12.02.2013 Views

HT-TMF-Conference - TMF-Workshop

HT-TMF-Conference - TMF-Workshop

HT-TMF-Conference - TMF-Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Applicability of hysteresis energy criteria for simulating<br />

lifetime under thermo-mechanical thermo mechanical fatigue<br />

University of Leoben, Austria<br />

Chair of Mechanical Engineering<br />

Institut für Allgemeinen<br />

llgemeinen Maschinen aschinenBau au<br />

Dipl.-Ing. Dr.mont. Martin Riedler (Martin.Riedler@mu-leoben.at),<br />

Dipl.-Ing. Robert Minichmayr, Dipl.-Ing. Gerhard Winter,<br />

Univ.Prof. Dipl.-Ing. Dr.techn. Wilfried Eichlseder<br />

1


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

Engine Components:<br />

Identification of the<br />

loading cond.<br />

HCF, LCF,<br />

<strong>TMF</strong><br />

1<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Simulation of the<br />

component, component,<br />

Interpretation<br />

55<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Thermo-mechanical<br />

Thermo mechanical fatigue: fatigue lifetime estimation<br />

4<br />

Simulation of the lifetime<br />

behaviour<br />

Simulation at specimens and<br />

comp. near specimens<br />

Taking into account relevant<br />

influences on lifetime and<br />

deformation beh.,<br />

Experiments<br />

2<br />

3<br />

Simulation of the cyclic<br />

deformation behaviour<br />

2


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Fatigue Analysis Laboratory<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Part of the servo hydraulic fatigue testing laboratory. Left side: Self-designed thermomechanical<br />

fatigue testing machines, behind: Instron servo hydraulic testing machines, in the<br />

front: multi-axial test rig.<br />

3


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

<strong>TMF</strong>-test <strong>TMF</strong> test benches: benches:<br />

2 Concepts<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

1) Temperature controlled specimen in a stiff load frame<br />

2) Additional strain control (servo-hydraulic <strong>TMF</strong>-test-rig)<br />

Self-designed<br />

• 10 kW Induction heating<br />

• Planetoid coil<br />

• Typ-K-sheath-TC<br />

• <strong>HT</strong>-Extensometer<br />

• Water cooled clamping device<br />

• Pressed air<br />

• Controller system<br />

• Data acquisition system<br />

Riedler (2003, 2004)<br />

Minichmayr (2004, 2005)<br />

4


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

LCF-/HCF LCF HCF-test test benches: benches servo-hydraulic<br />

servo hydraulic<br />

• 10/100/250 kN servohydraulic<br />

Instron test<br />

machines<br />

• Temperature chamber 300 °C<br />

• Furnace heating 1000 °C<br />

• 10 kW induction heating<br />

1000 °C<br />

• Planetoid coil<br />

• Type-K-sheath-thermocouple<br />

• <strong>HT</strong>-Extensometer<br />

• Water-cooled clamping<br />

device<br />

• Controller<br />

• Data acquisition system<br />

5


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Approaches for a <strong>TMF</strong> lifetime assessment<br />

� Strain based (Manson-Coffin + modifications)<br />

� Damage parameters<br />

� �J – fracture mechanical view<br />

� Energy based approaches<br />

� Cumulative, much computing time<br />

� Accumulation of damage parts (pure fatigue, creep, oxidation, e.g.<br />

Miller, Sehitoglu)<br />

� Strain Range Partitioning<br />

� Microstructural approaches<br />

6


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

<strong>TMF</strong> LCF HCF<br />

Maximum<br />

temperature<br />

Quasistatic -<br />

Creep<br />

Temperature Temperature Tensile Tests<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Metallo-<br />

graphic<br />

Dwell time Dwell Time LCF-HCF Creep Chem. analysis<br />

Pre-ageing Pre-ageing Pre-ageing<br />

Mean strain Mean strain<br />

Rigid clamped -<br />

controlled<br />

Strain<br />

constraining<br />

HCF interaction<br />

Strain rate<br />

Strain<br />

amplitude<br />

Argon<br />

atmospere<br />

Phase shift Incr. Step Test<br />

Experimental investigations<br />

1,E+011,E+03<br />

1,E+02<br />

6<br />

Stress � [N/mm 2 ]<br />

Plastische<br />

Dehnungsamplitude Spannung � [N/mm� a,p [‰]<br />

2 therm. bzw. mech. Dehnungsamp.<br />

� a,x bei N] B/2 [‰]<br />

Plastische Dehnungsamplitude<br />

Plastic strain amplitude � a,p [‰]<br />

Stress � a,p � [N/mm [‰]<br />

2 Stress � [N/mm<br />

]<br />

2 Strain amplitude<br />

]<br />

� a,x at N f/2 [‰]<br />

Spannung � [N/mm<br />

Plastic strain amplitude � a,p [‰]<br />

Strain amplitude � a,x at N f/2 [‰]<br />

Dehnung � [‰]<br />

Totaldehnungsamplitude � a,t<br />

bei NB/2 [‰]<br />

2 ]<br />

5<br />

4<br />

Stress<br />

relaxation<br />

Microstructure,<br />

fract. surface<br />

SAXS, REM,<br />

TEM<br />

Thermal vs. mechanical strain hysteresis loops<br />

Zyklisches dependent Verformungsverhalten, on the dwell at OP-<strong>TMF</strong> thermischer at Nf/2 vs.<br />

mechanischer 300 plastischer Dehnungsanteil<br />

AlCuBiPb<br />

OP-<strong>TMF</strong> � R = -1<br />

200<br />

tHo = Tmax 144 s = 250 °C<br />

� tDmax = 8 / 24 / 144 s<br />

100<br />

0<br />

-100<br />

-200<br />

tD1: Compensated thermal strain tD1: Mechanicall strain<br />

tD2: Compensated thermal strain tD2: Mechanical strain<br />

tD3: Compensated thermal strain tD3: Mechanical strain<br />

-300<br />

Strain � [‰]<br />

Lastwechsel N [-]<br />

mech AlCuBiPb<br />

<strong>TMF</strong>-OP - R = -1<br />

To = 250 °C<br />

a,p<br />

tHo= 8 / 24 / 144 s<br />

tHo = 8 s<br />

� th tHo = 8 s<br />

�<br />

a,p<br />

mech tHo = 24 s<br />

a,p<br />

� th tHo = 24 s<br />

�<br />

a,p<br />

mech a,p<br />

tHo = 144 s<br />

� th Einfluss Influence der Gegenüberstellung lokalen of pre-aging Dehnungen on the der bei mono-cyclic Zugversuche<br />

AlCuBiPb and bei<br />

500<br />

OP-<strong>TMF</strong> Influences LCF bei deformation verschiedenen on the LCF lifetime behaviour Haltezeiten behaviour<br />

Einfluss AlCuBiPb/2 Influences<br />

Deformation der on Vorauslagerung the plastic<br />

behaviour<br />

LCF auf of<br />

deformation die the Hysteresen plastic part<br />

450<br />

Einfluss Influence Lifetime<br />

des Dehnungsverhältnisses of pre-aging behaviour on (Manson-Coffin-Basquin) behaviour<br />

12 30,0<br />

the AlCuBiPb LCF<br />

500<br />

auf hysteresis den - plastischen<br />

LCF loops<br />

1,E+02 AlCuBiPb T = 25/200/250 - LCF AlCuBiPb Incremental Step Test<br />

Vorschlag °C zur Überführung von Spannungswöhlerlinien<br />

12<br />

500<br />

AlCuBiPb 11 (1) T Dehnungsanteil - = LCF 25 °C - R = -1 in Abhängigkeit - der Schwingspiele<br />

12<br />

<strong>TMF</strong>-OP 0 h T = 25 / 200<br />

T<br />

AlCuBiPb<br />

= 25 °C - R<br />

LCF<br />

= -1<br />

- tHo = 8 / 24 AlCuBiPb AlCuBiPb/2 °C<br />

300<br />

400 Vorausl.: 0 / M500 anson-Coffin-Basquin hin<br />

Dehnungswöhlerlinien: AlCuBiPb/2 HCF-Bereich<br />

/ 144 s - LCF<br />

1,E+01<br />

400<br />

T = 25 (2) °C T - = R 25 = °C -1 - R = -1 -<br />

11 (1) T = 25 °C - R = -1 R<br />

500 400<br />

- 0 � h-�<br />

h<br />

-<br />

at 250 R =<br />

Tu = 40<br />

°C-1<br />

/ 0<br />

10 pre-aged: � a,t<br />

T = 25 °C<br />

0 =<br />

-<br />

h 30,00<br />

M anson-Coffin-Basquin<br />

R<br />

vs. ‰<br />

hole Comparison<br />

AlCuBiPb °C T = without 25 / - 200 with drilling<br />

LCF°C<br />

-<br />

350 l0 = 12,5 mm=<br />

-1<br />

Vorausl.: 500 (3) AlCuBiPb 8T<br />

0 = h 25 vs. °C - R = 0 300 - 0 h<br />

10 9 pre-aged:<br />

h at 250 Cu<br />

(2) T = 25 0 °C h<br />

°C Fe Pb Bi Si Manson-Coffin-curve 25 °C<br />

without Zn<br />

- R = 0 - 0 h T = R 25 =<br />

T<br />

°C -1<br />

= Mn drilled /<br />

25<br />

0<br />

°C AlCuBiPb/2<br />

Mg hole Cr 200 Ni Sn Ti<br />

300<br />

Basquin-curve 25 °C<br />

1,E+01 vs.<br />

300 500 h (4) Charge<br />

at 250 T = 1,<br />

°C<br />

Mechanische M.-C.-Basquin-model (=thermische + 25 °C<br />

20,0 200 °C - R = -1 - 0 h<br />

89<br />

200<br />

R Manson-Coffin-curve T<br />

= pre-aged: = 25 � m,t °C, = 0,0 �<br />

T =<br />

-1 / 0 R 0 m,t h ‰<br />

= 0=<br />

25<br />

vs. 0,0<br />

°C<br />

‰<br />

500 LCF103 h at 250 °C<br />

lokale) Dehnungen<br />

� a,t = 10 ‰ elastic part<br />

200<br />

Basquin-curve R = 0 R = -1<br />

250<br />

500 h at 250 °C<br />

78<br />

�Charge 4<br />

a,t= 3.75<br />

2,<br />

M.-C.-Basquin-model R = 0 100<br />

elastic / 10 part ‰ hole 100 � a,t = 10 ‰ (2) Manson-Coffin-curve 200 °C<br />

LCF107<br />

67<br />

� a,t = 100 10 ‰ (4) Basquin-curve Dehnungswöhlerlinie � a,t = 3.75 200 °C/<br />

10 ‰ mit dem<br />

2001,E+00<br />

M.-C.-Basquin-model ��� a,t 200 = 5,00 °C ‰<br />

plastic strain 0<br />

6<br />

� a,t = amplitude 10 � a,t ‰ = (2) 10 0‰<br />

(3) plastic<br />

kombinierten<br />

part<br />

Modell nach<br />

0 � a,t = 15,00 ‰<br />

������� a,t = 5,00 ‰ 0<br />

150 5<br />

elastic strain amplitude<br />

Manson-Coffin-Basquin<br />

0<br />

-15<br />

510,0<br />

-10 total 2�a,t strain = 15,00 -5 amplitude 4 ‰ 6 8<br />

a,p -100 � a,t = 10 ‰ 0 plastic 10<br />

Thermische Dehnungen<br />

� (1) 5 ����� part 12<br />

a,t hole = 103,75 ‰ 14<br />

15<br />

a,t = 10 ‰ (1)<br />

4 LCF data plastic points strain 0 h ampl. (model)<br />

-100 Tensile test 0 h<br />

100<br />

elastic strain Argon<br />

ampl. (model)<br />

4<br />

plastic part 0 h (model) elastic part 0 h (model) ����� a,t<br />

a,t = 3,75 =3,75 ‰ ‰<br />

-4 ���Manson-Coffin-Basquin Spannungswöhlerlinie<br />

(2)<br />

a,t = 10,00 ‰<br />

-100<br />

3 1,E-01 Ramberg-Osgood-model plastic -200 0 �h LCF data points 500 h<br />

�a,t =<br />

a,t -200 = 10,00 7,5 ‰ (2)<br />

�� a,t<br />

Datenpunkte 3 Tensile � a,t = 3,75 ‰ (1)<br />

<strong>TMF</strong> tHo1<br />

Test mit 500 vorgeschlagenem<br />

strain ampl. hole<br />

= 3,75 1 x‰<br />

50<br />

T101 25 elastic °C - 0 Datenpunkte strain h ampl. hole <strong>TMF</strong> tHo3<br />

plastic<br />

Datenpunkte T117 part 25 �500 h<br />

<strong>TMF</strong><br />

(model)<br />

a,t °C = - 3,30 500 tHo2 h ‰ bei LCF+HCF 250 3 x°C<br />

2 � elastic<br />

a,t T114 = 5 ‰ part 200 total linearelastischen (1) 500 °C strain - h 0 �(model) ha,t ampl. = -300 7,50 hole Ansatz ‰ Ramberg-Osgood-model � a,t = 7,5 ‰ (1) 500 h<br />

� a,t = 7,50 T121 ‰ 200 °C - 500 h bei 200 °C<br />

2<br />

plastic strain ampl.hole � a,t = 3,75 ‰ (4)<br />

-300<br />

(model)<br />

� a,t = 3,30 ‰<br />

-8 T129 250 °C - 0 h<br />

elastic strain ampl.hole (model) Hysteresen<br />

T120 250<br />

0<br />

°C<br />

h<br />

- 500 h bei 250 °C<br />

0<br />

in Dehnungswöhlerlinie transformiert Low 1,E-01 1<br />

Hysteresen Hysteresis 500 not h bei 250 °C<br />

1 � a,t = 3,75 ‰ (1) 1,E+00<br />

-400<br />

1,E+01 � a,t = strain 3,00<br />

�<br />

Zugversuche a,t = 5 ‰ (2)<br />

�pre-aged a,t = ‰ 3,75 LCF+HCF rate -200<br />

1,E+02 ‰ (3)<br />

1,E+00 00,0 1,E+01 50<br />

Manson-Coffin-Basquin<br />

1,E+02 100 LCF Datenpunkte 1,E+03<br />

hole<br />

150 1,E+04 Hysteresis 200 T101/103 pre-aged 1,E+05 Dehnungswöhlerlinie<br />

250 0 500 h h 1,E+06 at 250 °C 300<br />

1,E-02<br />

0<br />

-400<br />

Zugversuch 500 h � a,t bei<br />

=<br />

250<br />

3,75<br />

°C<br />

‰ (2)<br />

0<br />

1,E+00 Bruchschwingspielzahl 1,E+01 1,E+02 HCF Strain Dehnung Datenpunkte � [‰] 1,E+03 NB � [‰] [-] Tensile 1,E+04 test not pre-aged Spannungswöhlerlinie<br />

1,E+05 1,E+06<br />

1,E+00 1,E+01 Tensile test pre-aged 500 h at 250 °C<br />

1,E+00-12 1,E+00<br />

1,E+01 Number 1,E+02 of -500 1,E+02 cycles 1,E+03 to failure 1,E+04<br />

1,E+03Nf [-] 1,E+05 1,E+06 1,E+07<br />

1,E+04 1,E+05 -300<br />

1,E+00 1,E+04 1,E+01 Number 1,E+02 1,E+05-500of cycles 1,E+03 1,E+06 N [-] 1,E+04 1,E+07 1,E+05 1,E+08<br />

Number Dehnung Number of � of cycles [‰] cycles to N failure [-] Nf [-]<br />

Schwingspiel Bruchschwingspielzahl Strain Zeit � [s] [‰] Ni [-] NB [-]<br />

1,E+02 1,E+01<br />

-10<br />

3<br />

-8 -6 -4 -2 0 2 4 6 8 10<br />

-15<br />

2<br />

-10 -5 0 5 10 15<br />

1<br />

3,64 0,35 0,97 0,02 0,17 0,05 0,63 0,89


Stress � [N/mm 2 ]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

LCF hysteresis loops<br />

Influence of pre-aging on the LCF hysteresis loops<br />

AlCuBiPb - LCF<br />

T = 25 °C - R = -1<br />

pre-aged: 0 h vs.<br />

500 h at 250 °C<br />

� a,t= 3.75 / 10 ‰<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-200<br />

-300<br />

-400<br />

-500<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

-15 -10 -5 0 5 10 15<br />

-100<br />

Strain � [‰]<br />

E.g.: E.g.:<br />

Influence of pre-aging pre aging<br />

Hysteresis not pre-aged<br />

Hysteresis pre-aged 500 h at 250 °C<br />

Tensile test not pre-aged<br />

Tensile test pre-aged 500 h at 250 °C<br />

Stress � [N/mm 2 ]<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

LCF cyclic deformation<br />

behaviour<br />

Influence of pre-aging on the mono-cyclic and<br />

LCF deformation behaviour<br />

AlCuBiPb - LCF<br />

T = 25 °C - R = -1<br />

pre-aged: 0 h vs.<br />

500 h at 250 °C<br />

LCF data points 0 h Tensile test 0 h<br />

plastic part 0 h (model) elastic part 0 h (model)<br />

Ramberg-Osgood-model 0 h LCF data points 500 h<br />

Tensile Test 500 h plastic part 500 h (model)<br />

elastic part 500 h (model) Ramberg-Osgood-model 500 h<br />

1,E-01 1,E+00 1,E+01 1,E+02<br />

Strain � [‰]<br />

pre-aging:<br />

stress parts decrease, plastic strain parts increase<br />

8


Strain amplitude � a,x at N f/2 [‰]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

E.g.: E.g.:<br />

Influence of pre-aging pre aging, dwell time<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

LCF lifetime behaviour <strong>TMF</strong> stress-cycle<br />

stress cycle behaviour<br />

Influence of pre-aging on the LCF lifetime behaviour<br />

AlCuBiPb - LCF<br />

T = 25 °C - R = -1<br />

pre-aged: 0 h vs.<br />

500 h at 250 °C<br />

plastic strain amplitude 0 h elastic strain amplitude 0 h<br />

total strain amplitude 0 h<br />

Basquin-curve 0 h<br />

plastic strain amplitude 500 h<br />

total strain amplitude 500 h<br />

Manson-Coffin-curve 0 h<br />

M.-C.-Basquin-model 0 h<br />

elastic strain amplitude 500 h<br />

Manson-Coffin-curve 500 h<br />

Basquin-curve 500 h M.-C.-Basquin-model 500 h<br />

1,E-01<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06<br />

Number of cycles to failure Nf [-]<br />

pre-aging:<br />

lifetime decrasing effect in the lower<br />

strained area, lifetime increasing effect<br />

in the upper strained area possible<br />

Stress � [N/mm 2 ]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Influence of pre-aging on the OP-<strong>TMF</strong> deformation<br />

behaviour<br />

144 s, 0 h<br />

144 s, 500 h 8 s, 0 h<br />

8 s, 500 h<br />

50<br />

0<br />

�m<br />

1,E+00<br />

-50<br />

1,E+01 1,E+02 1,E+03 1,E+04<br />

Number of cycles N [-]<br />

AlCuBiPb - OP-<strong>TMF</strong><br />

Tmax = 250 °C - R = -1<br />

pre-aged: 0 h<br />

vs. 500 h at 250 °C<br />

tDmax = 8 / 144 s<br />

�max<br />

pre-aging / dwell time:<br />

influence of dwell time disappears in<br />

face of the lifetime and the cyclic<br />

deformation behaviour<br />

9


Plastic strain amplitude � a,p [‰]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

E.g.: E.g.:<br />

Influence of temperature, temperature mean strain<br />

Isothermal temperature at LCF, maximum temperature at <strong>TMF</strong><br />

Alternating vs. pulsating tests<br />

LCF plastic strain-cycle<br />

strain cycle behaviour<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Influences on the plastic LCF deformation behaviour<br />

(1) T = 25 °C - R = -1 - 0 h<br />

(2) T = 25 °C - R = -1 - 500 h at 250 °C<br />

(3) T = 25 °C - R = 0 - 0 h<br />

(4) T = 200 °C - R = -1 - 0 h<br />

� a,t = 10 ‰ (2)<br />

� a,t = 10 ‰ (4)<br />

� a,t = 10 ‰ (3)<br />

� a,t = 10 ‰ (1)<br />

0<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05<br />

Number of cycles N [-]<br />

AlCuBiPb - LCF<br />

T = 25 / 200 °C<br />

R = -1 / 0<br />

pre-aged: 0 h vs.<br />

500 h at 250 °C<br />

� a,t = 3.75 / 10 ‰<br />

� a,t = 3,75 ‰ (2)<br />

� a,t = 3,75 ‰ (1)<br />

� a,t = 3,75 ‰ (4)<br />

� a,t = 3,75 ‰ (3)<br />

Strain amplitude � a,x at N f/2 [‰]<br />

1,E+02<br />

1,E+01<br />

LCF lifetime behaviour<br />

Influences on the LCF lifetime behaviour<br />

AlCuBiPb - LCF<br />

T = 25 / 200 °C<br />

R = -1 / 0<br />

1,E+00<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06<br />

Number of cycles to failure Nf [-]<br />

Manson-Coffin-curve 25 °C<br />

Basquin-curve 25 °C<br />

M.-C.-Basquin-model 25 °C<br />

Manson-Coffin-curve R = 0<br />

Basquin-curve R = 0<br />

M.-C.-Basquin-model R = 0<br />

Manson-Coffin-curve 200 °C<br />

Basquin-curve 200 °C<br />

M.-C.-Basquin-model 200 °C<br />

Mean strain: small influence on lifetime and cyclic deformation behaviour<br />

Temperature: in general lifetime decreasing effect<br />

10


Strain amplitude � mech a,t at<br />

1,E+01<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

Nf/2 [‰]<br />

1,E+00<br />

<strong>TMF</strong> tHo3<br />

LCF-data correlates with <strong>TMF</strong>-data, if:<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Strain-life Strain life curves<br />

Comparison of the mechanical <strong>TMF</strong>-<br />

with relevant isothermal LCF strain-life curves<br />

<strong>TMF</strong> tHo2<br />

LCF 250 °C<br />

<strong>TMF</strong> tHo1<br />

AlCuBiPb<br />

<strong>TMF</strong>-OP - LCF<br />

LCF 25 °C / preaged<br />

500 h bei 250 °C<br />

data points LCF 25 °C, preaged Manson-C.-B. LCF 25 °C, preaged<br />

data points LCF 250 °C Manson-Coffin-Basquin LCF 250 °C<br />

data points <strong>TMF</strong> tHo1 Manson-Coffin-Basquin <strong>TMF</strong> tHo1<br />

data points <strong>TMF</strong> tHo2 Manson-Coffin-Basquin <strong>TMF</strong> tHo2<br />

data points <strong>TMF</strong> tHo3 Manson-Coffin-Basquin <strong>TMF</strong> tHo3<br />

data points <strong>TMF</strong> tHo1 preaged data points <strong>TMF</strong> tHo1 mean strain<br />

data points <strong>TMF</strong> tHo2 mean strain data points <strong>TMF</strong> tHo3 preaged<br />

1,E+02 1,E+03 1,E+04<br />

Number of cycles to failure Nf [-]<br />

• Temperature- and ageing loading are comparable<br />

AlCuBiPb - R = -1<br />

<strong>TMF</strong>-OP - tHo = 24 s<br />

LCF - 250 °C<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Disadvantage of Manson-Coffin-<br />

Basquin:<br />

• 4 parameter per influence<br />

• Interactions not considered<br />

Advantage: global understanding<br />

3 0 0<br />

2 0 0<br />

1 0 0<br />

0<br />

-1 0 -8 -6 -4 -2 0 2 4 6 8 1 0<br />

-1 0 0<br />

-2 0 0<br />

-3 0 0<br />

<strong>TMF</strong>-Hysteresen<br />

LCF-Hysteresen<br />

11


Strain amplitude � mech a,t at<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

1,E+01 � ref,m ax<br />

Nf/2 [‰]<br />

� ref,m in<br />

1,E+00<br />

Comparsion of mechanical <strong>TMF</strong>- with relevant<br />

isothermal LCF strain-life curves<br />

LCF 250 °C<br />

TM F tD1<br />

<strong>TMF</strong> tD3<br />

TM F tD2<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

1,E+02 1,E+03 1,E+04<br />

Number of cycles to failure Nf [-]<br />

Correlation LCF-<strong>TMF</strong> LCF <strong>TMF</strong><br />

AlCuBiPb<br />

<strong>TMF</strong>-OP - LCF<br />

LCF 25 °C / pre-aged<br />

500 h at 250 °C<br />

Strain amplitude � mech a,t at<br />

1,E+01 � ref,max<br />

Nf/2 [‰]<br />

� ref,m in<br />

1,E+00<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Comparison of mechanical <strong>TMF</strong>- with relevant<br />

isothermal LCF strain-life curves<br />

LCF 250 °C<br />

TM F tD3<br />

<strong>TMF</strong> tD2<br />

AlSi7MgCu0,5<br />

<strong>TMF</strong>-OP - LCF<br />

LCF 25 °C / preaged<br />

500 h at 250 °C<br />

<strong>TMF</strong> tD1<br />

1,E+02 1,E+03 1,E+04<br />

Number of cycles to failure Nf [-]<br />

Correlation at:<br />

• Mechanical strain-life curves according to Manson-Coffin-Basquin<br />

• Cyclic stress-strain curves according to Ramberg-Osgood<br />

• Stress-strain-hysteresis<br />

• Energy based damage parameter<br />

12


Calculated lifetime N cal<br />

[-]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

1,E+08<br />

1,E+07<br />

1,E+06<br />

1,E+05<br />

Estimation of LCF and <strong>TMF</strong> lifetime according to the<br />

specific parameter sets according to M.-C.-Basquin<br />

AlCuBiPb<br />

LCF - <strong>TMF</strong>-OP<br />

all investigated influences<br />

Basis: 44 parameter<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

<strong>TMF</strong> tHo2<br />

<strong>TMF</strong> tHo1<br />

<strong>TMF</strong> tHo3<br />

LCF 25 °C R=-1 Var.1<br />

LCF 25 °C R=-1 Ch.1<br />

LCF 25 °C R=-1 Var.2<br />

LCF 25 °C R=-1 with drill.<br />

LCF 25 °C R=0<br />

LCF 25 °C R=-1 pre-aged<br />

LCF 200 °C R=-1<br />

LCF 250 °C R=-1<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08<br />

i<br />

a,<br />

t<br />

Experimental lifetime Nexp [-]<br />

i<br />

� ' f i<br />

i i<br />

b<br />

� � a,<br />

e � � a,<br />

p � ( ) � N f � �'<br />

E<br />

i<br />

f<br />

�N<br />

i<br />

c<br />

f<br />

Calculated lifetime N cal<br />

[-]<br />

1,E+07<br />

1,E+06<br />

1,E+05<br />

1,E+04<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Lifetime estimation with the specific parameter sets of<br />

Manson-Coffin<br />

Manson Coffin-Basquin Basquin<br />

�<br />

Estimation of LCF and <strong>TMF</strong> lifetime according to the<br />

specific parameter sets according to M.-C.-Basquin<br />

±2,5 ±2,5<br />

AlSi7MgCu0,5<br />

LCF - <strong>TMF</strong>-OP<br />

all investigated influences<br />

Basis: 52 parameters<br />

<strong>TMF</strong> tHo2<br />

<strong>TMF</strong> tHo1<br />

<strong>TMF</strong> tHo3<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

<strong>TMF</strong> tHo2 sek.<br />

LCF 25 °C R=-1 Var.1<br />

LCF 25 °C R=-1 sek.<br />

LCF 25 °C R=-1 Var.2<br />

LCF 25 °C R=-1 w. drill.<br />

LCF 25 °C R=0<br />

LCF 25 °C pre-aged<br />

LCF 150 °C R=-1<br />

LCF 200 °C R=-1<br />

LCF 250 °C R=-1<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07<br />

Experimental lifetime Nexp [-]<br />

4 parameter per influence<br />

� 44 resp. 52 parameters<br />

Standard deviation 0,22-0,25<br />

too many parameters, interactions are not considered<br />

Aim: Parameter reduction, Considering of the interactions<br />

13


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Energy based damage parameters<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

14


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Energy based damage parameters<br />

Representative for cyclic loading (� AND �) (Morrow, Halford) 1960<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Associated with macroscopic crack initiation (Dowling, Tomkins, Heitmann,<br />

Riedel, Schmitt, Nitta, Kuwabara) 1980<br />

3D-applications (Constantinescu, Charkaluk, Lederer, Verger) 2000<br />

Multiaxial (Sermage, Lemaitre, Desmorat, Gasiak, Pawliczek) 2000<br />

Independent of the temperature, material specific (Charkaluk et al.) 2000<br />

<strong>TMF</strong>: ageing effect dominant (T, t D, pre-aging, ageing<br />

in operation time), Interplay of stress and plastic<br />

strain values<br />

�W � W '�N<br />

W<br />

p<br />

p<br />

� W<br />

f<br />

B<br />

'�N<br />

b�c<br />

f<br />

1�b�c<br />

f<br />

mech 1<br />

� a,<br />

p,<br />

N � f / 2 �<br />

a,<br />

N f<br />

/ 2<br />

15


Specific energy � W<br />

[10 -3 J/mm 3 ]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

<strong>TMF</strong> (out-of-phase) and LCF (250 °C) results based on<br />

a plastic energy criterion<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

1,E-01<br />

1,E-02<br />

1,E-03<br />

120<br />

Damage parameter based on energy<br />

AlCuBiPb<br />

LCF - <strong>TMF</strong>-OP<br />

<strong>TMF</strong> dwell time 8 s, rigid clamped<br />

<strong>TMF</strong> dwell time 24 s, rigid clamped<br />

<strong>TMF</strong> dwell time 144 s, rigid clamped<br />

<strong>TMF</strong> dwell time 24 s, closed-loop controlled<br />

LCF 250 °C<br />

LCF: Slope: 0,39<br />

<strong>TMF</strong>: Slope: 0,09<br />

<strong>TMF</strong> Slope: -0,91<br />

LCF: Slope: -0,61<br />

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05<br />

Number of cycles to failure Nf [-]<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

mech<br />

a,<br />

p,<br />

N<br />

mech<br />

� , � , N<br />

Describes <strong>TMF</strong>-influences: dwell time, ageing in service, pre-aging, mean<br />

strain, local strain<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

1,E-01<br />

1,E-02<br />

1,E-03<br />

Accumulated energy<br />

W [10 -3 J/mm 3 ]<br />

N<br />

f<br />

�<br />

�<br />

W<br />

p<br />

f<br />

/ 2<br />

a<br />

��<br />

Proposed energy<br />

criteria:<br />

1-2 parameter<br />

f<br />

/ 2<br />

a,<br />

N<br />

f<br />

/ 2<br />

16


Specific plastic hysteresis<br />

energy �W H,p [MPa]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>TMF</strong> energy-cycle<br />

energy cycle behaviour<br />

Cycle dependency of the specific hysteresis energy<br />

Tmax=300°C, tD=24s, eps,m=0, PA=0h<br />

Tmax=275°C, tD=24s, eps,m=0, PA=0h<br />

Tmax=250°C, tD=24s, eps,m=0,5%, PA=0h<br />

Tmax=250°C, tD=144s, eps,m=0, PA=0h<br />

Tmax=250°C, tD=24s, eps,m=0,225%, PA=0h<br />

Tmax=250°C, tD=8s, eps,m=0, PA=0h<br />

Tmax=225°C, tD=24s, eps,m=-0,225%, PA=0h<br />

Tmax=225°C, tD=8s, eps,m=0, PA=500h at 250°C<br />

Tmax=225°C, tD=144s, eps,m=0, PA=0h<br />

Tmax=212,5°C, tD=24s, eps,m=0, PA=0h<br />

0 200 400 600 800 1000<br />

Cycle number Ni [-]<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Energy criterions<br />

AlCuBiPb<br />

<strong>TMF</strong>-OP<br />

1200<br />

5600<br />

AlCuBiPb: Accumulated plastic<br />

energy W [MPa]<br />

1,E+05<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

1,E+00<br />

AlCuBiPb<br />

LCF - <strong>TMF</strong>-OP<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

LCF/<strong>TMF</strong> accumulated<br />

energy<br />

Accumulated plastic energy W<br />

LCF 25 °C / pre-aged<br />

500 h at 250 °C<br />

LCF 250 °C<br />

AlSi7MgCu0,5<br />

LCF - <strong>TMF</strong>-OP<br />

1,E-01<br />

1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06<br />

Number of cycles to failure Nf [-]<br />

Amplitude<br />

values at N f/2 Accumulated energy:<br />

mech<br />

a N<br />

� ��<br />

, p,<br />

f / 2 a,<br />

N f<br />

/ 2<br />

slope depending on<br />

material, LCF/<strong>TMF</strong><br />

<strong>TMF</strong><br />

AlSi7MgCu0,5: Accumulated plastic<br />

energy W [MPa] (scaled on the<br />

intersection point at N f=100)<br />

17


Calculated lifetime N cal<br />

[-]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

1,E+05<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

1,E+01<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Material dependent <strong>TMF</strong> energy criterions<br />

Estimation of <strong>TMF</strong> lifetime based on the materialspecific<br />

best suited energy based approach<br />

AlCuBiPb: 1 Par.<br />

AlSi7MgCu0,5: 2 Par.<br />

AlSi6Cu4: 2 Par.<br />

AlSi8Cu3: 2 Par.<br />

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05<br />

Experimental lifetime Nexp [-]<br />

1-2 parameters per material<br />

Standard deviation: 0.227<br />

Even longer dwell times are considered<br />

±2,5<br />

<strong>TMF</strong>-OP: all<br />

investigated<br />

influences<br />

AlSi8Cu3 PSWT2 V=0,01<br />

AlCuBiPb W1 V=0,10<br />

AlSi6Cu4 Tomkins V=0,10<br />

AlSi7MgCu0,5 PSWT1 V=0,22<br />

AlCuBiPb:<br />

P SWT1<br />

� � max ��<br />

a,<br />

t<br />

� � � ��<br />

max<br />

a<br />

m<br />

N<br />

f<br />

�<br />

Riedler (2004)<br />

�<br />

W<br />

mech<br />

� p , � a , N f / 2<br />

mech<br />

a,<br />

p,<br />

N ��<br />

f / 2 a,<br />

N f / 2<br />

AlSi7MgCu0,5, AlSi8Cu3:<br />

P � a �<br />

SWT<br />

� � *<br />

c<br />

N<br />

PSWT 2 � � max ��<br />

a,<br />

t<br />

Smith, Watson, Topper (1970)<br />

AlSi6Cu4:<br />

Tomkins (1978)<br />

2 ��<br />

��<br />

max<br />

�J<br />

� a ��<br />

� �<br />

� E<br />

�<br />

N � A�<br />

( �J<br />

/ a)<br />

f<br />

B<br />

2 max<br />

f<br />

� E<br />

� ��<br />

���<br />

p �<br />

�<br />

�<br />

1�<br />

n'<br />

�<br />

18


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

General description for all materials:<br />

�W<br />

� ce<br />

� f ( �We<br />

) � c p � f ( �W<br />

p )<br />

N<br />

f<br />

�<br />

c<br />

5<br />

� �W<br />

�c6<br />

u<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Unified energy approach<br />

z<br />

z<br />

� � f �� ;� � � � f �� ;� �<br />

W e x x,<br />

y<br />

W p x x,<br />

y<br />

Minimization processes for the materials investigated with<br />

different possibilities and combinations<br />

Unified energy criterion:<br />

�<br />

c u in correlation<br />

with the tensile<br />

Standard deviation s [-]<br />

0,30<br />

0,28<br />

0,26<br />

0,24<br />

0,22<br />

0,20<br />

stresses 0,18<br />

�� ��<br />

�� �� ��<br />

�<br />

W u � cu<br />

� �Wu,<br />

e � �Wu,<br />

p � cu<br />

� max a,<br />

e a a,<br />

p<br />

AlCuBiPb - <strong>TMF</strong>-OP<br />

0,0 1,0 2,0 3,0<br />

Specific elastic energy parameter c u [-]<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

N f<br />

�<br />

f<br />

��W� 19


Calculated lifetime N cal<br />

[-]<br />

Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

1,E+05<br />

1,E+04<br />

1,E+03<br />

1,E+02<br />

Comparison of the <strong>TMF</strong> lifetime estimation based on the<br />

material dependent and the unified energy approach<br />

Investigated influences:<br />

M aximum temperature<br />

Dwell time<br />

Mean strain<br />

Pre-aging<br />

Aging in service time<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Unified approach<br />

1,E+01<br />

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05<br />

�<br />

Experimental lifetime Nexp [-]<br />

Unified energy approach<br />

±2,5<br />

Investigated materials:<br />

AlCuBiPb, AlSi7MgCu0,5,<br />

AlSi6Cu4, AlSi8Cu3<br />

Material dependent approach<br />

Number of specimens in the<br />

given scatter [%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Thermo-mechanical fatigue: Lifetime estimation based<br />

on the unified hysteresis energy approach<br />

0<br />

Specimens 1 in Specimens 2 in Specimens 3 in<br />

scatter +/- 2,5 scatter +/- 2,0 scatter +/- 1,5<br />

Quality of lifetime estimation<br />

�� ��<br />

�� �� ��<br />

�<br />

W u � cu<br />

� �Wu,<br />

e � �Wu,<br />

p � cu<br />

� max a,<br />

e a a,<br />

p<br />

Standard deviation: 0.225 with the unified hysteresis energy criterion<br />

AlCuBiPb<br />

AlSi7MgCu0,5<br />

AlSi6Cu4<br />

AlSi8Cu3<br />

Basis:<br />

100 <strong>TMF</strong> tests<br />

More than 50% of the specimens can be predicted within a scatter of 1.5, more<br />

than 80% within a scatter of 2.0 and more than 90% within a scatter of 2.5<br />

20


Christian-Doppler-Laboratory<br />

for Fatigue Analysis<br />

Engine Components:<br />

Identification of the<br />

loading cond.<br />

HCF, LCF,<br />

<strong>TMF</strong><br />

1<br />

RIEDLER_<strong>TMF</strong>-<strong>Workshop</strong>_BAM-Berlin_<strong>TMF</strong>-Energy_Presentation_2005.ppt<br />

<strong>HT</strong>-<strong>TMF</strong>-<strong>Conference</strong> – Berlin<br />

22/23 Sept., 2005<br />

Simulation of the<br />

component, component,<br />

Interpretation<br />

55<br />

University of Leoben<br />

Department Product Engineering<br />

Chair of Mechanical Engineering<br />

Thermo-mechanical<br />

Thermo mechanical fatigue: fatigue lifetime estimation<br />

4<br />

Simulation of the lifetime<br />

behaviour<br />

Simulation at specimens and<br />

comp. near specimens<br />

Taking into account relevant<br />

influences on lifetime and<br />

deformation beh.,<br />

Experiments<br />

2<br />

3<br />

Simulation of the cyclic<br />

deformation behaviour<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!