <strong>in</strong> <strong>the</strong> paper.<br />

Fig 11 presents <strong>in</strong> a logarithmical scale all <strong>the</strong> results<br />

<strong>in</strong> terms <strong>of</strong> Z-directional strength <strong>in</strong> function <strong>of</strong> <strong>the</strong><br />

structural density. A straight l<strong>in</strong>e fit was performed to <strong>the</strong><br />

data.<br />

The elastic modulus was calculated from Eq (9). The<br />

results are presented <strong>in</strong> Figs 12 and 13. The straight l<strong>in</strong>es<br />

correspond to <strong>the</strong> mean value <strong>of</strong> <strong>the</strong> elastic modulus evaluated<br />

for papers with different grammage. The elastic<br />

modulus was essentially <strong>in</strong>dependent <strong>of</strong> grammage.<br />

The relation between elastic modulus and density was<br />

also considered. In order to illustrate <strong>in</strong> <strong>the</strong> same graph<br />

<strong>the</strong> full range <strong>of</strong> elastic modulus for <strong>the</strong> different pulps a<br />

logarithmical scale on <strong>the</strong> y-axis was used <strong>in</strong> Fig 14. A<br />

straight l<strong>in</strong>e fit was performed to <strong>the</strong> data.<br />

Fig 15 presents <strong>the</strong> variation <strong>of</strong> <strong>stra<strong>in</strong></strong> at break as function<br />

<strong>of</strong> grammage. It was observed that <strong>stra<strong>in</strong></strong> at break<br />

<strong>in</strong>creased for lower grammage handsheets both for TMP<br />

and chemical pulps. It was also observed that <strong>stra<strong>in</strong></strong> at<br />

break was significantly higher for TMP handsheets.<br />

Fig 16 shows <strong>the</strong> results for <strong>stra<strong>in</strong></strong> at break as a function<br />

<strong>of</strong> density. Density had a small <strong>in</strong>fluence on <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> at break <strong>of</strong> chemical pulps. TMP seemed to be<br />

slightly more sensitive to small variations <strong>of</strong> density,<br />

s<strong>in</strong>ce a decrease <strong>in</strong> density caused an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> at break.<br />

Discussion<br />

The custom-built experimental set-up was designed to<br />

allow for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> Z-directional <strong>stress</strong><strong>stra<strong>in</strong></strong><br />

curves <strong>of</strong> handsheets. The first set <strong>of</strong> tests measured<br />

<strong>the</strong> adhesive penetration <strong>in</strong>to <strong>the</strong> handsheet with<br />

54 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

Fig 13. Elastic modulus versus grammage for <strong>the</strong> chemical pulps handsheets.<br />

Fig 14. Elastic modulus versus density for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

Fig 15. Stra<strong>in</strong> at break versus grammage for <strong>the</strong> <strong>in</strong>vestigated handsheets.


Fig 16. Stra<strong>in</strong> at break versus density for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

vary<strong>in</strong>g structural density. This was a prerequisite for a<br />

more precise evaluation <strong>of</strong> <strong>the</strong> deformation <strong>of</strong> paper. The<br />

results <strong>in</strong> terms <strong>of</strong> elastic moduli showed that when<br />

evaluat<strong>in</strong>g <strong>the</strong> <strong>stra<strong>in</strong></strong> related <strong>properties</strong>, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong><br />

<strong>the</strong> adhesive could not be neglected even for higher<br />

grammages. Byrd et al. (Byrd et al. 1975) apply an<br />

adhesive similar to <strong>the</strong> one used <strong>in</strong> <strong>the</strong> present study, but<br />

<strong>the</strong>y assume that <strong>the</strong> adhesive has an <strong>in</strong>f<strong>in</strong>ite stiffness.<br />

This might be a reason for <strong>the</strong>ir calculated adhesive<br />

penetration which is significantly lower than <strong>the</strong> one<br />

presented <strong>in</strong> this paper.<br />

A large discrepancy was found between <strong>the</strong> Z-directional<br />

<strong>tensile</strong> strength measured us<strong>in</strong>g adhesive and double<br />

adhesive tape. This was not unexpected s<strong>in</strong>ce <strong>the</strong> strength<br />

results for <strong>the</strong> chemical pulps lie on <strong>the</strong> border or outside<br />

<strong>the</strong> recommended measurement range accord<strong>in</strong>g to<br />

SCAN P80:98. Consequently, reliable Z-directional<br />

strength values for strong papers can only be obta<strong>in</strong>ed by<br />

ensur<strong>in</strong>g a paper-adhesive bond<strong>in</strong>g which is stronger than<br />

<strong>the</strong> paper itself.<br />

A possible drawback for <strong>the</strong> presented method is <strong>the</strong><br />

densification <strong>of</strong> TMP dur<strong>in</strong>g <strong>the</strong> press<strong>in</strong>g process, which<br />

might have an effect on <strong>the</strong> mechanical <strong>properties</strong>.<br />

However, <strong>the</strong> strength results obta<strong>in</strong>ed with commercial<br />

apparatus did not differ, <strong>in</strong> <strong>the</strong> range <strong>of</strong> <strong>the</strong> acceptable<br />

grammages, from <strong>the</strong> ones obta<strong>in</strong>ed by <strong>the</strong> custom built<br />

apparatus.<br />

The chosen pressure ensured a sufficient penetration <strong>of</strong><br />

<strong>the</strong> glue and sufficient bond<strong>in</strong>g between <strong>the</strong> glue and<br />

paper. In <strong>the</strong> future, a reduction <strong>of</strong> <strong>the</strong> cur<strong>in</strong>g time<br />

obta<strong>in</strong>ed by us<strong>in</strong>g more suitable glue comb<strong>in</strong>ed with a<br />

decrease <strong>of</strong> <strong>the</strong> cur<strong>in</strong>g pressure may be <strong>the</strong> way to avoid<br />

<strong>the</strong> densification.<br />

The decrease <strong>in</strong> Z-directional <strong>tensile</strong> strength for<br />

<strong>in</strong>creas<strong>in</strong>g grammage observed for <strong>the</strong> chemical pulps<br />

can be expla<strong>in</strong>ed by <strong>the</strong> Weak L<strong>in</strong>k Theory. Handsheets<br />

with higher grammages present a higher number <strong>of</strong><br />

distributed defects trigger<strong>in</strong>g failures at lower <strong>stress</strong>es.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Z-directional <strong>tensile</strong> strength for<br />

TMP sheets rema<strong>in</strong>ed constant over <strong>the</strong> range <strong>of</strong> <strong>the</strong><br />

acceptable grammages. One explanation might be that<br />

<strong>the</strong> defect sensitivity is related to <strong>the</strong> density <strong>of</strong> <strong>the</strong> fiber<br />

network. The adhesive penetration does not allow test<strong>in</strong>g<br />

grammages less than 60 g/m 2 . Test<strong>in</strong>g <strong>of</strong> th<strong>in</strong>ner paper<br />

may require a ref<strong>in</strong>ement <strong>of</strong> <strong>the</strong> technique.<br />

In l<strong>in</strong>e with <strong>the</strong> previous results on <strong>the</strong> subject, it was<br />

shown that density caused an exponential <strong>in</strong>crease <strong>in</strong><br />

both Z-directional <strong>tensile</strong> strength and <strong>the</strong> elastic<br />

modulus for <strong>the</strong> tested material. It is likely that <strong>the</strong> f<strong>in</strong>es<br />

cause <strong>the</strong> <strong>in</strong>crease <strong>of</strong> strength for <strong>the</strong> beaten pulps but<br />

less <strong>in</strong>fluence on <strong>the</strong> Z-directional elastic modulus is<br />

expected. The magnitude <strong>of</strong> <strong>the</strong> elastic modulus is <strong>in</strong><br />

agreement with <strong>the</strong> previous literature data. With regard<br />

to <strong>the</strong> fiber shape, two ma<strong>in</strong> concurrent structural factors<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> Z-directional elastic modulus <strong>of</strong> paper<br />

can be identified. A consequence <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g density is<br />

a lower free fiber segment length correspond<strong>in</strong>g to higher<br />

resistance to bend<strong>in</strong>g for s<strong>in</strong>gular fibers. This phenomenon<br />

may have positive effect on <strong>the</strong> Z-directional elastic<br />

modulus <strong>of</strong> paper. The fiber collapse, caused by beat<strong>in</strong>g,<br />

on <strong>the</strong> o<strong>the</strong>r hand, reduces <strong>the</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> fiber and<br />

<strong>the</strong>refore <strong>the</strong> bend<strong>in</strong>g stiffness <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle fiber drops.<br />

This fact is likely to be detrimental to <strong>the</strong> elastic moduli<br />

<strong>of</strong> paper.<br />

S<strong>in</strong>ce <strong>the</strong> elastic modulus <strong>in</strong>creases with density, <strong>the</strong><br />

negative effect <strong>of</strong> fiber collapse seems to be negligible<br />

over reduction <strong>of</strong> <strong>the</strong> free fiber length.<br />

Conclusions<br />

·<br />

·<br />

·<br />

·<br />

·<br />

A method for <strong>the</strong> measurement <strong>of</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong><br />

<strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction was developed.<br />

The measurements were applicable for grammages<br />

over approximately 60g/m 2 .<br />

The paper <strong>properties</strong> were highly dependent on <strong>the</strong><br />

density. Higher density caused an exponential <strong>in</strong>crease<br />

<strong>in</strong> Elastic modulus, Z-directional strength, and a<br />

reduction <strong>of</strong> <strong>the</strong> <strong>stra<strong>in</strong></strong> at break<br />

The presented technique should help <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

knowledge <strong>of</strong> <strong>the</strong> relationship between <strong>the</strong> network<br />

structure and <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> paper.<br />

The collected data may be used as a first approximation<br />

for model<strong>in</strong>g purposes <strong>of</strong> convert<strong>in</strong>g processes<br />

and end use performance.<br />

Acknowledgments<br />

The f<strong>in</strong>ancial support <strong>of</strong> <strong>the</strong> Surface Treatment Program at Karlstad University is<br />

acknowledged. The authors wish to thank <strong>the</strong> STFI-Packforsk partner companies<br />

participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> Research Cluster ‘Eng<strong>in</strong>eered Paperboard’.<br />

Appendix I. F<strong>in</strong>d<strong>in</strong>g <strong>the</strong> displacement <strong>in</strong> <strong>the</strong> center <strong>of</strong><br />

<strong>the</strong> test piece.<br />

The aim <strong>of</strong> such calculation is to determ<strong>in</strong>e <strong>the</strong> displacement<br />

<strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> test piece. The displacement<br />

field <strong>of</strong> <strong>the</strong> all <strong>the</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> test piece can be<br />

described as a plane <strong>in</strong> space, s<strong>in</strong>ce <strong>the</strong> test piece is<br />

rigidly connected to plane platens. The centre <strong>of</strong> <strong>the</strong> test<br />

piece is taken as <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> coord<strong>in</strong>ate system. The<br />

displacements can be considered as <strong>the</strong> Z-coord<strong>in</strong>ates <strong>in</strong><br />

<strong>the</strong> space. The sensors yield <strong>the</strong> values <strong>of</strong> <strong>the</strong> dis-<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 55


placements along <strong>the</strong> <strong>thickness</strong> direction <strong>in</strong> three<br />

different po<strong>in</strong>ts outside <strong>the</strong> test piece. The displacements<br />

<strong>of</strong> all po<strong>in</strong>ts belong<strong>in</strong>g to <strong>the</strong> same plane are given by<br />

ax + by + cz + d =0. [A1.1]<br />

The unknowns <strong>in</strong> <strong>the</strong> Eq (1) are <strong>the</strong> three cos<strong>in</strong>e directors<br />

a /d b /d c /d. The unknowns can be evaluated by substitut<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> coord<strong>in</strong>ates three sensors <strong>in</strong>to Eq (1), be<strong>in</strong>g <strong>the</strong><br />

position <strong>in</strong> <strong>the</strong> x-y plane <strong>the</strong> x i,y i coord<strong>in</strong>ates and z i <strong>the</strong><br />

displacement along <strong>the</strong> <strong>thickness</strong> direction:<br />

⎡−1⎤<br />

⎡x<br />

y z ⎤⎡a<br />

d⎤<br />

1 1 1<br />

⎢ ⎥ ⎢ ⎥⎢<br />

⎥<br />

⎢−1⎥<br />

= ⎢x<br />

y z<br />

2 2 2⎥⎢bd⎥<br />

⎢<br />

⎣−1⎥<br />

⎢<br />

⎦ ⎣x<br />

y z ⎥⎢<br />

⎥<br />

3 3 3⎦⎣cd⎦<br />

The deformation <strong>of</strong> <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test piece z center was<br />

determ<strong>in</strong>ed by substitut<strong>in</strong>g <strong>the</strong> coord<strong>in</strong>ate <strong>of</strong> <strong>the</strong> centre<br />

x center=0 and y center =0 <strong>in</strong>to (A1.1)<br />

z<br />

center<br />

−c<br />

=<br />

d<br />

Appendix II<br />

56 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

[A1.2]<br />

[A1.3]<br />

Table AII:1. Experimental results <strong>of</strong> Z-directional strength, elastic modulus and <strong>stra<strong>in</strong></strong> at break<br />

for <strong>the</strong> tested pulps.<br />

Grammage Z-directional 95% Z-directional 95% Elastic 95% Stra<strong>in</strong> 95%<br />

kg/m 2<br />

<strong>tensile</strong> CI <strong>tensile</strong> strength CI Modulus CI at break CI<br />

strength kPa (tape) kPa MPa %<br />

TMP1<br />

100 197 14 188 12 7.1 2.8 12.5 2.1<br />

120 215 33 204 17 7.9 3.7 10.5 0.8<br />

180 233 11 225 5 9.5 2.1 9.3 1.1<br />

240 220 10 215 9 7.7 2.2 8.7 0.7<br />

300 220 10 232 11 9.4 1.0 8.3 1.0<br />

TMP2<br />

80 335 42 323 16 13.3 3.7 12.6 0.8<br />

100 353 16 312 17 16.7 2.5 10.2 0.5<br />

120 384 17 328 46 19.6 3.7 9.0 0.8<br />

180 400 15 344 18 19.6 2.8 8.2 0.4<br />

240 375 15 352 27 16.01 2.7 8.4 0.4<br />

300 332 12 354 7 13.6 2.1 8.4 0.7<br />

Chem1<br />

80 777 99 442 3.2 62 26.7 2.7 1.2<br />

100 699 36 424 17.7 67 15.7 2.4 0.4<br />

120 655 7 409 8.9 91 14.6 2.0 0.6<br />

180 611 8 505 14 73 18.9 2.2 0.2<br />

240 550 11 484 5 73 9.5 1.7 0.1<br />

300 529 8 488 10 71 11.3 1.4 0.2<br />

Chem2<br />

80 1946 38 717 7.3 188.6 75.9 2.8 1.2<br />

100 1936 29 716 6.2 169.0 26.6 3.4 0.4<br />

120 1916 39 719 7.6 217.3 62.5 2.6 0.6<br />

180 1833 53 688 19 203.4 25.4 2.0 0.2<br />

240 1781 24 683 14 205.5 31.8 1.9 0.1<br />

300 1693 37 683 11 206.0 16.9 1.8 0.2<br />

Literature<br />

Aaltio, E.A. (1960): Studies on <strong>the</strong> Z-orientation <strong>in</strong> Paper, Svensk Papperstidn<strong>in</strong>g,<br />

(3) 58-61.<br />

Andersson, M. and Mohl<strong>in</strong>, U.-B. (1980): Z-strength <strong>of</strong> mechanical pulps,<br />

Paperi Puu, 62(10) 583-586.<br />

Berger, B.F. and Baum, G.A. (1985): Z-direction <strong>properties</strong>: <strong>the</strong> effects <strong>of</strong> yield<br />

and ref<strong>in</strong><strong>in</strong>g, Eighth Fundamental Research Symposium, Oxford, V. Punton, pp.<br />

Byrd, V.L. Setterholm, V.C. and Wichmann, J.F. (1975): Methods for measur<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>terlam<strong>in</strong>ar shear <strong>properties</strong> <strong>of</strong> paper, Tappi, 58(10) 132-135.<br />

Fleischman, E.H. Baum, G.A. and Habeger, C.C. (1982): A study on <strong>the</strong> elastic and<br />

dielectric anisotropy <strong>of</strong> paper, The role <strong>of</strong> fundamental research <strong>in</strong> papermak<strong>in</strong>g,<br />

Transactions <strong>of</strong> <strong>the</strong> symposium, Cambridge, 1981. 115-118.<br />

Hasuike, M. Kawasaki, T. and Murakami, K. (1992): <strong>Evaluation</strong> Method <strong>of</strong> 3-D<br />

Geometric Structure <strong>of</strong> Paper Sheet, J. Pulp Paper Sci. 18(3) J114-J120.<br />

Koubaa, A. and Koran, Z. (1995): Measure <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal bond strength <strong>of</strong><br />

paper/board, Tappi J. 78(3) 103-111.<br />

Lundh, A. and Fellers, C. (2004): A method for determ<strong>in</strong>ation <strong>of</strong> delam<strong>in</strong>ation<br />

toughness <strong>in</strong> different positions <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong> paperboard, Nord.<br />

Pulp Paper Res. J. 19(2) 224-228.<br />

Mann, R.W. Baum, G.A. and Habeger, C.C. (1980): Determ<strong>in</strong>ation <strong>of</strong> all n<strong>in</strong>e<br />

orthotropic elastic constants for mach<strong>in</strong>e-made paper, Tappi, 63(2) 163-166.<br />

Naito, T. Nishi, K. and Kawano, Y. (1995): Delam<strong>in</strong>ation resistance <strong>of</strong> paper,<br />

1995 International Paper Conference, Niagara-on-<strong>the</strong>-lake, ON. pp.125-130.<br />

SCAN (1998): P80:98 Paper and Board, Z-directional <strong>tensile</strong> strength,<br />

Stenberg, N. Fellers, C. and Östlund, S. (2001): Measur<strong>in</strong>g <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

<strong>properties</strong> <strong>of</strong> paperboard <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction, J. Pulp Paper Sci. 27(6) 213-<br />

221.<br />

Tappi (1989): Standard T 541 om, Internal bond strength <strong>of</strong> paperboard ( Zdirection<br />

<strong>tensile</strong> ).<br />

Uesaka, T. Retula<strong>in</strong>en, E. Paavila<strong>in</strong>en, L. Mark, R. E. and Keller, S. (2002):<br />

Determ<strong>in</strong>ation <strong>of</strong> fiber-fiber bond <strong>properties</strong>, New York.<br />

Van Den Akker, J.A. (1952): Instrumentation studies. LXIX. General discussion <strong>of</strong><br />

<strong>the</strong> measurement <strong>of</strong> <strong>the</strong> adhesion and cohesion, Tappi, 35(4) 155A-162A.<br />

Van Liew, G. P. (1974): The Z-direction deformation <strong>of</strong> paper, Tappi, 57(11) 121-<br />

124.<br />

Waterhouse, J. Stera, S. and Brennan, D. (1987): Z-direction variation <strong>of</strong> <strong>in</strong>ternal<br />

<strong>stress</strong> and <strong>properties</strong> <strong>in</strong> paper, J. Pulp Paper Sci. 13(1) 33-37.<br />

Waterhouse, J.F. (1991): The failure envelope <strong>of</strong> paper when subjected to comb<strong>in</strong>ed<br />

out-<strong>of</strong>-plane <strong>stress</strong>es, International Paper Physics Conference, Kona, Hawaii,<br />

USA., pp. 629-640.<br />

Manuscript received August 30, 2006<br />

Accepted November 10, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!