13.02.2013 Views

Evaluation of the tensile stress-strain properties in the thickness ...

Evaluation of the tensile stress-strain properties in the thickness ...

Evaluation of the tensile stress-strain properties in the thickness ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Evaluation</strong> <strong>of</strong> <strong>the</strong> <strong>tensile</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>in</strong> <strong>the</strong><br />

<strong>thickness</strong> direction <strong>of</strong> paper materials<br />

Orlando Girlanda* and Christer Fellers, STFI-Packforsk AB, Stockholm, Sweden<br />

KEYWORDS: Z-direction strength, Stress <strong>stra<strong>in</strong></strong> <strong>properties</strong>,<br />

Delam<strong>in</strong>ation, Stra<strong>in</strong> at failure, Elastic moduli<br />

SUMMARY: The <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction were characterized by means <strong>of</strong> a custom-built<br />

apparatus. A specific procedure was used for fasten<strong>in</strong>g <strong>the</strong><br />

paper to metal blocks by photo-mount<strong>in</strong>g tissue. The effects <strong>of</strong><br />

<strong>the</strong> penetration <strong>of</strong> <strong>the</strong> adhesive <strong>in</strong>to <strong>the</strong> paper were quantified.<br />

The performance <strong>of</strong> <strong>the</strong> apparatus was <strong>the</strong>n <strong>in</strong>vestigated. F<strong>in</strong>ally<br />

<strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> were characterized for handsheets<br />

made <strong>of</strong> bleached <strong>the</strong>rmo mechanical pulps and bleached chemical<br />

pulps with different ref<strong>in</strong><strong>in</strong>g levels.<br />

ADDRESS OF THE AUTHORS: Orlando Girlanda (orlando.<br />

girlanda@stfi.se) *Present address: orlando.girlanda@polymtl.ca<br />

Christer Fellers (c.fellers@ stfi.se): STFI-Packforsk AB, Box<br />

5604, SE-114 86 Stockholm, Sweden.<br />

Correspond<strong>in</strong>g author: Christer Fellers<br />

The mechanical <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong><br />

paper are important for <strong>the</strong> performance <strong>in</strong> a number <strong>of</strong><br />

convert<strong>in</strong>g operations such as creas<strong>in</strong>g, bend<strong>in</strong>g, pr<strong>in</strong>t<strong>in</strong>g,<br />

and plastic coat<strong>in</strong>g. The knowledge <strong>of</strong> strength, elastic<br />

modulus, <strong>stra<strong>in</strong></strong>-s<strong>of</strong>ten<strong>in</strong>g behavior <strong>in</strong> tension and<br />

compressibility <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction, also called<br />

Z-direction, are needed for a comprehensive description<br />

<strong>of</strong> <strong>the</strong> performance <strong>of</strong> <strong>the</strong> material <strong>in</strong> <strong>the</strong>se operations.<br />

In spite <strong>of</strong> its importance, few publications deal with<br />

<strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> entire <strong>tensile</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>in</strong><br />

<strong>the</strong> <strong>thickness</strong> direction (Stenberg et al. 2001; Van Liew<br />

1974). The reason for this is likely <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic difficulty<br />

<strong>of</strong> test<strong>in</strong>g a th<strong>in</strong>, uneven, porous, fibrous and compressible<br />

material such as paper with sufficient precision and<br />

test<strong>in</strong>g time efficiency.<br />

Some aspects <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> behavior <strong>in</strong> terms <strong>of</strong><br />

elastic modulus are treated <strong>in</strong> several publications listed<br />

<strong>in</strong> Table 1. The elastic modulus has been characterized<br />

ei<strong>the</strong>r by evaluat<strong>in</strong>g <strong>the</strong> slope <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve<br />

(Stenberg et al. 2001; Van Liew 1974) or by us<strong>in</strong>g an<br />

ultrasonic technique (Berger and Baum 1985; Fleischman<br />

et al. 1982; Mann et al. 1980; Waterhouse et al. 1987).<br />

Ano<strong>the</strong>r aspect is <strong>the</strong> strength <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction<br />

<strong>of</strong> paper, <strong>of</strong>ten characterized by <strong>the</strong> Z-directional <strong>tensile</strong><br />

test. The test piece is fastened by means <strong>of</strong> double adhesive<br />

tape onto two solid plane platens on which <strong>tensile</strong><br />

<strong>stress</strong> is <strong>the</strong>n applied. The maximum <strong>stress</strong> is recorded<br />

and def<strong>in</strong>ed as <strong>the</strong> Z-directional <strong>tensile</strong> strength. For this<br />

measurement standards such as Tappi (1989) and SCAN<br />

(1998) are available.<br />

When <strong>the</strong> deformation <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong><br />

paper is measured, it is advantageous to use a stiff adhesive.<br />

A prerequisite is also to consider <strong>the</strong> effects <strong>of</strong> <strong>the</strong><br />

adhesive penetration <strong>in</strong>to <strong>the</strong> porous network <strong>of</strong> paper and<br />

<strong>the</strong> stiffness <strong>of</strong> <strong>the</strong> adhesive itself (Stenberg et al. 2001;<br />

Van Liew 1974). In <strong>the</strong>ir experiments with wheel delam<strong>in</strong>ation<br />

tests, <strong>in</strong> which double adhesive tape is used, Naito et<br />

al. (1995) and Lundh and Fellers (2004) observe changes<br />

<strong>of</strong> <strong>the</strong> paper <strong>properties</strong> due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> tape at a<br />

grammage <strong>of</strong> approximately 50-60 g/m 2 . In <strong>the</strong>ir <strong>in</strong>terlam<strong>in</strong>ar<br />

shear measurements, <strong>in</strong> which photo mount<strong>in</strong>g tissue is<br />

used, Byrd et al. (1975) estimate <strong>the</strong> penetration <strong>of</strong> photo<br />

mount<strong>in</strong>g tissue <strong>in</strong>to a l<strong>in</strong>erboard <strong>in</strong> <strong>the</strong> order <strong>of</strong> 7 microns<br />

correspond<strong>in</strong>g to approximately 5 g/m 2 .<br />

The mechanical <strong>properties</strong> <strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction are ma<strong>in</strong>ly <strong>in</strong>fluenced by <strong>the</strong> number and<br />

strength <strong>of</strong> <strong>the</strong> fiber-to-fiber bonds, <strong>the</strong> stiffness <strong>of</strong> <strong>the</strong><br />

fibers and <strong>the</strong> fiber strength <strong>in</strong> <strong>the</strong> transverse direction. A<br />

comprehensive review <strong>of</strong> <strong>the</strong> results presented <strong>in</strong> literature<br />

on this subject can be found <strong>in</strong> Uesaka et al. (2002).<br />

S<strong>in</strong>ce <strong>the</strong> fiber-fiber bond <strong>properties</strong> are difficult to<br />

determ<strong>in</strong>e with precision, density is <strong>of</strong>ten used for rank<strong>in</strong>g<br />

<strong>the</strong> effects <strong>of</strong> pulp<strong>in</strong>g and papermak<strong>in</strong>g parameters<br />

on <strong>the</strong> mechanical performance paper along <strong>the</strong> <strong>thickness</strong><br />

direction (Andersson and Mohl<strong>in</strong> 1980; Fleischman et al.<br />

1982; Koubaa and Koran 1995; Waterhouse et al. 1987;<br />

Waterhouse 1991). For this reason, <strong>the</strong> comparison between<br />

different sheet <strong>properties</strong> was performed <strong>in</strong> <strong>the</strong> present<br />

<strong>in</strong>vestigation us<strong>in</strong>g handsheet density.<br />

The resistance <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong> a handsheet<br />

is also <strong>in</strong>fluenced by <strong>the</strong> entanglement <strong>of</strong> <strong>the</strong> fiber<br />

network. Paper can be regarded as a layered material<br />

because fibers lay manly parallel to <strong>the</strong> MD-CD plane.<br />

However measurements on paper test pieces show that<br />

<strong>the</strong>re are a number <strong>of</strong> fibers pass<strong>in</strong>g from one layer to <strong>the</strong><br />

o<strong>the</strong>r (Aaltio 1960; Hasuike et al. 1992). These fibers can<br />

Table 1. Paper material <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction measured by different authors.<br />

Material Elastic Method Failure Apperent Basis<br />

modulus <strong>stress</strong> density weight<br />

MPa MPa kg/m 3<br />

g/m 2<br />

Van Liew<br />

(1974)<br />

Western<br />

Hemlock<br />

bleached<br />

sulfite pulp<br />

140-560 Z-<strong>tensile</strong><br />

strength<br />

test<br />

0.55<br />

0.95<br />

840-950 240-523<br />

Mann et al.<br />

(1980)<br />

Milk carton<br />

stock<br />

39 Ultrasonic<br />

technique<br />

- 780 520<br />

Fleischmann<br />

et al.(1982)<br />

Western<br />

S<strong>of</strong>twood<br />

bleached<br />

kraft pulp<br />

30-300 Ultrasonic<br />

technique<br />

- 400-850 400<br />

Berger and L<strong>in</strong>erboard 29 Ultrasonic - 691 263-286<br />

Baum<br />

(1985)<br />

technique<br />

Waterhouse<br />

et al. (1987)<br />

Unbleached<br />

sou<strong>the</strong>rn<br />

p<strong>in</strong>e<br />

263-426 Ultrasonic<br />

technique<br />

- 790-1071 212-230<br />

Commercial<br />

l<strong>in</strong>erboard<br />

45.9 Ultrasonic<br />

technique<br />

- 723 207<br />

Waterhouse Unbleached 70-210 Ultrasonic - 487-796 312-290<br />

(1991) sou<strong>the</strong>rn<br />

p<strong>in</strong>e<br />

technique<br />

Stenberg et Chemical 3.86 Arcan - 864* 267<br />

al. (2001) bleached<br />

kraft pulp<br />

device<br />

*) Structural density<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 49


<strong>in</strong>fluence <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> paper when<br />

test<strong>in</strong>g th<strong>in</strong> paper sheets (Byrd et al. 1975). The irregular<br />

<strong>thickness</strong> <strong>of</strong> paper and irregular mass distribution also causes<br />

non-uniform <strong>stra<strong>in</strong></strong> distributions over <strong>the</strong> area <strong>of</strong> <strong>the</strong><br />

test pieces as po<strong>in</strong>ted out by Van den Akker (1952). These<br />

aspects became more relevant for th<strong>in</strong>ner test pieces.<br />

The aim <strong>of</strong> <strong>the</strong> present paper was to develop a test<strong>in</strong>g<br />

procedure for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

<strong>properties</strong> <strong>in</strong> <strong>the</strong> Z-direction <strong>of</strong> paper enabl<strong>in</strong>g <strong>the</strong> extraction<br />

<strong>of</strong> <strong>the</strong> Z-directional <strong>tensile</strong> strength, <strong>stra<strong>in</strong></strong> at break<br />

and elastic modulus for paper. The penetration <strong>of</strong> adhesive<br />

and its <strong>in</strong>fluence on <strong>the</strong> performance <strong>of</strong> paper <strong>in</strong> <strong>the</strong><br />

<strong>thickness</strong> direction were def<strong>in</strong>ed. A selected number <strong>of</strong><br />

papers were tested. The relations between <strong>the</strong> mechanical<br />

<strong>properties</strong> and <strong>the</strong> paper structure, <strong>in</strong> terms <strong>of</strong> structural<br />

density, were obta<strong>in</strong>ed.<br />

Material and Methods<br />

Materials<br />

One <strong>the</strong>rmo mechanical pulp (TMP) and one chemical<br />

pulp were tested. The pulps were ei<strong>the</strong>r unbeaten or<br />

beaten <strong>in</strong> an <strong>in</strong>dustrial ref<strong>in</strong>er to different CSF levels,<br />

Table 2. Handsheets were made accord<strong>in</strong>g to SCAN-C<br />

26:76 with <strong>the</strong> exception that <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> tested<br />

handsheets varied from 10 g/m 2 to 300 g/m 2 . Key <strong>in</strong>-plane<br />

mechanical <strong>properties</strong> for 180 g/m 2 sheets are given <strong>in</strong><br />

Table 2. Structural <strong>thickness</strong> and structural density were<br />

evaluated by SCAN-P88:01 and <strong>in</strong>-plane <strong>tensile</strong> <strong>properties</strong><br />

by ISO 1924-3.<br />

Table 2. Materials used <strong>in</strong> <strong>the</strong> present <strong>in</strong>vestigation and <strong>the</strong>ir <strong>in</strong>-plane <strong>properties</strong><br />

for 180 g/m 2 handsheets.<br />

Pulp CSF Structural In-plane In-plane Stra<strong>in</strong><br />

ml density <strong>tensile</strong> <strong>tensile</strong> at<br />

kg/m 3<br />

<strong>in</strong>dex stiffness break<br />

kNm/kg <strong>in</strong>dex<br />

MNm/kg<br />

%<br />

TMP 1<br />

Unbeaten s<strong>of</strong>twood<br />

TMP 2<br />

325 407 38 4.3 2.1<br />

Beaten s<strong>of</strong>twood<br />

Chem1<br />

Bleached chemical pulp,<br />

210 484 47 5.0 1.6<br />

mix <strong>of</strong> birch, eucalyptus and<br />

s<strong>of</strong>twood, lightly beaten<br />

Chem2<br />

Bleached chemical pulp,<br />

538 682 50 6.5 3.4<br />

mix <strong>of</strong> birch, eucalyptus and<br />

s<strong>of</strong>twood, highly beaten<br />

236 871 73 8.3 3.6<br />

Methods<br />

Preparation <strong>of</strong> <strong>the</strong> paper for test<strong>in</strong>g<br />

The handsheet was fastened to circular 10 cm 2 metal<br />

platens by means <strong>of</strong> a photo mount<strong>in</strong>g tissue (Be<strong>in</strong>fang<br />

ColorMount ® adhesive). The sum <strong>of</strong> platens, adhesive<br />

and paper is referred to as <strong>the</strong> test piece. The adhesive<br />

and <strong>the</strong> paper are henceforth referred to as <strong>the</strong> sandwich.<br />

The test piece was first subjected to 0.23 MPa pressure<br />

at 110°C <strong>in</strong> a hot air oven. After one hour cur<strong>in</strong>g time,<br />

50 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

<strong>the</strong> test piece was removed from <strong>the</strong> oven and conditioned<br />

under pressure at 23°C and 50% RH. The condition<strong>in</strong>g<br />

time was set to at least 12 hours which was found<br />

adequate to obta<strong>in</strong> <strong>the</strong> equilibrium <strong>of</strong> moisture content.<br />

Additionally bare handsheets underwent <strong>the</strong> same procedure<br />

<strong>in</strong> order def<strong>in</strong>e <strong>the</strong> change <strong>of</strong> <strong>the</strong> <strong>thickness</strong> due to<br />

<strong>the</strong> applied <strong>stress</strong>. The structural <strong>thickness</strong> <strong>of</strong> <strong>the</strong> handsheets<br />

after press<strong>in</strong>g, named thandsheet, and <strong>the</strong> grammage <strong>of</strong><br />

<strong>the</strong> handsheet, whandsheet, were used to determ<strong>in</strong>e <strong>the</strong> structural<br />

density <strong>of</strong> <strong>the</strong> pressed handsheets, which is written as<br />

whandsheet<br />

ρ = handsheet<br />

t<br />

[1]<br />

handsheet<br />

The sandwich consisted <strong>of</strong> three areas, which could be<br />

delimited by imag<strong>in</strong>ary horizontal planes, as shown <strong>in</strong><br />

Fig 1. After cur<strong>in</strong>g, <strong>the</strong> handsheet was penetrated by <strong>the</strong><br />

adhesive on both upper and lower surface. The mix area<br />

consisted both <strong>of</strong> <strong>the</strong> adhesive left outside <strong>of</strong> <strong>the</strong> paper<br />

and <strong>the</strong> part <strong>of</strong> <strong>the</strong> paper penetrated by <strong>the</strong> adhesive. The<br />

<strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong> <strong>of</strong> <strong>the</strong> paper calculated <strong>in</strong> <strong>the</strong><br />

present <strong>in</strong>vestigation referred to <strong>the</strong> center part <strong>of</strong> <strong>the</strong><br />

handsheet, not penetrated by <strong>the</strong> adhesive.<br />

Fig 1. Schematic picture <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> test piece and adhesive penetration<br />

<strong>in</strong>to a handsheet with def<strong>in</strong>itions <strong>of</strong> three <strong>thickness</strong>es.<br />

Procedure for <strong>the</strong> measurement <strong>of</strong> adhesive penetration<br />

<strong>in</strong>to <strong>the</strong> handsheets, two-handsheets technique<br />

The evaluation <strong>of</strong> <strong>the</strong> mechanical <strong>properties</strong> <strong>in</strong> <strong>the</strong> <strong>thickness</strong><br />

direction required an estimation <strong>of</strong> <strong>the</strong> penetration<br />

grammage, which was <strong>the</strong> quantity <strong>of</strong> <strong>the</strong> handsheet<br />

affected by <strong>the</strong> adhesive.<br />

The penetration grammage was assessed by test<strong>in</strong>g<br />

two-handsheets sandwiches for each pulp type. Two<br />

handsheets with equal grammage were piled, pressed<br />

toge<strong>the</strong>r and fastened each on one surface to <strong>the</strong> platens<br />

by perform<strong>in</strong>g <strong>the</strong> already described preparations<br />

procedures. The two-handsheets sandwich was subjected<br />

to a <strong>tensile</strong> <strong>stress</strong> by <strong>the</strong> same experimental set up used<br />

for <strong>the</strong> measurements <strong>of</strong> <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> <strong>the</strong><br />

paper. The grammage <strong>of</strong> <strong>the</strong> two handsheets was varied <strong>in</strong><br />

order to obta<strong>in</strong> different degrees <strong>of</strong> adhesive penetration.<br />

As long as <strong>the</strong> grammage <strong>of</strong> two handsheets was higher<br />

than <strong>the</strong> penetration grammage, no separation force was<br />

expected. As soon as <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> handsheets<br />

was lower than <strong>the</strong> penetration grammage, <strong>the</strong> opposite<br />

adhesive layers could make contact and consequently a<br />

separation force was measured. The separation force was<br />

likely to <strong>in</strong>crease as <strong>the</strong> grammage <strong>of</strong> <strong>the</strong> handsheets was<br />

reduced. The penetration grammage, w penetration, was defi-


ned as <strong>the</strong> <strong>in</strong>tercept at zero force <strong>in</strong> a plot relat<strong>in</strong>g <strong>the</strong><br />

separation force to <strong>the</strong> s<strong>in</strong>gle handsheet grammage.<br />

Thickness def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> constituents<br />

The comb<strong>in</strong>ed effect <strong>of</strong> adhesive penetration and nonrecoverable<br />

compression did not allow <strong>the</strong> direct<br />

evaluation <strong>of</strong> <strong>the</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> mix, t mix, and <strong>of</strong> <strong>the</strong><br />

<strong>thickness</strong> <strong>of</strong> <strong>the</strong> paper, t paper. An <strong>in</strong>direct assessment <strong>of</strong><br />

<strong>the</strong>se quantities was <strong>the</strong>refore necessary. The only measurable<br />

quantity was <strong>the</strong> sandwich <strong>thickness</strong>, t sandwich. This<br />

measurement, required ad hoc prepared test pieces.<br />

Alum<strong>in</strong>um sheets were placed between <strong>the</strong> platens and<br />

<strong>the</strong> adhesive so that <strong>the</strong> sandwich could be easily removed<br />

from <strong>the</strong> platens. The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> sandwich<br />

could be determ<strong>in</strong>ed after remov<strong>in</strong>g <strong>the</strong> alum<strong>in</strong>um sheets<br />

from <strong>the</strong> sandwich. The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> paper (see Fig 1<br />

for its geometrical def<strong>in</strong>ition) was calculated for each<br />

tested grammage as <strong>the</strong> difference between <strong>the</strong> <strong>thickness</strong><br />

<strong>of</strong> <strong>the</strong> handsheet after press<strong>in</strong>g and <strong>thickness</strong> <strong>of</strong> paper<br />

penetrated by <strong>the</strong> adhesive, Eqs (2)-(4). In Eq (2) <strong>the</strong><br />

penetration grammage and <strong>the</strong> density <strong>of</strong> <strong>the</strong> pressed<br />

handsheets for each grammage are used.<br />

Eq (2) can also be written us<strong>in</strong>g Eq (1) as<br />

⎛ 2w<br />

t = t ⎜1−<br />

paper handsheet ⎜<br />

⎝ w<br />

penetration<br />

handsheet<br />

The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> mix could <strong>the</strong>n by calculated as<br />

t<br />

mix<br />

t − t<br />

=<br />

2<br />

sandwich paper<br />

Description <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus<br />

A schematic draw<strong>in</strong>g <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus is shown <strong>in</strong><br />

Fig 2. The rod was first screwed onto <strong>the</strong> test piece.<br />

Successively, <strong>the</strong> test piece and <strong>the</strong> rod were screwed<br />

onto <strong>the</strong> load cell. These actions were performed without<br />

subject<strong>in</strong>g <strong>the</strong> sandwich to undesired load<strong>in</strong>g. The rod<br />

was f<strong>in</strong>ally secured to <strong>the</strong> connector by <strong>the</strong> upper p<strong>in</strong>.<br />

Three sensors, fastened to <strong>the</strong> upper platen and displaced<br />

at 120 degrees from each o<strong>the</strong>r, measured <strong>the</strong><br />

displacement between <strong>the</strong> lower and <strong>the</strong> upper platen.<br />

The load<strong>in</strong>g was performed by means <strong>of</strong> a MTS servohydraulic<br />

test<strong>in</strong>g mach<strong>in</strong>e. The load was applied under<br />

displacement control <strong>in</strong> order to enable <strong>the</strong> measurement<br />

<strong>of</strong> <strong>the</strong> post-peak behavior <strong>of</strong> <strong>the</strong> material. The load was<br />

transferred to <strong>the</strong> rod via a universal jo<strong>in</strong>t system,<br />

consist<strong>in</strong>g <strong>of</strong> a connector, an upper and lower p<strong>in</strong>s<br />

cross<strong>in</strong>g each o<strong>the</strong>r. The po<strong>in</strong>t contact between <strong>the</strong> p<strong>in</strong>s<br />

avoided <strong>the</strong> bend<strong>in</strong>g moment caused by possible<br />

misalignments between <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test piece and<br />

<strong>the</strong> po<strong>in</strong>t where <strong>the</strong> force is applied.<br />

The value <strong>of</strong> <strong>the</strong> Z-directional <strong>tensile</strong> strength obta<strong>in</strong>ed<br />

with <strong>the</strong> test<strong>in</strong>g apparatus was compared to <strong>the</strong> value<br />

obta<strong>in</strong>ed by a commercial apparatus follow<strong>in</strong>g SCAN<br />

P80:98. The latter method used tape to fasten <strong>the</strong> test<br />

pieces to <strong>the</strong> metal platens.<br />

⎞<br />

⎟<br />

⎠<br />

[2]<br />

[3]<br />

[4]<br />

Fig 2. A schematic draw<strong>in</strong>g <strong>of</strong> <strong>the</strong> test<strong>in</strong>g apparatus.<br />

Elaboration <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> data<br />

The data collected dur<strong>in</strong>g <strong>the</strong> experiments were <strong>the</strong><br />

displacements between <strong>the</strong> two platens measured by <strong>the</strong><br />

sensors and <strong>the</strong> correspond<strong>in</strong>g applied force measured by<br />

<strong>the</strong> load cell. The displacement at <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test<br />

piece was calculated from <strong>the</strong> sensors measured displacements,<br />

as expla<strong>in</strong>ed <strong>in</strong> Appendix I. The displacement at<br />

<strong>the</strong> centre <strong>of</strong> <strong>the</strong> circular test piece, called δ sandwich, was<br />

taken as representative for <strong>the</strong> deformation <strong>of</strong> <strong>the</strong> whole<br />

sandwich. The elastic modulus <strong>of</strong> <strong>the</strong> sandwich was evaluated<br />

by a l<strong>in</strong>ear regression <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves.<br />

The <strong>thickness</strong> <strong>of</strong> <strong>the</strong> sandwich t, <strong>the</strong> <strong>in</strong>stantaneous force<br />

F and <strong>the</strong> tested area A were used for <strong>the</strong> determ<strong>in</strong>ation<br />

<strong>of</strong> <strong>the</strong> elastic modulus accord<strong>in</strong>g to Eq (5).<br />

E<br />

sandwich<br />

= δ<br />

F<br />

sandwich<br />

A t<br />

sandwich<br />

The displacement <strong>of</strong> <strong>the</strong> mix, δ mix, was determ<strong>in</strong>ed by<br />

assum<strong>in</strong>g a l<strong>in</strong>ear elastic behavior <strong>of</strong> <strong>the</strong> mix us<strong>in</strong>g Eq 6<br />

where <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> mix was obta<strong>in</strong>ed from<br />

<strong>the</strong> slope <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>of</strong> handsheets which<br />

were completely penetrated by <strong>the</strong> adhesive.<br />

The displacement <strong>of</strong> <strong>the</strong> paper was calculated as <strong>the</strong><br />

difference between <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> sandwich and<br />

<strong>the</strong> displacement <strong>of</strong> <strong>the</strong> mix:<br />

Consequently <strong>the</strong> <strong>stra<strong>in</strong></strong> <strong>in</strong> paper was calculated as<br />

The value <strong>of</strong> <strong>the</strong> elastic modulus <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction<br />

<strong>of</strong> paper was determ<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g <strong>the</strong> elastic<br />

[5]<br />

F<br />

δmix mix<br />

E A t = [6]<br />

mix<br />

δ = δ −2 δ<br />

paper sandwich mix<br />

[7]<br />

ε<br />

paper<br />

⎛<br />

δ<br />

δ<br />

⎜<br />

paper ⎝<br />

= =<br />

t<br />

paper<br />

sandwich<br />

F<br />

E A t − 2<br />

t paper<br />

mix<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 51<br />

mix<br />

⎞<br />

⎟<br />

⎠<br />

[8]


modulus <strong>of</strong> <strong>the</strong> sandwich and <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong><br />

mix accord<strong>in</strong>g to Eq (9), by substitut<strong>in</strong>g Eqs (5) and (6)<br />

<strong>in</strong>to (7),<br />

E<br />

paper<br />

Results<br />

F<br />

A t = = paper<br />

δ<br />

⎛<br />

paper t<br />

⎜<br />

⎝ E<br />

The test<strong>in</strong>g procedure presented <strong>in</strong> this paper was developed<br />

for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curve <strong>in</strong> <strong>the</strong><br />

Z-direction <strong>of</strong> paper from which <strong>the</strong> extraction <strong>of</strong> <strong>the</strong> Zdirectional<br />

<strong>tensile</strong> strength, <strong>stra<strong>in</strong></strong> at break and elastic<br />

modulus for paper was possible. A selected number <strong>of</strong><br />

handsheets were tested and <strong>the</strong> relations between <strong>the</strong><br />

mechanical <strong>properties</strong> and <strong>the</strong> paper structure, <strong>in</strong> terms <strong>of</strong><br />

structural density, were <strong>in</strong>vestigated. A summary <strong>of</strong> all<br />

<strong>the</strong> results is given <strong>in</strong> Appendix II.<br />

The analysis started by study<strong>in</strong>g <strong>the</strong> change <strong>in</strong> <strong>thickness</strong><br />

<strong>of</strong> <strong>the</strong> handsheets due to <strong>the</strong> press<strong>in</strong>g sequence<br />

(Table 3). The TMP handsheets showed a permanent<br />

deformation after <strong>the</strong> press<strong>in</strong>g, whereas no change was<br />

observed for <strong>the</strong> chemical handsheets.<br />

The penetration <strong>of</strong> <strong>the</strong> Photo Mount<strong>in</strong>g Tissue adhesive<br />

<strong>in</strong>to <strong>the</strong> handsheets was <strong>the</strong>n determ<strong>in</strong>ed by <strong>the</strong><br />

“two-handsheets” technique. Fig 3 shows <strong>the</strong> data for <strong>the</strong><br />

chemical pulp 1. The behavior was representative for all<br />

<strong>the</strong> <strong>in</strong>vestigated handsheets. The straight l<strong>in</strong>e is <strong>the</strong> l<strong>in</strong>ear<br />

fit to <strong>the</strong> data. The extrapolated value to zero-strength<br />

gave <strong>the</strong> penetration grammage <strong>in</strong>to one handsheet. The<br />

results <strong>in</strong> terms <strong>of</strong> penetration grammage for all <strong>the</strong><br />

<strong>in</strong>vestigated papers are summarized <strong>in</strong> Table 4.<br />

52 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

t<br />

sandwich<br />

paper<br />

sandwich<br />

2 t ⎞<br />

mix<br />

[9]<br />

−<br />

E<br />

⎟<br />

⎠<br />

Table 3. Density after press<strong>in</strong>g and change <strong>in</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> handsheets due to press<strong>in</strong>g.<br />

Measurements were performed at 23°C and 50% RH.<br />

mix<br />

TMP 1 TMP 2 Chem 1 Chem 2<br />

Grammage Density Change Density Change Density Change Density Change<br />

g/m 2<br />

kg/m 3<br />

% kg/m 3<br />

% kg/m 3<br />

kg/m 3<br />

80 444 17 514 10 666 - 862 -<br />

100 448 15 515 7 687 - 849 -<br />

120 472 13 533 9 686 - 856 -<br />

180 459 8 540 10 682 - 885 -<br />

240 465 8 539 8 678 - 879 -<br />

300 491 12 542 9 680 - 882 -<br />

Average 463 12 530 9 682 - 871 -<br />

Fig 3. Z-directional <strong>tensile</strong> strength versus grammage for one handsheet tested by<br />

<strong>the</strong> “two-handsheet” technique.<br />

Table 4. Penetration <strong>of</strong> <strong>the</strong> adhesive <strong>in</strong>to <strong>the</strong> handsheets. The penetration <strong>thickness</strong><br />

was evaluated by Eq (1).<br />

Pulp Penetration<br />

g/m 2<br />

The penetration grammage was approximately 20 g/m 2<br />

for all <strong>the</strong> <strong>in</strong>vestigated handsheets while <strong>the</strong> penetration<br />

<strong>thickness</strong> varied depend<strong>in</strong>g on <strong>the</strong> density <strong>of</strong> <strong>the</strong> handsheet,<br />

Fig 4.<br />

Based on <strong>the</strong> results <strong>in</strong> Table 4, <strong>the</strong> Z-strength tests for<br />

<strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> elastic modulus <strong>of</strong> <strong>the</strong> mix were<br />

performed on 40 g/m 2 handsheets, us<strong>in</strong>g Eq (5). The<br />

elastic modulus for <strong>the</strong> adhesive was also evaluated us<strong>in</strong>g<br />

<strong>the</strong> custom built apparatus. The results are given <strong>in</strong><br />

Table 5 and plotted as function <strong>of</strong> density <strong>in</strong> Fig 5.<br />

mm<br />

TMP1 19.7 0.054<br />

TMP2 19.5 0.042<br />

Chem1 19.5 0.029<br />

Chem2 20.7 0.022<br />

Fig 4. Penetration depth versus density for <strong>the</strong> handsheets tested by <strong>the</strong> “twohandsheets”<br />

technique.<br />

Table 5. Elastic modulus for <strong>the</strong> mix and <strong>the</strong> adhesive performed<br />

on 40 g/m 2 sheets.<br />

Material E, MPa<br />

TMP 1 33<br />

TMP 2 61<br />

Chem1 230<br />

Chem2 302<br />

Adhesive 1600<br />

Fig 5. Relation between elastic modulus for <strong>the</strong> mix and handsheet density.


Test<strong>in</strong>g speed<br />

Paper material and adhesives exhibit a visco-elastic<br />

behavior, i.e. <strong>the</strong>ir response <strong>in</strong> terms <strong>of</strong> strength will<br />

change depend<strong>in</strong>g on <strong>the</strong> test<strong>in</strong>g speed. Rate dependency<br />

was not addressed <strong>in</strong> this paper. However <strong>the</strong> purpose<br />

was to test <strong>the</strong> material <strong>in</strong> a time w<strong>in</strong>dow <strong>in</strong> which <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> rate had negligible <strong>in</strong>fluence on <strong>the</strong> material <strong>properties</strong>.<br />

The <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> <strong>stra<strong>in</strong></strong> rate was studied for<br />

120 g/m 2 paper sheets prepared with chemical pulp 2.<br />

Two different test<strong>in</strong>g speeds were used, 0.025 mm/s and<br />

0.0025 mm/s. The mean times to break were respectively<br />

6.7 and 66 seconds. No <strong>in</strong>fluence on <strong>the</strong> Z-directional<br />

<strong>tensile</strong> strength was found. The tests <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g part<br />

<strong>of</strong> <strong>the</strong> article were <strong>the</strong>refore performed at 0.0025 mm/s<br />

speed.<br />

Stress <strong>stra<strong>in</strong></strong> curves<br />

Fig 6 presents four typical <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves for 300<br />

g/m 2 , one for each type <strong>of</strong> pulp studied <strong>in</strong> <strong>the</strong> present<br />

<strong>in</strong>vestigation. The curves were calculated by Eq (8). The<br />

elastic moduli presented <strong>in</strong> this <strong>in</strong>vestigation were obta<strong>in</strong>ed<br />

by l<strong>in</strong>ear regression <strong>of</strong> <strong>the</strong> Z-directional <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

curves. The limit at which l<strong>in</strong>earity was good approximation<br />

varied depend<strong>in</strong>g on <strong>the</strong> pulps. For TMP <strong>the</strong> elastic<br />

moduli were calculated up to 50% <strong>of</strong> <strong>the</strong> strength. For<br />

chemical pulp <strong>the</strong> calculation limit was set to 80% <strong>of</strong> <strong>the</strong><br />

strength.<br />

Fig 6. True <strong>stress</strong>-<strong>stra<strong>in</strong></strong> curves for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

Sheets prepared from chemical pulps were stiffer than <strong>the</strong><br />

ones made <strong>of</strong> mechanical pulps. TMP was characterized<br />

by a <strong>stra<strong>in</strong></strong> at break around 8%, whereas <strong>stra<strong>in</strong></strong> at break<br />

for chemical pulp ranged from 1.4% to 1.8%. The postpeak<br />

behavior changed drastically for different pulps. For<br />

chemical pulp 2 <strong>the</strong> post-peak behavior was unstable at<br />

any grammage. For chemical pulp 1, post peak <strong>in</strong>stability<br />

was also present for low grammage handsheets, but for<br />

higher grammage <strong>the</strong> failure was stable. For TMP<br />

handsheets <strong>the</strong> failure was always stable.<br />

Z-directional <strong>tensile</strong> strength<br />

In Figs 7 to 10 <strong>the</strong> Z-directional <strong>tensile</strong> strength is shown<br />

as a function <strong>of</strong> grammage. The strength values are<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different techniques, i.e. measurements<br />

performed by <strong>the</strong> custom built apparatus us<strong>in</strong>g<br />

adhesive, and data measured us<strong>in</strong>g double adhesive tape.<br />

Fig 7. Grammage versus Z-directional <strong>tensile</strong> strength plot for TMP1 obta<strong>in</strong>ed<br />

us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 8. Grammage versus Z-directional <strong>tensile</strong> strength plot for TMP2 obta<strong>in</strong>ed<br />

us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 9. Grammage versus Z-directional <strong>tensile</strong> strength plot for chemical pulp 1<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Fig 10. Grammage versus Z-directional <strong>tensile</strong> strength plot for chemical pulp 2<br />

obta<strong>in</strong>ed us<strong>in</strong>g two different test<strong>in</strong>g methods.<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 53


Fig 11. Density versus Z-directional <strong>tensile</strong> strength <strong>in</strong> a semi-logarithmic plot. Fig 12. Elastic modulus versus grammage for <strong>the</strong> TMP handsheets.<br />

The Z-directional <strong>tensile</strong> strength <strong>of</strong> TMP handsheets<br />

could be regarded as constant down to a grammage <strong>of</strong><br />

approximately 60 g/m 2 . For lower grammages <strong>the</strong> Zdirectional<br />

<strong>tensile</strong> strength <strong>in</strong>creased drastically. For <strong>the</strong><br />

chemical pulps <strong>the</strong> strength gradually <strong>in</strong>creased with<br />

decreas<strong>in</strong>g grammage. A steep <strong>in</strong>crease was also observed<br />

after <strong>the</strong> 60 g/m 2 limit.<br />

The strength measured with double adhesive tape was<br />

<strong>in</strong>dependent <strong>of</strong> grammage, with <strong>the</strong> exception <strong>of</strong> low<br />

grammages, where tape penetration <strong>in</strong>fluenced <strong>the</strong><br />

measurements. When strong chemical pulp was tested,<br />

<strong>the</strong> failure did not occur <strong>in</strong> <strong>the</strong> paper but <strong>in</strong> <strong>the</strong> <strong>in</strong>terface<br />

between tape and paper. On <strong>the</strong> o<strong>the</strong>r hand, when test<strong>in</strong>g<br />

TMP, <strong>the</strong> failure occurred always <strong>in</strong> <strong>the</strong> paper.<br />

Fig 11 presents <strong>in</strong> a logarithmical scale all <strong>the</strong> results<br />

<strong>in</strong> terms <strong>of</strong> Z-directional strength <strong>in</strong> function <strong>of</strong> <strong>the</strong><br />

structural density. A straight l<strong>in</strong>e fit was performed to <strong>the</strong><br />

data.<br />

The elastic modulus was calculated from Eq (9). The<br />

results are presented <strong>in</strong> Figs 12 and 13. The straight l<strong>in</strong>es<br />

correspond to <strong>the</strong> mean value <strong>of</strong> <strong>the</strong> elastic modulus evaluated<br />

for papers with different grammage. The elastic<br />

modulus was essentially <strong>in</strong>dependent <strong>of</strong> grammage.<br />

The relation between elastic modulus and density was<br />

also considered. In order to illustrate <strong>in</strong> <strong>the</strong> same graph<br />

<strong>the</strong> full range <strong>of</strong> elastic modulus for <strong>the</strong> different pulps a<br />

logarithmical scale on <strong>the</strong> y-axis was used <strong>in</strong> Fig 14. A<br />

straight l<strong>in</strong>e fit was performed to <strong>the</strong> data.<br />

Fig 15 presents <strong>the</strong> variation <strong>of</strong> <strong>stra<strong>in</strong></strong> at break as function<br />

<strong>of</strong> grammage. It was observed that <strong>stra<strong>in</strong></strong> at break<br />

<strong>in</strong>creased for lower grammage handsheets both for TMP<br />

and chemical pulps. It was also observed that <strong>stra<strong>in</strong></strong> at<br />

break was significantly higher for TMP handsheets.<br />

Fig 16 shows <strong>the</strong> results for <strong>stra<strong>in</strong></strong> at break as a function<br />

<strong>of</strong> density. Density had a small <strong>in</strong>fluence on <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> at break <strong>of</strong> chemical pulps. TMP seemed to be<br />

slightly more sensitive to small variations <strong>of</strong> density,<br />

s<strong>in</strong>ce a decrease <strong>in</strong> density caused an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

<strong>stra<strong>in</strong></strong> at break.<br />

Discussion<br />

The custom-built experimental set-up was designed to<br />

allow for <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> Z-directional <strong>stress</strong><strong>stra<strong>in</strong></strong><br />

curves <strong>of</strong> handsheets. The first set <strong>of</strong> tests measured<br />

<strong>the</strong> adhesive penetration <strong>in</strong>to <strong>the</strong> handsheet with<br />

54 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

Fig 13. Elastic modulus versus grammage for <strong>the</strong> chemical pulps handsheets.<br />

Fig 14. Elastic modulus versus density for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

Fig 15. Stra<strong>in</strong> at break versus grammage for <strong>the</strong> <strong>in</strong>vestigated handsheets.


Fig 16. Stra<strong>in</strong> at break versus density for <strong>the</strong> <strong>in</strong>vestigated handsheets.<br />

vary<strong>in</strong>g structural density. This was a prerequisite for a<br />

more precise evaluation <strong>of</strong> <strong>the</strong> deformation <strong>of</strong> paper. The<br />

results <strong>in</strong> terms <strong>of</strong> elastic moduli showed that when<br />

evaluat<strong>in</strong>g <strong>the</strong> <strong>stra<strong>in</strong></strong> related <strong>properties</strong>, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong><br />

<strong>the</strong> adhesive could not be neglected even for higher<br />

grammages. Byrd et al. (Byrd et al. 1975) apply an<br />

adhesive similar to <strong>the</strong> one used <strong>in</strong> <strong>the</strong> present study, but<br />

<strong>the</strong>y assume that <strong>the</strong> adhesive has an <strong>in</strong>f<strong>in</strong>ite stiffness.<br />

This might be a reason for <strong>the</strong>ir calculated adhesive<br />

penetration which is significantly lower than <strong>the</strong> one<br />

presented <strong>in</strong> this paper.<br />

A large discrepancy was found between <strong>the</strong> Z-directional<br />

<strong>tensile</strong> strength measured us<strong>in</strong>g adhesive and double<br />

adhesive tape. This was not unexpected s<strong>in</strong>ce <strong>the</strong> strength<br />

results for <strong>the</strong> chemical pulps lie on <strong>the</strong> border or outside<br />

<strong>the</strong> recommended measurement range accord<strong>in</strong>g to<br />

SCAN P80:98. Consequently, reliable Z-directional<br />

strength values for strong papers can only be obta<strong>in</strong>ed by<br />

ensur<strong>in</strong>g a paper-adhesive bond<strong>in</strong>g which is stronger than<br />

<strong>the</strong> paper itself.<br />

A possible drawback for <strong>the</strong> presented method is <strong>the</strong><br />

densification <strong>of</strong> TMP dur<strong>in</strong>g <strong>the</strong> press<strong>in</strong>g process, which<br />

might have an effect on <strong>the</strong> mechanical <strong>properties</strong>.<br />

However, <strong>the</strong> strength results obta<strong>in</strong>ed with commercial<br />

apparatus did not differ, <strong>in</strong> <strong>the</strong> range <strong>of</strong> <strong>the</strong> acceptable<br />

grammages, from <strong>the</strong> ones obta<strong>in</strong>ed by <strong>the</strong> custom built<br />

apparatus.<br />

The chosen pressure ensured a sufficient penetration <strong>of</strong><br />

<strong>the</strong> glue and sufficient bond<strong>in</strong>g between <strong>the</strong> glue and<br />

paper. In <strong>the</strong> future, a reduction <strong>of</strong> <strong>the</strong> cur<strong>in</strong>g time<br />

obta<strong>in</strong>ed by us<strong>in</strong>g more suitable glue comb<strong>in</strong>ed with a<br />

decrease <strong>of</strong> <strong>the</strong> cur<strong>in</strong>g pressure may be <strong>the</strong> way to avoid<br />

<strong>the</strong> densification.<br />

The decrease <strong>in</strong> Z-directional <strong>tensile</strong> strength for<br />

<strong>in</strong>creas<strong>in</strong>g grammage observed for <strong>the</strong> chemical pulps<br />

can be expla<strong>in</strong>ed by <strong>the</strong> Weak L<strong>in</strong>k Theory. Handsheets<br />

with higher grammages present a higher number <strong>of</strong><br />

distributed defects trigger<strong>in</strong>g failures at lower <strong>stress</strong>es.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Z-directional <strong>tensile</strong> strength for<br />

TMP sheets rema<strong>in</strong>ed constant over <strong>the</strong> range <strong>of</strong> <strong>the</strong><br />

acceptable grammages. One explanation might be that<br />

<strong>the</strong> defect sensitivity is related to <strong>the</strong> density <strong>of</strong> <strong>the</strong> fiber<br />

network. The adhesive penetration does not allow test<strong>in</strong>g<br />

grammages less than 60 g/m 2 . Test<strong>in</strong>g <strong>of</strong> th<strong>in</strong>ner paper<br />

may require a ref<strong>in</strong>ement <strong>of</strong> <strong>the</strong> technique.<br />

In l<strong>in</strong>e with <strong>the</strong> previous results on <strong>the</strong> subject, it was<br />

shown that density caused an exponential <strong>in</strong>crease <strong>in</strong><br />

both Z-directional <strong>tensile</strong> strength and <strong>the</strong> elastic<br />

modulus for <strong>the</strong> tested material. It is likely that <strong>the</strong> f<strong>in</strong>es<br />

cause <strong>the</strong> <strong>in</strong>crease <strong>of</strong> strength for <strong>the</strong> beaten pulps but<br />

less <strong>in</strong>fluence on <strong>the</strong> Z-directional elastic modulus is<br />

expected. The magnitude <strong>of</strong> <strong>the</strong> elastic modulus is <strong>in</strong><br />

agreement with <strong>the</strong> previous literature data. With regard<br />

to <strong>the</strong> fiber shape, two ma<strong>in</strong> concurrent structural factors<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> Z-directional elastic modulus <strong>of</strong> paper<br />

can be identified. A consequence <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g density is<br />

a lower free fiber segment length correspond<strong>in</strong>g to higher<br />

resistance to bend<strong>in</strong>g for s<strong>in</strong>gular fibers. This phenomenon<br />

may have positive effect on <strong>the</strong> Z-directional elastic<br />

modulus <strong>of</strong> paper. The fiber collapse, caused by beat<strong>in</strong>g,<br />

on <strong>the</strong> o<strong>the</strong>r hand, reduces <strong>the</strong> <strong>thickness</strong> <strong>of</strong> <strong>the</strong> fiber and<br />

<strong>the</strong>refore <strong>the</strong> bend<strong>in</strong>g stiffness <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle fiber drops.<br />

This fact is likely to be detrimental to <strong>the</strong> elastic moduli<br />

<strong>of</strong> paper.<br />

S<strong>in</strong>ce <strong>the</strong> elastic modulus <strong>in</strong>creases with density, <strong>the</strong><br />

negative effect <strong>of</strong> fiber collapse seems to be negligible<br />

over reduction <strong>of</strong> <strong>the</strong> free fiber length.<br />

Conclusions<br />

·<br />

·<br />

·<br />

·<br />

·<br />

A method for <strong>the</strong> measurement <strong>of</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong> <strong>properties</strong><br />

<strong>of</strong> paper <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction was developed.<br />

The measurements were applicable for grammages<br />

over approximately 60g/m 2 .<br />

The paper <strong>properties</strong> were highly dependent on <strong>the</strong><br />

density. Higher density caused an exponential <strong>in</strong>crease<br />

<strong>in</strong> Elastic modulus, Z-directional strength, and a<br />

reduction <strong>of</strong> <strong>the</strong> <strong>stra<strong>in</strong></strong> at break<br />

The presented technique should help <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

knowledge <strong>of</strong> <strong>the</strong> relationship between <strong>the</strong> network<br />

structure and <strong>the</strong> mechanical <strong>properties</strong> <strong>of</strong> paper.<br />

The collected data may be used as a first approximation<br />

for model<strong>in</strong>g purposes <strong>of</strong> convert<strong>in</strong>g processes<br />

and end use performance.<br />

Acknowledgments<br />

The f<strong>in</strong>ancial support <strong>of</strong> <strong>the</strong> Surface Treatment Program at Karlstad University is<br />

acknowledged. The authors wish to thank <strong>the</strong> STFI-Packforsk partner companies<br />

participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> Research Cluster ‘Eng<strong>in</strong>eered Paperboard’.<br />

Appendix I. F<strong>in</strong>d<strong>in</strong>g <strong>the</strong> displacement <strong>in</strong> <strong>the</strong> center <strong>of</strong><br />

<strong>the</strong> test piece.<br />

The aim <strong>of</strong> such calculation is to determ<strong>in</strong>e <strong>the</strong> displacement<br />

<strong>in</strong> <strong>the</strong> middle <strong>of</strong> <strong>the</strong> test piece. The displacement<br />

field <strong>of</strong> <strong>the</strong> all <strong>the</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> test piece can be<br />

described as a plane <strong>in</strong> space, s<strong>in</strong>ce <strong>the</strong> test piece is<br />

rigidly connected to plane platens. The centre <strong>of</strong> <strong>the</strong> test<br />

piece is taken as <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> coord<strong>in</strong>ate system. The<br />

displacements can be considered as <strong>the</strong> Z-coord<strong>in</strong>ates <strong>in</strong><br />

<strong>the</strong> space. The sensors yield <strong>the</strong> values <strong>of</strong> <strong>the</strong> dis-<br />

Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007 55


placements along <strong>the</strong> <strong>thickness</strong> direction <strong>in</strong> three<br />

different po<strong>in</strong>ts outside <strong>the</strong> test piece. The displacements<br />

<strong>of</strong> all po<strong>in</strong>ts belong<strong>in</strong>g to <strong>the</strong> same plane are given by<br />

ax + by + cz + d =0. [A1.1]<br />

The unknowns <strong>in</strong> <strong>the</strong> Eq (1) are <strong>the</strong> three cos<strong>in</strong>e directors<br />

a /d b /d c /d. The unknowns can be evaluated by substitut<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> coord<strong>in</strong>ates three sensors <strong>in</strong>to Eq (1), be<strong>in</strong>g <strong>the</strong><br />

position <strong>in</strong> <strong>the</strong> x-y plane <strong>the</strong> x i,y i coord<strong>in</strong>ates and z i <strong>the</strong><br />

displacement along <strong>the</strong> <strong>thickness</strong> direction:<br />

⎡−1⎤<br />

⎡x<br />

y z ⎤⎡a<br />

d⎤<br />

1 1 1<br />

⎢ ⎥ ⎢ ⎥⎢<br />

⎥<br />

⎢−1⎥<br />

= ⎢x<br />

y z<br />

2 2 2⎥⎢bd⎥<br />

⎢<br />

⎣−1⎥<br />

⎢<br />

⎦ ⎣x<br />

y z ⎥⎢<br />

⎥<br />

3 3 3⎦⎣cd⎦<br />

The deformation <strong>of</strong> <strong>the</strong> centre <strong>of</strong> <strong>the</strong> test piece z center was<br />

determ<strong>in</strong>ed by substitut<strong>in</strong>g <strong>the</strong> coord<strong>in</strong>ate <strong>of</strong> <strong>the</strong> centre<br />

x center=0 and y center =0 <strong>in</strong>to (A1.1)<br />

z<br />

center<br />

−c<br />

=<br />

d<br />

Appendix II<br />

56 Nordic Pulp and Paper Research Journal Vol 22 no. 1/2007<br />

[A1.2]<br />

[A1.3]<br />

Table AII:1. Experimental results <strong>of</strong> Z-directional strength, elastic modulus and <strong>stra<strong>in</strong></strong> at break<br />

for <strong>the</strong> tested pulps.<br />

Grammage Z-directional 95% Z-directional 95% Elastic 95% Stra<strong>in</strong> 95%<br />

kg/m 2<br />

<strong>tensile</strong> CI <strong>tensile</strong> strength CI Modulus CI at break CI<br />

strength kPa (tape) kPa MPa %<br />

TMP1<br />

100 197 14 188 12 7.1 2.8 12.5 2.1<br />

120 215 33 204 17 7.9 3.7 10.5 0.8<br />

180 233 11 225 5 9.5 2.1 9.3 1.1<br />

240 220 10 215 9 7.7 2.2 8.7 0.7<br />

300 220 10 232 11 9.4 1.0 8.3 1.0<br />

TMP2<br />

80 335 42 323 16 13.3 3.7 12.6 0.8<br />

100 353 16 312 17 16.7 2.5 10.2 0.5<br />

120 384 17 328 46 19.6 3.7 9.0 0.8<br />

180 400 15 344 18 19.6 2.8 8.2 0.4<br />

240 375 15 352 27 16.01 2.7 8.4 0.4<br />

300 332 12 354 7 13.6 2.1 8.4 0.7<br />

Chem1<br />

80 777 99 442 3.2 62 26.7 2.7 1.2<br />

100 699 36 424 17.7 67 15.7 2.4 0.4<br />

120 655 7 409 8.9 91 14.6 2.0 0.6<br />

180 611 8 505 14 73 18.9 2.2 0.2<br />

240 550 11 484 5 73 9.5 1.7 0.1<br />

300 529 8 488 10 71 11.3 1.4 0.2<br />

Chem2<br />

80 1946 38 717 7.3 188.6 75.9 2.8 1.2<br />

100 1936 29 716 6.2 169.0 26.6 3.4 0.4<br />

120 1916 39 719 7.6 217.3 62.5 2.6 0.6<br />

180 1833 53 688 19 203.4 25.4 2.0 0.2<br />

240 1781 24 683 14 205.5 31.8 1.9 0.1<br />

300 1693 37 683 11 206.0 16.9 1.8 0.2<br />

Literature<br />

Aaltio, E.A. (1960): Studies on <strong>the</strong> Z-orientation <strong>in</strong> Paper, Svensk Papperstidn<strong>in</strong>g,<br />

(3) 58-61.<br />

Andersson, M. and Mohl<strong>in</strong>, U.-B. (1980): Z-strength <strong>of</strong> mechanical pulps,<br />

Paperi Puu, 62(10) 583-586.<br />

Berger, B.F. and Baum, G.A. (1985): Z-direction <strong>properties</strong>: <strong>the</strong> effects <strong>of</strong> yield<br />

and ref<strong>in</strong><strong>in</strong>g, Eighth Fundamental Research Symposium, Oxford, V. Punton, pp.<br />

Byrd, V.L. Setterholm, V.C. and Wichmann, J.F. (1975): Methods for measur<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>terlam<strong>in</strong>ar shear <strong>properties</strong> <strong>of</strong> paper, Tappi, 58(10) 132-135.<br />

Fleischman, E.H. Baum, G.A. and Habeger, C.C. (1982): A study on <strong>the</strong> elastic and<br />

dielectric anisotropy <strong>of</strong> paper, The role <strong>of</strong> fundamental research <strong>in</strong> papermak<strong>in</strong>g,<br />

Transactions <strong>of</strong> <strong>the</strong> symposium, Cambridge, 1981. 115-118.<br />

Hasuike, M. Kawasaki, T. and Murakami, K. (1992): <strong>Evaluation</strong> Method <strong>of</strong> 3-D<br />

Geometric Structure <strong>of</strong> Paper Sheet, J. Pulp Paper Sci. 18(3) J114-J120.<br />

Koubaa, A. and Koran, Z. (1995): Measure <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal bond strength <strong>of</strong><br />

paper/board, Tappi J. 78(3) 103-111.<br />

Lundh, A. and Fellers, C. (2004): A method for determ<strong>in</strong>ation <strong>of</strong> delam<strong>in</strong>ation<br />

toughness <strong>in</strong> different positions <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction <strong>of</strong> paperboard, Nord.<br />

Pulp Paper Res. J. 19(2) 224-228.<br />

Mann, R.W. Baum, G.A. and Habeger, C.C. (1980): Determ<strong>in</strong>ation <strong>of</strong> all n<strong>in</strong>e<br />

orthotropic elastic constants for mach<strong>in</strong>e-made paper, Tappi, 63(2) 163-166.<br />

Naito, T. Nishi, K. and Kawano, Y. (1995): Delam<strong>in</strong>ation resistance <strong>of</strong> paper,<br />

1995 International Paper Conference, Niagara-on-<strong>the</strong>-lake, ON. pp.125-130.<br />

SCAN (1998): P80:98 Paper and Board, Z-directional <strong>tensile</strong> strength,<br />

Stenberg, N. Fellers, C. and Östlund, S. (2001): Measur<strong>in</strong>g <strong>the</strong> <strong>stress</strong>-<strong>stra<strong>in</strong></strong><br />

<strong>properties</strong> <strong>of</strong> paperboard <strong>in</strong> <strong>the</strong> <strong>thickness</strong> direction, J. Pulp Paper Sci. 27(6) 213-<br />

221.<br />

Tappi (1989): Standard T 541 om, Internal bond strength <strong>of</strong> paperboard ( Zdirection<br />

<strong>tensile</strong> ).<br />

Uesaka, T. Retula<strong>in</strong>en, E. Paavila<strong>in</strong>en, L. Mark, R. E. and Keller, S. (2002):<br />

Determ<strong>in</strong>ation <strong>of</strong> fiber-fiber bond <strong>properties</strong>, New York.<br />

Van Den Akker, J.A. (1952): Instrumentation studies. LXIX. General discussion <strong>of</strong><br />

<strong>the</strong> measurement <strong>of</strong> <strong>the</strong> adhesion and cohesion, Tappi, 35(4) 155A-162A.<br />

Van Liew, G. P. (1974): The Z-direction deformation <strong>of</strong> paper, Tappi, 57(11) 121-<br />

124.<br />

Waterhouse, J. Stera, S. and Brennan, D. (1987): Z-direction variation <strong>of</strong> <strong>in</strong>ternal<br />

<strong>stress</strong> and <strong>properties</strong> <strong>in</strong> paper, J. Pulp Paper Sci. 13(1) 33-37.<br />

Waterhouse, J.F. (1991): The failure envelope <strong>of</strong> paper when subjected to comb<strong>in</strong>ed<br />

out-<strong>of</strong>-plane <strong>stress</strong>es, International Paper Physics Conference, Kona, Hawaii,<br />

USA., pp. 629-640.<br />

Manuscript received August 30, 2006<br />

Accepted November 10, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!